

Received 21 March 2024 Accepted 31 March 2024

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences

Keywords: crystal structure; disorder; C—H···S hydrogen bonds; cyclohexene ring; thiophene ring; Hirshfeld surface analysis.

CCDC reference: 2344995

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Crystal structure and Hirshfeld surface analysis of dimethyl 4'-bromo-3-oxo-5-(thiophen-2-yl)-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2,4-dicarboxylate

Farid N. Naghiyev,^a Victor N. Khrustalev,^{b,c} Mehmet Akkurt,^d Khammed A. Asadov,^a Ajaya Bhattarai,^e* Ali N. Khalilov^{f,a} and Ibrahim G. Mamedov^a

^aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, ^bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, ^cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, ^dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, ^eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal, and ^{fu}Composite Materials^u Scientific Research Center, Azerbaijan State Economic University (UNEC), Murtuza Mukhtarov str. 194, Az 1065, Baku, Azerbaijan. *Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

In the title compound, $C_{20}H_{17}BrO_5S$, molecules are connected by intermolecular $C-H\cdots S$ hydrogen bonds with $R_2^2(10)$ ring motifs, forming ribbons along the *b*-axis direction. $C-H\cdots \pi$ interactions consolidate the ribbon structure while van der Waals forces between the ribbons ensure the cohesion of the crystal structure. According to a Hirshfeld surface analysis, $H\cdots H$ (40.5%), $O\cdots H/H\cdots O$ (27.0%), $C\cdots H/H\cdots C$ (13.9%) and $Br\cdots H/H\cdots Br$ (11.7%) interactions are the most significant contributors to the crystal packing. The thiophene ring and its adjacent dicarboxylate group and the three adjacent carbon atoms of the central hexene ring to which they are attached were refined as disordered over two sets of sites having occupancies of 0.8378 (15) and 0.1622 (15). The thiophene group is disordered by a rotation of 180° around one bond.

1. Chemical context

Functionalized carbo- and heterocyclic compounds are important systems in different fields of science (Huseynov et al., 2023; Akkurt et al., 2023). These systems comprise nucleic acids, alkaloids, vitamins, sugars, hormones, antibiotics, other drugs, dyes, pesticides, and herbicides. There have been crucial developments in organic synthesis with heterocyclic systems designed recently for various research and commercial purposes (Maharramov et al., 2022; Erenler et al., 2022, Khalilov et al., 2023a,b). These derivatives have found widespread applications in coordination (Gurbanov et al., 2021; Mahmoudi et al., 2021), medicinal (Askerova, 2022) and materials chemistry (Velásquez et al., 2019; Afkhami et al., 2019). These ring systems are used for a large range of applications, as well as drugs, ligands, catalysts, and materials (Maharramov et al., 2021, Sobhi & Faisal, 2023). Functionalized systems combining cyclohexanone, phenyl and thiophene motifs exhibit various biological activities, such as molluscicidal, anticancer, antioxidant, cytotoxic, anti-inflammatory, herbicidal, pesticidal, and antibacterial (Atalay et al., 2022; Donmez & Turkyılmaz, 2022). As a result of the varied applications of these systems, their efficient and regioselective development has attracted great attention. Thus, in the framework of our structural studies (Abdinov et al., 2004, 2012, 2014; Naghiyev et al., 2021b), herein we report the crystal structure and Hirshfeld surface analysis of the title

compound, dimethyl 4'-bromo-3-oxo-5-(thiophen-2-yl)-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2,4-dicarboxylate.

2. Structural commentary

As seen in Fig. 1, the major (C1-C6) component of the central hexene ring shows a distorted boat conformation [puckering parameters (Cremer & Pople, 1975) are $Q_{\rm T}$ = 0.5077 (16) Å, θ = 129.02 (17)°, φ = 355.7 (2)°], and the minor (C1/C2/C3A-C5A/C6) component of the central hexene ring also shows an envelope conformation [puckering parameters $Q_{\rm T}$ = 0.568 (7) Å, $\theta = 54.8 (5)^{\circ}$, $\varphi = 124.2 (6)^{\circ}$]. The r.m.s planes of these disordered hexene rings make angles of 72.18 (14), 69.6 (9), 49.52 (7), and 62.5 (2), 60.1 (9), 44.23 (17), respectively, with the major (S21/C17-C20) and minor (S21A/C17A-C20A) disordered thiophene ring components and the (C7–C12). C2-C1-C13-O13, benzene ring The C1-C13-O14-C14, C2-C3-C15-O15, C2-C3A-C15A-O15A, C3-C15-O16-C16 and C3A-C15A-O16A-C16A torsion angles are -64.22 (19), 177.23 (12), -107.7 (4), -64 (3), 175.03 (18) and 177.9 (11)°, respectively. The geometric parameters of the title compound are normal and comparable to those of related compounds listed in the Database survey section.

3. Supramolecular features and Hirshfeld surface analysis

In the crystal, molecules are connected by intermolecular C-H···S hydrogen bonds with $R_2^2(10)$ ring motifs (Table 1; Figs. 2 and 3; Bernstein *et al.*, 1995), forming ribbons along the

Figure 1

The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Figure 2 The packing viewed down the *a* axis of the title compound with $C-H\cdots$ S hydrogen bonds shown as dashed lines.

b-axis direction. $C-H\cdots\pi$ interactions consolidate the ribbon structure while van der Waals forces between the ribbons ensure the cohesion of the crystal structure (Table 1; Figs. 4 and 5).

To quantify the intermolecular interactions between the molecules in the crystal structure of the title compound, a

Figure 3

The packing viewed along the *b* axis of the title compound with $C-H\cdots S$ hydrogen bonds shown as dashed lines.

