

Received 8 May 2024 Accepted 15 May 2024

Edited by S. Parkin, University of Kentucky, USA

**Keywords:** crystal structure; platinum(II) complex; quinoline; arylolefin; square-planar coordination.

CCDC references: 2355693; 2355692; 2355691

**Supporting information:** this article has supporting information at journals.iucr.org/e



Published under a CC BY 4.0 licence

## Synthesis and crystal structures of three organoplatinum(II) complexes bearing natural arylolefin and quinoline derivatives

# Nguyen Thi Thanh Chi,<sup>a</sup> Pham Van Thong,<sup>b</sup> Nguyen Manh Thang,<sup>c</sup> Pham Ngoc Thao<sup>d</sup> and Luc Van Meervelt<sup>e</sup>\*

<sup>a</sup>Department of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, <sup>b</sup>R&D Center, Vietnam Education and Technology Transfer JSC, Hanoi, Vietnam, <sup>c</sup>Bac Giang Upper Secondary School for the Gifted, Bac Giang, Vietnam, <sup>d</sup>University of Engineering and Technology, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and <sup>e</sup>Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium. \*Correspondence e-mail: luc.vanmeervelt@kuleuven.be

Three organoplatinum(II) complexes bearing natural arylolefin and quinoline derivatives, namely, [4-methoxy-5-(2-methoxy-2-oxoethoxy)-2-(prop-2-en-1-yl) phenvl](quinolin-8-olato)platinum(II),  $[Pt(C_{13}H_{15}O_4)(C_0H_6NO)]$ , (I), [4-methoxy-5-(2-oxo-2-propoxyethoxy)-2-(prop-2-en-1-yl)phenyl](quinoline-2-carboxylato)platinum(II),  $[Pt(C_{15}H_{19}O_4)(C_{10}H_6NO_2)]$ , (II), and chlorido[4-methoxy-5-(2-oxo-2-propoxyethoxy)-2-(prop-2-en-1-yl)phenyl](quinoline)platinum(II),  $[Pt(C_{15}H_{19}O_4)Cl(C_9H_7N)]$ , (III), were synthesized and structurally characterized by IR and <sup>1</sup>H NMR spectroscopy, and by single-crystal X-ray diffraction. The results showed that the cycloplatinated arylolefin coordinates with Pt<sup>II</sup> via the carbon atom of the phenyl ring and the C=C<sub>olefinic</sub> group. The deprotonated 8-hydroxyquinoline (C<sub>9</sub>H<sub>6</sub>NO) and quinoline-2-carboxylic acid  $(C_{10}H_6NO_2)$  coordinate with the Pt<sup>II</sup> atom *via* the N and O atoms in complexes (I) and (II) while the quinoline  $(C_9H_7N)$  coordinates via the N atom in (III). Moreover, the coordinating N atom in complexes (I)-(III) is in the cis position compared to the C=Colefinic group. The crystal packing is characterized by  $C-H\cdots\pi$ ,  $C-H\cdotsO$  [for (II) and (III)],  $C-H\cdotsCl$  [for (III) and  $\pi-\pi$  [for (I)] interactions.

#### 1. Chemical context

In cancer chemotherapy, three generations of platinum-based drugs, namely cisplatin, carboplatin and oxaliplatin, have been approved all over the world. In addition, some other platinumbased drugs are used in Asia, such as Japan (nedaplatin), China (lobaplatin) and Korea (heptaplatin) (Johnstone et al., 2016). However, these drugs cause several undesirable side effects and are not universally effective in all types of human cancer. Recently, many organoplatinum(II) complexes possessing natural arylolefin ligands and either amine or Nheterocyclic carbene have been synthesized with the aim of minimizing toxicity and diversifying hopeful anti-cancer agents. The tested cytotoxicity results show that many of them exhibit higher activity than cisplatin on some human cancer cell lines such as KB, Lu-1, Hep G2 and MCF-7 (Da et al., 2012, 2015; Thi Hong Hai et al., 2019; Nguyen Thi Thanh et al., 2017; Chi et al., 2018, 2020; Van Thong et al., 2022).

