

ISSN 2056-9890

Received 25 July 2023 Accepted 18 August 2023

Edited by J. Reibenspies, Texas A & M University, USA

**Keywords:** crystal structure; imidazo[1,2-a] pyridin-1-ium; hydrogen bonds;  $\pi$ - $\pi$  interactions; Hirshfeld surface analysis.

CCDC reference: 2289534

**Supporting information:** this article has supporting information at journals.iucr.org/e



Published under a CC BY 4.0 licence

# Synthesis, crystal structure and Hirshfeld surface analysis of 3-(4-fluorophenyl)-2-formyl-7-methylimidazo[1,2-a]pyridin-1-ium chloride monohydrate

Firudin I. Guseinov,<sup>a,b</sup> Viacheslav O. Ovsyannikov,<sup>b,c</sup> Pavel V. Sokolovskiy,<sup>b</sup> Yurii L. Sebyakin,<sup>c</sup> Aida I. Samigullina,<sup>b</sup> Mehmet Akkurt,<sup>d</sup> Sevim Türktekin Çelikesir<sup>e</sup> and Ajaya Bhattarai<sup>f</sup>\*

<sup>a</sup>Kosygin State University of Russia, 117997 Moscow, Russian Federation, <sup>b</sup>N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, <sup>c</sup>MIREA, Russian Technology University, Lomonosov Institute of Fine Chemical Technology, Moscow 119571, Russian Federation, <sup>d</sup>Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, <sup>e</sup>Department of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Türkiye, and <sup>f</sup>Department of Chemistry, M.M.A.M.C. (Tribhuvan University), Biratnagar, Nepal. \*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

In the title salt,  $C_{15}H_{12}FN_2O^+ \cdot Cl^- \cdot H_2O$ , the imidazo[1,2-*a*]pyridin-1-ium ring system of the cation is almostly planar [maximum deviaition = -0.047 (2) Å for the ring C atom with the attached arene ring] and forms a dihedral angle of 61.81 (6)° with the plane of the fluorophenyl ring. In the crystal, water molecules form an  $R_2^4(8)$  motif parallel to the (100) plane by bonding with the chloride ions *via* O-H···Cl hydrogen bonds. The cations are connected along the *b* axis *via* N-H···O hydrogen bonds involving the O atoms of water molecules, and C-H···O, C-H···Cl and  $\pi$ - $\pi$  interactions [centroid-to-centroid distance = 3.6195 (8) Å] form layers parallel to the (100) plane. Furthermore, these layers are connected *via*  $\pi$ - $\pi$  interactions [centroid-to-centroid distance = 3.8051 (9) Å] that further consolidate the crystal structure.

#### 1. Chemical context

Imidazo [1,2-a] pyridine is considered to be the most important derivative in the imidazopyridine system, with many important biological activities (Ribeiro et al., 1998; Khalilov et al., 2021). These derivatives exhibit a number of interesting properties, such as anticancer, antifungal, anti-inflammatory, antibacterial, antiprotozoal, antipyretic and anti-infective, as well as analgesic and pain relief and sedative properties (Ribeiro et al., 1998; Almirante et al., 1965; Safavora et al., 2019). Imidazo[1,2-a]pyridine is present in various pharmaceutical products, such as zolpidem (used to treat insomnia), alpidem (sedative) (Lacerda et al., 2014), zolimidine (used to treat peptic ulcers) (Tyagi et al., 2012; Martins et al., 2017), olprinone (acute heart failure), saripidem (sedative), necopidem (sedative), soraprazan, miroprofen and minodronic acid (Kielesiński et al., 2015). Due to its importance in the pharmaceutical industry, much effort has been devoted to this heterocycle in order to develop an efficient, feasible and lowcost synthesis of imidazo[1,2-a]pyridine derivatives (Ribeiro et al., 1998). Besides their biological activity, the transition-metal complexes of imidazole ligands have been found to possess a wide variety of functional properties, for example, as catalysts, supramolecular building blocks, analytical reagents, etc. (Gurbanov et al., 2020a,b; Kopylovich et al., 2011; Mahmudov et al., 2010, 2012). By the functionalization of the imidazole synthon their functional properties can be improved (Gurbanov et al., 2022; Mahmoudi et al., 2017a,b, 2019). In

# research communications

| Table 1       |                 |    |
|---------------|-----------------|----|
| Hydrogen-bond | geometry (Å, °) | ). |

| $D - H \cdot \cdot \cdot A$  | D-H      | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdots A$ |
|------------------------------|----------|-------------------------|-------------------------|------------------|
| $N1-H1\cdots O18^{i}$        | 0.91 (2) | 1.77 (2)                | 2.6754 (16)             | 174 (2)          |
| O18-H18A···Cl1 <sup>ii</sup> | 0.87(2)  | 2.24 (2)                | 3.1070 (11)             | 175 (2)          |
| $O18-H18B\cdots Cl1^{iii}$   | 0.87(2)  | 2.24 (2)                | 3.1142 (11)             | 178.0 (19)       |
| $C8-H8\cdots Cl1^{iv}$       | 0.95     | 2.69                    | 3.6431 (15)             | 176              |
| $C12-H12\cdots Cl1^{v}$      | 0.95     | 2.71                    | 3.5610 (16)             | 150              |
| $C13-H13\cdots O10^{vi}$     | 0.95     | 2.41                    | 3.057 (2)               | 125              |

