

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 18 April 2024 Accepted 21 May 2024

Edited by S. Parkin, University of Kentucky, USA

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

Keywords: crystal structure; 4bromobenzoylchloride; 2-benzothiazole; potassium cyanate; thiourea.

CCDC reference: 2341267

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 1-(1,3-benzothiazol-2-yl)-3-(4bromobenzoyl)thiourea

Salif Sow,^a Mariama Thiam,^a* Felix Odame,^b Elhadj Ibrahima Thiam,^a Ousmane Diouf,^a Javier Ellena,^{c,d} Mohamed Gaye^a and Zenixole Tshentu^b

^aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, ^bDepartment of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa, ^cDepartamento de Química - Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and ^dInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil. *Correspondence e-mail: i6thiam@yahoo.fr

The chemical reaction of 4-bromobenzoylchloride and 2-aminothiazole in the presence of potassium thiocyanate yielded a white solid formulated as $C_{15}H_{10}BrN_3OS_2$, which consists of 4-bromobenzamido and 2-benzothiazolyl moieties connected by a thiourea group. The 4-bromobenzamido and 2-benzothiazolyl moieties are in a *trans* conformation (sometimes also called *s*-trans due to the single bond) with respect to the N-C bond. The dihedral angle between the mean planes of the 4-bromophenyl and the 2-benzothiazolyl units is 10.45 (11)°. The thiourea moiety, -C-NH-C(=S) -NH- fragment forms a dihedral angle of 8.64 (12)° with the 4-bromophenyl ring and is almost coplanar with the 2-benzothiazolyl moiety, with a dihedral angle of 1.94 (11)°. The molecular structure is stabilized by intramolecular N-H···O hydrogen bonds, resulting in the formation of an S(6) ring. In the crystal, pairs of adjacent molecules interact *via* intermolecular hydrogen bonds of type C-H···N, C-H···S and N-H···S, resulting in molecular layers parallel to the *ac* plane.

1. Chemical context

Benzimidazole is a heterocycle widely used in the development of therapeutic molecules. Several drugs are being developed around the world and researchers continue to be interested in benzimidazole derivatives and their applications (Awadh, 2023; Dhanamjayulu et al., 2023; Mavvaji & Akkoc, 2024; Bandaru et al., 2023). Benzimidazole derivatives with anticancer (Abbade et al., 2024), antihistamine (Wang et al., 2012), antiviral (Mahurkar et al., 2023), antimicrobial (Bhoi et al., 2023), antituberculous (Kalalbandi et al., 2014), antidiabetic (Saeedian Moghadam et al., 2023), anti-inflammatory (Nagesh et al., 2022), antioxidant (Patagar et al., 2023) and antifungal (Cevik et al., 2022) properties have been reported in the literature. Thiourea has interesting chemical properties, which have made it possible to develop several applications (AbdElgawad et al., 2023; Fiaz et al., 2024; Huang et al., 2023; Eshkil et al., 2017). Its high reactivity has made it possible to synthesize a very large number of derivatives with analgesic (Lee et al., 2002), anticancer (Pingaew et al., 2022), antimicrobial (Madasani et al., 2023), and antidiabetic (Faidallah et al., 2011) properties. The combination of thiourea and benzimidazole made it possible to generate new molecules with properties better than those of derivatives of the two uncombined molecules (Ganesh et al., 2015; Harrouche et al., 2016; Shang et al., 2023). Molecules derived from benzimidazole-thiourea presenting potent antiproliferative activity, compared to reference drugs, have been synthesized (Ullah et al., 2022; Siddig et al., 2021). It is in this context that thiourea

research communications

derivatives are the subject of particular interest for researchers seeking to develop molecules containing one or more metal ions to improve the properties of these compounds (Muhammed *et al.*, 2024; Albrekht *et al.*, 2024; Nair *et al.*, 2022; Masaryk *et al.*, 2021). Complexes exhibiting biological properties are reported in the literature (Zhao *et al.*, 2024; Swaminathan *et al.*, 2024; Muhammed *et al.*, 2024; Albrekht *et al.*, 2024). For several years, our research group has been developing compounds containing the thiourea moiety (Faye, Gaye *et al.*, 2022; Faye, Mbow *et al.*, 2022; Thiam *et al.*, 2008; Samb *et al.*, 2019). In this work, we report the synthesis and characterization of a molecule containing both thiourea and benzimidazole moieties.

