CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 9 April 2024
Accepted 30 April 2024

Edited by S. P. Kelley, University of MissouriColumbia, USA

Keywords: crystal structure; gauche effect; DFT calculation; disorder; molecular switch.

CCDC references: 2352359; 2352358
Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Bis(2-chloro-N,N-dimethylethan-1-aminium) tetrachloridocobaltate(II) and tetrachloridozincate(II)

Katelyn McGinness, Kim Minton, Katelyn White and Marcus R. Bond*

Department of Chemistry and Physics, Southeast Missouri State University, Cape Girardeau, MO 63701, USA. *Correspondence e-mail: mbond@semo.edu

The few examples of structures containing the 2-chloro- N, N-dimethylethan-1aminium or 3 -chloro- N, N-dimethylpropan-1-aminium cations show a competition between gauche and anti conformations for the chloroalkyl chain. To explore further the conformational landscape of these cations, and their possible use as molecular switches, the title salts, $\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{ClN}\right)_{2}\left[\mathrm{CoCl}_{4}\right]$ and $\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{ClN}\right)_{2^{-}}$ $\left[\mathrm{ZnCl}_{4}\right]$, were prepared and structurally characterized. Details of both structures are in close agreement. The inorganic complex exhibits a slightly flattened tetrahedral geometry that likely arises from bifurcated $\mathrm{N}-\mathrm{H}$ hydrogen bonds from the organic cations. The alkyl chain of the cation is disordered between gauche and anti conformations with the gauche conformation occupancy refined to 0.707 (2) for the cobaltate. The gauche conformation places the terminal Cl atom at a tetrahedral face of the inorganic complex with a contact distance of 3.7576 (9) \AA to the Co^{2+} center. The anti conformation places the terminal Cl atom at a contact distance to a neighboring anti conformation terminal Cl atom that is $\sim 1 \AA$ less than the sum of the van der Waals radii. Thus, if the anti conformation is present at a site, then the nearest neighbor must be gauche. DFT geometry optimizations indicate the gauche conformation is more stable in vacuo by 0.226 eV , which reduces to 0.0584 eV when calculated in a uniform dielectric. DFT geometry optimizations for the unprotonated molecule indicate the anti conformation is stabilized by 0.0428 eV in vacuo, with no strongly preferred conformation in uniform dielectric, to provide support to the notion that this cation could function as a molecular switch via deprotonation.

1. Chemical context

The recently published structure of 3 -chloro- N, N-dimethyl-propan-1-aminium chloride reported the conformation of the molecular cation (henceforth $3 \mathrm{CLPA}^{+}$) as gauche for the terminal Cl atom (Bond \& Silwal, 2023). DFT geometry optimizations in vacuo indicate that the gauche conformation is more stable than anti for the molecular cation, as well as for the 2-chloro- N, N-dimethylethan-1-aminium analog (henceforth $2 \mathrm{CLEA}^{+}$). In both cases the molecular cations appear to exhibit the gauche effect in which the bonding pair of a $\mathrm{C}-\mathrm{H}$ bond β to the terminal halogen atom of the chain is donated to the antibonding orbital of the $\mathrm{C}-X$ bond ($X=$ halogen) to stabilize the gauche conformation through hyperconjugation (Wolfe, 1972). A recent computational study of 1,2-dihaloethanes reports that this stabilization due to hyperconjugation is always present, but other energy contributions - such as steric interactions - are more important so that the gauche effect is typically observed only with fluorine (Rodrigues Silva et al., 2021). However, in the $3 \mathrm{CLPA}^{+}$and $2 \mathrm{CLEA}^{+}$cations the terminal Cl atom is closer to the formal center of positive
charge when in the gauche conformation, which may provide an additional contribution to energetic stability.

We are interested in investigating the competition between gauche and anti conformations for these molecular cations in different chemical environments in order to explore their possible use as molecular switches. If the gauche conformation is stabilized by interaction with the positive charge center in the cation, then it is possible with loss of this interaction through deprotonation that the anti conformation becomes more stable and would allow for a change in conformation by altering the degree of protonation. Here we report the structures of $2 \mathrm{CLEA}^{+}$with the tetrahedral complex anions $\mathrm{CoCl}_{4}{ }^{2-}$ and $\mathrm{ZnCl}_{4}{ }^{2-}$.

2. Structural commentary

The structures are isomorphous with unit-cell parameters in close agreement, e.g. unit-cell volumes agree within 2 s.u. Both tetrahedral complexes occupy sites of twofold rotational symmetry with a slight flattening about the twofold axis to produce some $\mathrm{Cl}-M-\mathrm{Cl}(M=\mathrm{Co}, \mathrm{Zn})$ angles greater than $109.5^{\circ} . M-\mathrm{Cl}$ bond lengths range from 2.25-2.29 \AA, in good agreement with average bond lengths of 2.27 (2) \AA for $\mathrm{CoCl}_{4}{ }^{2-}$ and 2.27 (4) \AA for $\mathrm{ZnCl}_{4}{ }^{2-}$ calculated from structures in the Cambridge Structural Database [512 and 960 hits, respectively; version 5.45 (November, 2023); Groom et al. (2016)].