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the major (S21/C17–C20) and minor (S21A/C17A–C20A) disordered components of the thiophene ring, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$C3-H3\cdots S21^{i}$	1.00	2.86	3.6775 (16)	139
$C5-H5B\cdots S21^{ii}$	0.99	2.84	3.5984 (15)	134
$C3-H3\cdots Cg1^{i}$	1.00	2.75	3.611 (2)	144
$C3-H3\cdots Cg2^{i}$	1.00	2.86	3.721 (11)	145
$C4A - H4A \cdots Cg1^{i}$	1.00	2.97	3.839 (8)	146

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$.

Hirshfeld surface analysis was performed and the twodimensional fingerprint plots generated using *CrystalExplorer* 17.5 (Spackman *et al.*, 2021). The Hirshfeld surfaces were mapped over d_{norm} in the range -0.2669 (red) to +1.2638(blue) a.u. (Fig. 6).

The dominant interatomic contact is $H \cdots H$ as it makes the highest contribution to the crystal packing (40.5%, Fig. 7*b*). Other major contributors are $O \cdots H/H \cdots O$ (27.0%, Fig. 7*c*), Br $\cdots H/H \cdots Br$ (11.7%, Fig. 7*d*) and $C \cdots H/H \cdots C$ (13.9%, Fig. 7*e*) interactions. Other, smaller contributions are made by $C \cdots C$ (2.9%), Br $\cdots O/O \cdots Br$ (1.7%), $S \cdots H/H \cdots S$ (1.2%), $O \cdots C/C \cdots O$ (0.8%), $O \cdots O$ (0.2%) and $S \cdots C/C \cdots S$ (0.1%) interactions.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom *et al.*, 2016) for the central six-membered *cyclohexene* ring yielded eight

Figure 4

A view of the packing down the *a* axis of the title compound with $C-H\cdots\pi$ interactions shown as dashed lines.

A view of the packing along the *b* axis of the title compound with $C-H\cdots\pi$ interactions shown as dashed lines.

compounds related to the title compound, *viz*. CSD refcodes UPOMOE (Naghiyev *et al.*, 2021*a*), ZOMDUD (Gein *et al.*, 2019), PEWJUZ (Fatahpour *et al.*, 2018), OZUKAX (Tkachenko *et al.*, 2014), IFUDOD (Gein *et al.*, 2007), IWEVOV (Mohan *et al.*, 2003), IWEVUB (Mohan *et al.*, 2003) and HALROB (Ravikumar & Mehdi, 1993).

UPOMOE and ZOMDUD crystallize in the monoclinic space group $P2_1/c$, with Z = 4, PEWJUZ in I2/c with Z = 4, IFUDOD, HALROB and IWEVUB in $P2_1/n$ with Z = 4, and IWEVOV and OZUKAX in the orthorhombic space group *Pbca* with Z = 8. In UPOMOE, the central cyclohexane ring adopts a chair conformation. In the crystal, molecules are linked by N-H···O, C-H···O, and C-H···N hydrogen bonds, forming molecular layers parallel to the *bc* plane, which interact by the van der Waals forces between them. In ZOMDUD, molecules are linked by intermolecular N-H···O and C-H···O hydrogen bonds, forming a three-

(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over d_{norm} .

Figure 7

The two-dimensional fingerprint plots, showing (a) all interactions, and delineated into (b) $H \cdots H$, (c) $O \cdots H/H \cdots O$, (d) $C \cdots H/H \cdots C$ and (e) $Br \cdots H/H \cdots Br$ interactions [d_e and d_i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively].

dimensional network. $C-H\cdots\pi$ interactions are also observed. In PEWJUZ, molecules are linked by intermolecular $N-H\cdotsO$ and $C-H\cdotsO$ hydrogen bonds, forming sheets parallel to the *bc* plane. $C-H\cdots\pi$ interactions are also observed. In OZUKAX, molecules are linked by intermolecular $N-H\cdotsO$ and $C-H\cdotsO$ hydrogen bonds, forming sheets parallel to the *ac* plane. $C-H\cdots\pi$ interactions are also observed. Intermolecular $O-H\cdotsO$ hydrogen bonds consolidate the molecular $O-H\cdotsO$ hydrogen bonds consolidate the molecular conformation. There are no classical hydrogen bonds in the crystal of IFUDOD where intermolecular $C-H\cdotsO$ contacts and weak $C-H\cdots\pi$ interactions lead to the formation of a three-dimensional network. In the crystal of IWEVOV, the molecules pack such that both carbonyl O atoms participate in hydrogen-bond formation with symmetry-related amide nitrogen atoms present in the carbamoyl substituents, forming N-H···O hydrogen bonds in a helical arrangement. In the crystal, the phenyl rings are positioned so as to favour edge-to-edge aromatic stacking. When the crystal packing is viewed normal to the *ac* plane, it reveals a 'wire-mesh' type hydrogen-bond network. In the crystal of IWEVUB, unlike in IWEVOV where both carbonyl O atoms participate in hydrogen bonding, only one of the carbonyl oxygen atoms participates in intermolecular N-H···O hydrogen bonding while the other carbonyl oxygen participates in a weak $C-H \cdots O$ interaction. In addition, one of the amide nitrogen atoms participates in N-H···O hydrogen bonding with the hydroxyl oxygen atom, linking the molecules in a helical arrangement, which is similar to that in the structure of IWEVOV. As observed in the structure of IWEVOV, the packing of the molecules viewed normal to the ab plane resembles a 'wire-mesh' arrangement of the molecules. In the crystal of HALROB, the amide carbonyl groups are oriented in different directions with respect to the cyclohexanone ring. These orientations of the carboxamide groups facilitate the formation of an intramolecular O-H···O hydrogen bond. The molecules are packed such that chains are formed along the b-axis direction. These chains are held together by $N-H \cdots O$ hydrogen bonds.

5. Synthesis and crystallization

A solution of 1-(4-bromophenyl)-3-(thiophen-2-yl)prop-2-en-1-one (5.2 mmol) and dimethyl-1,3-acetonedicarboxylate (5.2 mmol) in methanol (30 mL) was stirred for 10 min. Then *N*-methylpiperazine (3 drops) was added to the reaction mixture, which was heated for 20 minutes at 318–323 K and stirred for 48 h at room temperature. Then 20 mL of methanol were removed from the reaction mixture, which was left overnight.