2. Structural commentary

The X-ray structure determination revealed that the title compound crystallizes in the monoclinic space group $P2_1/n$ with one molecule in the asymmetric unit. The molecular geometry is illustrated in Fig. 1. The S1–C1 [1.745 (2) Å] and the S1–C7 [1.751 (2) Å] distances indicate that these correspond to single bonds. The S2-C8 [1.663 (2) Å] and the O1-C9 [1.220 (2) Å] and N1-C7 [1.291 (3) Å] distances indicate that these correspond to double bonds and are comparable to those observed for 1,2-bis(N'-benzoylthioureido)benzene [1.6574 (18) Å for C-S, 1.219 (2) Å and 1.224 (3) Å for C–O; Thiam *et al.*, 2008]. The N1–C7 [1.291 (3) Å] distance indicates double-bond character, similar to the corresponding bond length in (Z)-2-[(E)-2-(1-benzothiophen-3-ylmethylidene)hydrazin-1-ylidene]-1,2-diphenylethanone [1.281 (3) Å; Pekdemir et al., 2012]. The N1-C6 [1.392 (3) Å], N2-C7 [1.390 (3) Å], N3-C8 [1.386 (3) Å] and N3-C9 [1.383(3) Å] distances are in the normal range observed for a single C-N bond (Samb et al., 2019; Chen et al., 2001). The bond angles around N2, N3 and C8 fall in the range 115.40 (17)–128.81 (17) $^{\circ}$ and are comparable to the ideal value of 120° observed for sp^2 hybridization. The phenyl ring and the benzothiazole ring are essentially planar with

Figure 1

A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 30% probability level.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3\cdots S2^{i}$	0.88	2.96	3.6102 (19)	132
$N2 - H2 \cdot \cdot \cdot O1$	0.88	1.90	2.633 (2)	139
$C14 - H14 \cdot \cdot \cdot S2^{ii}$	0.95	2.95	3.779 (2)	146
$C2-H2A\cdots S1^{iii}$	0.95	3.00	3.908 (2)	161
C5−H5···N1 ^{iv}	0.95	2.68	3.604 (3)	165

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y, -z + 1; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) -x + 1, -y + 2, -z + 1.

r.m.s deviations of 0.0081 and 0.0070 Å, respectively. The thiourea fragment (S2/N3/N2/C8/C9) is planar with a maximum deviation from its mean plane of 0.0519 (1) Å for N3. The 4-bromophenyl ring and the 2-benzothiazolyl groups are twisted relative to each other and form a dihedral angle of $10.45 (11)^{\circ}$. The two rings make dihedral angles of 8.64 (12) and $1.94 (11)^{\circ}$, respectively, with the thiourea fragment. The 4-bromobenzoyl group is trans with respect to the thiono S atom across the N3-C8 bond. The 2-benzothiazolyl ring adopts a *cis* conformation with respect to the thiono S atom across the N2-C8 bond. The molecule exhibits an intramolecular N-H···O hydrogen bond (Table 1) between the carbonyl oxygen atom and the thioamide hydrogen atom, which forms an S(6) ring. This phenomenon is regularly noted in the case of carbonovlurea and benzovl thiourea (Sow et al., 2009; Woei Hung & Kassim, 2010) derivatives.

3. Supramolecular features

In the crystal, the molecules are linked into chains that are connected by intermolecular hydrogen bonds of type $C-H\cdots N$, $C-H\cdots S$, and $N-H\cdots S$ (Table 1), forming molecular layers running parallel to the *ac* plane. Intermolecular $N-H\cdots S$ and $C-H\cdots N$ hydrogen bonds further link the molecules, forming a zigzag chain through $R_2^2(8)$ rings. The intermolecular $C-H\cdots S$ hydrogen bond consolidates the structure, forming rings of type $R_2^1(8)$ (Figs. 2 and 3).