Of greater interest is the organic cation, which exhibits disorder between the gauche [s.o.f $=0.707$ (2) for $\mathrm{CoCl}_{4}{ }^{2-}$ and

Figure 1
Displacement ellipsoid plot (50% level) of the organic cation and complex anion in $\left(2 \mathrm{CLEA}^{+}\right)_{2} \mathrm{CoCl}_{4}$ with labels for non-H atoms. The gauche conformation of the organic cation only is shown. H atoms are drawn as circles of arbitrary radii and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding is represented by dashed lines.

Table 1
Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$ for cobaltate.

$\mathrm{Co} 1-\mathrm{Cl} 1$	$2.2873(6)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.509(5)$
$\mathrm{Co} 1-\mathrm{Cl} 2$	$2.2618(6)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.534(6)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.482(3)$	$\mathrm{C} 2-\mathrm{Cl} 3$	$1.776(3)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.483(3)$		
$\mathrm{Cl} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{Cl} 1$	$111.86(3)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	$105.4(3)$
$\mathrm{Cl} 1-\mathrm{Co} 1-\mathrm{Cl} 2$	$108.17(2)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	$114.8(4)$
$\mathrm{Cl} 1-\mathrm{Co} 1-\mathrm{Cl} 2^{\mathrm{i}}$	$104.58(2)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$116.2(5)$
$\mathrm{Cl} 2^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{Cl} 2$	$119.62(4)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 3$	$111.0(4)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4$	$110.6(2)$		

Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.
Table 2
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$) for zincate.

$\mathrm{Zn} 1-\mathrm{Cl} 2$	$2.2553(5)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.485(3)$
$\mathrm{Zn} 1-\mathrm{Cl} 1$	$2.2883(5)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.515(5)$
$\mathrm{N} 1-\mathrm{C} 1 A$	$1.476(9)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.535(5)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.480(3)$	$\mathrm{C} 2-\mathrm{Cl} 3$	$1.779(3)$
$\mathrm{Cl} 2-\mathrm{Zn} 1-\mathrm{Cl} 2^{\mathrm{i}}$	$118.93(3)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4$	$110.5(2)$
$\mathrm{Cl} 2-\mathrm{Zn} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$104.94(2)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	$105.3(2)$
$\mathrm{Cl} 2-\mathrm{Zn} 1-\mathrm{Cl} 1$	$108.36(2)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	$114.6(3)$
$\mathrm{Cl} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{Cl} 1$	$111.38(3)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$116.3(4)$
$\mathrm{C} 1 A-\mathrm{N} 1-\mathrm{C} 3$	$119.8(5)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 3$	$110.7(3)$
$\mathrm{C} 1 A-\mathrm{N} 1-\mathrm{C} 4$	$111.1(8)$		

0.697 (2) for $\mathrm{ZnCl}_{4}{ }^{2-}$] and anti conformations (the dimethylammonium head group is ordered). The $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 3$ torsion angles are $61.6(7)^{\circ}$ in the $\mathrm{CoCl}_{4}{ }^{2-}$ and $-61.3(6)^{\circ}$ in the $\mathrm{ZnCl}_{4}{ }^{2-}$ salts for the gauche conformation and, likewise, -179.7 (13) and $179.3(9)^{\circ}$, respectively, for the anti. Bond lengths and angles within the cation correspond to expected values, disregarding small distortions that arise due to refinement of atoms of the disordered pair in close proximity. Displacement ellipsoid plots with labels for non-H atoms are presented in Fig. 1 for the $\mathrm{CoCl}_{4}{ }^{2-}$ salt showing only the gauche conformation of the organic cation, and in Fig. 2 for the $\mathrm{ZnCl}_{4}{ }^{2-}$ salt showing only the anti conformation. Bond

Figure 2
Displacement ellipsoid plot (50% level) of the organic cation and complex anion in $\left(2 \mathrm{CLEA}^{+}\right)_{2} \mathrm{ZnCl}_{4}$ with labels for non- H atoms. The anti conformation of the organic cation only is shown. H atoms are drawn as circles of arbitrary radii and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding is represented by dashed lines.

Table 3
Hydrogen-bond geometry ($\AA,^{\circ}$) for cobaltate.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1$	$0.87(3)$	$2.51(3)$	$3.3093(19)$	$152(2)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Cl}^{\mathrm{i}}$	$0.87(3)$	$3.02(3)$	$3.564(2)$	$122(2)$

Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.
lengths and angles for non- H atoms are presented in Table 1 for the CoCl_{4}^{2-} salt, with only the gauche conformation values, and in Table 2 for the $\mathrm{ZnCl}_{4}{ }^{2-}$ salt, with only the anti conformation values.
DFT geometry optimizations [B3LYP, $6311+\mathrm{G}(\mathrm{d}, \mathrm{p})$; GAMESS (Schmidt et al., 1993)] in vacuo of 2CLEA ${ }^{+}$yield an energy for the gauche conformation that is 0.226 eV less than the anti conformation for a $52.737^{\circ} \mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{Cl}$ torsion angle (0.228 eV less for a torsion angle of -52.738°). To approximate the ionic environment of the cation in the crystal, the optimizations were performed in a uniform dielectric constant of 78.4. This results in a reduction of gauche conformation stabilization to 0.0584 eV (torsion angle $=59.1^{\circ}$; by 0.0582 eV for torsion angle $=-58.785^{\circ}$), but yields better agreement with observed torsion angle values. [Optimized torsion angles for the anti conformation with magnitudes of 173.858° (in vacuo) and 173.819° (dielectric) deviate slightly from observed values.] Similar optimizations for the unprotonated molecule show both gauche conformations are destabilized in vacuo (by 0.0412 eV for torsion angle $=66.377^{\circ}$ and by 0.0428 eV for torsion angle $=-64.735^{\circ}$). Energy differences for optimizations performed in uniform dielectric for the unprotonated molecule are not as stark: gauche conformations are slightly stabilized by $0.00792 \mathrm{eV}\left(-65.149^{\circ}\right)$ or $0.00624 \mathrm{eV}\left(64.459^{\circ}\right)$. These results show promise of a switch from gauche to anti via deprotonation. An electrostatic potential plot of the gauche conformation from the uniform dielectric calculation is presented in Fig. 3.

Figure 3
Electrostatic potential plot of the $2 \mathrm{CLEA}^{+}$cation calculated in uniform dielectric for the gauche conformation with a ball-and-stick model of the optimized geometry shown within the electron density envelope. Red indicates regions of negative charge accumulation and blue regions of positive charge.

Table 4
Hydrogen-bond geometry ($\AA,^{\circ}$) for zincate.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.87(3)$	$2.51(3)$	$3.3124(18)$	$156(2)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 2$	$0.87(3)$	$3.03(3)$	$3.5620(19)$	$121(2)$

Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.

3. Supramolecular features

The dimethylammonium headgroup forms an asymmetric, bifurcated hydrogen bond to Cl 1 and Cl 2 resulting in the most acute $\mathrm{Cl}-\mathrm{M}-\mathrm{Cl}$ angle in the complex anion - and a likely origin for the observed tetrahedral flattening. Hydrogen-bond lengths and angles are presented in Tables 3 and 4 for the $\mathrm{CoCl}_{4}{ }^{2-}$ and $\mathrm{ZnCl}_{4}{ }^{2-}$ salts, respectively.

In the gauche conformation of the molecular cation, the terminal Cl atom is placed slightly offset from the center of the tetrahedral face defined by $\mathrm{Cl} 1, \mathrm{Cl} 2$, and $\mathrm{Cl} 2^{\mathrm{i}}$ [symmetry code: (i) $\left.1-x, y, \frac{1}{2}-z\right]$. This places the terminal Cl atom at a distance of 3.7576 (9) \AA from the Co^{2+} center $[3.7690$ (10) \AA for Zn^{2+}] with the shortest $\mathrm{Cl} \cdots \mathrm{Cl}$ contact distance $[\mathrm{Cl} 2 \cdots \mathrm{Cl} 3$ $=3.4293$ (11) \AA for $\mathrm{CoCl}_{4}{ }^{2-} ; 3.4237(11) \AA$ for $\left.\mathrm{ZnCl}_{4}{ }^{2-}\right]$ slightly less than $3.50 \AA$ - the sum of the van der Waals radii. In the anti conformation, a methylene H atom from the carbon α to the terminal Cl atom is instead directed at this face and forms contact distances of $3.2-3.3 \AA$ to the Cl atoms. Meanwhile, the terminal Cl atom now forms a short contact $\left[\mathrm{Cl} 3 A \cdots \mathrm{Cl} 3 A^{\mathrm{ii}}=2.588\right.$ (4) $\AA, \mathrm{Cl} 3 A \cdots \mathrm{Cl} 3 A^{\mathrm{iii}}=2.568$ (4) \AA; symmetry codes: (ii) $\frac{3}{2}-x, \frac{1}{2}-y, 1-z$, for $\mathrm{CoCl}_{4}{ }^{2-}$; (iii) $\frac{1}{2}-x$, $\frac{5}{2}-y,-z$, for ZnCl_{4}^{2-}] with a terminal anti conformation Cl atom in the nearest neighbor that is $\sim 1 \AA$ less than the sum of the van der Waals radii. Hence, any anti conformation molecular cation must have a gauche conformation cation as a nearest neighbor. This provides another driver for the dominance of the gauche conformation in these structures.

Figure 4
Layer packing diagram viewed down the b axis for $\left(2 \mathrm{CLEA}^{+}\right)_{2} \mathrm{CoCl}_{4}$ (gauche conformation only) that depicts portions of two rows of formula units along (101) that form a layer in the $a c$ plane. The a axis slants down and to the right, the c axis slants up and to the right. Atoms are drawn as circles of arbitrary radii and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding is represented by dashed lines

Table 5
Experimental details.