In this paper, the synthesis and crystal structure of three organoplatinum(II) complexes containing a natural arylolefin, namely  $(\eta^2$ -2-allyl-4-methoxy-5-{[(methyloxy)carbonyl]methoxy}phenyl- $C\kappa^1$ )(quinolin-8-olato- $\kappa^2 N$ ,O)platinum(II), [Pt(C<sub>13</sub>H<sub>15</sub>O<sub>4</sub>)(C<sub>9</sub>H<sub>6</sub>NO)], (I),  $(\eta^2$ -2-allyl-4-methoxy-5-{[(propan-1-yloxy)carbonyl]methoxy}phenyl- $C\kappa^1$ )(quinolin-2-



carboxylato- $\kappa^2 N$ ,*O*)platinum(II), [Pt(C<sub>15</sub>H<sub>19</sub>O<sub>4</sub>)(C<sub>10</sub>H<sub>6</sub>NO<sub>2</sub>)], (**II**) and ( $\eta^2$ -2-allyl-4-methoxy-5-{[(propan-1-yloxy)carbonyl] methoxy}phenyl- $C\kappa^1$ )chlorido(quinolin- $\kappa^1 N$ )platinum(II), [Pt(C<sub>15</sub>H<sub>19</sub>O<sub>4</sub>)Cl(C<sub>9</sub>H<sub>7</sub>N)], (**III**), are reported. Complexes (**I**)–(**III**) were synthesized by the reaction between the dimer complexes (**1a**/**1b**) and amine (QOH/QCOOH/Q with Q = quinoline) in an ethanol/acetone solvent with the molar ratio of the dimer complex: amine being 1:2 (Fig. 1). The crystals of complexes (**I**)–(**III**) were obtained in high yields of 82–87% and were suitable for X-ray diffraction studies.



The assigned results of the IR and <sup>1</sup>H NMR spectra (see section 5) show that the amines cleave the dimers to form monomeric complexes (I)–(III), in which the amines coordinate with  $Pt^{II}$  through the N atoms. For QOH and QCOOH, they were deprotonated at the OH/COOH group and further bonded with  $Pt^{II}$  via the O atom to produce the chelating complexes (I) and (II). These conclusions were further strengthened by the single-crystal XRD results. Moreover, the XRD results indicate that the donor N atoms of the amine



**Figure 1** Preparation of organoplatinum(II) complexes (I)–(III).





The molecular structure of (I), showing the atom-labeling scheme and displacement ellipsoids at the 30% probability level. Water oxygen atom O30 [occupancy 0.473 (11)] is in close contact with atoms O12 and O22 (red dotted lines).

ligands and the allyl group of arylolefin in complexes (I)-(III) are in the *cis* position with respect to each other.

#### 2. Structural commentary

Complex (I) crystallizes in the monoclinic space group  $P2_1/c$  with one complex and a water molecule with partial occupancy of 0.473 (11) in the asymmetric unit (Fig. 2). No hydrogen atoms could be located for this water molecule, the oxygen atom O30 is in close contact with O12 [O30···O12 = 2.718 (8) Å] and O22 [O30···O22 = 2.945 (8) Å] suggesting the likelihood that the water forms hydrogen bonds to O12 and O22. The central Pt<sup>II</sup> atom displays a distorted square-





The molecular structure of (II), showing the atom-labeling scheme and displacement ellipsoids at the 30% probability level.



#### Figure 4

The molecular structure of (III), showing the atom-labeling scheme and displacement ellipsoids at the 30% probability level. Only the major position of the disordered Pt atom is shown.

planar coordination with the N2 and O12 atoms of the quinolin-8-olate ligand and the C13 atom and C=C double bond of the arylolefin as coordination sphere. The Pt<sup>II</sup> atom deviates by 0.012 (1) Å from the best plane through atoms N2, O12, C13 and the midpoint of the double bond (r.m.s. deviation = 0.005 Å). The C=C double bond and N2 atom are *cis* with respect to each other. The arylolefin ring C13–C18 (r.m.s. deviation = 0.007 Å) makes a dihedral angle of 25.79 (11)° with the best plane through the quinoline ring system (r.m.s. deviation = 0.014 Å).