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y + 1, z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y + 1, -z + 1; (v) x + 1, y, z; (vi) x + 1, y - 1, z.

addition, the functional groups on the imidazole ring can participate in various types of intermolecular interactions (Mahmudov et al., 2022). Acetal-containing 2-chloro-2-(diethoxymethyl)-3-(4-fluorophenyl)oxirane (1) or 1-chloro-3,3diethoxy-1-(4-fluorophenyl)propan-2-one (2) in reactions with bi- and polyfunctional nucleophiles (Fig. 1) turned out to be convenient in the molecular design of various heterocyclic systems, in particular, heterocyclic carbaldehydes and their derivatives (Guseinov et al., 1994, 1995, 1998, 2006, 2017, 2020; Pistsov et al., 2017). We have found that electrophilic reagents (1 or 2) react with 2-amino-4-methylpyridine under certain conditions to transform into 3-(4-fluorophenyl)-2-formyl-7methylimidazo[1,2-a]pyridin-1-ium chloride (3) whose structure has been determined by NMR spectroscopy and X-ray diffraction methods (Fig. 1).



#### 2. Structural commentary

In the title salt (Fig. 2), the imidazo[1,2-a]pyridin-1-ium ring system (atoms N1/N4/C2/C3/C5-C8/C8A) of the cation is





The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

almost planar [maximum deviaition = -0.047 (2) Å for atom C3] and forms a dihedral angle of 61.81 (6)° with the plane of the fluorophenyl ring (C11–C16).

The bond lengths and angles in the molecule of the title salt are comparable with those of closely related structures detailed in Section 4 (Database survey).

#### 3. Supramolecular features and Hirshfeld surface analysis

In the crystal, water molecules form an  $R_2^4(8)$  motif (Bernstein et al., 1995) parallel to the (100) plane by bonding with the chloride ions via O-H···Cl hydrogen bonds (Table 1 and Figs. 3 and 4). The cations are also connected along the b axis via N-H···O hydrogen bonds involving the O atoms of the water molecules, and C-H···O, C-H···Cl and  $\pi$ - $\pi$  interactions  $[Cg2 \cdots Cg2^{iv} = 3.6195 (8) \text{ Å}; \text{ symmetry code: (iv)}$ -x + 1, -y + 1, -z + 1; Cg2 is a centroid of the six-membered ring (N4/C5-C8/C8A) of the imidazo[1,2-a]pyridin-1-ium ring system (N1/N4/C2/C3/C5-C8/C8A)] form layers parallel to the



Figure 1



#### Figure 3

View of the molecular packing along the *a* axis.  $N-H\cdots O$  and  $O-H\cdots Cl$  hydrogen bonds are shown as dashed lines.

(100) plane (Fig. 5). Furthermore, these layers are connected to each other via  $\pi - \pi$  interactions  $[Cg3 \cdots Cg3^{vii}] =$ 





View of the molecular packing along the c axis. Hydrogen bonds are depicted as in Fig. 3.

3.8051 (9) Å; symmetry code: (vii) -x + 1, -y, -z + 2; *Cg*3 is a centroid of the fluorophenyl ring (C11–C16)] that consolidate the crystal structure (Fig. 6).

The Hirshfeld surface mapped over  $d_{\text{norm}}$  was generated using *CrystalExplorer17.5* (Spackman *et al.*, 2021) with a colour scale from -0.7283 a.u. for red to +1.3376 a.u. for blue.



#### Figure 4

View of the molecular packing along the b axis. Hydrogen bonds are depicted as in Fig. 3.

Table 2

| Summary of short interatomic contacts (Å) in the title compound. |          |                        |  |  |
|------------------------------------------------------------------|----------|------------------------|--|--|
| Contact                                                          | Distance | Symmetry operation     |  |  |
| H13···O10                                                        | 2.41     | x + 1, y - 1, z        |  |  |
| $F1 \cdot \cdot \cdot H17C$                                      | 2.78     | x, y - 1, z + 1        |  |  |
| H9···F1                                                          | 2.79     | -x + 1, -y, -z + 2     |  |  |
| H9· · · O10                                                      | 2.71     | -x, -y + 1, -z + 2     |  |  |
| H16···Cl1                                                        | 3.04     | x, y, z                |  |  |
| H17 $B$ ···C2                                                    | 3.02     | -x + 1, -y + 1, -z + 1 |  |  |
| $H5 \cdot \cdot \cdot C6$                                        | 3.02     | -x + 1, -y, -z + 1     |  |  |
| $H17A \cdot \cdot \cdot O18$                                     | 2.78     | -x + 1, -y + 1, -z + 1 |  |  |
| H8···Cl1                                                         | 2.69     | -x, -y + 1, -z + 1     |  |  |
| H15···C9                                                         | 3.08     | -x, -y, -z + 2         |  |  |
| $H12 \cdot \cdot \cdot Cl1$                                      | 2.71     | x + 1, y, z            |  |  |
| H5···O18                                                         | 2.76     | x, y - 1, z            |  |  |
| Cl1···H6                                                         | 2.94     | -x + 1, -y, -z + 1     |  |  |
| $H18A \cdots Cl1$                                                | 2.24     | x + 1, y + 1, z        |  |  |
| O18···H1                                                         | 1.77     | x + 1, y, z            |  |  |

The front and rear views of the Hirshfeld surface mapped over  $d_{\text{norm}}$  are depicted in Fig. 7. The bright-red circular spots on  $d_{\text{norm}}$  indicate the presence of intermolecular N1-H1...O18<sup>i</sup>, C8-H8···Cl1<sup>iv</sup>, C12-H12···Cl1<sup>v</sup> and C13-H13···O10<sup>vi</sup> interactions (Table 1). The percentage contributions from different intermolecular interactions towards the formation of a three-dimensional Hirshfeld surface were computed using two-dimensional fingerprint calculations (Fig. 8).