	Cobaltate	Zincate
Crystal data		
Chemical formula	$\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{ClN}\right)_{2}\left[\mathrm{CoCl}_{4}\right]$	$\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{ClN}\right)_{2}\left[\mathrm{ZnCl}_{4}\right]$
$M_{\text {r }}$	417.93	424.34
Crystal system, space group	Monoclinic, C2/c	Monoclinic, C2/c
Temperature (K)	295	295
$a, b, c(\AA)$	12.7521 (6), 8.9648 (4), 16.6801 (10)	12.7297 (7), 8.9784 (5), 16.6837 (11)
$\beta\left({ }^{\circ}\right.$)	111.057 (1)	111.062 (2)
$V\left(\mathrm{~A}^{3}\right)$	1779.53 (16)	1779.43 (18)
Z	4	4
Radiation type	Mo $K \alpha$	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	1.85	2.26
Crystal size (mm)	$0.30 \times 0.27 \times 0.26$	$0.39 \times 0.38 \times 0.29$
Data collection		
Diffractometer	Bruker D8 Quest Eco	Bruker D8 Quest Eco
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.696, 0.746	0.472, 0.560
No. of measured, independent and observed $[I>2 \sigma(I)$] reflections	23748, 2041, 1676	46381, 2843, 2479
$R_{\text {int }}$	0.042	0.036
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.650	0.725
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.030, 0.064, 1.09	0.033, 0.070, 1.12
No. of reflections	2041	2843
No. of parameters	113	113
No. of restraints	1	1
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.38, -0.29	$0.57,-0.40$

Computer programs: APEX3 and SAINT (Bruker, 2017), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick 2015b), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

The three-dimensional packing can be described starting with parallel rows of hydrogen-bonded formula units along (101) arranged into layers in the ac plane, as shown in the layer packing diagram of Fig. 4. Rows in neighboring layers nest between the rows of a given layer, with neighboring layers related by the C-centering translation, as shown in the unitcell packing diagram of Fig. 5.

Figure 5
Unit-cell packing diagram for $\left(2 \mathrm{CLEA}^{+}\right)_{2} \mathrm{ZnCl}_{4}$ viewed down (101) showing the stacking of four of the layers presented in Fig. 4 with the b axis vertical. H atoms are omitted for clarity (except for $\mathrm{N}-\mathrm{H}$), atoms are drawn as circles of arbitrary radii, and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding is represented by dashed lines.

4. Database survey

Structural results for $2 \mathrm{CLEA}^{+}$or $3 \mathrm{CLPA}^{+}$cations have been sparsely reported. A survey of the Cambridge Structural Database (version 5.45, November, 2023; Groom et al., 2016). yields only two known prior examples of structures containing 2CLEA ${ }^{+}$: an $\left(\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{Cl}_{8}\right)^{2-}$ salt (CSD refcode POSWAX; Marchetti et al., 2015), in which the gauche conformation is found, and a chloride salt (CSD refcode: URORUR; Muller et al., 2021) where the anti conformation is found, albeit with a disordered alkyl chain. For $3 \mathrm{CLPA}^{+}$, besides the aforementioned chloride salt there is one other structure containing 3 -chloro- N, N-propan- 1 -amine as a ligand in a $\operatorname{di}(\mu$-hydrido) dialuminium complex (CSD refcode: NIGGOZ; Andrews et al., 1997) where the gauche conformation is also found. No structures containing the unprotonated or uncoordinated molecules have been reported. There are also no reported structures for the longer chain chlorobutyl or chloropentyl analogs.

5. Synthesis and crystallization

Both compounds were prepared by dissolving 2-chloro- N, N -dimethylethan-1-aminium chloride with 1.00 g of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ or ZnCl_{2} in a 2:1 molar ratio in water. The solutions were acidified with concentrated $\mathrm{HCl}(\mathrm{aq})$ to yield $\sim 6 \mathrm{M} \mathrm{HCl}$ and produce a definite blue color in the cobalt(II) solution. The solutions were evaporated to a syrup with the syrup redis-
solved in ethanol to yield crystals of the title compounds upon further evaporation.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 5. For both compounds, initial structure solution identified positions of all non-H atoms except those of the anti conformation. Prominent electron density difference map peaks then identified atoms of the anti conformation. Common site occupation factors for each conformation were refined with the constraint that their sum equal 1.0. H -atom positions were visible on the electron density difference map, but were calculated and refined using a riding model for those bound to C with isotropic displacement parameters set to 1.2 or $1.5 \times U_{\text {iso }}$ of the parent atom for methylene or methyl H atoms, respectively. The H atom bound to N was freely refined to a reasonable $\mathrm{N}-\mathrm{H}$ bond length and the $\mathrm{N} 1-\mathrm{C} 1 A$ distance was constrained to a chemically reasonable distance ($1.50 \pm 0.01 \AA$) using the DFIX command in SHELX.

Low angle reflections (four for $\mathrm{CoCl}_{4}{ }^{2-}$ and one for $\mathrm{ZnCl}_{4}{ }^{2-}$ salts) with $F_{o}{ }^{2} \ll F_{c}{ }^{2}$ were assumed to be blocked by the beam catcher and were omitted from the refinement. For the $\mathrm{ZnCl}_{4}{ }^{2-}$ structure, $A P E X 3$ control software suggested a data-collection strategy to $\theta \max =36^{\circ}$. However data analysis (WinGX 2021.3; Farrugia, 2012) indicated $\langle I / \sigma\rangle$ less than 2.0 for reflections beyond $\theta=30.6^{\circ}$. Thus reflection data beyond θ $=31^{\circ}$ were omitted from the final refinement.