Crystals of complex (**II**) crystallize in the monoclinic space group  $P2_1/n$  with one molecule in the asymmetric unit (Fig. 3). The *cis* position of quinoline N atom and the allyl group and the coordination of the Pt<sup>II</sup> atom is similar to that in (**I**) with a deviation of Pt<sup>II</sup> of 0.033 (1) Å from the best plane through atoms N21, O33, C6 and the midpoint of the double bond. The dihedral angle between the best planes through the C5–C10 ring (r.m.s. deviation = 0.008 Å) and through the quinoline ring system (r.m.s. deviation = 0.048 Å) is 41.72 (16)°.

Complex (III) crystallizes in the monoclinic space group  $P2_1/c$  with one complex in the asymmetric unit (Fig. 4). The Pt<sup>II</sup> atom was found to be disordered over two positions with refined occupancies of 0.928 (7) and 0.072 (7) and a distance between both Pt components of 0.529 (17) Å. In the subsequent discussion, only the main position of the disordered Pt atom is used. The distorted square-planar coordination of the Pt<sup>II</sup> atom is again characterized by a *cis* position of the C=C double bond and atom N3. The Pt<sup>II</sup> atom deviates by 0.005 (1) Å from the best plane through atoms Cl2, N3, C21 and the midpoint of the double bond (r.m.s. deviation = 0.026 Å). Complex (III) displays a short intramolecular contact O22···H25B (2.40 Å) resulting from a different

#### Table 1

Hydrogen-bond geometry (Å,  $^{\circ}$ ) for (I).

Cg1 is the centroid of ring C6–C11.

| $D - H \cdot \cdot \cdot A$ | D-H                               | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdot \cdot \cdot A$ |
|-----------------------------|-----------------------------------|-------------------------|-------------------------|-----------------------------|
| $C27 - H27A \cdots Cg1^{i}$ | 0.97                              | 2.81                    | 3.465 (4)               | 125                         |
| Symmetry code: (i) $-x$ , y | $-\frac{1}{2}, -z + \frac{1}{2}.$ |                         |                         |                             |

orientation of the side chain at C19 compared to complexes (I) and (II). This is further illustrated by the different torsion angles determining the orientation of the side chain in the three complexes: 178.4 (4)° for C16–C15–O19–C20 in (I), 179.8 (4)° for C9–C8–O13–C14 (II), and -69.9 (5)° for C18–C19–O24–C25 (III). Compared to the two other complexes, the C16–C21 arylolefin ring (r.m.s. deviation = 0.013 Å) makes a larger dihedral angle of 57.38 (18)° with the best plane through the quinoline ring system (r.m.s. deviation = 0.017 Å).

#### 3. Supramolecular features

The crystal packing of (I) is characterized by  $\pi-\pi$  and  $C-H\cdots\pi$  interactions (Fig. 5). The shortest centroid–centroid distance is observed for the stacking of rings C6–C11 resulting in inversion dimers  $[Cg\cdots Cg^i = 3.566 (2) \text{ Å}; \text{ slippage} = 1.369 \text{ Å}; \text{ symmetry code: (i) } -x, 1 - y, 1 - z].$  Neighboring dimers are connected in the *c*-axis direction *via* C–H $\cdots\pi$  interactions of the same ring with C27–H27A (Table 1). As mentioned above, oxygen atom O30 [occupancy 0.473 (11)] occupies a small cavity in the packing and is in close contact with atoms O12 and O22.

In the crystal, molecules of (II) are connected by  $C-H \cdots O$ and  $C-H \cdots \pi$  interactions (Fig. 6). Inversion dimers are



#### Figure 5

Partial packing diagram for (I) showing the  $\pi$ - $\pi$  and C-H··· $\pi$  interactions (gray dashed lines). The centroids of the C6–C11 rings are shown as orange dots. [Symmetry codes: (i) -x,  $-\frac{1}{2} + y$ ,  $\frac{1}{2} - z$ ; (ii) x,  $\frac{3}{2} - y$ ,  $\frac{1}{2} + z$ ; (iii) -x, 1 - y, 1 - z.]