Fig. 8 shows the full two-dimensional fingerprint plots for the molecule and those delineated into the major contacts.  $H \cdots H$  interactions [Fig. 8(b)] are the major contributor (35.2%) to the crystal packing, with  $C \cdots H/H \cdots C$  [Fig. 8(c); 19.0%],  $O \cdots H/H \cdots O$  [Fig. 8(d); 15.5%] and  $F \cdots H/H \cdots F$ [Fig. 8(e); 9.9%] interactions representing the next highest contributions. The percentage contributions of comparatively weaker interactions are C···C (4.6%), N···H/H···N (2.8%),  $F \cdots O/O \cdots F$  (1.5%),  $C \cdots C/C \cdots C I$  (1.3%),  $C \cdots H/H \cdots C I$ (1.3%), N····C/C···N (1.3%), F···F (1.2%), F···C/C···F





(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over  $d_{norm}$ , with a fixed colour scale from -0.7283 to 1.3376 a.u.

(1.1%) and  $O \cdots O (0.1\%)$ . Relevant short intermolecular atomic contacts are summarized in Table 2.

The results show that the  $H \cdots H$  (35.2%) contacts give the major contribution to the crystal packing, and that the  $C \cdot \cdot \cdot H/$  $H \cdots C$  (19.0%),  $O \cdots H/H \cdots O$  (15.5%) and  $F \cdots H/H \cdots F$ (9.9%) contacts also give a significant contribution to the total area of the Hirshfeld surface.



Figure 6 View of the  $\pi$ - $\pi$  stacking interactions along the *b* axis in the unit cell.

#### 4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom *et al.*, 2016) for compounds most closely related to the imidazo[1,2-*a*]-pyridin-1-ium unit of the title compound gave the following hits: refcodes LESMAZ (Yin, 2013), UREPIR (Nichol *et al.*, 2011), ABAJOE (Rybakov & Babaev, 2011), BIZWAI02 (Airoldi *et al.*, 2015), UREYIA (Türkyılmaz *et al.*, 2011) and NEQPOP (Qiao *et al.*, 2006).

In the crystal of LESMAZ, the cations and anions are linked into chains parallel to [021] by  $O-H\cdots Cl$  and  $N-H\cdots Cl$  hydrogen bonds. In the crystal of UREPIR,  $N-H\cdots O$  interactions form a one-dimensional chain, which propagates in the *b*-axis direction.  $C-H\cdots O$  interactions are also found in the crystal packing. The crystal structure of ABAJOE is consolidated by weak  $C-H\cdots O$  and  $C-H\cdots Cl$ interactions involving the '*olate*' O atom and the Cl atom attached to the benzoyl group as acceptors. In the crystal of



#### Figure 8

The two-dimensional fingerprint plots of the title compound, showing (a) all interactions, and delineated into (b)  $H \cdots H$ , (c)  $C \cdots H/H \cdots C$ , (d)  $O \cdots H/H \cdots O$  and (e)  $F \cdots H/H \cdots F$  interactions.  $d_e$  and  $d_i$  represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively.

| Table 3      |         |
|--------------|---------|
| Experimental | details |

| Crystal data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Chemical formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $C_{15}H_{12}FN_2O^+ \cdot Cl^- \cdot H_2O$ |
| Mr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 308.73                                      |
| Crystal system, space group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Triclinic, $P\overline{1}$                  |
| Temperature (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                         |
| a, b, c (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.45681 (13), 8.41737 (10),                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.8928 (2)                                 |
| $\alpha, \beta, \gamma$ (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74.0382 (12), 73.7634 (14),                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.7034 (13)                                |
| $V(Å^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 725.40 (2)                                  |
| Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                           |
| Radiation type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cu Κα                                       |
| $\mu (\text{mm}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.50                                        |
| Crystal size (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.33 \times 0.19 \times 0.15$              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |
| Data collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |
| Diffractometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rigaku XtaLAB Synergy Dualflex              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | diffractometer with a HvPix                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | detector                                    |
| Absorption correction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gaussian (CrysAlis PRO: Rigaku              |
| I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OD. 2023)                                   |
| Tmin Tmon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.404, 1.000                                |
| No. of measured, independent and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15845, 3082, 3033                           |
| observed $[I > 2\sigma(I)]$ reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,,,                                         |
| Rint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.027                                       |
| $(\sin \theta / \lambda)_{max} (\dot{A}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.634                                       |
| (on onomax (rr )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |
| Refinement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.033, 0.086, 1.03                          |
| No. of reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3082                                        |
| No. of parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 203                                         |
| H-atom treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H atoms treated by a mixture of             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | independent and constrained                 |
| (a, b) = ( |                                             |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ (e \ A \ )$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.34, -0.24                                 |

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT2019 (Sheldrick, 2015a), SHELXL2019 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

BIZWAI02, molecules are linked by  $O-H\cdots O$ ,  $N-H\cdots O$ and  $C-H\cdots O$  hydrogen bonds, and  $\pi-\pi$  interactions [centroid-to-centroid distance = 3.5822 (11) Å], forming a three-dimensional structure. In the crystal of UREYIA, the components are linked by  $N-H\cdots O$  and  $C-H\cdots O$ hydrogen bonds and  $\pi-\pi$  stacking interactions [centroidcentroid separation = 3.642 (3) Å]. In the crystal of NEQPOP, intermolecular  $O-H\cdots O$  and  $N-H\cdots O$  hydrogen bonds link the molecules into two-dimensional layers.