The precipitated crystals were separated by filtration and recrystallized from an ethanol/water (1:1) solution (m.p. = 508-509 K, yield 79%).

¹H NMR (300 MHz, DMSO- d_6 , ppm., J_{HH} , Hz): 3.04 (d, 2H, CH₂, ${}^{3}J_{H-H} = 7.9$); 3.52 (k, 1H, CH, ${}^{3}J_{H-H} = 7.9$); 3.57 (s, 6H, 2OCH₃); 4.15 (d, 1H, CH, ${}^{3}J_{H-H} = 8.7$); 6.98 (t, 1H, CH_{thien}, ${}^{3}J_{H-H} = 5.1$); 7.05 (d, 1H, CH_{thien}, ${}^{3}J_{H-H} = 5.1$); 7.40 (m, 3H, 2CH_{arom} + CH_{thien}); 7.67 (d, 2H, 2CH_{arom}, ${}^{3}J_{H-H} = 8.1$). ¹³C NMR (75 MHz, DMSO- d_6 , ppm): 38.16 (CH), 38.25 (CH₂), 52.43 (OCH₃), 52.64 (OCH₃), 60.15 (CH), 124.08 (C_{arom}), 125.21 (CH_{thien}), 125.51 (CH_{thien}), 127.44 (CH_{thien}), 129.30 (2CH_{arom}), 131.62 (C_{thien}), 132.22 (2CH_{arom}), 137.40 (C_{arom}), 144.19 (C_{quat}), 159.21 (C_{quat}), 166.37 (CO), 169.47 (CO), 190.91 (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in calculated positions (C–H = 0.95–1.00 Å) and refined as riding with $U_{\rm iso}$ (H) = $1.2U_{\rm eq}$ (N) or $1.5U_{\rm eq}$ (C). The thiophene ring (S21/C17–C20) and its adjacent dicarboxylate group (C15–C16/O15/O16) and the three adjacent carbon atoms (C3,

research communications

C4 and C5) of the central hexane ring to which they are attached were refined as disordered over two sets of atomic sites having occupancies of 0.8378 (15) and 0.1622 (15). The methylene carbon atom (C5) of the hexane ring was also refined with the same occupation ratio [0.8378 (15): 0.1622 (15)], having two disordered parts at the same position and the same displacement parameters using the EXYZ and EADP commands. The thiophene group is disordered by a rotation of 180° around one bond. SADI, DFIX and EADP commands were used in the refinement.

Acknowledgements

Authors' contributions are as follows. Conceptualization, IGM, ANK and FNN; methodology, IGM and MA; investigation, VNK and FNN; writing (original draft), MA, AB and ANK, writing (review and editing of the manuscript), İGM and ANK; visualization, MA, KAA and FNN; funding acquisition, VNK, AB and FNN; resources, AB, VNK and MA; supervision, MA and ANK.

Funding information

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.

References

- Abdinov, A. S., Babaeva, R. F. & Rzaev, R. M. (2012). *Inorg. Mater.* 48, 781–785.
- Abdinov, A. S., Babaeva, R. F., Rzaev, R. M. & Gasanov, G. A. (2004). *Inorg. Mater.* **40**, 567–569.
- Abdinov, A. S., Babayeva, R. F., Amirova, S. I., Ragimova, N. A. & Rzayev, R. M. (2014). *Semiconductors* **48**, 981–985.
- Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). *Eur. J. Inorg. Chem.* pp. 262–270.
- Akkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33–39.
- Askerova, U. F. (2022). UNEC J. Eng. Appl. Sci, 2, 58-64.
- Atalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33–40.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Donmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci, 2, 43–48.
- Erenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26–32.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fatahpour, M., Hazeri, N., Adrom, B., Maghsoodlou, M. T. & Lashkari, M. (2018). Res. Chem. Intermed. 44, 2111–2122.
- Gein, V. L., Levandovskaya, E. B., Nosova, N. V., Vakhrin, M. I., Kriven?ko, A. P. & Aliev, Z. G. (2007). *Zh. Org. Khim.* 43, 1101– 1102.
- Gein, V. L., Nosova, N. V., Yankin, A. N., Bazhina, A. Y. & Dmitriev, M. V. (2019). *Tetrahedron Lett.* **60**, 1592–1596.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

Table	2
-------	---

Experimental details.

Crystal data	
Chemical formula	$C_{20}H_{17}BrO_5S$
M _r	449.30
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	11.4670 (2), 8.4852 (2), 20.4823 (4)
β (°)	105.135 (2)
$V(Å^3)$	1923.80 (7)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	2.27
Crystal size (mm)	$0.17 \times 0.15 \times 0.13$
Data collection	
Diffractometer	XtaLAB Synergy, Dualflex, HyPix
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)
T_{\min}, T_{\max}	0.705, 0.749
No. of measured, independent and	36460, 6958, 5872
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.031
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.756
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.034, 0.086, 1.02
No. of reflections	6958
No. of parameters	281
No. of restraints	41
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.67, -0.97

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2019/3 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

- Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). *Crystals*, **11**, 112.
- Huseynov, E. Z., Akkurt, M., Brito, I., Bhattarai, A., Rzayev, R. M., Asadov, K. A. & Maharramov, A. M. (2023). *Acta Cryst.* E79, 890– 894.
- Khalilov, A. N., Khrustalev, V. N., Aleksandrova, L. V., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023*a*). *Acta Cryst.* E**79**, 436–440.
- Khalilov, A. N., Khrustalev, V. N., Samigullina, A. I., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023b). Acta Cryst. E79, 736–740.
- Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11.
- Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73.
- Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). *Inorg. Chim. Acta*, **519**, 120279.
- Mohan, K. C., Ravikumar, K. & Shetty, M. M. (2003). J. Chem. Crystallogr. 33, 97–103.
- Naghiyev, F. N., Khrustalev, V. N., Akkurt, M., Huseynov, E. Z., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021*a*). *Acta Cryst.* E77, 366–371.
- Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021*b*). *Acta Cryst.* E77, 516–521.
- Ravikumar, K. & Mehdi, S. (1993). Acta Cryst. C49, 2027-2030.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21-32.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Tkachenko, V. V., Muravyova, E. A. S. V., Shishkina, S. V., Shishkin, O. V., Desenko, S. M. & Chebanov, V. A. (2014). *Chem. Heterocycl. Compd*, **50**, 1166–1176.
- Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). *CrystEngComm*, **21**, 6018–6025.