## Table 2Hydrogen-bond geometry (Å, $^{\circ}$ ) for (II).

| Cg1 and | Cg2 are t | the centroids | of rings | C5-C10 a | nd C22-C27 | , respectively. |
|---------|-----------|---------------|----------|----------|------------|-----------------|

| $D - H \cdots A$          | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdots A$ |
|---------------------------|------|-------------------------|-------------------------|------------------|
| $C20-H20C\cdots O33^{i}$  | 0.96 | 2.52                    | 3.462 (6)               | 168              |
| $C28-H28\cdots O16^{ii}$  | 0.93 | 2.26                    | 3.159 (5)               | 164              |
| $C29-H29\cdots O32^{iii}$ | 0.93 | 2.43                    | 3.334 (6)               | 166              |
| $C18-H18A\cdots Cg1^{iv}$ | 0.97 | 2.97                    | 3.711 (5)               | 134              |
| $C20-H20A\cdots Cg2^{v}$  | 0.96 | 2.78                    | 3.605 (6)               | 144              |

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y, z - 1; (iii) -x + 1, -y + 1, -z; (iv) -x, -y + 1, -z + 1; (v)  $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$ .

formed by C29–H29···O32 interactions. These dimers are further linked by C20–H20C··O33, C28–H28···O16, C18–H18A··· $\pi$  and C20–H20A··· $\pi$  interactions. Details are given in Table 2. No  $\pi$ – $\pi$  interactions are present in the packing, but a short contact distance between Pt1 and ring N21,C22,C27–C30 is noted [Cg3···Pt1<sup>vi</sup> = 3.670 (2) Å; Cg3 is the centroid of ring N21,C22,C27–C30; symmetry code: (vi) -x, 1 – y, –z].

For complex (III), the molecules are linked together by  $C-H\cdots O$ ,  $C-H\cdots Cl$  and  $C-H\cdots \pi$  interactions (Fig. 7, Table 3). Atoms H6 and H9 of the quinoline ring system interact with ring C16–C21 and O27, respectively. At the other end of the complex, the methoxy group links with a neighboring Cl2 atom and the propyloxy group connects with an neighboring atom O24. Again, despite the presence of aromatic rings, no  $\pi-\pi$  interactions are observed in the packing.

#### 4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.45, update of March 2024; Groom *et al.*, 2016) for Pt



#### Figure 6

Partial packing diagram for (II) showing the C-H···O and C-H·· $\pi$  interactions (gray dashed lines). The centroids of rings C5-C10 (*Cg*1) and C22-C27 (*Cg*2) are shown as orange and gray dots, respectively. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, -z; (iii) x, y, -1 + z; (iv)  $\frac{1}{2} - x$ ,  $\frac{1}{2} + y$ ,  $\frac{1}{2} - z$ ; (v) -x, 1 - y, 1 - z.]

#### Table 3

Hydrogen-bond geometry (Å,  $^\circ)$  for (III).

Cg1 is the centroid of ring C16–C21.

| $D - H \cdots A$             | $D-{\rm H}$ | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------|-------------|-------------------------|-------------------------|--------------------------------------|
| C9−H9···O27 <sup>i</sup>     | 0.95        | 2.59                    | 3.445 (5)               | 150                                  |
| $C23 - H23C \cdots Cl2^{ii}$ | 0.98        | 2.70                    | 3.618 (6)               | 157                                  |
| $C29-H29B\cdots O24^{iii}$   | 0.99        | 2.50                    | 3.381 (7)               | 148                                  |
| $C6-H6\cdots Cg1^{iv}$       | 0.95        | 2.73                    | 3.269 (5)               | 117                                  |
|                              |             |                         |                         |                                      |