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.44, updates of September 2023; Groom *et al.*, 2016) with the

Figure 2 Partial packing view along the *a* axis, H atoms are omitted for clarity.

Figure 3

Partial packing view down the *b* axis showing the formation of $R_2^2(8)$ graph-set motifs. Hydrogen bonds are drawn as dashed lines.

search fragment benzothiazole thiourea yielded seventeen hits. For some hits, the bromine atom is replaced by a chlorine atom (BUDZIK; Yusof *et al.*, 2009) or nitro group (HUWIM; Cui *et al.*, 2009). Other results give the same chemical formula and structure but have the bromine atom in the *ortho* or *meta* position on the benzene ring [IVEWEO (Zeng *et al.*, 2017) and SURGOE (Odame *et al.*, 2020)]. Coordination complexes based on transition metals such as rhenium (INOXUG; Schoultz *et al.*, 2016), ruthenium (NODLUQ; Shadap *et al.* 2019) and rhodium (NODMAX; Shadap *et al.*, 2019) have organic ligands that are analogues of the reported molecule.

5. Synthesis and crystallization

The title compound was synthesized following the procedure reported by Odame *et al.* (2020) with slight modification. The thiourea derivative was obtained by the reaction of potassium thiocyanate (1.9388 g, 20 mmol) with 4-bromobenzoyl chloride (4.3892 g, 20 mmol) in 25 mL of acetone and heating under reflux for 2 h to yield the 4-bromobenzoyl isothio-cyanate. To the above solution was added a solution of 2-aminobenzothiazole (3 g, 20 mmol) in 25 mL of acetone. The resulting mixture was heated overnight. The solvent was removed by evaporation and the crude product was recrystallized in methanol. Yield 77%, m.p. 504 K. Analysis calculated for C₁₅H₁₀BrN₃OS₂: C, 45.92; H, 2.57; N, 10.71; S, 16.35. Found: C, 45.90; H, 2.55; N, 10.69; S, 16.32. FTIR: (ν , cm⁻¹): 3075 (N–H), 3015 (N–H), 1675 (C=O), 1563 (C=C), 1546 (C=C), 1451 (C–N), 1439 (C–N).

Experimental details.	
Crystal data	
Chemical formula	$C_{15}H_{10}BrN_3OS_2$
Mr	392.29
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	100
a, b, c (Å)	13.5009 (5), 6.4130 (2), 17.9147 (7)
β (°)	103.606 (4)
$V(Å^3)$	1507.54 (10)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	3.01
Crystal size (mm)	$0.10\times0.06\times0.06$
Data collection	
Diffractometer	XtaLAB Synergy, Dualflex, HyPix
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)
T_{\min}, T_{\max}	0.804, 0.986
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	18792, 3074, 2581
Rint	0.041
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.024, 0.057, 1.03
No. of reflections	3074
No. of parameters	199
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.35, -0.30

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

6. Refinement

Table 2

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were geometrically optimized (C-H = 0.95 Å, N-H = 0.88 Å) and refined as riding on their carriers with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

References

- Abbade, Y., Kisla, M. M., Hassan, M. A.-K., Celik, I., Dogan, T. S., Mutlu, P. & Ates-Alagoz, Z. (2024). ACS Omega, 9, 9547–9563.
- AbdElgawad, H., Negi, P., Zinta, G., Mohammed, A. E., Alotaibi, M. O., Beemster, G., Saleh, A. M. & Srivastava, A. K. (2023). Sci. Total Environ. 873, 162295.
- Albrekht, Y., Plyusnin, V. F., Glebov, E. M., Milutka, M. S., Burlov, A. S., Koshchienko, Y. V., Vlasenko, V. G., Lazarenko, V. A. & Popov, L. D. (2024). J. Lumin. 266, 120286.
- Awadh, A. A. A. (2023). Saudi Pharm. J. 31, 101698.
- Bandaru, P. K., Rao, N. S., Radhika, G. & Rao, B. V. (2023). Chem. Data Collect. 44, 100994.
- Bhoi, R. T., Bhoi, C. N., Nikume, S. R. & Bendre, R. S. (2023). *Results Chem.* 6, 101112.
- Çevik, U. A., Celik, I., Işık, A., Pillai, R. R., Tallei, T. E., Yadav, R., Özkay, Y. & Kaplancıklı, Z. A. (2022). J. Mol. Struct. 1252, 132095.
- Chen, S.-Y., Nie, J.-J., You, J.-Z., Xu, D.-J. & Chen, Y.-Z. (2001). J. Chem. Crystallogr. **31**, 339–343.
- Cui, J., Duan, M. & Cai, L. (2009). Acta Cryst. E65, o216.
- Dhanamjayulu, P., Boga, R. B., Das, R. & Mehta, A. (2023). J. Biotechnol. 376, 33-44.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Eshkil, F., Eshghi, H., Saljooghi, A. S., Bakavoli, M. & Rahimizadeh, M. (2017). Russ. J. Bioorg. Chem. 43, 576–582.