Acta Cryst. (2024). E80, 446-451 [https://doi.org/10.1107/S2056989024002858]

Crystal structure and Hirshfeld surface analysis of dimethyl 4'-bromo-3oxo-5-(thiophen-2-yl)-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2,4-dicarboxylate

Farid N. Naghiyev, Victor N. Khrustalev, Mehmet Akkurt, Khammed A. Asadov, Ajaya Bhattarai, Ali N. Khalilov and İbrahim G. Mamedov

Computing details

Dimethyl 4'-bromo-3-oxo-5-(thiophen-2-yl)-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2,4-dicarboxylate

Crystal data

 $C_{20}H_{17}BrO_5S$ $M_r = 449.30$ Monoclinic, $P2_1/c$ a = 11.4670 (2) Å b = 8.4852 (2) Å c = 20.4823 (4) Å $\beta = 105.135$ (2)° V = 1923.80 (7) Å³ Z = 4

Data collection

XtaLAB Synergy, Dualflex, HyPix
diffractometer
Radiation source: micro-focus sealed X-ray
tube, PhotonJet (Mo) X-ray Source
Mirror monochromator
Detector resolution: 10.0000 pixels mm ⁻¹
ω scans
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.086$ S = 1.026958 reflections 281 parameters 41 restraints F(000) = 912 $D_x = 1.551 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 16653 reflections $\theta = 2.4-34.9^{\circ}$ $\mu = 2.27 \text{ mm}^{-1}$ T = 100 KPrism, colorless $0.17 \times 0.15 \times 0.13 \text{ mm}$