#### 5. Synthesis and crystallization

A solution of equimolar amounts of 2-aminopyridine (410 mg, 3.8 mmol) and 2-chloro-2-(diethoxymethyl)-3-(4-fluorophenyl)oxirane (1) or 1-chloro-3,3-diethoxy-1-(4-fluorophenyl)propan-2-one (2) (1.05 g, 3.8 mmol) in 25 ml of 95% aqueous ethanol was heated at reflux for 8 h. The solvent was removed *in vacuo*. After purification by column chromatography using a chloroform/ethyl acetate mixture (3:1 v/v), 2-(diethoxymethyl)-3-(4-fluorophenyl)imidazo[1,2-*a*]pyridine was obtained as a white powder. Gaseous HCl was passed through a solution of 2-(diethoxymethyl)-3-(4-fluorophenyl)imidazo-[1,2-*a*]pyridine in chloroform, leading to the main product, 3-(4-fluorophenyl)-2-formyl-7-methylimidazo[1,2-*a*]pyridin-1ium chloride (**3**) in the form of a white precipitate; this was

# research communications

insoluble in chloroform and was filtered off and recrystallized from acetonitrile (Fig. 1). Yield 0.61 g (55%); m.p. 509–510 K. Analysis calculated (%) for C<sub>15</sub>H<sub>12</sub>ClFN<sub>2</sub>O: C 70.58, H 4.74, F 7.44, N 10.97, O 6.27; found: C 70.60, H 4.78, F 7.42, N 10.93, O 6.27. <sup>1</sup>H NMR (300 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  2.54 (*s*, 3H, CH<sub>3</sub>), 7.28 (*d*, *J* = 6.6 Hz, 1H, 6CH), 7.55 (*dd*, *J* = 8.8, 5.5 Hz, 2H, Ar), 7.75 (*s*, 1H, NH), 7.90 (*dd*, *J* = 8.6, 5.5 Hz, 2H, Ar), 8.35 (*s*, 1H, 8CH), 8.47 (*d*, *J* = 7.1 Hz, 1H, 5CH), 9.85 (*s*, 1H, CHO). <sup>13</sup>C NMR (200 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  21.27, 111.92, 116.44, 116.87, 119.67, 120.02, 126.18, 130.39, 131.39, 133.59 (*d*, *J* = 35 Hz, CF), 141.40, 147.07, 161.11, 166.06, 182.45. ESI–MS: *m/z*: 255.0928 [*M* + H]<sup>+</sup>.

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The N-bound H atom and the H atoms of the water molecule were located in a difference Fourier map and refined freely along with their isotropic displacement parameters. C-bound H atoms were included in calculated positions and treated as riding atoms (C-H = 0.95– 0.98 Å), with  $U_{iso}(H) = 1.2U_{eq}(C)$  for aromatic H atoms and  $1.5U_{eq}(C)$  for methyl H atoms.

#### Acknowledgements

The author's contributions are as follows: conceptualization by FIG, MA and AB; synthesis by VOO, PVS, YLS and AIS; X-ray analysis by PVS, AIS and STÇ; writing (review and editing of the manuscript) by FIG, MA and AB; supervision by FIG, MA and AB.

#### References

- Airoldi, A., Bettoni, P., Donnola, M., Calestani, G. & Rizzoli, C. (2015). Acta Cryst. E71, 51–54.
- Almirante, L., Polo, L., Mugnaini, A., Provinciali, E., Rugarli, P., Biancotti, A., Gamba, A. & Murmann, W. (1965). J. Med. Chem. 8, 305–312.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
- Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). *Dalton Trans.* **51**, 1019–1031.
- Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.
- Guseinov, F. I. (1994). Russ. J. Org. Chem. 30, 360-365.
- Guseinov, F. I., Pistsov, M. F., Malinnikov, V. M., Lavrova, O. M., Movsumzade, E. M. & Kustov, L. M. (2020). *Mendeleev Commun.* 30, 674–675.
- Guseinov, F. I., Pistsov, M. F., Movsumzade, E. M., Kustov, L. M., Tafeenko, V. A., Chernyshev, V. V., Gurbanov, A. V., Mahmudov, K. T. & Pombeiro, A. J. L. (2017). *Crystals*, **7**, 327.

