

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 18 April 2024
Accepted 27 May 2024

Edited by T. Akitsu, Tokyo University of Science, Japan

Keywords: synthesis; discrete complex; polymorphism; thermal properties; cobalt thiocyanate; 4-methylpyridine; crystal structure.

CCDC reference: 2358516

Supporting information: this article has supporting information at journals.iucr.org/e


OPEN $\bigodot$ ACCESS
Published under a CC BY 4.0 licence

# Synthesis, crystal structure and thermal properties of a new polymorphic modification of diisothiocyanatotetrakis(4-methylpyridine)cobalt(II) 

Christian Näther* and Aleksej Jochim

Institut für Anorganische Chemie, Universität Kiel, Germany. *Correspondence e-mail: cnaether@ac.uni-kiel.de

The title compound, $\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{4}\right]$ or $\mathrm{Co}(\mathrm{NCS})_{2}(4 \text {-methylpyridine })_{4}$, was prepared by the reaction of $\mathrm{Co}(\mathrm{NCS})_{2}$ with 4-methylpyridine in water and is isotypic to one of the polymorphs of $\mathrm{Ni}(\mathrm{NCS})_{2}(4 \text {-methylpyridine })_{4}$ [Kerr \& Williams (1977). Acta Cryst. B33, 3589-3592 and Soldatov et al. (2004). Cryst. Growth Des. 4, 1185-1194]. Comparison of the experimental X-ray powder pattern with that calculated from the single-crystal data proves that a pure phase has been obtained. The asymmetric unit consists of one $\mathrm{Co}^{\mathrm{II}}$ cation, two crystallographically independent thiocyanate anions and four independent 4-methylpyridine ligands, all located in general positions. The $\mathrm{Co}^{\mathrm{II}}$ cations are sixfold coordinated to two terminally N -bonded thiocyanate anions and four 4-methylpyridine coligands within slightly distorted octahedra. Between the complexes, a number of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ contacts are found. This structure represent a polymorphic modification of $\mathrm{Co}(\mathrm{NCS})_{2}$ (4-methylpyridine) 4 already reported in the CCD [Harris et al. (2003). NASA Technical Reports, 211890]. In contrast to this form, the crystal structure of the new polymorph shows a denser packing, indicating that it is thermodynamically stable at least at low temperatures. Thermogravimetric and differential thermoanalysis reveal that the title compound starts to decomposes at about $100^{\circ} \mathrm{C}$ and that the coligands are removed in separate steps without any sign of a polymorphic transition before decomposition.

## 1. Chemical context

Polymorphism is a widespread phenomenon and of equal importance in academic and industrial research. It is frequently found in organic compounds but there are also several examples where it is observed in coordination compounds (Moulton \& Zaworotko, 2001; Braga \& Grepioni, 2000; Tao et al., 2012). This is the case, for example, for coordination compounds based on thiocyanate anions, which we have been interested in for several years. The majority of polymorphic modifications in this class of compounds are observed for discrete complexes with terminally N -bonded ligands (Wöhlert et al., 2013; Neumann et al., 2018a). In contrast, compounds with a bridging coordination of the anionic ligands typically form isomeric modifications (Mautner et al., 2018; Neumann et al., 2018b; Böhme et al., 2020; Jochim et al., 2018). Within this project, we are especially interested in compounds based on $\mathrm{Co}(\mathrm{NCS})_{2}$ which, because if its high magneticotropy, shows a versatile magnetic behavior (Rams et al., 2017, 2020). In the course of these investigations, we became interested in 4-methylpyridine as coligand, with a special focus on $\mathrm{Co}(\mathrm{NCS})_{2}$ compounds.

Several compounds based on $\mathrm{Co}(\mathrm{NCS})_{2}$ have already been reported with this ligand, predominantly discrete complexes
with a tetrahedral or an octahedral coordination, with most of them forming clathrates (see Database survey). As part of our synthetic work we have obtained crystals that were characterized by single-crystal X-ray diffraction. This proves that a discrete complex with the composition $\mathrm{Co}(\mathrm{NCS})_{2}$ (4-methylpyridine) ${ }_{4}$ was obtained. Based on these findings, a CSD search was performed, which revealed that the structure of a compound with this composition had already been reported by Solacolu and co-workers and Harris and co-workers [refcodes QQQGKG (Solacolu et al., 1974) and VERNUC (Harris et al., 2003)]. The title compound crystallizes differently, which means that we have obtained a new polymorphic modification of this complex.


## 2. Structural commentary

The title compound, $\mathrm{Co}(\mathrm{NCS})_{2}$ (4-methylpyridine) $)_{4}$, is isotypic to $\mathrm{Ni}(\mathrm{NCS})_{2}(4 \text {-methylpyridine) })_{4}$ already reported in the literature (refcode ICMPNI01; Kerr \& Williams, 1977 and Soldatov et al., 2004). Its asymmetric unit consists of one $\mathrm{Co}^{\mathrm{II}}$ cation, two thiocyanate anions and four 4-methylpyridine coligands that are located in general positions (Fig. 1). The metal cations are sixfold coordinated to two terminally N bonded thiocyanate anions and four 4-methylpyridine coligands into discrete complexes. Bond lengths and angles are comparable to those in the polymorphic modification already reported in the literature (refcode VERNUC; Harris et al., 2003) and show that a slightly distorted octahedral coordination is present (Table 1).