Acknowledgements

The authors thank Ms Annette Drury for assistance in preparation of the $\mathrm{ZnCl}_{4}{ }^{2-}$ salt.

References

Andrews, P. C., Gardiner, M. G., Raston, C. L. \& Tolhurst, V.-A. (1997). Inorg. Chim. Acta, 259, 249-255.

Bond, M. R. \& Silwal, S. (2023). IUCrData, 8, x230015.
Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Marchetti, F., Pampaloni, G. \& Zacchini, S. (2015). Polyhedron, 85, 369-375.
Muller, K., Hosten, E. C. \& Betz, R. (2021). Z. Kristallogr. New Cryst. Struct. 236, 287-289.
Rodrigues Silva, D., de Azevedo Santos, L., Hamlin, T. A., Fonseca Guerra, C., Freitas, M. P. \& Bickelhaupt, F. M. (2021). ChemPhysChem, 22, 641-648.
Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M. \& Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347-1363.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wolfe, S. (1972). Acc. Chem. Res. 5, 102-111.

supporting information

Acta Cryst. (2024). E80, 577-581 [https://doi.org/10.1107/S2056989024003955]

Bis(2-chloro-N,N-dimethylethan-1-aminium) tetrachloridocobaltate(II) and tetrachloridozincate(II)

Katelyn McGinness, Kim Minton, Katelyn White and Marcus R. Bond

Computing details

Bis(2-chloro-N,N-dimethylethan-1-aminium) tetrachloridocobaltate(II) (cobaltate)

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{ClN}\right)_{2}\left[\mathrm{CoCl}_{4}\right]$
$M_{r}=417.93$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=12.7521$ (6) \AA
$b=8.9648$ (4) \AA
$c=16.6801$ (10) \AA
$\beta=111.057$ (1) ${ }^{\circ}$
$V=1779.53(16) \AA^{3}$
$Z=4$

Data collection

Bruker D8 Quest Eco
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.696, T_{\text {max }}=0.746$
23748 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.064$
$S=1.09$
2041 reflections
113 parameters
1 restraint
Primary atom site location: dual
Hydrogen site location: mixed
$F(000)=852$
$D_{\mathrm{x}}=1.56 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9986 reflections
$\theta=2.9-27.4^{\circ}$
$\mu=1.85 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Gem, blue
$0.30 \times 0.27 \times 0.26 \mathrm{~mm}$

2041 independent reflections
1676 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-16 \rightarrow 16$
$k=-11 \rightarrow 11$
$l=-21 \rightarrow 21$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0202 P)^{2}+2.2595 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.38$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.29$ e \AA^{-3}
Extinction correction: SHELXL2018/3
(Sheldrick 2015b)
Extinction coefficient: 0.0038 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Col	0.5	0.77754 (4)	0.25	0.03399 (13)	
C11	0.63314 (4)	0.92047 (6)	0.34886 (3)	0.04269 (15)	
C12	0.40423 (5)	0.65066 (7)	0.31892 (4)	0.05376 (18)	
N1	0.84438 (16)	0.6926 (2)	0.36634 (12)	0.0402 (4)	
H1	0.775 (2)	0.725 (3)	0.3517 (17)	0.066 (8)*	
C1	0.8515 (7)	0.5245 (5)	0.3673 (6)	0.0395 (13)	0.707 (2)
H1A	0.929586	0.496545	0.381431	0.047*	0.707 (2)
H1B	0.810217	0.488369	0.309775	0.047*	0.707 (2)
C2	0.8069 (3)	0.4440 (4)	0.4297 (2)	0.0465 (8)	0.707 (2)
H2A	0.848364	0.477204	0.487909	0.056*	0.707 (2)
H2B	0.818475	0.337488	0.427118	0.056*	0.707 (2)
Cl 3	0.66156 (8)	0.48055 (11)	0.40385 (6)	0.0581 (3)	0.707 (2)
C1A	0.8273 (19)	0.5310 (12)	0.3788 (17)	0.055 (5)	0.293 (2)
H1AA	0.800336	0.479291	0.324113	0.066*	0.293 (2)
H1AB	0.897006	0.48509	0.415285	0.066*	0.293 (2)
C2A	0.7424 (9)	0.5258 (10)	0.4203 (6)	0.051 (2)	0.293 (2)
H2AA	0.672082	0.570241	0.383851	0.061*	0.293 (2)
H2AB	0.768918	0.576965	0.475201	0.061*	0.293 (2)
Cl3A	0.7270 (3)	0.3331 (3)	0.43356 (19)	0.0799 (11)	0.293 (2)
C3	0.8885 (2)	0.7413 (3)	0.29966 (17)	0.0572 (7)	
H3A	0.885462	0.848115	0.295397	0.086*	
H3B	0.843773	0.698591	0.245341	0.086*	
H3C	0.964987	0.708767	0.315027	0.086*	
C4	0.9070 (3)	0.7654 (3)	0.44973 (17)	0.0687 (8)	
H4A	0.984779	0.737603	0.468255	0.103*	
H4B	0.876356	0.733971	0.491816	0.103*	
H4C	0.900302	0.871732	0.443083	0.103*	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.0301(2)$	$0.0362(2)$	$0.0354(2)$	0	$0.01147(16)$	0
C11	$0.0383(3)$	$0.0475(3)$	$0.0375(3)$	$-0.0055(2)$	$0.0078(2)$	$-0.0033(2)$
C12	$0.0611(4)$	$0.0447(3)$	$0.0666(4)$	$-0.0097(3)$	$0.0364(3)$	$0.0013(3)$
N1	$0.0339(9)$	$0.0456(11)$	$0.0413(10)$	$0.0079(8)$	$0.0137(8)$	$-0.0021(8)$
C1	$0.043(4)$	$0.040(2)$	$0.042(3)$	$-0.0033(16)$	$0.023(2)$	$0.0027(16)$
C2	$0.0492(19)$	$0.0449(19)$	$0.0467(19)$	$0.0064(16)$	$0.0188(15)$	$0.0019(16)$
C13	$0.0479(6)$	$0.0665(6)$	$0.0663(6)$	$-0.0018(4)$	$0.0280(4)$	$-0.0007(5)$
C1A	$0.038(9)$	$0.086(10)$	$0.047(9)$	$-0.015(6)$	$0.024(5)$	$0.001(6)$