research communications

- Faidallah, H. M., Khan, K. A. & Asiri, A. M. (2011). J. Fluor. Chem. 132, 131–137.
- Faye, N., Gaye, A. A., Fall, A., Ndoye, C., Diop, M., Excoffier, G. & Gaye, M. (2022). *Mod. Chem.* 10, 113–120.
- Faye, N., Mbow, B., Gaye, A. A., Ndoye, C., Diop, M., Excoffier, G. & Gaye, M. (2022). *Earthline J. Chem. Sci.* pp. 189–208.
- Fiaz, K., Maqsood, M. F., Shahbaz, M., Zulfiqar, U., Naz, N., Gaafar, A. Z., Tariq, A., Farhat, F., Haider, F. U. & Shahzad, B. (2024). *Heliyon*, **10**, e25510.
- Ganesh, M., Sahoo, S. K., Khatun, N. & Patel, B. K. (2015). *Eur. J.* Org. Chem. pp. 7534–7543.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Harrouche, K., Renard, J.-F., Bouider, N., de Tullio, P., Goffin, E., Lebrun, P., Faury, G., Pirotte, B. & Khelili, S. (2016). *Eur. J. Med. Chem.* 115, 352–360.
- Huang, Y.-C., Chu, X., Li, W.-H., Zhao, S.-S., Zhang, J.-X., Qin, Z.-Q., Li, H.-Y. & Xue, W. (2023). *Dyes Pigments*, **217**, 111427.
- Kalalbandi, V. K. A., Seetharamappa, J., Katrahalli, U. & Bhat, K. G. (2014). Eur. J. Med. Chem. 79, 194–202.
- Lee, J., Lee, J., Kang, M.-S., Kim, K.-P., Chung, S.-J., Blumberg, P. M., Yi, J.-B. & Park, Y. H. (2002). *Bioorg. Med. Chem.* **10**, 1171–1179.
- Madasani, S., Devineni, S. R., Chamarthi, N. R., Pavuluri, C. M., Vejendla, A. & Chintha, V. (2023). *Polycyclic Aromat. Compd.* 43, 5915–5939.
- Mahurkar, N. D., Gawhale, N. D., Lokhande, M. N., Uke, S. J. & Kodape, M. M. (2023). *Results Chem.* **6**, 101139.
- Masaryk, L., Tesarova, B., Choquesillo-Lazarte, D., Milosavljevic, V., Heger, Z. & Kopel, P. (2021). J. Inorg. Biochem. 217, 111395.
- Mavvaji, M. & Akkoc, S. (2024). Coord. Chem. Rev. 505, 215714.
- Muhammed, R. A., Abdullah, B. H. & Rahman, H. S. (2024). J. Mol. Struct. 1295, 136519.
- Nagesh, K. M. J., Prashanth, T., Khamees, H. A. & Khanum, S. A. (2022). J. Mol. Struct. **1259**, 132741.
- Nair, P. P., Jayaraj, A. & Swamy, P. C. A. (2022). *ChemistrySelect*, 7, e202103517.
- Odame, F., Woodcock, G., Hosten, E. C., Lobb, K. & Tshentu, Z. R. (2020). J. Organomet. Chem. 922, 121359.
- Patagar, D. N., Batakurki, S. R., Kusanur, R., Patra, S. M., Saravanakumar, S. & Ghate, M. (2023). J. Mol. Struct. 1274, 134589.