 $T_{\min} = 0.705, T_{\max} = 0.749$ 36460 measured reflections 6958 independent reflections 5872 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.031$ $\theta_{\text{max}} = 32.5^{\circ}, \theta_{\text{min}} = 2.4^{\circ}$ $h = -17 \rightarrow 17$ $k = -12 \rightarrow 11$ $l = -30 \rightarrow 30$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0407P)^2 + 1.251P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.67$ e Å⁻³ $\Delta\rho_{min} = -0.97$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.06474 (12)	1.18537 (16)	0.08218 (7)	0.0143 (2)	
C2	-0.04850 (13)	1.26575 (16)	0.08357 (7)	0.0167 (2)	
C6	0.12509 (12)	1.09258 (16)	0.13373 (7)	0.0142 (2)	
C7	0.23349 (12)	0.99981 (16)	0.13173 (7)	0.0155 (2)	
C8	0.23883 (12)	0.91825 (17)	0.07335 (7)	0.0175 (2)	
H8	0.176356	0.932237	0.032951	0.021*	
C9	0.33408 (13)	0.81698 (18)	0.07342 (8)	0.0196 (3)	
Н9	0.336538	0.760804	0.033686	0.024*	
C10	0.42545 (13)	0.79933 (19)	0.13246 (8)	0.0208 (3)	
C11	0.42406 (14)	0.8806 (2)	0.19092 (8)	0.0263 (3)	
H11	0.488418	0.869172	0.230650	0.032*	
C12	0.32712 (13)	0.9789 (2)	0.19054 (7)	0.0230 (3)	
H12	0.324273	1.032709	0.230758	0.028*	
C13	0.10805 (12)	1.21450 (17)	0.02019 (7)	0.0164 (2)	
C14	0.26561 (15)	1.3190 (2)	-0.02030 (9)	0.0273 (3)	
H14A	0.286093	1.217725	-0.037467	0.041*	
H14B	0.338866	1.382947	-0.005128	0.041*	
H14C	0.207112	1.374694	-0.056372	0.041*	
O2	-0.10404 (10)	1.34867 (12)	0.03704 (5)	0.0198 (2)	
O13	0.05503 (11)	1.17481 (14)	-0.03623 (6)	0.0227 (2)	
O14	0.21353 (9)	1.29185 (14)	0.03594 (5)	0.0205 (2)	
Br1	0.55053 (2)	0.65226 (2)	0.13401 (2)	0.02917 (6)	
C3	-0.08897 (13)	1.24975 (18)	0.14839 (7)	0.0117 (3)	0.8378 (15)
Н3	-0.044629	1.331437	0.180640	0.014*	0.8378 (15)
C4	-0.05428 (13)	1.08776 (18)	0.18192 (7)	0.0109 (3)	0.8378 (15)
H4	-0.092206	1.004074	0.148783	0.013*	0.8378 (15)
C5	0.08168 (12)	1.07204 (16)	0.19659 (7)	0.0155 (2)	0.8378 (15)
H5A	0.120471	1.152304	0.230383	0.019*	0.8378 (15)
H5B	0.106284	0.966797	0.216259	0.019*	0.8378 (15)
C15	-0.22220 (17)	1.2862 (3)	0.13463 (12)	0.0159 (4)	0.8378 (15)
C16	-0.41712 (19)	1.1824 (4)	0.08947 (15)	0.0355 (5)	0.8378 (15)
H16A	-0.436708	1.189279	0.133177	0.053*	0.8378 (15)
H16B	-0.457703	1.090568	0.064505	0.053*	0.8378 (15)
H16C	-0.444531	1.278231	0.063267	0.053*	0.8378 (15)
O15	-0.2646 (4)	1.4029 (4)	0.1525 (2)	0.0261 (4)	0.8378 (15)
O16	-0.28797 (13)	1.16616 (18)	0.10046 (8)	0.0213 (3)	0.8378 (15)
C17	-0.0984 (3)	1.0674 (4)	0.24492 (16)	0.0176 (5)	0.8378 (15)
C18	-0.1998 (2)	0.9863 (3)	0.24920 (14)	0.0223 (5)	0.8378 (15)
H18	-0.252394	0.933027	0.212255	0.027*	0.8378 (15)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C19	-0.2169 (4)	0.9916 (5)	0.31673 (15)	0.0236 (6)	0.8378 (15)
H19	-0.280966	0.940071	0.329670	0.028*	0.8378 (15)
C20	-0.1304 (4)	1.0793 (6)	0.3595 (2)	0.0204 (6)	0.8378 (15)
H20	-0.127736	1.096845	0.405626	0.024*	0.8378 (15)
S21	-0.02657 (5)	1.15473 (6)	0.32094 (3)	0.02109 (12)	0.8378 (15)
C3A	-0.1240 (6)	1.1730 (9)	0.1263 (4)	0.0117 (3)	0.1622 (15)
H3A	-0.141139	1.063744	0.108021	0.014*	0.1622 (15)
C4A	-0.0380 (6)	1.1662 (10)	0.1961 (4)	0.0109 (3)	0.1622 (15)
H4A	-0.015521	1.276365	0.211844	0.013*	0.1622 (15)
C5A	0.08168 (12)	1.07204 (16)	0.19659 (7)	0.0155 (2)	0.1622 (15)
H5A1	0.146511	1.106604	0.236122	0.019*	0.1622 (15)
H5A2	0.067279	0.958518	0.202476	0.019*	0.1622 (15)
C15A	-0.2408 (10)	1.2545 (15)	0.1258 (8)	0.0159 (4)	0.1622 (15)
C16A	-0.4489 (10)	1.221 (2)	0.0924 (9)	0.0355 (5)	0.1622 (15)
H16D	-0.458095	1.231598	0.138416	0.053*	0.1622 (15)
H16E	-0.509847	1.148255	0.066583	0.053*	0.1622 (15)
H16F	-0.459580	1.324873	0.070295	0.053*	0.1622 (15)
O15A	-0.254 (2)	1.381 (2)	0.1486 (15)	0.0261 (4)	0.1622 (15)
O16A	-0.3313 (7)	1.1628 (11)	0.0950 (5)	0.0213 (3)	0.1622 (15)
C17A	-0.1017 (16)	1.090 (3)	0.2441 (8)	0.0176 (5)	0.1622 (15)
C18A	-0.0588 (12)	1.1351 (17)	0.3090 (6)	0.0223 (5)	0.1622 (15)
H18A	0.012306	1.197668	0.320826	0.027*	0.1622 (15)
C19A	-0.115 (3)	1.094 (4)	0.3598 (14)	0.0236 (6)	0.1622 (15)
H19A	-0.091317	1.117112	0.406784	0.028*	0.1622 (15)
C20A	-0.210 (3)	1.014 (3)	0.3255 (7)	0.0204 (6)	0.1622 (15)
H20A	-0.266675	0.974687	0.347789	0.024*	0.1622 (15)
S21A	-0.2302 (3)	0.9801 (5)	0.2404 (2)	0.02109 (12)	0.1622 (15)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0177 (5)	0.0133 (6)	0.0129 (5)	0.0007 (4)	0.0058 (4)	-0.0008 (4)
C2	0.0214 (6)	0.0149 (6)	0.0150 (6)	0.0040 (5)	0.0069 (5)	0.0014 (5)
C6	0.0155 (5)	0.0145 (6)	0.0128 (5)	0.0002 (4)	0.0039 (4)	-0.0013 (4)
C7	0.0157 (5)	0.0176 (6)	0.0138 (6)	0.0018 (4)	0.0049 (4)	0.0007 (5)
C8	0.0191 (6)	0.0183 (6)	0.0145 (6)	0.0039 (5)	0.0033 (5)	0.0001 (5)
C9	0.0229 (6)	0.0211 (7)	0.0161 (6)	0.0064 (5)	0.0073 (5)	0.0013 (5)
C10	0.0193 (6)	0.0270 (7)	0.0182 (6)	0.0091 (5)	0.0088 (5)	0.0053 (5)
C11	0.0198 (6)	0.0409 (9)	0.0169 (7)	0.0106 (6)	0.0024 (5)	-0.0010 (6)
C12	0.0194 (6)	0.0344 (8)	0.0142 (6)	0.0071 (6)	0.0024 (5)	-0.0043 (6)
C13	0.0190 (6)	0.0159 (6)	0.0158 (6)	0.0040 (5)	0.0072 (5)	0.0026 (5)
C14	0.0253 (7)	0.0346 (9)	0.0273 (8)	0.0022 (6)	0.0161 (6)	0.0083 (6)
02	0.0244 (5)	0.0200 (5)	0.0152 (5)	0.0070 (4)	0.0057 (4)	0.0038 (4)
013	0.0278 (5)	0.0271 (6)	0.0142 (5)	-0.0001 (4)	0.0072 (4)	0.0006 (4)
O14	0.0188 (4)	0.0256 (5)	0.0192 (5)	0.0000 (4)	0.0087 (4)	0.0035 (4)
Br1	0.02706 (8)	0.04121 (11)	0.02210 (8)	0.02021 (7)	0.01151 (6)	0.00851 (6)
C3	0.0137 (6)	0.0113 (6)	0.0104 (6)	0.0023 (5)	0.0039 (5)	0.0003 (5)
C4	0.0145 (6)	0.0082 (7)	0.0100 (6)	0.0012 (5)	0.0033 (5)	-0.0005 (5)