The title compound represents a further polymorph of the modifications that have already been reported in the literature [refcodes QQQGKG (Solacolu et al., 1974) and VERNUC (Harris et al., 2003)], but it is noted that some contradictory results have been published. The modification reported by Harris and co-workers crystallizes in the tetragonal space group $I 4_{1} / a$ with eight formula units in the unit cell and a unitcell volume of $6329.415 \AA^{3}$. The form reported by Solacolu and co-workers crystallizes in the space group $I 4_{1} / a$ but with twelve formula units in the unit cell with a unit-cell volume of $6877.013 \AA^{3}$. However, in the same paper they also present a $p$-xylene clathrate crystallizing in the same space space group with a unit-cell volume of $6324.998 \AA^{3}$, which is very similar to that in the modification reported by Harris et al. It is therefore likely that the two unit-cell volumes were accidentally mixed up and that only one modification of $\mathrm{Co}(\mathrm{NCS})_{2}$ (4-methyl-

Table 1
Selected geometric parameters ( $\left({ }^{\circ},{ }^{\circ}\right)$.

| Co1-N2 | $2.091(3)$ | Co1-N41 | $2.173(3)$ |
| :--- | ---: | :--- | ---: |
| Co1-N1 | $2.097(3)$ | $\mathrm{Co} 1-\mathrm{N} 21$ | $2.180(3)$ |
| Co1-N11 | $2.162(3)$ | $\mathrm{Co} 1-\mathrm{N} 31$ | $2.183(3)$ |
|  |  |  |  |
| N2-Co1-N1 | $179.47(14)$ | $\mathrm{N} 11-\mathrm{Co} 1-\mathrm{N} 21$ | $178.63(12)$ |
| $\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 11$ | $88.91(13)$ | $\mathrm{N} 41-\mathrm{Co} 1-\mathrm{N} 21$ | $91.01(12)$ |
| $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 11$ | $90.82(13)$ | $\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 31$ | $88.72(13)$ |
| $\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 41$ | $89.29(12)$ | $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 31$ | $90.82(12)$ |
| N1-Co1-N41 | $91.17(12)$ | $\mathrm{N} 11-\mathrm{Co} 1-\mathrm{N} 31$ | $88.60(12)$ |
| N11-Co1-N41 | $90.33(12)$ | $\mathrm{N} 41-\mathrm{Co} 1-\mathrm{N} 31$ | $177.75(12)$ |
| N2-Co1-N21 | $90.86(13)$ | $\mathrm{N} 21-\mathrm{Co} 1-\mathrm{N} 31$ | $90.05(12)$ |
| $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 21$ | $89.41(13)$ |  |  |

pyridine $)_{4}$ is reported. This is further supported by the fact that in the form reported by Solacula et al. with $Z=12$, each non-hydrogen atom would need a volume of $16.4 \AA^{3}$, which seem to be much too low for such a complex. Unfortunately, no atomic coordinates are given for the ansolvate and the solvate reported by Solacula et al. and therefore those crystal structures cannot be compared with that of the form reported by Harris et al.

However, if the volume of each non hydrogen atom in the title compound ( $20.3 \AA^{3}$ ) is compared with that of the modification reported by Harris et al. $\left(22.6 \AA^{3}\right)$, it is obvious that the title compound is much more densely packed, indicating that this modification represents the thermodynamically stable form, at least at 0 K .

## 3. Supramolecular features

In the crystal structure of the title compound, the discrete complexes are arranged in columns that propagate along the


Figure 1
Crystal structure of the title compound with atom labeling and displacement ellipsoids drawn at the $50 \%$ probability level.

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| C14-H14 $\cdots \mathrm{S}^{\mathrm{i}}$ | 0.95 | 2.89 | $3.692(5)$ | 142 |
| C22-H22 $\cdots \mathrm{S}^{\mathrm{ii}}$ | 0.95 | 2.98 | $3.604(4)$ | 125 |
| C25-H25 $\cdots \mathrm{N} 2$ | 0.95 | 2.65 | $3.164(6)$ | 114 |
| C31-H31 $\cdots \mathrm{N} 1$ | 0.95 | 2.68 | $3.181(5)$ | 114 |
| C35-H35 2 N 2 | 0.95 | 2.65 | $3.129(5)$ | 112 |
| C41-H41 2 N 2 | 0.95 | 2.57 | $3.062(5)$ | 113 |

Symmetry codes: (i) $-x+2, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $x, y+1, z$.
crystallographic $b$-axis direction (Fig. 2). A number of $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ contacts are observed between the complexes, but from the $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{H} \cdots \mathrm{S}$ distances and the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ angles (Table 2) it is unlikely that these are significant interactions.

In contrast, the form reported by Harris et al., exhibits three-dimensional pores (Fig. 3), which might be responsible for the low density of this modification. Moreover, because most clathrates are isotypic to the form reported by Harris et al., it is possible that these solvates lose their solvent molecules and transform into the ansolvate, presumably without collapse of the overall structure.

## 4. Database survey

A search of the CSD (version 5.43, last update December 2024; Groom et al., 2016) using CONQUEST (Bruno et al., 2002) reveals that ten compounds with $\mathrm{Co}(\mathrm{NCS})_{2}$ and 4-methylpyridine are present in the CSD. This includes two discrete complexes with a tetrahedral coordination and the composition $\mathrm{Co}(\mathrm{NCS})_{2}(4 \text {-methylpyridine })_{2}$ and $\mathrm{Co}(\mathrm{NCS})_{2}(4-$


Figure 2
Crystal structure of the title compound in a view along the crystallographic $b$-axis direction.


Figure 3
Crystal structure of $\mathrm{Co}(\mathrm{NCS})_{2}$ (4-methylpyridine) $4_{4}$ (reported by Harris et al., 2003) drawn from the CIF file available in the CSD. Note that this structure contains three-dimensional pores in which solvents might be incorporated.
methylpyridine) $)_{2} p$-xylene clathrate (refcodes QQQGKD and QQQGKJ; Solacolu et al., 1974). There is also one compound reported with the composition $\mathrm{Co}(\mathrm{NCS})_{2}$ (4-methylpyridine) ${ }_{2} \cdot 2 p$-toluidine clathrate in which the cations are linked into chains (refcode CECDAP; Micu-Semeniuc et al., 1983).