- Pekdemir, M., Işık, Ş., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). *Acta Cryst.* E68, 02579–02580.
- Pingaew, R., Prachayasittikul, V., Worachartcheewan, A., Thongnum, A., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. (2022). *Heliyon*, 8, e10067.
- Rigaku OD (2022). CrysAlisPRO. Rigaku Oxford Diffraction, Yarnton, England.
- Saeedian Moghadam, E., Al-Sadi, A. M., Al-Harthy, T., Faramarzi, M. A., Shongwe, M., Amini, M. & Abdel-Jalil, R. (2023). J. Mol. Struct. 1278, 134931.
- Samb, I., Gaye, N., Sylla-Gueye, R., Thiam, E. I., Gaye, M. & Retailleau, P. (2019). Acta Cryst. E75, 642–645.
- Schoultz, X., Gerber, T. I. A. & Hosten, E. C. (2016). *Polyhedron*, **113**, 55–60.
- Shadap, L., Diamai, S., Banothu, V., Negi, D. P. S., Adepally, U., Kaminsky, W. & Kollipara, M. R. (2019). J. Organomet. Chem. 884, 44–54.
- Shang, J., Zhang, Y., Yang, N., Xiong, L., Bian, Q. & Wang, B. (2023). Phosphorus Sulfur Silicon, 198, 659–672.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Siddig, L. A., Khasawneh, M. A., Samadi, A., Saadeh, H., Abutaha, N. & Wadaan, M. A. (2021). *Open Chem.* 19, 1062–1073.
- Sow, M. M., Diouf, O., Barry, A. H., Gaye, M. & Sall, A. S. (2009). Acta Cryst. E65, 0569.
- Swaminathan, S., Jerome, P., Deepak, R. J., Karvembu, R. & Oh, T. H. (2024). Coord. Chem. Rev. 503, 215620.
- Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, 0776.
- Ullah, H., Zada, H., Khan, F., Hayat, S., Rahim, F., Hussain, A., Manzoor, A., Wadood, A., Ayub, K., Rehman, A. U. & Sarfaraz, S. (2022). J. Mol. Struct. 1270, 133941.
- Wang, X. J., Xi, M. Y., Fu, J. H., Zhang, F. R., Cheng, G. F., Yin, D. L. & You, Q. D. (2012). *Chin. Chem. Lett.* 23, 707–710.
- Woei Hung, W. & Kassim, M. B. (2010). Acta Cryst. E66, 03182.
- Yusof, M. S. M., Aishah, Z. S., Khairul, W. M. & Yamin, B. M. (2009). Acta Cryst. E65, 02519.
- Zeng, Z., Huang, Q., Wei, Y., Huang, Q. & Wang, Q. (2017). Chem. Reag. 39, 241–246.
- Zhao, D., Zhen, H., Xue, J., Tang, Z., Han, X. & Chen, Z. (2024). J. Inorg. Biochem. 251, 112437.

Acta Cryst. (2024). E80, 663-666 [https://doi.org/10.1107/S2056989024004742]

Crystal structure of 1-(1,3-benzothiazol-2-yl)-3-(4-bromobenzoyl)thiourea

Salif Sow, Mariama Thiam, Felix Odame, Elhadj Ibrahima Thiam, Ousmane Diouf, Javier Ellena, Mohamed Gaye and Zenixole Tshentu

Computing details

1-(1,3-Benzothiazol-2-yl)-3-(4-bromobenzoyl)thiourea

Crystal data

 $C_{15}H_{10}BrN_{3}OS_{2}$ $M_{r} = 392.29$ Monoclinic, $P2_{1}/n$ a = 13.5009 (5) Å b = 6.4130 (2) Å c = 17.9147 (7) Å $\beta = 103.606 (4)^{\circ}$ $V = 1507.54 (10) Å^{3}$ Z = 4

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) $T_{\min} = 0.804, T_{\max} = 0.986$ 18792 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.057$ S = 1.033074 reflections 199 parameters 0 restraints Primary atom site location: dual F(000) = 784 $D_x = 1.728 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9123 reflections $\theta = 3.1-33.9^{\circ}$ $\mu = 3.01 \text{ mm}^{-1}$ T = 100 KBlock, light colourless $0.10 \times 0.06 \times 0.06 \text{ mm}$