C5	0.0175 (5)	0.0169 (6)	0.0127 (5)	0.0040 (4)	0.0051 (4)	0.0015 (4)
C15	0.0163 (8)	0.0193 (11)	0.0123 (9)	0.0022 (6)	0.0041 (7)	0.0025 (7)
C16	0.0152 (10)	0.0528 (17)	0.0369 (11)	0.0001 (9)	0.0042 (9)	0.0064 (11)
015	0.0242 (11)	0.0276 (13)	0.0281 (9)	0.0128 (8)	0.0095 (7)	-0.0011 (9)
016	0.0096 (5)	0.0294 (6)	0.0230 (6)	-0.0016 (6)	0.0010 (6)	0.0006 (5)
C17	0.0192 (6)	0.0201 (14)	0.0140 (6)	0.0052 (8)	0.0054 (5)	0.0051 (7)
C18	0.0257 (12)	0.0247 (10)	0.0176 (10)	0.0025 (10)	0.0079 (9)	0.0030 (8)
C19	0.0234 (9)	0.0268 (18)	0.0219 (12)	-0.0025 (11)	0.0080 (11)	0.0045 (9)
C20	0.0279 (18)	0.0194 (15)	0.0170 (8)	0.0046 (11)	0.0116 (10)	0.0022 (8)
S21	0.0263 (3)	0.0198 (2)	0.0179 (2)	0.00020 (18)	0.00703 (18)	0.00161 (17)
C3A	0.0137 (6)	0.0113 (6)	0.0104 (6)	0.0023 (5)	0.0039 (5)	0.0003 (5)
C4A	0.0145 (6)	0.0082 (7)	0.0100 (6)	0.0012 (5)	0.0033 (5)	-0.0005 (5)
C5A	0.0175 (5)	0.0169 (6)	0.0127 (5)	0.0040 (4)	0.0051 (4)	0.0015 (4)
C15A	0.0163 (8)	0.0193 (11)	0.0123 (9)	0.0022 (6)	0.0041 (7)	0.0025 (7)
C16A	0.0152 (10)	0.0528 (17)	0.0369 (11)	0.0001 (9)	0.0042 (9)	0.0064 (11)
015A	0.0242 (11)	0.0276 (13)	0.0281 (9)	0.0128 (8)	0.0095 (7)	-0.0011 (9)
016A	0.0096 (5)	0.0294 (6)	0.0230 (6)	-0.0016 (6)	0.0010 (6)	0.0006 (5)
C17A	0.0192 (6)	0.0201 (14)	0.0140 (6)	0.0052 (8)	0.0054 (5)	0.0051 (7)
C18A	0.0257 (12)	0.0247 (10)	0.0176 (10)	0.0025 (10)	0.0079 (9)	0.0030 (8)
C19A	0.0234 (9)	0.0268 (18)	0.0219 (12)	-0.0025 (11)	0.0080 (11)	0.0045 (9)
C20A	0.0279 (18)	0.0194 (15)	0.0170 (8)	0.0046 (11)	0.0116 (10)	0.0022 (8)
S21A	0.0263 (3)	0.0198 (2)	0.0179 (2)	0.00020 (18)	0.00703 (18)	0.00161 (17)

Geometric parameters (Å, °)

C1—C6	1.3536 (18)	C15—O16	1.349 (2)
C1—C2	1.4736 (19)	C16—O16	1.445 (2)
C1—C13	1.4997 (19)	C16—H16A	0.9800
C2—O2	1.2214 (17)	C16—H16B	0.9800
C2—C3	1.523 (2)	C16—H16C	0.9800
C2—C3A	1.590 (7)	C17—C18	1.374 (4)
C6—C7	1.4808 (19)	C17—S21	1.727 (3)
C6—C5A	1.5067 (19)	C18—C19	1.448 (4)
C6—C5	1.5067 (19)	C18—H18	0.9500
C7—C8	1.3967 (19)	C19—C20	1.360 (3)
C7—C12	1.4000 (19)	C19—H19	0.9500
C8—C9	1.3894 (19)	C20—S21	1.714 (3)
С8—Н8	0.9500	C20—H20	0.9500
C9—C10	1.386 (2)	C3A—C15A	1.506 (11)
С9—Н9	0.9500	C3A—C4A	1.511 (9)
C10—C11	1.385 (2)	СЗА—НЗА	1.0000
C10—Br1	1.8952 (14)	C4A—C17A	1.515 (11)
C11—C12	1.388 (2)	C4A—C5A	1.586 (7)
C11—H11	0.9500	C4A—H4A	1.0000
C12—H12	0.9500	C5A—H5A1	0.9900
C13—O13	1.2048 (18)	С5А—Н5А2	0.9900
C13—O14	1.3395 (18)	C15A—O15A	1.192 (12)
C14—O14	1.4477 (19)	C15A—O16A	1.318 (10)