All remaining compounds consists of discrete complexes with the composition $\mathrm{Co}(\mathrm{NCS})_{2}$ (4-methylpyridine) $)_{4}$, [refcodes QQQGKG (Solacolu et al., 1974) and VERNUC (Harris et al., 2003)] with some of them crystallizing as clathrates [ $p$-toluidine clathrate (CECCOC; Micu-Semeniuc et al., 1983), pxylene clathrate (QQQGKJ; Solacolu et al., 1974), 4-methylpyridine clathrate (XIHHEB, Harris et al., 2001, and XIHHEB01, Harris et al., 2003), nitrobenzene, nitroethane and benzene clathrate (ZZZUXU, ZZZUXY and ZZZUYI; Belitskus et al., 1963)].

Finally, it is noted that for $\mathrm{Ni}(\mathrm{NCS})_{2}$ (4-methylpyridine) $4_{4}$, two different polymorphic modifications have also been reported, including two reports on the form that is isotypic to the title compound [refcodes ICMPNI01 (Kerr \& Williams, 1977) and ICMPNI03 (Soldatov et al., 2004)] and four reports on the form isotypic to $\mathrm{Co}(\mathrm{NCS})_{2}$ (4-methylpyridine) $4_{4}$ [ICMPNI (Andreetti et al., 1972), ICMPNI02 (Harris et al., 2001) ICMPNI04 and ICMPNI05 (Soldatov et al., 2004) and ICMPNI06 (Harris et al., 2003)].

## 5. Additional investigations

The experimental X-ray powder pattern of the title compound was compared with that calculated from single-crystal data; this proves that a pure crystalline phase has been obtained (Fig. 4).

The title compound was also investigated by thermogravimetry and differential thermoanalysis (TG-DTA) measurements. Upon heating, several mass losses are


Figure 4
Experimental (top) and calculated (bottom) X-ray powder patterns of the title compound.
observed, which are accompanied by endothermic events in the DTA curve (Fig. 4). From the DTG curve, it is obvious that all mass losses are poorly resolved (Fig. 5). The experimental mass loss of the first and second step is in rough agreement with that calculated for the removal of one 4-methylpyridine ligand in each step $\left(\Delta m_{\text {calc. }}=17.0 \%\right)$. Upon further heating, the remaining 4-methylpyridine ligands are removed and the $\mathrm{Co}(\mathrm{NCS})_{2}$ formed as an intermediate decomposes.

## 6. Synthesis and crystallization

## Synthesis

$\mathrm{Co}(\mathrm{NCS})_{2}$ (99.9\%) and 4-methylpyridine (98\%) were purchased from Sigma Aldrich. Single crystals of the title


Figure 5
DTG, TG and DTG curves for the title compound. The mass loss is given in \% and the peak temperature in ${ }^{\circ} \mathrm{C}$.

Table 3
Experimental details.
Crystal data Chemical formula
$M_{\mathrm{r}}$
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}{ }^{\circ}{ }^{3}\right)$
$\left.A^{3}\right)$
$V\left(\mathrm{~A}^{3}\right)$
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
$\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{4}\right]$
547.59

Monoclinic, $P 2_{1} / c$
200
19.0089 (7), 9.7403 (3), 16.7516 (6)
113.370 (3)
2847.15 (18)

4
Mo K $\alpha$
0.77
$0.14 \times 0.10 \times 0.06$

Stoe IPDS2
Numerical ( $X$-RED and $X$ -
SHAPE; Stoe, 2008)
0.735, 0.942

22646, 5557, 4740
0.075
0.617

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
$0.058,0.164,1.10$
No. of reflections 5557
No. of parameters
H -atom treatment
321
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
H-atom parameters constrained

Computer programs: X-AREA (Stoe, 2008), SHELXT2014/4 (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b), DIAMOND (Brandenburg \& Putz, 1999), XP in SHELXTL-PC (Sheldrick, 2008) and publCIF (Westrip, 2010).
compound suitable for structure determination were obtained by dissolving $0.25 \mathrm{mmol}(43.8 \mathrm{mg})$ of $\mathrm{Co}(\mathrm{NCS})_{2}$ in 7 mL of demineralized water. To this solution, $1.00 \mathrm{mmol}(97.3 \mu \mathrm{l})$ of 4-methylpyridine were added and the reaction mixture was heated to 413 K for 15 min in a closed vial. Afterwards, it was cooled to 363 K and stored at this temperature overnight, leading to the formation of violet-colored crystals. Larger amounts of a crystalline powder were prepared by stirring $0.50 \mathrm{mmol}(87.6 \mathrm{mg})$ of $\mathrm{Co}(\mathrm{NCS})_{2}$ and $2.00 \mathrm{mmol}(194.6 \mu \mathrm{l})$ of 4-methylpyridine in 2 mL of demineralized water for 3 d at room-temperature. The violet-colored powder was filtered off and dried in air.

## Experimental details

The X-ray powder pattern was measured using a Stoe Transmission Powder Diffraction System (STADI P) equipped with a linear, position-sensitive MYTHEN 1K detector from Stoe \& Cie. Thermogravimetry and differential thermoanalysis (TG-DTA) measurements were performed in a dynamic nitrogen atmosphere in $\mathrm{Al}_{2} \mathrm{O}_{3}$ crucibles with $8^{\circ} \mathrm{C}$ $\min ^{-1}$ using a STA-PT 1000 thermobalance from Linseis. The TG-DTA instrument was calibrated using standard references materials.

## 7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were positioned with idealized geometry (methyl H atoms allowed to rotate
and not to tip) and were refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})(1.5$ for methyl H atoms) using a riding model.

## Acknowledgements

This work was supported by the State of Schleswig-Holstein.