Symmetry codes: (i) -x + 1,  $y - \frac{1}{2}$ ,  $-z - \frac{1}{2}$ ; (ii) x,  $-y + \frac{3}{2}$ ,  $z - \frac{1}{2}$ ; (iii) -x,  $y + \frac{1}{2}$ ,  $-z - \frac{1}{2}$ ; (iv) -x + 1,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ;

complexes coordinated to C=C, C, N and O or Cl resulted in 15 hits. For three hits, the N-containing ligand is a quinoline derivative:  $\{5-(2-\text{ethoxy-2-oxoethoxy})-4-\text{methoxy-2-[prop-2-en-1-yl]phenyl}\}(2-\text{methylquinolin-8-olato})platinum(II) (refcode LOJDEW; Hai$ *et al.* $, 2019), [<math>\eta^2$ -4,5-dimethoxy-2-(prop-2-en-1-yl)phenyl](quinolin-8-olato)platinum(II) (refcode GACYUH; Bui *et al.*, 2016) and [5-(2-ethoxy-2-oxoethoxy)-4-methoxy-2-(prop-2-en-1-yl)phenyl](quinoline-2-carboxylato)-platinum(II) (refcode MEKGER; Da *et al.*, 2015).

Entries LOJDEW and GACYUH are comparable to complex (I), but crystallize with different unit cells. An overlay of Pt and its coordination sphere (N, O, C, C==C) gives for (I) and LOJDEW an r.m.s. deviation of 0.106 Å, and for (I) and GACYUH 0.120 Å (Fig. 8*a*). Compared to (II) and LOJDEW, the double bond of the allyl chain in GACYUH complexes is in a different orientation with Pt. This causes also a different orientation of the aromatic ring of the arylolefin ligand.

Entry MEKGER is comparable to complex (II) and both structures are isomorphous. The somewhat longer *b* axis in (II) (18.500 *versus* 17.326 Å) is caused by the longer propyl chain (compared to ethyl in MEKGER), which is oriented in the *b*-



#### Figure 7

Partial packing diagram for (III) showing the C-H···O, C-H···Cl and C-H··· $\pi$  interactions (gray dashed lines). Only the major position of the disordered Pt atom is shown. [Symmetry codes: (i) 1 - x,  $-\frac{1}{2} + y$ ,  $-\frac{1}{2} - z$ ; (ii)  $x, \frac{3}{2} - y, -\frac{1}{2} + z$ ; (iii)  $-x, \frac{1}{2} + y, -\frac{1}{2} - z$ ; (iv)  $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$ ; (v) 1 - x,  $-\frac{1}{2} + y, \frac{1}{2} - z$ ; (v) 1 - x,  $-\frac{1}{2} + y, \frac{1}{2} - z$ .]



**Figure 8** Overlay of the Pt, N, O, C and C=C atoms in (*a*) (**I**) (red), LOJDEW (green) and GACYUH (blue), and (*b*) (**II**) (red) and MEKGER (green).

axis direction. The r.m.s. deviation for an overlay of Pt and its coordination sphere is 0.0371 Å (Fig. 8b).

#### 5. Synthesis and crystallization

The synthetic protocol for complexes (I)–(III) is shown in Fig. 1. The starting complexes  $[Pt(\mu-Cl)(MeEug)]_2$  and  $[Pt(\mu-Cl)(PrEug)]_2$  were synthesized according to the procedures of Da *et al.* (2010) and Chi *et al.* (2013).

Synthesis of complex [Pt(MeEug)(QO)] (I). A solution of 8-hydroxyquinoline (15 mg, 0.1 mmol) in 3 mL of ethanol was dropped into a suspension of  $[Pt(\mu-Cl)(MeEug)]_2$  (47 mg, 0.05 mmol) in 2 mL of acetone. The reaction mixture was stirred at ambient temperature (AT) for 2 h until a clear solution was obtained. Orange crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent of the obtained solution at AT within 12 h. The yield was 47 mg (82%). <sup>1</sup>H NMR (chloroform- $d_1$ , 500 MHz):  $\delta$  8.33 (d, <sup>3</sup>J = 8.0 Hz, 1H, Ar-H), 8.11 (d, <sup>3</sup>J = 4.5 Hz, 1H, Ar-H), 8.56 (t, <sup>3</sup>J = 8.0 Hz, 1H, Ar-H), 7.46 (dd, <sup>3</sup>J = 8.0 Hz, 4.5 Hz, 1H, Ar-H), 7.26 (d, <sup>3</sup>J = 8.0 Hz, 1H, Ar-H), 7.08 (d, <sup>3</sup>J = 8.0 Hz, 1H, Ar-H),