- Guseinov, F. I. & Tagiev, S. Sh. (1995). Russ. J. Org. Chem. 31, 86-91.
- Guseinov, F. I. & Yudina, N. A. (1998). Chem. Heterocycl. Compd. 34, 115–120.
- Guseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). *Chem. Heterocycl. Compd.* 42, 943–947.
- Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.
- Kielesiński, Ł., Tasior, M. & Gryko, D. T. (2015). Org. Chem. Front. 2, 21–28.
- Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011). *J. Phys. Org. Chem.* 24, 764–773.
- Lacerda, R. B., Sales, N. M., da Silva, L. L., Tesch, R., Miranda, A. L. P., Barreiro, E. J., Fernandes, P. D. & Fraga, C. A. M. (2014). *PLoS One*, 9, e91660.
- Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). *Inorg. Chim. Acta*, 461, 192–205.
- Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). *CrystEngComm*, 21, 108–117.
- Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763–4772.
- Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). *Inorg. Chem. Commun.* 22, 187–189.
- Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). *Coord. Chem. Rev.* 464, 214556.
- Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). *Anal. Lett.* 43, 2923– 2938.
- Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). *New J. Chem.* **41**, 4076–4086.
- Nichol, G. S., Sharma, A. & Li, H.-Y. (2011). Acta Cryst. E67, 01224.
- Pistsov, M. F., Lavrova, O. M., Saifutdinov, A. M., Burangulova, R. N., Kustov, L. M., Guseinov, F. I. & Musin, R. Z. (2017). *Russ. J. Gen. Chem.* 87, 2887–2890.
- Qiao, S., Yong, G.-P., Xie, Y. & Wang, Z.-Y. (2006). Acta Cryst. E62, 04634–04635.
- Ribeiro, I. G. M., da Silva, K. C., Parrini, S. C., de Miranda, A. L. P., Fraga, C. A. M. & Barreiro, E. J. (1998). *Eur. J. Med. Chem.* 33, 225–235.
- Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Rybakov, V. B. & Babaev, E. V. (2011). Acta Cryst. E67, o2814.
- Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Türkyılmaz, M., Baran, Y. & Özdemir, N. (2011). Acta Cryst. E67, 01282.
- Tyagi, V., Khan, S., Bajpai, V., Gauniyal, H. M., Kumar, B. & Chauhan, P. M. S. (2012). J. Org. Chem. 77, 1414–1421.
- Yin, W.-Y. (2013). Acta Cryst. E69, o211.

# supporting information

Acta Cryst. (2023). E79, 899-904 [https://doi.org/10.1107/S2056989023007272]

Synthesis, crystal structure and Hirshfeld surface analysis of 3-(4-fluorophenyl)-2-formyl-7-methylimidazo[1,2-a]pyridin-1-ium chloride monohydrate

# Firudin I. Guseinov, Viacheslav O. Ovsyannikov, Pavel V. Sokolovskiy, Yurii L. Sebyakin, Aida I. Samigullina, Mehmet Akkurt, Sevim Türktekin Çelikesir and Ajaya Bhattarai

# **Computing details**

Data collection: *CrysAlis PRO* (Rigaku OD, 2023); cell refinement: *CrysAlis PRO* (Rigaku OD, 2023); data reduction: *CrysAlis PRO* (Rigaku OD, 2023); program(s) used to solve structure: SHELXT2019 (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2019* (Sheldrick, 2015*b*); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2020).

3-(4-Fluorophenyl)-2-formyl-7-methylimidazo[1,2-a]pyridin-1-ium chloride monohydrate

### Crystal data

C<sub>15</sub>H<sub>12</sub>FN<sub>2</sub>O<sup>+</sup>·Cl<sup>-</sup>·H<sub>2</sub>O  $M_r = 308.73$ Triclinic, *P*I a = 7.45681 (13) Å b = 8.41737 (10) Å c = 12.8928 (2) Å  $a = 74.0382 (12)^{\circ}$   $\beta = 73.7634 (14)^{\circ}$   $\gamma = 72.7034 (13)^{\circ}$  $V = 725.40 (2) \text{ Å}^{3}$ 

# Data collection

Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm<sup>-1</sup> ω scans Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2023)

# Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.033$  $wR(F^2) = 0.086$ S = 1.033082 reflections Z = 2 F(000) = 320  $D_x = 1.413 \text{ Mg m}^{-3}$ Cu K\alpha radiation,  $\lambda = 1.54184 \text{ Å}$ Cell parameters from 11896 reflections  $\theta = 3.6-77.3^{\circ}$   $\mu = 2.50 \text{ mm}^{-1}$  T = 100 KPrism, colorless  $0.33 \times 0.19 \times 0.15 \text{ mm}$ 

 $T_{\min} = 0.404, T_{\max} = 1.000$ 15845 measured reflections 3082 independent reflections 3033 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.027$  $\theta_{\max} = 77.9^{\circ}, \theta_{\min} = 3.7^{\circ}$  $h = -9 \rightarrow 9$  $k = -10 \rightarrow 9$  $l = -16 \rightarrow 16$ 

203 parameters
0 restraints
Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed

| H atoms treated by a mixture of independent       | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
|---------------------------------------------------|------------------------------------------------------------|
| and constrained refinement                        | $\Delta \rho_{\rm max} = 0.34 \ { m e} \ { m \AA}^{-3}$    |
| $w = 1/[\sigma^2(F_o^2) + (0.0415P)^2 + 0.4038P]$ | $\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$ |
| where $P = (F_o^2 + 2F_c^2)/3$                    |                                                            |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x            | y             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|--------------|---------------|--------------|-----------------------------|
| Cl1  | 0.01542 (4)  | 0.11097 (4)   | 0.64700 (3)  | 0.02403 (11)                |
| F1   | 0.56045 (14) | -0.35098 (11) | 1.02878 (8)  | 0.0367 (2)                  |
| 018  | 0.90723 (15) | 0.80467 (12)  | 0.61002 (9)  | 0.0241 (2)                  |
| N4   | 0.37156 (15) | 0.27422 (14)  | 0.62115 (9)  | 0.0190 (2)                  |
| N1   | 0.14182 (17) | 0.49767 (15)  | 0.65794 (10) | 0.0215 (2)                  |
| C8A  | 0.26290 (18) | 0.42655 (16)  | 0.57537 (11) | 0.0196 (3)                  |
| C11  | 0.37885 (19) | 0.08741 (17)  | 0.81151 (11) | 0.0210 (3)                  |
| C5   | 0.51012 (19) | 0.17210 (16)  | 0.55569 (12) | 0.0214 (3)                  |
| Н5   | 0.586532     | 0.067821      | 0.587952     | 0.026*                      |
| C12  | 0.5714 (2)   | 0.03302 (17)  | 0.81846 (11) | 0.0233 (3)                  |
| H12  | 0.660070     | 0.098082      | 0.773040     | 0.028*                      |
| C3   | 0.30886 (19) | 0.24618 (17)  | 0.73582 (11) | 0.0208 (3)                  |
| C7   | 0.4192 (2)   | 0.37812 (17)  | 0.39448 (11) | 0.0228 (3)                  |
| C2   | 0.16899 (19) | 0.38788 (17)  | 0.75689 (11) | 0.0217 (3)                  |
| C8   | 0.28524 (19) | 0.48118 (17)  | 0.46032 (11) | 0.0215 (3)                  |
| H8   | 0.209704     | 0.586666      | 0.428855     | 0.026*                      |
| C14  | 0.5015 (2)   | -0.20644 (18) | 0.95627 (12) | 0.0267 (3)                  |
| C16  | 0.2482 (2)   | -0.00887 (19) | 0.87709 (12) | 0.0271 (3)                  |
| H16  | 0.117247     | 0.027457      | 0.871462     | 0.032*                      |
| C6   | 0.5351 (2)   | 0.22342 (17)  | 0.44449 (12) | 0.0232 (3)                  |
| H6   | 0.631903     | 0.154967      | 0.398747     | 0.028*                      |
| C13  | 0.6343 (2)   | -0.11584 (18) | 0.89146 (12) | 0.0256 (3)                  |
| H13  | 0.765513     | -0.154250     | 0.896619     | 0.031*                      |
| C17  | 0.4406 (2)   | 0.4222 (2)    | 0.27152 (12) | 0.0295 (3)                  |
| H17A | 0.374708     | 0.355153      | 0.250243     | 0.044*                      |
| H17B | 0.577414     | 0.396555      | 0.235805     | 0.044*                      |
| H17C | 0.383705     | 0.543651      | 0.248116     | 0.044*                      |
| C15  | 0.3103 (2)   | -0.1578 (2)   | 0.95051 (12) | 0.0303 (3)                  |
| H15  | 0.223073     | -0.224471     | 0.995677     | 0.036*                      |
| C9   | 0.0719 (2)   | 0.4320 (2)    | 0.86403 (12) | 0.0305 (3)                  |
| H9   | 0.092957     | 0.349329      | 0.929217     | 0.037*                      |
| H18A | 0.937 (3)    | 0.887 (3)     | 0.6243 (19)  | 0.046 (6)*                  |
| H18B | 0.926 (3)    | 0.830 (3)     | 0.538 (2)    | 0.045 (6)*                  |
| H1   | 0.059 (3)    | 0.602 (3)     | 0.6466 (17)  | 0.042 (5)*                  |
| O10  | -0.0336 (2)  | 0.56891 (18)  | 0.87279 (11) | 0.0572 (4)                  |