3074 independent reflections 2581 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{max} = 26.4^\circ, \ \theta_{min} = 3.1^\circ$ $h = -16 \rightarrow 16$ $k = -8 \rightarrow 8$ $l = -22 \rightarrow 21$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0191P)^2 + 1.3729P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.35$ e Å⁻³ $\Delta\rho_{min} = -0.30$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	0.07298 (2)	-0.50717 (3)	0.27034 (2)	0.01865 (7)
S1	0.24869 (4)	0.98772 (8)	0.63447 (3)	0.01659 (12)
S2	0.10718 (4)	0.61809 (8)	0.59446 (3)	0.02191 (13)
01	0.29683 (11)	0.3918 (2)	0.43225 (8)	0.0182 (3)
N3	0.16341 (14)	0.3897 (3)	0.48987 (10)	0.0172 (4)
Н3	0.106967	0.322341	0.490909	0.021*
N1	0.38000 (13)	0.9461 (3)	0.54899 (10)	0.0155 (4)
N2	0.26397 (13)	0.6774 (3)	0.52923 (10)	0.0148 (4)
H2	0.298111	0.627829	0.496902	0.018*
C10	0.18323 (16)	0.1035 (3)	0.40497 (12)	0.0145 (4)
C11	0.24401 (17)	0.0071 (3)	0.36228 (12)	0.0183 (4)
H11	0.307296	0.068130	0.359855	0.022*
C8	0.18301 (16)	0.5657 (3)	0.53592 (12)	0.0167 (4)
C9	0.22053 (16)	0.3057 (3)	0.44251 (12)	0.0152 (4)
C13	0.12063 (17)	-0.2631 (3)	0.32704 (12)	0.0162 (4)
C6	0.40504 (15)	1.1298 (3)	0.59049 (11)	0.0139 (4)
C4	0.49993 (17)	1.4411 (3)	0.62991 (13)	0.0208 (5)
H4	0.553913	1.533414	0.626970	0.025*
C12	0.21305 (17)	-0.1773 (3)	0.32321 (13)	0.0199 (5)
H12	0.254784	-0.243387	0.294303	0.024*
C14	0.05956 (16)	-0.1731 (3)	0.37025 (13)	0.0178 (4)
H14	-0.003263	-0.235813	0.372947	0.021*
C3	0.43652 (17)	1.4872 (3)	0.67971 (13)	0.0200 (5)
H3A	0.448160	1.611081	0.709576	0.024*
C2	0.35797 (17)	1.3570 (3)	0.68620 (12)	0.0196 (5)
H2A	0.315825	1.387679	0.720416	0.023*
C1	0.34260 (16)	1.1782 (3)	0.64059 (12)	0.0158 (4)
C7	0.30166 (16)	0.8612 (3)	0.56641 (12)	0.0144 (4)
C15	0.09165 (17)	0.0100 (3)	0.40956 (13)	0.0185 (4)
H15	0.050806	0.072576	0.439944	0.022*
C5	0.48474 (16)	1.2633 (3)	0.58523 (12)	0.0179 (4)
Н5	0.527660	1.232504	0.551582	0.021*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02144 (12)	0.01489 (11)	0.01875 (12)	-0.00221 (8)	0.00297 (8)	-0.00376 (8)
S 1	0.0190 (3)	0.0164 (2)	0.0168 (3)	-0.0037 (2)	0.0090 (2)	-0.0033 (2)
S2	0.0203 (3)	0.0227 (3)	0.0263 (3)	-0.0068 (2)	0.0127 (2)	-0.0073 (2)
01	0.0163 (8)	0.0172 (7)	0.0223 (8)	-0.0017 (6)	0.0071 (6)	-0.0016 (6)
N3	0.0164 (9)	0.0160 (9)	0.0212 (10)	-0.0064 (7)	0.0087 (8)	-0.0048 (7)
N1	0.0149 (9)	0.0163 (8)	0.0154 (9)	-0.0014 (7)	0.0036 (7)	0.0004 (7)
N2	0.0159 (9)	0.0147 (8)	0.0158 (9)	-0.0021 (7)	0.0074 (7)	-0.0038 (7)
C10	0.0162 (11)	0.0115 (10)	0.0150 (11)	-0.0002 (8)	0.0020 (9)	0.0018 (8)
C11	0.0174 (11)	0.0187 (11)	0.0199 (11)	-0.0035 (9)	0.0070 (9)	-0.0006 (9)