## References

Andreetti, G. D., Bocelli, G. \& Sgarabotto, P. (1972). Cryst. Struct. Commun. 1, 51-54.
Belitskus, D., Jeffrey, G. A., McMullan, R. K. \& Stephenson, N. C. (1963). Inorg. Chem. 2, 873-875.

Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. \& Näther, C. (2020). Inorg. Chem. 59, 5325-5338.

Braga, D. \& Grepioni, F. (2000). Chem. Soc. Rev. 29, 229-238.
Brandenburg, K. \& Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389397.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Fanwick, P. E., Richardson, J. \& Gordon, E. M. (2001). Mater. Des. 22, 625-634.
Harris, J. D., Eckles, W. E., Hepp, A. F., Duraj, S. A., Hehemann, D. G., Fanwick, P. E. \& Richardson, J. (2003). NASA Technical Reports, 211890.
Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. \& Näther, C. (2018). Eur. J. Inorg. Chem. 2018, 47794789.

Kerr, I. S. \& Williams, D. J. (1977). Acta Cryst. B33, 3589-3592.
Mautner, F. E., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. \& Massoud, S. S. (2018). Polyhedron, 154, 436-442.
Micu-Semeniuc, R., Hila, E., Dobos-Roman, G. \& Ghergari, L. (1983). Rev. Roum. Chim. 28, 471-475.

Moulton, B. \& Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
Neumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. \& Näther, C. (2018b). Inorg. Chem. 57, 3305-3314.
Neumann, T., Jess, I., Pielnhofer, F. \& Näther, C. (2018a). Eur. J. Inorg. Chem. pp. 4972-4981.
Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. \& Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 24534-24544.
Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. \& Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Solacolu, I., Sandulescu, D. \& Dragulescu, C. (1974). Rev. Roum. Chim. 19, 415-419.
Soldatov, D. V., Enright, G. D. \& Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 1185-1194.
Stoe (2008). $X$-AREA, $X$-RED32 and $X$-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Tao, J., Wei, R. J., Huang, R. B. \& Zheng, L. S. (2012). Chem. Soc. Rev. 41, 703-737.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wöhlert, S., Jess, I., Englert, U. \& Näther, C. (2013). CrystEngComm, 15, 5326-5336.

## supporting information

Acta Cryst. (2024). E80, 677-681 [https://doi.org/10.1107/S2056989024004997]

# Synthesis, crystal structure and thermal properties of a new polymorphic modification of diisothiocyanatotetrakis(4-methylpyridine)cobalt(II) 

## Christian Näther and Aleksej Jochim

## Computing details

## Diisothiocyanatotetrakis(4-methylpyridine)cobalt(II)

## Crystal data

$\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{4}\right]$
$M_{r}=547.59$
Monoclinic, $P 2_{1} / c$
$a=19.0089$ (7) $\AA$
$b=9.7403$ (3) $\AA$
$c=16.7516$ (6) $\AA$
$\beta=113.370(3)^{\circ}$
$V=2847.15(18) \AA^{3}$
$Z=4$

## Data collection

Stoe IPDS-2
diffractometer
$\omega$ scans
Absorption correction: numerical
(X-Red and X-Shape; Stoe, 2008)
$T_{\text {min }}=0.735, T_{\text {max }}=0.942$
22646 measured reflections

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.164$
$S=1.10$
5557 reflections
321 parameters
0 restraints
Hydrogen site location: inferred from neighbouring sites
$F(000)=1140$
$D_{\mathrm{x}}=1.277 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 22661 reflections
$\theta=2.4-26.0^{\circ}$
$\mu=0.77 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Plate, red
$0.14 \times 0.10 \times 0.06 \mathrm{~mm}$

5557 independent reflections
4740 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.075$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-23 \rightarrow 23$
$k=-12 \rightarrow 11$
$l=-19 \rightarrow 20$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0526 P)^{2}+3.0556 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.37 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.34$ e $\AA^{-3}$
Extinction correction: SHELXL2016/6
(Sheldrick, 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.020 (2)

## Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Col | 0.75009 (3) | 0.27830 (5) | 0.72802 (3) | 0.0598 (2) |
| N1 | 0.83018 (19) | 0.4369 (4) | 0.7493 (2) | 0.0687 (8) |
| C1 | 0.8514 (2) | 0.5485 (4) | 0.7635 (3) | 0.0700 (10) |
| S1 | 0.88072 (10) | 0.70552 (14) | 0.78286 (16) | 0.1355 (8) |
| N2 | 0.6711 (2) | 0.1190 (3) | 0.7075 (2) | 0.0706 (9) |
| C2 | 0.6392 (2) | 0.0154 (4) | 0.6866 (2) | 0.0627 (9) |
| S2 | 0.59471 (9) | -0.12915 (13) | 0.65766 (9) | 0.0953 (4) |
| N11 | 0.81009 (18) | 0.1530 (3) | 0.6687 (2) | 0.0631 (8) |
| C11 | 0.7743 (2) | 0.0719 (4) | 0.5998 (3) | 0.0734 (11) |
| H11 | 0.719864 | 0.073772 | 0.573384 | 0.088* |
| C12 | 0.8125 (3) | -0.0137 (5) | 0.5657 (3) | 0.0798 (12) |
| H12 | 0.784522 | -0.067672 | 0.515937 | 0.096* |
| C13 | 0.8911 (3) | -0.0219 (4) | 0.6033 (3) | 0.0773 (11) |
| C14 | 0.9283 (2) | 0.0599 (5) | 0.6740 (3) | 0.0729 (11) |
| H14 | 0.982624 | 0.057449 | 0.702150 | 0.087* |
| C15 | 0.8869 (2) | 0.1452 (4) | 0.7040 (2) | 0.0674 (10) |
| H15 | 0.914097 | 0.202117 | 0.752488 | 0.081* |
| C16 | 0.9359 (4) | -0.1151 (6) | 0.5673 (4) | 0.114 (2) |
| H16A | 0.943638 | -0.204637 | 0.596216 | 0.171* |
| H16B | 0.985779 | -0.073434 | 0.578040 | 0.171* |
| H16C | 0.907147 | -0.127082 | 0.504637 | 0.171* |
| N21 | 0.69095 (18) | 0.4019 (3) | 0.7907 (2) | 0.0618 (7) |
| C21 | 0.6878 (2) | 0.5394 (4) | 0.7865 (3) | 0.0666 (10) |
| H21 | 0.711052 | 0.584993 | 0.753049 | 0.080* |
| C22 | 0.6527 (2) | 0.6173 (4) | 0.8283 (3) | 0.0705 (10) |
| H22 | 0.652627 | 0.714535 | 0.823941 | 0.085* |
| C23 | 0.6172 (2) | 0.5543 (4) | 0.8771 (3) | 0.0678 (10) |
| C24 | 0.6202 (3) | 0.4139 (4) | 0.8810 (3) | 0.0708 (10) |
| H24 | 0.596838 | 0.365610 | 0.913386 | 0.085* |
| C25 | 0.6572 (2) | 0.3426 (4) | 0.8376 (3) | 0.0681 (10) |
| H25 | 0.658601 | 0.245226 | 0.841550 | 0.082* |
| C26 | 0.5760 (3) | 0.6355 (5) | 0.9219 (3) | 0.0942 (15) |
| H26A | 0.579480 | 0.733587 | 0.911053 | 0.141* |
| H26B | 0.599684 | 0.617846 | 0.984604 | 0.141* |
| H26C | 0.522031 | 0.607787 | 0.899158 | 0.141* |
| N31 | 0.82027 (19) | 0.1859 (3) | 0.8531 (2) | 0.0627 (8) |
| C31 | 0.8626 (3) | 0.2631 (4) | 0.9211 (3) | 0.0714 (11) |
| H31 | 0.861677 | 0.359849 | 0.913605 | 0.086* |
| C32 | 0.9076 (3) | 0.2104 (4) | 1.0015 (3) | 0.0767 (12) |


| H32 | 0.937495 | 0.270155 | 1.047220 | $0.092^{*}$ |
| :--- | :--- | :--- | :--- | :--- |
| C33 | $0.9093(3)$ | $0.0714(4)$ | $1.0156(3)$ | $0.0715(10)$ |
| C34 | $0.8663(3)$ | $-0.0092(4)$ | $0.9449(3)$ | $0.0780(12)$ |
| H34 | 0.866465 | -0.106195 | 0.950902 | $0.094^{*}$ |
| C35 | $0.8234(2)$ | $0.0505(4)$ | $0.8662(3)$ | $0.0709(11)$ |
| H35 | 0.794590 | -0.007362 | 0.818849 | $0.085^{*}$ |
| C36 | $0.9558(3)$ | $0.0107(5)$ | $1.1038(3)$ | $0.0936(15)$ |
| H36A | 0.979077 | 0.084740 | 1.145571 | $0.140^{*}$ |
| H36B | 0.996251 | -0.047877 | 1.099818 | $0.140^{*}$ |
| H36C | 0.922411 | -0.044334 | 1.123206 | $0.140^{*}$ |
| N41 | $0.67845(18)$ | $0.3624(3)$ | $0.6016(2)$ | $0.0622(8)$ |
| C41 | $0.6027(2)$ | $0.3398(4)$ | $0.5677(2)$ | $0.0625(9)$ |
| H41 | 0.580692 | 0.296345 | 0.603153 | $0.075^{*}$ |
| C42 | $0.5553(2)$ | $0.3761(4)$ | $0.4845(3)$ | $0.0641(9)$ |
| H42 | 0.501995 | 0.356864 | 0.463767 | $0.077^{*}$ |
| C43 | $0.5844(2)$ | $0.4403(4)$ | $0.4309(2)$ | $0.0675(10)$ |
| C44 | $0.6623(3)$ | $0.4658(4)$ | $0.4658(3)$ | $0.0716(10)$ |
| H44 | 0.685217 | 0.510643 | 0.431756 | $0.086^{*}$ |
| C45 | $0.7068(2)$ | $0.4263(4)$ | $0.5496(3)$ | $0.0676(10)$ |
| H45 | 0.760195 | 0.445089 | 0.571864 | $0.081^{*}$ |
| C46 | $0.5336(3)$ | $0.4760(5)$ | $0.3387(3)$ | $0.0888(14)$ |
| H46A | 0.561211 | 0.537278 | 0.314717 | $0.133^{*}$ |
| H46B | 0.487385 | 0.522127 | 0.337480 | $0.133^{*}$ |
| H46C | 0.519184 | 0.391905 | 0.303875 | $0.133^{*}$ |