# supporting information

|     | <i>U</i> <sup>11</sup> | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$      |
|-----|------------------------|--------------|--------------|---------------|---------------|---------------|
| Cl1 | 0.02505 (17)           | 0.02388 (17) | 0.02491 (17) | -0.00803 (12) | -0.00593 (12) | -0.00495 (12) |
| F1  | 0.0455 (6)             | 0.0280 (5)   | 0.0283 (5)   | -0.0034 (4)   | -0.0120 (4)   | 0.0055 (4)    |
| O18 | 0.0284 (5)             | 0.0197 (5)   | 0.0241 (5)   | -0.0053 (4)   | -0.0058 (4)   | -0.0045 (4)   |
| N4  | 0.0200 (5)             | 0.0177 (5)   | 0.0196 (5)   | -0.0050 (4)   | -0.0035 (4)   | -0.0047(4)    |
| N1  | 0.0221 (5)             | 0.0188 (5)   | 0.0217 (6)   | -0.0011 (4)   | -0.0052 (4)   | -0.0050 (4)   |
| C8A | 0.0195 (6)             | 0.0174 (6)   | 0.0228 (6)   | -0.0051 (5)   | -0.0046 (5)   | -0.0048 (5)   |
| C11 | 0.0231 (6)             | 0.0203 (6)   | 0.0189 (6)   | -0.0031 (5)   | -0.0039 (5)   | -0.0057 (5)   |
| C5  | 0.0201 (6)             | 0.0178 (6)   | 0.0265 (7)   | -0.0047 (5)   | -0.0032 (5)   | -0.0068 (5)   |
| C12 | 0.0236 (6)             | 0.0232 (6)   | 0.0216 (6)   | -0.0041 (5)   | -0.0030 (5)   | -0.0060(5)    |
| C3  | 0.0214 (6)             | 0.0215 (6)   | 0.0205 (6)   | -0.0060 (5)   | -0.0045 (5)   | -0.0048 (5)   |
| C7  | 0.0267 (7)             | 0.0225 (6)   | 0.0220 (6)   | -0.0126 (5)   | -0.0023 (5)   | -0.0048 (5)   |
| C2  | 0.0218 (6)             | 0.0223 (6)   | 0.0202 (6)   | -0.0044 (5)   | -0.0047 (5)   | -0.0036 (5)   |
| C8  | 0.0245 (6)             | 0.0187 (6)   | 0.0227 (6)   | -0.0070 (5)   | -0.0064 (5)   | -0.0031 (5)   |
| C14 | 0.0356 (8)             | 0.0216 (7)   | 0.0194 (6)   | -0.0015 (6)   | -0.0077 (6)   | -0.0026 (5)   |
| C16 | 0.0249 (7)             | 0.0286 (7)   | 0.0261 (7)   | -0.0068 (6)   | -0.0051 (5)   | -0.0032 (6)   |
| C6  | 0.0242 (6)             | 0.0218 (6)   | 0.0247 (7)   | -0.0073 (5)   | -0.0006 (5)   | -0.0094 (5)   |
| C13 | 0.0260 (7)             | 0.0250 (7)   | 0.0235 (7)   | 0.0007 (5)    | -0.0069 (5)   | -0.0075 (5)   |
| C17 | 0.0375 (8)             | 0.0301 (7)   | 0.0219 (7)   | -0.0135 (6)   | -0.0021 (6)   | -0.0054 (6)   |
| C15 | 0.0330 (8)             | 0.0305 (8)   | 0.0244 (7)   | -0.0113 (6)   | -0.0036 (6)   | 0.0006 (6)    |
| C9  | 0.0306 (7)             | 0.0321 (8)   | 0.0227 (7)   | 0.0010 (6)    | -0.0039 (6)   | -0.0073 (6)   |
| O10 | 0.0698 (10)            | 0.0467 (8)   | 0.0304 (6)   | 0.0263 (7)    | -0.0082 (6)   | -0.0152 (6)   |
|     |                        |              |              |               |               |               |

Atomic displacement parameters  $(Å^2)$ 

# Geometric parameters (Å, °)

| F1-C14        | 1.3542 (16) | С7—С8     | 1.3734 (19) |
|---------------|-------------|-----------|-------------|
| O18—H18A      | 0.86 (2)    | С7—С6     | 1.428 (2)   |
| O18—H18B      | 0.87 (2)    | C7—C17    | 1.4988 (19) |
| N4—C8A        | 1.3719 (17) | С2—С9     | 1.4605 (19) |
| N4—C5         | 1.3791 (17) | C8—H8     | 0.9500      |
| N4—C3         | 1.3955 (17) | C14—C13   | 1.377 (2)   |
| N1—C8A        | 1.3411 (17) | C14—C15   | 1.379 (2)   |
| N1—C2         | 1.3811 (17) | C16—H16   | 0.9500      |
| N1—H1         | 0.92 (2)    | C16—C15   | 1.389 (2)   |
| C8A—C8        | 1.4042 (19) | С6—Н6     | 0.9500      |
| C11—C12       | 1.3920 (19) | C13—H13   | 0.9500      |
| C11—C3        | 1.4709 (18) | C17—H17A  | 0.9800      |
| C11—C16       | 1.3973 (19) | C17—H17B  | 0.9800      |
| С5—Н5         | 0.9500      | C17—H17C  | 0.9800      |
| C5—C6         | 1.354 (2)   | C15—H15   | 0.9500      |
| C12—H12       | 0.9500      | С9—Н9     | 0.9500      |
| C12—C13       | 1.387 (2)   | C9—O10    | 1.2011 (19) |
| C3—C2         | 1.3654 (19) |           |             |
| H18A—O18—H18B | 103 (2)     | C8A—C8—H8 | 120.9       |
| C8A—N4—C5     | 121.11 (12) | C7—C8—C8A | 118.26 (12) |