7.10 (*s*, 1H, Ar-H), 6.69 (*s*, 1H, Ar-H), 4.78 (*s*, 2H, OCH<sub>2</sub>), 4.74 (*m*, 1H, CH=CH<sub>2</sub>), 4.06 (*d*,  ${}^{3}J$  = 7.5 Hz,  ${}^{2}J_{PtH}$  = 60 Hz, 1H, CH=CH<sub>2</sub>), 3.85 (*s*, 3H, CH<sub>3</sub>), 3.83 (*ov*, 4H, CH=CH<sub>2</sub>, OCH<sub>3</sub>), 3.72 (*dd*,  ${}^{2}J$  = 16.5 Hz,  ${}^{3}J$  = 6.0 Hz, 1H, CH<sub>2</sub>), 2.86 (*d*,  ${}^{2}J$  = 16.5 Hz, 1H, CH<sub>2</sub>). FT–IR (KBr pellet, cm<sup>-1</sup>): 2928 (CH), 1751 (C=O), 1578, 1497 (C=C).

Synthesis of complex [Pt(PrEug)(QCOO)] (II). This complex was prepared starting from  $[Pt(\mu-Cl)(PrEug)]_2$ (49 mg, 0.05 mmol) and quinoline-2-carboxylic acid (18 mg, 0.1 mmol) according to the procedure for the synthesis of (I). The yield was 54 mg (85%), and the orange crystals obtained were suitable for X-ray diffraction. <sup>1</sup>H NMR (acetone- $d_6$ , 500 MHz):  $\delta$  8.86 (*d*, <sup>3</sup>*J* = 8.0 Hz, 1H, Ar-H), 8.30 (*d*, <sup>3</sup>*J* = 8.0 Hz, 1H, Ar-H), 8.27 (d,  ${}^{3}J$  = 8.0 Hz, 1H, Ar-H), 8.09 (m, 1H, Ar-H), 7.89 (t,  ${}^{3}J$  = 7.0 Hz, 1H, Ar-H), 7.77 (d,  ${}^{3}J$  = 8.0 Hz, 1H, Ar-H), 7.02 (s,  ${}^{3}J_{PtH} = 40$  Hz, 1H, Ar-H), 6.77 (s, 1H, Ar-H), 5.75 (*m*,  ${}^{2}J_{\text{PtH}} = 70$  Hz, 1H, CH=CH<sub>2</sub>), 4.71 (*d*,  ${}^{3}J = 7.5$  Hz,  ${}^{2}J_{\text{PtH}} = 60 \text{ Hz}, 1\text{H}, \text{CH}=CH_{2}), 4.67 (s, 2\text{H}, \text{OCH}_{2}), 4.19 (m,$ 2H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 3.94 (d,  ${}^{3}J$  = 13.5 Hz,  ${}^{2}J_{PtH}$  = 65 Hz, 1H, CH=CH<sub>2</sub>), 3.82-3.78 (ov, 4H, CH<sub>2</sub>, OCH<sub>3</sub>), 1.74 (m, 2H,  $CH_2CH_2CH_3$ , 0.97 (t,  ${}^{3}J = 7.0$  Hz, 3H,  $CH_2CH_2CH_3$ ). FT-IR (KBr pellet, cm<sup>-1</sup>): 3030, 2925 (CH), 1750, 1666 (C=O), 1593, 1465 (C=C).