Atomic displacement parameters $\left(A^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C01 | $0.0631(3)$ | $0.0557(3)$ | $0.0541(3)$ | $-0.0041(2)$ | $0.0163(2)$ | $0.0001(2)$ |
| N 1 | $0.0677(19)$ | $0.064(2)$ | $0.067(2)$ | $-0.0042(16)$ | $0.0191(16)$ | $0.0020(16)$ |
| C1 | $0.062(2)$ | $0.063(2)$ | $0.079(3)$ | $-0.0027(19)$ | $0.021(2)$ | $-0.004(2)$ |
| S1 | $0.0977(11)$ | $0.0653(8)$ | $0.239(2)$ | $-0.0171(7)$ | $0.0625(13)$ | $-0.0333(10)$ |
| N 2 | $0.075(2)$ | $0.0621(19)$ | $0.068(2)$ | $-0.0067(17)$ | $0.0203(17)$ | $0.0009(16)$ |
| C2 | $0.066(2)$ | $0.062(2)$ | $0.053(2)$ | $-0.0015(18)$ | $0.0160(17)$ | $0.0060(17)$ |
| S2 | $0.1259(11)$ | $0.0697(7)$ | $0.0837(8)$ | $-0.0312(7)$ | $0.0345(8)$ | $-0.0084(6)$ |
| N11 | $0.0613(18)$ | $0.0658(19)$ | $0.0539(17)$ | $-0.0028(15)$ | $0.0141(14)$ | $-0.0015(14)$ |
| C11 | $0.068(2)$ | $0.077(3)$ | $0.065(2)$ | $-0.004(2)$ | $0.0153(19)$ | $-0.014(2)$ |
| C12 | $0.089(3)$ | $0.067(3)$ | $0.073(3)$ | $-0.003(2)$ | $0.022(2)$ | $-0.015(2)$ |
| C13 | $0.091(3)$ | $0.059(2)$ | $0.080(3)$ | $0.012(2)$ | $0.033(2)$ | $0.006(2)$ |
| C14 | $0.068(2)$ | $0.078(3)$ | $0.066(2)$ | $0.007(2)$ | $0.020(2)$ | $0.012(2)$ |
| C15 | $0.067(2)$ | $0.073(2)$ | $0.053(2)$ | $-0.0020(19)$ | $0.0145(18)$ | $-0.0006(18)$ |
| C16 | $0.131(5)$ | $0.093(4)$ | $0.125(5)$ | $0.032(3)$ | $0.058(4)$ | $-0.008(3)$ |
| N21 | $0.0658(18)$ | $0.0588(17)$ | $0.0574(17)$ | $-0.0020(14)$ | $0.0207(15)$ | $0.0045(14)$ |
| C21 | $0.073(2)$ | $0.057(2)$ | $0.068(2)$ | $0.0022(18)$ | $0.026(2)$ | $0.0085(18)$ |
| C22 | $0.080(3)$ | $0.058(2)$ | $0.070(2)$ | $0.0021(19)$ | $0.026(2)$ | $0.0033(18)$ |
| C23 | $0.075(2)$ | $0.066(2)$ | $0.059(2)$ | $0.0032(19)$ | $0.0232(19)$ | $0.0008(18)$ |
| C24 | $0.082(3)$ | $0.070(2)$ | $0.062(2)$ | $0.001(2)$ | $0.030(2)$ | $0.0066(19)$ |
| C25 | $0.079(3)$ | $0.058(2)$ | $0.065(2)$ | $-0.0021(19)$ | $0.026(2)$ | $0.0065(18)$ |


| C26 | $0.121(4)$ | $0.079(3)$ | $0.097(4)$ | $0.003(3)$ | $0.057(3)$ | $-0.009(3)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N31 | $0.0714(19)$ | $0.0558(17)$ | $0.0531(17)$ | $-0.0022(15)$ | $0.0164(15)$ | $-0.0030(14)$ |
| C31 | $0.096(3)$ | $0.056(2)$ | $0.052(2)$ | $0.001(2)$ | $0.019(2)$ | $-0.0023(17)$ |
| C32 | $0.094(3)$ | $0.071(3)$ | $0.053(2)$ | $0.002(2)$ | $0.016(2)$ | $-0.0047(19)$ |
| C33 | $0.080(3)$ | $0.070(2)$ | $0.057(2)$ | $0.008(2)$ | $0.0187(19)$ | $0.0062(19)$ |
| C34 | $0.085(3)$ | $0.060(2)$ | $0.073(3)$ | $0.002(2)$ | $0.013(2)$ | $0.010(2)$ |
| C35 | $0.078(3)$ | $0.055(2)$ | $0.066(2)$ | $0.0002(19)$ | $0.013(2)$ | $0.0036(18)$ |
| C36 | $0.106(4)$ | $0.091(3)$ | $0.061(3)$ | $0.007(3)$ | $0.010(2)$ | $0.017(2)$ |
| N41 | $0.0608(17)$ | $0.0644(18)$ | $0.0550(17)$ | $-0.0005(14)$ | $0.0161(14)$ | $0.0022(14)$ |
| C41 | $0.062(2)$ | $0.062(2)$ | $0.059(2)$ | $-0.0001(17)$ | $0.0191(17)$ | $0.0001(17)$ |
| C42 | $0.060(2)$ | $0.061(2)$ | $0.062(2)$ | $0.0016(17)$ | $0.0150(17)$ | $-0.0054(17)$ |
| C43 | $0.074(2)$ | $0.063(2)$ | $0.056(2)$ | $0.0111(19)$ | $0.0151(19)$ | $-0.0039(17)$ |
| C44 | $0.080(3)$ | $0.069(2)$ | $0.064(2)$ | $0.000(2)$ | $0.026(2)$ | $0.0048(19)$ |
| C45 | $0.064(2)$ | $0.070(2)$ | $0.064(2)$ | $-0.0034(19)$ | $0.0199(19)$ | $0.0067(19)$ |
| C46 | $0.092(3)$ | $0.100(3)$ | $0.057(2)$ | $0.019(3)$ | $0.011(2)$ | $0.005(2)$ |