С14 Н14А	0.0800	C16A 016A	1 425 (11)
C14—H14A	0.9800	$C1(A \cup U1(D))$	1.423 (11)
С14—П14В	0.9800		0.9800
CI4—HI4C	0.9800	CI6A—HI6E	0.9800
C3-C15	1.511 (2)	CI6A—HI6F	0.9800
C3—C4	1.542 (2)	C17A—C18A	1.346 (13)
С3—Н3	1.0000	C17A—S21A	1.728 (13)
C4—C17	1.514 (3)	C18A—C19A	1.407 (14)
C4—C5	1.5146 (19)	C18A—H18A	0.9500
C4—H4	1.0000	C19A—C20A	1.313 (17)
С5—Н5А	0.9900	C19A—H19A	0.9500
С5—Н5В	0.9900	C20A—S21A	1.721 (12)
C15—O15	1.201 (2)	C20A—H20A	0.9500
C6—C1—C2	121.86 (12)	O16—C16—H16A	109.5
C6-C1-C13	122.78 (12)	016—C16—H16B	109.5
C_{2} C_{1} C_{13}	115.36(11)	H_{16A} $-C_{16}$ $-H_{16B}$	109.5
02 02 01 015	122 20 (13)	O_{16} C_{16} H_{16C}	109.5
02 - 02 - 01	122.29(13) 121.07(12)		109.5
02 - 02 - 03	121.07(13) 116.51(12)	H16A - C16 - H16C	109.5
C1 = C2 = C3	110.31(12)		109.3
02-02-03A	117.8 (3)	016-016	114.84 (18)
C1—C2—C3A	113.0 (3)	C18—C17—C4	126.0 (3)
C1—C6—C7	123.33 (12)	C18—C17—S21	111.7 (2)
C1—C6—C5A	121.20 (12)	C4—C17—S21	122.21 (19)
C7—C6—C5A	115.42 (11)	C17—C18—C19	111.9 (3)
C1—C6—C5	121.20 (12)	C17—C18—H18	124.0
C7—C6—C5	115.42 (11)	C19—C18—H18	124.0
C8—C7—C12	118.58 (13)	C20-C19-C18	111.9 (4)
C8—C7—C6	120.79 (12)	С20—С19—Н19	124.0
С12—С7—С6	120.29 (12)	C18—C19—H19	124.0
C9—C8—C7	121.04 (13)	C19—C20—S21	112.7 (4)
С9—С8—Н8	119.5	С19—С20—Н20	123.7
C7—C8—H8	119.5	S21_C20_H20	123.7
C_{10} C_{9} C_{8}	119.5	C_{20} S_{21} C_{120} C_{120}	91 71 (18)
$C_{10} = C_{20} = C_{20}$	120.6	$C_{20} = S_{21} = C_{17}$	112 6 (8)
	120.0	C15A C2A C2	112.0(8)
$C_{0} = C_{0} = C_{0}$	120.0	C13A - C3A - C2	112.3(6)
CII = CI0 = C9	121.58 (15)	C4A - C3A - C2	103.0 (5)
CII—CI0—Bri	119.51 (11)	CI5A—C3A—H3A	109.6
C9—C10—Br1	118.83 (12)	С4А—СЗА—НЗА	109.6
C10—C11—C12	118.95 (14)	С2—С3А—НЗА	109.6
C10—C11—H11	120.5	C3A—C4A—C17A	108.9 (9)
C12—C11—H11	120.5	C3A—C4A—C5A	112.0 (5)
C11—C12—C7	120.95 (14)	C17A—C4A—C5A	110.1 (10)
C11—C12—H12	119.5	C3A—C4A—H4A	108.6
C7—C12—H12	119.5	C17A—C4A—H4A	108.6
O13—C13—O14	124.46 (13)	C5A—C4A—H4A	108.6
O13—C13—C1	124.77 (13)	C6—C5A—C4A	114.5 (3)
O14—C13—C1	110.77 (12)	C6—C5A—H5A1	108.6
O14—C14—H14A	109.5	C4A—C5A—H5A1	108.6

O14—C14—H14B	109.5	C6—C5A—H5A2	108.6
H14A—C14—H14B	109.5	C4A—C5A—H5A2	108.6
O14—C14—H14C	109.5	H5A1—C5A—H5A2	107.6
H14A—C14—H14C	109.5	O15A—C15A—O16A	123.8 (16)
H14B—C14—H14C	109.5	O15A—C15A—C3A	127.6 (15)
C13—O14—C14	114.86 (12)	O16A—C15A—C3A	108.7 (9)
C15—C3—C2	110.03 (14)	O16A—C16A—H16D	109.5
C15—C3—C4	113.35 (14)	O16A—C16A—H16E	109.5
C2—C3—C4	111.47 (12)	H16D—C16A—H16E	109.5
С15—С3—Н3	107.2	O16A—C16A—H16F	109.5
С2—С3—Н3	107.2	H16D—C16A—H16F	109.5
C4—C3—H3	107.2	H16E—C16A—H16F	109.5
C17—C4—C5	112.12 (17)	C15A—O16A—C16A	115.5 (11)
C17 - C4 - C3	112.12(17)	C18A - C17A - C4A	113.8 (11)
$C_{5}-C_{4}-C_{3}$	107.42(12)	C18A - C17A - S21A	106.6 (9)
C17 - C4 - H4	108.3	C4A - C17A - S21A	138.8(12)
C5-C4-H4	108.3	C17A - C18A - C19A	122.6(12)
$C_3 - C_4 - H_4$	108.3	C17A - C18A - H18A	118 7
C6-C5-C4	111.90(11)	C19A - C18A - H18A	118.7
C6-C5-H5A	109.2	$C_{20} = C_{19} = C_{18}$	102(3)
C4-C5-H5A	109.2	$C_{20A} = C_{19A} = H_{19A}$	102 (3)
C6-C5-H5B	109.2	C_{184} C_{194} H_{194}	129.0
C4-C5-H5B	109.2	C19A - C20A - S21A	129.0 120(2)
$H_{5A} = C_5 = H_{5B}$	107.0	C19A = C20A = 321A	120 (2)
$113A - C_{3} - 113B$	107.3 124.4(2)	C19A - C20A - H20A	119.9
015 - 015 - 010	124.4(3) 125.5(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.9
015 - 015 - 03	123.3(3)	C20A—S21A—C1/A	88.0 (12)
010-013-03	110.03 (10)		
C6-C1-C2-O2	-17940(14)	C2-C3-C15-015	-107.7(4)
$C_{13} = C_{1} = C_{2} = O_{2}^{2}$	0.9(2)	C4-C3-C15-O15	1267(4)
C6-C1-C2-C3	47(2)	C_{2} C_{3} C_{15} O_{16}	73.8(2)
C_{13} C_{1} C_{2} C_{3}	-174.94(12)	C_{4} C_{3} C_{15} O_{16}	-51.8(2)
$C_{1} = C_{2} = C_{3}$	-293(3)	015-015-016-016	-34(5)
C_{13} $C_{1-C_{2}}$ C_{3A}	1511(3)	C_{3} C_{15} C_{16} C_{16} C_{16}	175 03 (18)
$C_{2} = C_{1} = C_{6} = C_{7}$	174 86 (13)	C_{5} C_{4} C_{17} C_{18}	-1391(3)
C_{13} C_{1} C_{6} C_{7}	-5.5(2)	C_{3} C_{4} C_{17} C_{18}	100.0(3)
C_{2} C_{1} C_{6} C_{5} C_{6}	-24(2)	$C_{5} - C_{4} - C_{17} - S_{21}$	43.8 (3)
C_{13} $C_{1-}C_{6-}C_{5A}$	2.7(2) 177 20 (12)	C_{3} C_{4} C_{17} S_{21}	-771(3)
C_{2} C_{1} C_{6} C_{5}	-24(2)	$C_{4} = C_{17} = C_{18} = C_{19}$	-179.2(4)
C_{13} C_{1} C_{6} C_{5}	2.7(2) 177 20 (12)	S_{1}^{-} C_{1}^{-} C_{18}^{-} C_{19}^{-}	-1.8(3)
C_{1} C_{6} C_{7} C_{8}	-42.0(2)	$C_{17} = C_{18} = C_{19} = C_{20}$	1.0(3)
$C_{1} = C_{0} = C_{1} = C_{0}$	42.0(2) 135 42 (14)	C18 C19 C20 S21	-0.7(4)
C_{5} C_{6} C_{7} C_{8}	135.42(14) 135.42(14)	$C_{10} = C_{10} = C_{20} = S_{21} = C_{17}$	-0.3(3)
$C_{1} = C_{0} = C_{1} = C_{0}$	133.42(14) 144.72(15)	$C_{19} = C_{20} = S_{21} = C_{17}$	12(2)
$C_1 = C_0 = C_1 = C_{12}$	-37.84(10)	$C_{10} = C_{17} = S_{21} = C_{20}$	1.2(2) 1787(4)
C_{5} C_{6} C_{7} C_{12}	-37.84(10)	$02 - C^2 - C^3 \wedge C^{15} \wedge$	-260(8)
$C_{12} = C_{12} .04(17)	$C_1 = C_2 = C_3 A = C_{15} A$	20.7(0)	
$C_{12} - C_{12} - C_{0} - C_{9}$	-172.68(14)	$C_1 = C_2 = C_3 = C_{13A}$	1/0.3(0) -148.2(4)
し0	-1/2.08(14)	U2—U2—U3A—U4A	-148.3 (4)