**Synthesis of complex [PtCl(PrEug)(Q)] (III).** This complex was prepared starting from  $[Pt(\mu-Cl)(PrEug)]_2$  (49 mg, 0.05 mmol) and quinoline (12 µL, 0.1 mmol) according to the procedure for the synthesis of (I). The yield was 54 mg (87%), and the yellow crystals obtained were suitable for X-ray diffraction. <sup>1</sup>H NMR (acetone-*d*<sub>6</sub>, 500 MHz):  $\delta$  9.06 (*ov*, 2H, Ar-H), 8.52 (*d*, <sup>3</sup>*J* = 8.0 Hz, 1H, Ar-H), 8.04 (*d*, <sup>3</sup>*J* = 8.0 Hz, 1H, Ar-H), 7.89 (*m*, 1H, Ar-H), 7.67–7.61 (*ov*, 2H, Ar-H), 7.0 (*s*, <sup>3</sup>*J*<sub>PtH</sub> = 40 Hz, 1H, Ar-H), 6.58 (*s*, 1H, Ar-H), 4.65 (*br*, 1H, CH=CH<sub>2</sub>), 4.49 (*s*, 2H, OCH<sub>2</sub>), 4.0 (*t*, <sup>3</sup>*J* = 7.0 Hz, 2H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 3.74–3.62 (*ov*, 6H, CH=CH<sub>2</sub>, CH<sub>2</sub>, OCH<sub>3</sub>), 2.55 (*d*, <sup>2</sup>*J* = 16.5 Hz, 1H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>). FT–IR (KBr pellet, cm<sup>-1</sup>): 3060, 2936 (CH), 1745 (C=O), 1576, 1471 (C=C).

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included as riding contributions in idealized positions with isotropic displacement parameters  $U_{iso}(H) = 1.2 U_{eq}(C)$  (1.5 for methyl groups). The Pt atom in (III) was found to be disordered over two positions with refined occupancies of 0.928 (7) and 0.072 (7).

#### Acknowledgements

The authors sincerely thank Hanoi National University of Education for providing a fruitful working environment. LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

 Table 4

 Experimental details.

|                                                                            | ( <b>I</b> )                                        | (II)                                                | ( <b>III</b> )                                      |
|----------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Crystal data                                                               |                                                     |                                                     |                                                     |
| Chemical formula                                                           | $[Pt(C_{13}H_{15}O_4)(C_9H_6NO)]$                   | $[Pt(C_{15}H_{19}O_4)(C_{10}H_6NO_2)]$              | $[Pt(C_{15}H_{19}O_4)Cl(C_9H_7N)]$                  |
| $M_{ m r}$                                                                 | 582.49                                              | 630.55                                              | 623.00                                              |
| Crystal system, space group                                                | Monoclinic, $P2_1/c$                                | Monoclinic, $P2_1/n$                                | Monoclinic, $P2_1/c$                                |
| Temperature (K)                                                            | 100                                                 | 100                                                 | 114                                                 |
| a, b, c (Å)                                                                | 13.1510 (4), 8.5584 (2), 18.2071 (6)                | 8.2857 (4), 18.5001 (9), 14.6282 (7)                | 14.576 (2), 11.0945 (9), 15.700 (2)                 |
| $\beta$ (°)                                                                | 105.714 (3)                                         | 102.014 (5)                                         | 117.197 (18)                                        |
| $V(Å^3)$                                                                   | 1972.65 (10)                                        | 2193.18 (19)                                        | 2258.1 (6)                                          |
| Ζ                                                                          | 4                                                   | 4                                                   | 4                                                   |
| Radiation type                                                             | Μο Κα                                               | Μο Κα                                               | Μο Κα                                               |
| $\mu (\text{mm}^{-1})$                                                     | 7.15                                                | 6.44                                                | 6.36                                                |
| Crystal size (mm)                                                          | $0.3 \times 0.15 \times 0.1$                        | $0.4 \times 0.4 \times 0.3$                         | $0.27 \times 0.2 \times 0.16$                       |
| Data collection                                                            |                                                     |                                                     |                                                     |
| Diffractometer                                                             | SuperNova, Single source at offset,<br>Eos          | SuperNova, Single source at offset,<br>Eos          | SuperNova, Single source at offset,<br>Eos          |
| Absorption correction                                                      | Multi-scan ( <i>CrysAlis PRO</i> ; Rigaku OD, 2022) | Multi-scan ( <i>CrysAlis PRO</i> ; Rigaku OD, 2022) | Multi-scan ( <i>CrysAlis PRO</i> ; Rigaku OD, 2022) |
| $T_{\min}, T_{\max}$                                                       | 0.300, 1.000                                        | 0.669, 1.000                                        | 0.579, 1.000                                        |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections   | 41833, 4046, 3672                                   | 23965, 5366, 4652                                   | 8975, 4603, 3885                                    |
| R <sub>int</sub>                                                           | 0.039                                               | 0.057                                               | 0.028                                               |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                       | 0.625                                               | 0.685                                               | 0.625                                               |
| Refinement                                                                 |                                                     |                                                     |                                                     |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.021, 0.054, 1.10                                  | 0.033, 0.070, 1.05                                  | 0.030, 0.056, 1.04                                  |
| No. of reflections                                                         | 4046                                                | 5366                                                | 4603                                                |
| No. of parameters                                                          | 274                                                 | 300                                                 | 292                                                 |
| No. of restraints                                                          | 0                                                   | 0                                                   | 288                                                 |
| H-atom treatment                                                           | H-atom parameters constrained                       | H-atom parameters constrained                       | H-atom parameters constrained                       |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min}  ({\rm e}  {\rm \AA}^{-3})$ | 0.90, -0.60                                         | 2.16, -1.73                                         | 0.85, -1.07                                         |