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

| Col-N2 | 2.091 (3) | C24-H24 | 0.9500 |
| :---: | :---: | :---: | :---: |
| Col-N1 | 2.097 (3) | C25-H25 | 0.9500 |
| Col-N11 | 2.162 (3) | C26-H26A | 0.9800 |
| Col-N41 | 2.173 (3) | C26-H26B | 0.9800 |
| Col-N21 | 2.180 (3) | C26-H26C | 0.9800 |
| Co1-N31 | 2.183 (3) | N31-C35 | 1.334 (5) |
| N1-C1 | 1.151 (5) | N31-C31 | 1.336 (5) |
| C1-S1 | 1.616 (4) | C31-C32 | 1.376 (6) |
| N2-C2 | 1.158 (5) | C31-H31 | 0.9500 |
| C2-S2 | 1.614 (4) | C32-C33 | 1.372 (6) |
| N11-C11 | 1.341 (5) | C32-H32 | 0.9500 |
| N11-C15 | 1.342 (5) | C33-C34 | 1.385 (6) |
| C11-C12 | 1.370 (6) | C33-C36 | 1.509 (6) |
| C11-H11 | 0.9500 | C34-C35 | 1.375 (5) |
| C12-C13 | 1.375 (6) | C34-H34 | 0.9500 |
| C12-H12 | 0.9500 | C35-H35 | 0.9500 |
| C13-C14 | 1.368 (6) | C36-H36A | 0.9800 |
| C13-C16 | 1.523 (7) | C36-H36B | 0.9800 |
| C14-C15 | 1.370 (6) | C36-H36C | 0.9800 |
| C14-H14 | 0.9500 | N41-C41 | 1.340 (5) |
| C15-H15 | 0.9500 | N41-C45 | 1.345 (5) |
| C16-H16A | 0.9800 | C41-C42 | 1.373 (5) |
| C16-H16B | 0.9800 | C41-H41 | 0.9500 |
| C16-H16C | 0.9800 | C42-C43 | 1.378 (6) |
| N21-C25 | 1.327 (5) | C42-H42 | 0.9500 |
| N21-C21 | 1.341 (5) | C43-C44 | 1.382 (6) |
| C21-C22 | 1.372 (6) | C43-C46 | 1.501 (5) |
| C21-H21 | 0.9500 | C44-C45 | 1.376 (5) |
| C22-C23 | 1.392 (6) | C44-H44 | 0.9500 |
| C22-H22 | 0.9500 | C45-H45 | 0.9500 |


| C23-C24 | 1.369 (6) |
| :---: | :---: |
| C23-C26 | 1.506 (6) |
| C24-C25 | 1.384 (6) |
| N2-Col-N1 | 179.47 (14) |
| N2-Co1-N11 | 88.91 (13) |
| N1-Col-N11 | 90.82 (13) |
| N2-Col-N41 | 89.29 (12) |
| N1-Co1-N41 | 91.17 (12) |
| N11-Col-N41 | 90.33 (12) |
| N2-Col-N21 | 90.86 (13) |
| N1-Co1-N21 | 89.41 (13) |
| N11-Col-N21 | 178.63 (12) |
| N41-Col-N21 | 91.01 (12) |
| N2-Co1-N31 | 88.72 (13) |
| N1-Col-N31 | 90.82 (12) |
| N11-Col-N31 | 88.60 (12) |
| N41-Col-N31 | 177.75 (12) |
| N21-Col-N31 | 90.05 (12) |
| C1-N1-Col | 154.4 (3) |
| N1-C1-S1 | 179.7 (5) |
| C2-N2-Col | 162.3 (4) |
| N2-C2-S2 | 180.0 (5) |
| C11-N11-C15 | 115.9 (4) |
| C11-N11-Co1 | 123.2 (3) |
| C15-N11-Co1 | 120.7 (3) |
| N11-C11-C12 | 123.0 (4) |
| N11-C11-H11 | 118.5 |
| C12-C11-H11 | 118.5 |
| C11-C12-C13 | 120.3 (4) |
| C11-C12-H12 | 119.9 |
| C13-C12-H12 | 119.9 |
| C14-C13-C12 | 117.2 (4) |
| C14-C13-C16 | 120.7 (5) |
| C12-C13-C16 | 122.0 (5) |
| C13-C14-C15 | 119.7 (4) |
| C13-C14-H14 | 120.2 |
| C15-C14-H14 | 120.2 |
| N11-C15-C14 | 123.8 (4) |
| N11-C15-H15 | 118.1 |
| C14-C15-H15 | 118.1 |
| C13-C16-H16A | 109.5 |
| C13-C16-H16B | 109.5 |
| H16A-C16-H16B | 109.5 |
| C13-C16-H16C | 109.5 |
| H16A-C16-H16C | 109.5 |
| H16B-C16-H16C | 109.5 |
| C25-N21-C21 | 116.4 (4) |


| C46-H46A | 0.9800 |
| :---: | :---: |
| C46-H46B | 0.9800 |
| C46-H46C | 0.9800 |
| N21-C25-C24 | 124.0 (4) |
| N21-C25-H25 | 118.0 |
| C24-C25-H25 | 118.0 |
| C23-C26-H26A | 109.5 |
| C23-C26-H26B | 109.5 |
| H26A-C26-H26B | 109.5 |
| C23-C26-H26C | 109.5 |
| H26A-C26-H26C | 109.5 |
| H26B-C26-H26C | 109.5 |
| C35-N31-C31 | 116.4 (3) |
| C35-N31-Co1 | 122.4 (3) |
| C31-N31-Co1 | 121.2 (3) |
| N31-C31-C32 | 123.7 (4) |
| N31-C31-H31 | 118.2 |
| C32-C31-H31 | 118.2 |
| C33-C32-C31 | 120.0 (4) |
| C33-C32-H32 | 120.0 |
| C31-C32-H32 | 120.0 |
| C32-C33-C34 | 116.5 (4) |
| C32-C33-C36 | 121.3 (4) |
| C34-C33-C36 | 122.2 (4) |
| C35-C34-C33 | 120.3 (4) |
| C35-C34-H34 | 119.8 |
| C33-C34-H34 | 119.8 |
| N31-C35-C34 | 123.1 (4) |
| N31-C35-H35 | 118.4 |
| C34-C35-H35 | 118.4 |
| C33-C36-H36A | 109.5 |
| C33-C36-H36B | 109.5 |
| H36A-C36-H36B | 109.5 |
| C33-C36-H36C | 109.5 |
| H36A-C36-H36C | 109.5 |
| H36B-C36-H36C | 109.5 |
| C41-N41-C45 | 116.2 (3) |
| C41-N41-Co1 | 120.2 (3) |
| C45-N41-Co1 | 123.3 (3) |
| N41-C41-C42 | 123.4 (4) |
| N41-C41-H41 | 118.3 |
| C42-C41-H41 | 118.3 |
| C41-C42-C43 | 120.5 (4) |
| C41-C42-H42 | 119.8 |
| C43-C42-H42 | 119.8 |
| C42-C43-C44 | 116.5 (4) |
| C42-C43-C46 | 121.0 (4) |