| C8A—N4—C3       | 108.76 (11)  | С7—С8—Н8        | 120.9        |
|-----------------|--------------|-----------------|--------------|
| C5—N4—C3        | 130.04 (11)  | F1-C14-C13      | 118.85 (13)  |
| C8A—N1—C2       | 108.37 (11)  | F1-C14-C15      | 118.03 (13)  |
| C8A—N1—H1       | 123.1 (13)   | C13—C14—C15     | 123.12 (13)  |
| C2—N1—H1        | 128.5 (13)   | C11—C16—H16     | 120.1        |
| N4—C8A—C8       | 121.05 (12)  | C15—C16—C11     | 119.86 (13)  |
| N1—C8A—N4       | 108.00 (11)  | C15—C16—H16     | 120.1        |
| N1—C8A—C8       | 130.92 (12)  | C5—C6—C7        | 121.48 (12)  |
| C12—C11—C3      | 121.05 (12)  | С5—С6—Н6        | 119.3        |
| C12—C11—C16     | 120.14 (13)  | С7—С6—Н6        | 119.3        |
| C16—C11—C3      | 118.81 (12)  | C12—C13—H13     | 120.9        |
| N4—C5—H5        | 120.7        | C14—C13—C12     | 118.22 (13)  |
| C6—C5—N4        | 118.69 (12)  | C14—C13—H13     | 120.9        |
| С6—С5—Н5        | 120.7        | С7—С17—Н17А     | 109.5        |
| C11—C12—H12     | 119.9        | С7—С17—Н17В     | 109.5        |
| C13—C12—C11     | 120.26 (13)  | С7—С17—Н17С     | 109.5        |
| C13—C12—H12     | 119.9        | H17A—C17—H17B   | 109.5        |
| N4—C3—C11       | 123.90 (11)  | H17A—C17—H17C   | 109.5        |
| C2—C3—N4        | 105.71 (11)  | H17B—C17—H17C   | 109.5        |
| C2—C3—C11       | 130.28 (12)  | C14—C15—C16     | 118.39 (14)  |
| C8—C7—C6        | 119.34 (13)  | C14—C15—H15     | 120.8        |
| C8—C7—C17       | 121.11 (13)  | C16—C15—H15     | 120.8        |
| C6—C7—C17       | 119.51 (13)  | С2—С9—Н9        | 118.8        |
| N1—C2—C9        | 122.80 (12)  | O10—C9—C2       | 122.45 (14)  |
| C3—C2—N1        | 109.06 (12)  | О10—С9—Н9       | 118.8        |
| C3—C2—C9        | 127.88 (13)  |                 |              |
|                 |              |                 |              |
| F1-C14-C13-C12  | -179.27 (12) | C12—C11—C3—N4   | 62.54 (18)   |
| F1-C14-C15-C16  | 179.42 (13)  | C12—C11—C3—C2   | -121.88 (16) |
| N4—C8A—C8—C7    | -0.07 (19)   | C12—C11—C16—C15 | 1.0 (2)      |
| N4—C5—C6—C7     | -1.2 (2)     | C3—N4—C8A—N1    | 3.08 (14)    |
| N4—C3—C2—N1     | 1.89 (15)    | C3—N4—C8A—C8    | -175.22 (12) |
| N4—C3—C2—C9     | -172.39 (14) | C3—N4—C5—C6     | 175.22 (12)  |
| N1—C8A—C8—C7    | -177.93 (13) | C3—C11—C12—C13  | 179.08 (12)  |
| N1-C2-C9-O10    | -2.3 (3)     | C3—C11—C16—C15  | -178.93 (13) |
| C8A—N4—C5—C6    | -1.22 (18)   | C3—C2—C9—O10    | 171.26 (17)  |
| C8A—N4—C3—C11   | 173.45 (12)  | C2—N1—C8A—N4    | -1.87 (15)   |
| C8A—N4—C3—C2    | -3.04 (14)   | C2—N1—C8A—C8    | 176.21 (13)  |
| C8A—N1—C2—C3    | -0.05 (15)   | C8—C7—C6—C5     | 3.0 (2)      |
| C8A—N1—C2—C9    | 174.58 (13)  | C16—C11—C12—C13 | -0.8 (2)     |
| C11—C12—C13—C14 | -0.2 (2)     | C16—C11—C3—N4   | -117.56 (15) |
| C11—C3—C2—N1    | -174.29 (13) | C16—C11—C3—C2   | 58.0 (2)     |
| C11—C3—C2—C9    | 11.4 (2)     | C6—C7—C8—C8A    | -2.29 (19)   |
| C11-C16-C15-C14 | -0.1 (2)     | C13—C14—C15—C16 | -1.0 (2)     |
| C5—N4—C8A—N1    | -179.80 (11) | C17—C7—C8—C8A   | 175.47 (12)  |
| C5—N4—C8A—C8    | 1.90 (18)    | C17—C7—C6—C5    | -174.78 (13) |
| C5—N4—C3—C11    | -3.3 (2)     | C15—C14—C13—C12 | 1.2 (2)      |
|                 |              |                 |              |

| H···A        | $D \cdots A$                                                                                                                                                          | D—H··· $A$                                                                                                                           |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| (2) 1.77 (2) | 2.6754 (16)                                                                                                                                                           | 174 (2)                                                                                                                              |
| 2) 2.24 (2)  | 3.1070 (11)                                                                                                                                                           | 175 (2)                                                                                                                              |
| 2) 2.24 (2)  | 3.1142 (11)                                                                                                                                                           | 178.0 (19)                                                                                                                           |
| 2.69         | 3.6431 (15)                                                                                                                                                           | 176                                                                                                                                  |
| 2.71         | 3.5610 (16)                                                                                                                                                           | 150                                                                                                                                  |
| 2.41         | 3.057 (2)                                                                                                                                                             | 125                                                                                                                                  |
|              | $ \begin{array}{c cccc}     I & H \cdots A \\ \hline     2) & 1.77 (2) \\     2) & 2.24 (2) \\     2) & 2.24 (2) \\     2.69 \\     2.71 \\     2.41 \\ \end{array} $ | H $\cdots A$ D $\cdots A$ 2)1.77 (2)2.6754 (16)2)2.24 (2)3.1070 (11)2)2.24 (2)3.1142 (11)2.693.6431 (15)2.713.5610 (16)2.413.057 (2) |

# Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*+1, *z*; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*, -*y*+1, -*z*+1; (v) *x*+1, *y*, *z*; (vi) *x*+1, *y*-1, *z*.