supporting information

C2A	$0.062(6)$	$0.047(5)$	$0.048(5)$	$0.004(5)$	$0.025(4)$	$0.009(4)$
C13A	$0.113(2)$	$0.0584(16)$	$0.0850(19)$	$-0.0153(14)$	$0.0554(17)$	$0.0128(13)$
C3	$0.0704(17)$	$0.0520(15)$	$0.0552(15)$	$-0.0085(13)$	$0.0297(13)$	$0.0012(12)$
C4	$0.081(2)$	$0.0703(19)$	$0.0485(15)$	$0.0016(15)$	$0.0150(14)$	$-0.0161(14)$

Geometric parameters (\AA, ${ }^{\circ}$)

Co1-Cl1	2.2873 (6)	C1-H1B	0.97
Col-Cl2	2.2618 (6)	$\mathrm{C} 1-\mathrm{C} 2$	1.534 (6)
N1-C3	1.482 (3)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.97
C3-H3A	0.96	C2-H2B	0.97
С3-H3B	0.96	$\mathrm{C} 2-\mathrm{Cl} 3$	1.776 (3)
C3-H3C	0.96	N1-C1A	1.490 (10)
N1-C4	1.483 (3)	C1A-H1AA	0.97
C4-H4A	0.96	C1A-H1AB	0.97
C4-H4B	0.96	C1A-C2A	1.480 (15)
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.96	$\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AA}$	0.97
N1-H1	0.87 (3)	$\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AB}$	0.97
N1-C1	1.509 (5)	$\mathrm{C} 2 \mathrm{~A}-\mathrm{Cl} 3 \mathrm{~A}$	1.762 (9)
C1-H1A	0.97		
Cl1-Co1-Cl1	111.86 (3)	C2-C1-H1A	108.2
$\mathrm{Cl1}-\mathrm{Col}-\mathrm{Cl} 2$	108.17 (2)	N1-C1-H1B	108.2
$\mathrm{Cl} 1-\mathrm{Co} 1-\mathrm{Cl2}{ }^{\text {i }}$	104.58 (2)	C2- $12-\mathrm{H} 1 \mathrm{~B}$	108.2
$\mathrm{Cl2}-\mathrm{Co} 1-\mathrm{Cl} 2$	119.62 (4)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	107.4
C3-N1-C4	110.6 (2)	C1-C2-Cl3	111.0 (4)
N1-C3-H3A	109.5	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.4
N1-C3-H3B	109.5	$\mathrm{Cl} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.4
H3A-C3-H3B	109.5	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.4
N1-C3-H3C	109.5	$\mathrm{Cl} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.4
H3A-C3-H3C	109.5	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108
H3B-C3-H3C	109.5	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1 \mathrm{~A}$	120.4 (7)
N1-C4-H4A	109.5	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1 \mathrm{~A}$	110.7 (11)
N1-C4-H4B	109.5	$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1$	105.3 (9)
H4A-C4-H4B	109.5	$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{AA}$	110.7
N1-C4-H4C	109.5	N1-C1A-H1AA	110.7
H4A-C4-H4C	109.5	$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{AB}$	110.7
$\mathrm{H} 4 \mathrm{~B}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5	N1-C1A-H1AB	110.7
C3-N1-C1	105.4 (3)	H1AA-C1A-H1AB	108.8
C4-N1-C1	114.8 (4)	$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{Cl} 3 \mathrm{~A}$	102.9 (7)
C3-N1-H1	108.0 (18)	$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AA}$	111.2
C4-N1-H1	105.3 (18)	$\mathrm{Cl} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AA}$	111.2
$\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1$	100 (2)	$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AB}$	111.2
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$	112.6 (19)	$\mathrm{Cl} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AB}$	111.2
N1-C1-C2	116.2 (5)	H2AA-C2A-H2AB	109.1
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	108.2		
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-178.1 (5)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	-156.9 (10)

$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$59.9(7)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$71.9(16)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 3$	$61.6(7)$	$\mathrm{N} 1-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{Cl} 3 \mathrm{~A}$	$-179.7(13)$

Symmetry code: (i) $-x+1, y,-z+1 / 2$.
Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Cl1}$	$0.87(3)$	$2.51(3)$	$3.3093(19)$	$152(2)$
$\mathrm{N} 1 — \mathrm{H} 1 \cdots \mathrm{Cl2}$				

Symmetry code: (i) $-x+1, y,-z+1 / 2$.