| C25-N21-Col | 120.5 (3) |
| :---: | :---: |
| C21-N21-Col | 123.2 (3) |
| N21-C21-C22 | 123.1 (4) |
| N21-C21-H21 | 118.5 |
| C22-C21-H21 | 118.5 |
| C21-C22-C23 | 120.2 (4) |
| C21-C22-H22 | 119.9 |
| C23-C22-H22 | 119.9 |
| C24-C23-C22 | 116.6 (4) |
| C24-C23-C26 | 121.4 (4) |
| C22-C23-C26 | 122.0 (4) |
| C23-C24-C25 | 119.8 (4) |
| C23-C24-H24 | 120.1 |
| C25-C24-H24 | 120.1 |
| C15-N11-C11-C12 | -0.6 (6) |
| Col-N11-C11-C12 | -175.9 (3) |
| N11-C11-C12-C13 | 1.5 (7) |
| C11-C12-C13-C14 | -1.0 (7) |
| C11-C12-C13-C16 | -179.7 (5) |
| C12-C13-C14-C15 | -0.2 (6) |
| C16-C13-C14-C15 | 178.5 (4) |
| C11-N11-C15-C14 | -0.7 (6) |
| Col-N11-C15-C14 | 174.7 (3) |
| C13-C14-C15-N11 | 1.1 (7) |
| C25-N21-C21-C22 | 0.5 (6) |
| $\mathrm{Co} 1-\mathrm{N} 21-\mathrm{C} 21-\mathrm{C} 22$ | -177.8 (3) |
| N21-C21-C22-C23 | -0.8 (6) |
| C21-C22-C23-C24 | 0.5 (6) |
| $\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 26$ | -178.2 (4) |
| C22-C23-C24-C25 | 0.0 (6) |
| C26-C23-C24-C25 | 178.7 (4) |
| C21-N21-C25-C24 | 0.0 (6) |
| $\mathrm{Co} 1-\mathrm{N} 21-\mathrm{C} 25-\mathrm{C} 24$ | 178.4 (3) |
| C23-C24-C25-N21 | -0.3 (7) |


| C44-C43-C46 | 122.5 (4) |
| :---: | :---: |
| C45-C44-C43 | 120.2 (4) |
| C45-C44-H44 | 119.9 |
| C43-C44-H44 | 119.9 |
| N41-C45-C44 | 123.3 (4) |
| N41-C45-H45 | 118.4 |
| C44-C45-H45 | 118.4 |
| C43-C46-H46A | 109.5 |
| C43-C46-H46B | 109.5 |
| H46A-C46-H46B | 109.5 |
| C43-C46-H46C | 109.5 |
| H46A-C46-H46C | 109.5 |
| H46B-C46-H46C | 109.5 |
| C35-N31-C31-C32 | -0.3 (7) |
| Col-N31-C31-C32 | 179.7 (4) |
| N31-C31-C32-C33 | -1.4 (8) |
| C31-C32-C33-C34 | 2.3 (7) |
| C31-C32-C33-C36 | -177.9 (5) |
| C32-C33-C34-C35 | -1.5 (7) |
| C36-C33-C34-C35 | 178.6 (5) |
| C31-N31-C35-C34 | 1.1 (7) |
| Col-N31-C35-C34 | -178.9 (4) |
| C33-C34-C35-N31 | -0.2 (8) |
| C45-N41-C41-C42 | 1.2 (6) |
| Col-N41-C41-C42 | -172.4 (3) |
| N41-C41-C42-C43 | -0.5 (6) |
| C41-C42-C43-C44 | -0.4 (6) |
| C41-C42-C43-C46 | 177.8 (4) |
| C42-C43-C44-C45 | 0.6 (6) |
| C46-C43-C44-C45 | -177.5 (4) |
| C41-N41-C45-C44 | -0.9 (6) |
| Col-N41-C45-C44 | 172.4 (3) |
| C43-C44-C45-N41 | 0.0 (7) |

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D-\mathrm{H} \cdots A$ | D-H | $\mathrm{H} \cdots \mathrm{A}$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| C14-H14 ${ }^{\text {S }} 1^{\text {i }}$ | 0.95 | 2.89 | 3.692 (5) | 142 |
| C22-H22 ${ }^{\text {C }}$ S ${ }^{\text {ii }}$ | 0.95 | 2.98 | 3.604 (4) | 125 |
| C25-H25 ${ }^{\text {N }}$ 2 | 0.95 | 2.65 | 3.164 (6) | 114 |
| C31-H31 $\cdots$ N1 | 0.95 | 2.68 | 3.181 (5) | 114 |
| C35-H35 $\cdots$ N2 | 0.95 | 2.65 | 3.129 (5) | 112 |
| C41-H41 ${ }^{\text {N }} 2$ | 0.95 | 2.57 | 3.062 (5) | 113 |

Symmetry codes: (i) $-x+2, y-1 / 2,-z+3 / 2$; (ii) $x, y+1, z$.