C7—C8—C9—C10	-0.9 (2)	C1—C2—C3A—C4A	60.1 (5)
C8—C9—C10—C11	-0.3 (2)	C15A—C3A—C4A—C17A	54.9 (13)
C8—C9—C10—Br1	176.45 (12)	C2—C3A—C4A—C17A	176.1 (10)
C9—C10—C11—C12	1.6 (3)	C15A—C3A—C4A—C5A	176.9 (7)
Br1-C10-C11-C12	-175.12 (14)	C2—C3A—C4A—C5A	-61.9 (6)
C10-C11-C12-C7	-1.8 (3)	C1—C6—C5A—C4A	0.2 (4)
C8—C7—C12—C11	0.7 (2)	C7—C6—C5A—C4A	-177.3 (3)
C6—C7—C12—C11	174.06 (15)	C3A—C4A—C5A—C6	35.3 (7)
C6-C1-C13-O13	116.12 (17)	C17A—C4A—C5A—C6	156.6 (8)
C2-C1-C13-O13	-64.22 (19)	C4A—C3A—C15A—O15A	52 (3)
C6-C1-C13-O14	-64.33 (17)	C2—C3A—C15A—O15A	-64 (3)
C2-C1-C13-O14	115.33 (13)	C4A—C3A—C15A—O16A	-128.5 (11)
O13—C13—O14—C14	-3.2 (2)	C2—C3A—C15A—O16A	115.7 (11)
C1-C13-O14-C14	177.23 (12)	O15A—C15A—O16A—C16A	-2 (3)
O2—C2—C3—C15	23.8 (2)	C3A—C15A—O16A—C16A	177.9 (11)
C1—C2—C3—C15	-160.24 (13)	C3A—C4A—C17A—C18A	-153.1 (13)
O2—C2—C3—C4	150.48 (14)	C5A—C4A—C17A—C18A	83.8 (16)
C1—C2—C3—C4	-33.59 (18)	C3A—C4A—C17A—S21A	15 (3)
C15—C3—C4—C17	-52.9 (2)	C5A—C4A—C17A—S21A	-109 (2)
C2—C3—C4—C17	-177.67 (17)	C4A—C17A—C18A—C19A	172 (2)
C15—C3—C4—C5	-176.48 (14)	S21A—C17A—C18A—C19A	0.2 (18)
C2—C3—C4—C5	58.71 (15)	C17A—C18A—C19A—C20A	-2 (3)
C1C6C4	29.70 (18)	C18A—C19A—C20A—S21A	3 (3)
C7—C6—C5—C4	-147.81 (12)	C19A—C20A—S21A—C17A	-2 (2)
C17—C4—C5—C6	-179.92 (17)	C18A—C17A—S21A—C20A	1.0 (11)
C3—C4—C5—C6	-56.31 (15)	C4A—C17A—S21A—C20A	-167 (3)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the major (S21/C17–C20) and minor (S21A/C17A–C20A) disordered components of the thiophene ring, respectively.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C3—H3····S21 ⁱ	1.00	2.86	3.6775 (16)	139
C5—H5A····S21	0.99	2.81	3.1892 (15)	103
C5—H5 <i>B</i> ···S21 ⁱⁱ	0.99	2.84	3.5984 (15)	134
C3—H3··· <i>Cg</i> 1 ⁱ	1.00	2.75	3.611 (2)	144
$C3$ — $H3$ ··· $Cg2^i$	1.00	2.86	3.721 (11)	145
C4 A —H4 A ···· $Cg1^{i}$	1.00	2.97	3.839 (8)	146

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+1/2; (ii) -*x*, *y*-1/2, -*z*+1/2.