Bis(2-chloro-N,N-dimethylethan-1-aminium) tetrachloridozincate(II) (zincate)

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{ClN}\right)_{2}\left[\mathrm{ZnCl}_{4}\right]$
$M_{r}=424.34$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=12.7297$ (7) \AA
$b=8.9784$ (5) \AA
$c=16.6837(11) \AA$
$\beta=111.062(2)^{\circ}$
$V=1779.43(18) \AA^{3}$
$Z=4$

Data collection

Bruker D8 Quest Eco
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.472, T_{\text {max }}=0.560$
46381 measured reflections
$F(000)=864$
$D_{\mathrm{x}}=1.584 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9979 reflections
$\theta=2.8-33.7^{\circ}$
$\mu=2.26 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Irregular, colourless
$0.39 \times 0.38 \times 0.29 \mathrm{~mm}$

2843 independent reflections
2479 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=31.0^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-18 \rightarrow 18$
$k=-12 \rightarrow 12$
$l=-24 \rightarrow 24$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.070$
$S=1.12$
2843 reflections
113 parameters
1 restraint
Primary atom site location: dual
Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0155 P)^{2}+3.2372 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.57 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.40$ e \AA^{-3}
Extinction correction: SHELXL2018/3
(Sheldrick 2015b)
Extinction coefficient: 0.0035 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$	Occ. (<1)
Zn1	0.5	$0.72176(4)$	0.25	$0.03333(10)$	
C11	$0.63307(4)$	$0.57810(6)$	$0.34859(3)$	$0.04085(12)$	
C12	$0.40494(5)$	$0.84939(6)$	$0.31868(4)$	$0.05219(15)$	
N1	$0.15576(15)$	$0.8071(2)$	$0.13379(11)$	$0.0396(4)$	
H1	$0.223(2)$	$0.770(3)$	$0.1486(17)$	$0.055(7)^{*}$	
C1	$0.1482(5)$	$0.9756(5)$	$0.1328(5)$	$0.0393(10)$	$0.697(2)$
H1A	0.189643	1.011624	0.190345	0.047^{*}	$0.697(2)$
H1B	0.069934	1.003059	0.118912	0.047^{*}	$0.697(2)$
C2	$0.1923(3)$	$1.0567(4)$	$0.0703(2)$	$0.0451(7)$	$0.697(2)$
H2A	0.180985	1.163084	0.073337	0.054^{*}	$0.697(2)$
H2B	0.15046	1.024182	0.012066	0.054^{*}	$0.697(2)$
C13	$0.33801(8)$	$1.01959(11)$	$0.09585(6)$	$0.0569(3)$	$0.697(2)$
C1A	$0.1726(14)$	$0.9672(11)$	$0.1224(12)$	$0.052(4)$	$0.303(2)$
H1C	0.200388	1.01761	0.177512	0.063^{*}	$0.303(2)$
H1D	0.102578	1.01361	0.086803	0.063^{*}	$0.303(2)$
C2A	$0.2568(7)$	$0.9742(9)$	$0.0801(5)$	$0.0480(18)$	$0.303(2)$
H2C	0.229594	0.923437	0.025068	0.058^{*}	$0.303(2)$
H2D	0.32746	0.929578	0.115896	0.058^{*}	$0.303(2)$
C13A	$0.2728(3)$	$1.1668(3)$	$0.06669(18)$	$0.0773(9)$	$0.303(2)$
C3	$0.1113(2)$	$0.7582(3)$	$0.20017(16)$	$0.0552(6)$	
H3A	0.034943	0.791657	0.185019	0.083^{*}	
H3B	0.156482	0.799774	0.254694	0.083^{*}	0.083^{*}
H3C	0.113532	0.65148	0.203863	$0.0675(8)$	0.101^{*}
C4	$0.0928(3)$	$0.7347(3)$	$0.05022(17)$	0.101^{*}	
H4A	0.10053	0.628507	0.056467	0.101^{*}	
H4B	0.122638	0.767543	0.007913	0.032261	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	$0.02977(15)$	$0.03496(17)$	$0.03503(17)$	0	$0.01136(12)$	0
C11	$0.0366(2)$	$0.0455(3)$	$0.0358(2)$	$0.00580(19)$	$0.00738(18)$	$0.00353(19)$
C12	$0.0601(3)$	$0.0429(3)$	$0.0653(4)$	$0.0098(2)$	$0.0367(3)$	$-0.0012(2)$
N1	$0.0331(8)$	$0.0453(10)$	$0.0401(9)$	$0.0091(7)$	$0.0129(7)$	$-0.0022(7)$
C1	$0.042(3)$	$0.0422(18)$	$0.040(2)$	$-0.0022(15)$	$0.0234(18)$	$0.0028(14)$
C2	$0.0476(16)$	$0.0459(17)$	$0.0437(16)$	$0.0085(14)$	$0.0186(13)$	$0.0044(13)$
C13	$0.0477(5)$	$0.0645(6)$	$0.0649(6)$	$-0.0009(4)$	$0.0280(4)$	$0.0002(4)$
C1A	$0.042(7)$	$0.083(8)$	$0.043(6)$	$-0.022(5)$	$0.027(4)$	$-0.003(5)$
C2A	$0.055(5)$	$0.052(4)$	$0.042(4)$	$0.001(4)$	$0.023(3)$	$0.008(3)$
C13A	$0.110(2)$	$0.0557(13)$	$0.0823(17)$	$-0.0148(13)$	$0.0536(16)$	$0.0132(12)$
C3	$0.0694(16)$	$0.0485(13)$	$0.0532(13)$	$-0.0096(11)$	$0.0288(12)$	$0.0008(10)$
C4	$0.0780(19)$	$0.0693(18)$	$0.0481(13)$	$0.0019(15)$	$0.0139(13)$	$-0.0172(13)$