C8	0.0173 (11)	0.0165 (10)	0.0160 (11)	-0.0008 (8)	0.0035 (9)	0.0001 (8)
C9	0.0150 (11)	0.0161 (10)	0.0136 (11)	0.0012 (8)	0.0014 (9)	0.0034 (8)
C13	0.0204 (12)	0.0114 (9)	0.0147 (11)	-0.0012 (8)	-0.0002 (9)	-0.0008 (8)
C6	0.0139 (11)	0.0141 (10)	0.0123 (10)	0.0006 (8)	0.0004 (8)	0.0003 (8)
C4	0.0182 (12)	0.0189 (11)	0.0231 (12)	-0.0050 (9)	0.0004 (9)	0.0008 (8)
C12	0.0209 (12)	0.0195 (11)	0.0210 (12)	0.0005 (9)	0.0086 (10)	-0.0024 (9)
C14	0.0147 (11)	0.0166 (10)	0.0233 (12)	-0.0020 (8)	0.0066 (9)	0.0003 (8)
C3	0.0231 (12)	0.0151 (10)	0.0185 (11)	-0.0018 (9)	-0.0016 (9)	-0.0037 (8)
C2	0.0219 (12)	0.0198 (11)	0.0161 (11)	0.0002 (9)	0.0026 (9)	-0.0021 (8)
C1	0.0158 (11)	0.0171 (10)	0.0142 (11)	-0.0009 (8)	0.0029 (9)	0.0011 (8)
C7	0.0155 (11)	0.0152 (10)	0.0124 (10)	-0.0002 (8)	0.0031 (8)	0.0013 (8)
C15	0.0187 (11)	0.0175 (10)	0.0210 (12)	-0.0002 (9)	0.0081 (9)	-0.0018 (9)
C5	0.0155 (11)	0.0184 (10)	0.0197 (11)	-0.0024 (8)	0.0037 (9)	-0.0008 (8)

Geometric parameters (Å, °)

Br1—C13	1.894 (2)	C11—C12	1.388 (3)
S1—C1	1.745 (2)	C13—C12	1.380 (3)
S1—C7	1.751 (2)	C13—C14	1.383 (3)
S2—C8	1.663 (2)	C6—C1	1.403 (3)
O1—C9	1.220 (2)	C6—C5	1.396 (3)
N3—H3	0.8800	C4—H4	0.9500
N3—C8	1.386 (3)	C4—C3	1.406 (3)
N3—C9	1.383 (3)	C4—C5	1.380 (3)
N1C6	1.392 (3)	C12—H12	0.9500
N1C7	1.291 (3)	C14—H14	0.9500
N2—H2	0.8800	C14—C15	1.386 (3)
N2—C8	1.335 (3)	С3—НЗА	0.9500
N2—C7	1.390 (3)	C3—C2	1.376 (3)
C10-C11	1.391 (3)	C2—H2A	0.9500
С10—С9	1.492 (3)	C2—C1	1.395 (3)
C10—C15	1.394 (3)	C15—H15	0.9500
C11—H11	0.9500	С5—Н5	0.9500
C1—S1—C7	87.61 (9)	C5—C4—H4	119.6
C8—N3—H3	115.6	C5—C4—C3	120.8 (2)
C9—N3—H3	115.6	C11—C12—H12	120.6
C9—N3—C8	128.78 (18)	C13—C12—C11	118.89 (19)
C7—N1—C6	109.74 (17)	C13—C12—H12	120.6
C8—N2—H2	115.6	C13—C14—H14	120.6
C8—N2—C7	128.81 (17)	C13—C14—C15	118.80 (19)
C7—N2—H2	115.6	C15—C14—H14	120.6
С11—С10—С9	116.96 (18)	C4—C3—H3A	119.3
C11—C10—C15	119.18 (19)	C2—C3—C4	121.5 (2)
C15—C10—C9	123.85 (18)	С2—С3—НЗА	119.3
C10-C11-H11	119.7	C3—C2—H2A	121.3
C12—C11—C10	120.6 (2)	C3—C2—C1	117.4 (2)
C12-C11-H11	119.7	C1—C2—H2A	121.3

N3—C8—S2	118.68 (15)	C6—C1—S1	110.00 (15)
N2—C8—S2	125.92 (16)	C2C1S1	128.16 (16)
N2—C8—N3	115.40 (17)	C2—C1—C6	121.83 (19)
O1—C9—N3	121.88 (19)	N1—C7—S1	117.69 (15)
O1—C9—C10	122.19 (18)	N1—C7—N2	118.04 (18)
N3—C9—C10	115.92 (18)	N2—C7—S1	124.26 (15)
C12-C13-Br1	119.98 (16)	C10-C15-H15	119.7
C12—C13—C14	121.79 (19)	C14—C15—C10	120.69 (19)
C14—C13—Br1	118.22 (16)	C14—C15—H15	119.7
N1—C6—C1	114.95 (18)	С6—С5—Н5	120.7
N1—C6—C5	125.29 (18)	C4—C5—C6	118.65 (19)
C5—C6—C1	119.76 (18)	С4—С5—Н5	120.7
C3—C4—H4	119.6		
Br1-C13-C12-C11	176.90 (16)	C12—C13—C14—C15	1.1 (3)
Br1-C13-C14-C15	-177.46 (16)	C14—C13—C12—C11	-1.7 (3)
N1-C6-C1-S1	-0.6 (2)	C3—C4—C5—C6	0.0 (3)
N1-C6-C1-C2	179.95 (19)	C3—C2—C1—S1	-178.55 (17)
N1-C6-C5-C4	179.7 (2)	C3—C2—C1—C6	0.8 (3)
C10-C11-C12-C13	0.4 (3)	C1—S1—C7—N1	0.05 (18)
C11—C10—C9—O1	5.2 (3)	C1—S1—C7—N2	-178.98 (19)
C11-C10-C9-N3	-174.74 (18)	C1—C6—C5—C4	0.0 (3)
C11—C10—C15—C14	-2.0 (3)	C7—S1—C1—C6	0.32 (16)
C8—N3—C9—O1	-4.8 (3)	C7—S1—C1—C2	179.7 (2)
C8—N3—C9—C10	175.1 (2)	C7—N1—C6—C1	0.7 (3)
C8—N2—C7—S1	1.2 (3)	C7—N1—C6—C5	-179.1 (2)
C8—N2—C7—N1	-177.8 (2)	C7—N2—C8—S2	-2.1 (3)
C9—N3—C8—S2	-173.64 (17)	C7—N2—C8—N3	178.90 (19)
C9—N3—C8—N2	5.5 (3)	C15—C10—C11—C12	1.5 (3)
C9—C10—C11—C12	-177.60 (19)	C15—C10—C9—O1	-173.8 (2)
C9—C10—C15—C14	177.0 (2)	C15—C10—C9—N3	6.2 (3)
C13—C14—C15—C10	0.7 (3)	C5-C6-C1-S1	179.10 (16)
C6—N1—C7—S1	-0.4 (2)	C5—C6—C1—C2	-0.3 (3)
C6—N1—C7—N2	178.69 (17)	C5—C4—C3—C2	0.5 (3)
C4—C3—C2—C1	-0.8 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N3—H3…S2 ⁱ	0.88	2.96	3.6102 (19)	132
N2—H2…O1	0.88	1.90	2.633 (2)	139
C14—H14…S2 ⁱⁱ	0.95	2.95	3.779 (2)	146
C2— $H2A$ ···· $S1$ ⁱⁱⁱ	0.95	3.00	3.908 (2)	161
$C5$ — $H5$ ··· $N1^{iv}$	0.95	2.68	3.604 (3)	165

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) -x+1/2, y+1/2, -z+3/2; (iv) -x+1, -y+2, -z+1.