Geometric parameters (A, ${ }^{\circ}$)

Zn1-Cl2	2.2553 (5)	C2-H2B	0.97
$\mathrm{Zn} 1-\mathrm{Cl2}{ }^{\text {i }}$	2.2554 (5)	C1A-C2A	1.481 (12)
$\mathrm{Zn} 1-\mathrm{Cl1}{ }^{\text {i }}$	2.2883 (5)	C1A-H1C	0.97
Zn1-Cl1	2.2883 (5)	C1A-H1D	0.97
N1-C1A	1.476 (9)	C2A-C13A	1.765 (8)
N1-C3	1.480 (3)	C2A-H2C	0.97
N1-C4	1.485 (3)	C2A-H2D	0.97
N1-C1	1.515 (5)	C3-H3A	0.96
N1-H1	0.87 (3)	C3-H3B	0.96
C1-C2	1.535 (5)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.96
C1-H1A	0.97	C4-H4A	0.96
C1-H1B	0.97	C4-H4B	0.96
C2- Cl	1.779 (3)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.96
C2-H2A	0.97		
$\mathrm{Cl} 2-\mathrm{Zn} 1-\mathrm{Cl2}{ }^{\text {i }}$	118.93 (3)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.1
$\mathrm{Cl} 2-\mathrm{Znl}-\mathrm{Cl}^{\text {i }}$	104.94 (2)	$\mathrm{N} 1-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	105.4 (7)
$\mathrm{Cl2}{ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{Cl}^{\text {i }}$	108.36 (2)	N1-C1A-H1C	110.7
$\mathrm{C} 2-\mathrm{Zn} 1-\mathrm{Cl1}$	108.36 (2)	C2A-C1A-H1C	110.7
$\mathrm{Cl2}^{\text {i }} \mathrm{Z} \mathrm{Zn} 1-\mathrm{Cl1}$	104.94 (2)	N1-C1A-H1D	110.7
$\mathrm{Cl1}^{\text {i}}-\mathrm{Zn} 1-\mathrm{Cl1}$	111.38 (3)	C2A-C1A-H1D	110.7
C1A-N1-C3	119.8 (5)	H1C-C1A-H1D	108.8
C1A-N1-C4	111.1 (8)	C1A-C2A-C13A	103.8 (6)
C3-N1-C4	110.5 (2)	$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{C}$	111
C3-N1-C1	105.3 (2)	$\mathrm{C} 13 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{C}$	111
C4-N1-C1	114.6 (3)	C1A-C2A-H2D	111
C1A-N1-H1	103.7 (19)	C13A-C2A-H2D	111
C3-N1-H1	106.0 (18)	$\mathrm{H} 2 \mathrm{C}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{D}$	109
C4-N1-H1	104.1 (18)	N1-C3-H3A	109.5
C1-N1-H1	116.1 (18)	N1-C3-H3B	109.5
N1-C1-C2	116.3 (4)	H3A-C3-H3B	109.5
N1-C1-H1A	108.2	N1-C3-H3C	109.5
C2-C1-H1A	108.2	H3A-C3-H3C	109.5
N1-C1-H1B	108.2	H3B-C3-H3C	109.5
C2-C1-H1B	108.2	N1-C4-H4A	109.5
H1A-C1-H1B	107.4	N1-C4-H4B	109.5
C1-C2-Cl3	110.7 (3)	H4A-C4-H4B	109.5
C1-C2-H2A	109.5	N1-C4-H4C	109.5
$\mathrm{Cl} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5	H4A-C4-H4C	109.5
C1-C2-H2B	109.5	H4B-C4-H4C	109.5
$\mathrm{Cl} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5		
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	178.5 (4)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	157.7 (7)

supporting information

$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-59.9(6)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$-71.4(12)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 3$	$-61.3(6)$	$\mathrm{N} 1-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{Cl} 3 \mathrm{~A}$	$179.3(9)$

Symmetry code: (i) $-x+1, y,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Cl1} 1^{\mathrm{i}}$	$0.87(3)$	$2.51(3)$	$3.3124(18)$	$156(2)$
$\mathrm{N} 1 — \mathrm{H} 1 \cdots \mathrm{Cl} 2$	$0.87(3)$	$3.03(3)$	$3.5620(19)$	$121(2)$

Symmetry code: (i) $-x+1, y,-z+1 / 2$.