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

#### References

- Bui, T. Y. H., Nguyen Thi Thanh, C. & Van Meervelt, L. (2016). *IUCrData*, **1**, x152428.
- Chi, N. T. T., Mai, T. T. C., Nhan, N. T. T. & Da, T. T. (2013). V. J. Chem. (Vietnam.), pp. 51(3AB), 500–504.
- Chi, N. T. T., Pham, V. T. & Huynh, H. V. (2020). Organometallics, **39**, 3505–3513.
- Chi, N. T. T., Thong, P. V., Mai, T. T. C. & Van Meervelt, L. (2018). Acta Cryst. C74, 1732–1743.
- Da, T. T., Chien, L. X., Chi, N. T. T., Thi Hong Hai, L. & Dinh, N. H. (2012). J. Coord. Chem. 65, 131–142.
- Da, T. T., Thi Hong Hai, L., Meervelt, L. V. & Dinh, N. H. (2015). J. Coord. Chem. 68, 3525–3536.
- Da, T. T., Kim, Y., Cam Mai, T. T., Cao Cuong, N. & Dinh, N. H. (2010). J. Coord. Chem. 63, 473–483.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Johnstone, T. C., Suntharalingam, K. & Lippard, S. J. (2016). Chem. Rev. 116, 3436–3486.
- Nguyen Thi Thanh, C., Truong Thi Cam, M., Pham Van, T., Nguyen, L., Nguyen Ha, M. & Van Meervelt, L. (2017). *Acta Cryst.* C73, 1030–1037.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Thi Hong Hai, L., Thi Ngoc Vinh, N., Thi Tuyen, L., Van Meervelt, L. & Thi Da, T. (2019). *J. Coord. Chem.* **72**, 1637–1651.
- Van Thong, P., Van Meervelt, L. & Chi, N. T. T. (2022). *Polyhedron*, **228**, 116180.

Acta Cryst. (2024). E80, 630-635 [https://doi.org/10.1107/S2056989024004572]

Synthesis and crystal structures of three organoplatinum(II) complexes bearing natural arylolefin and quinoline derivatives

## Nguyen Thi Thanh Chi, Pham Van Thong, Nguyen Manh Thang, Pham Ngoc Thao and Luc Van Meervelt

## **Computing details**

[4-Methoxy-5-(2-methoxy-2-oxoethoxy)-2-(prop-2-en-1-yl)phenyl](quinolin-8-olato)platinum(II) (I)

### Crystal data

| $[Pt(C_{13}H_{15}O_4)(C_9H_6NO)]$ |
|-----------------------------------|
| $M_r = 582.49$                    |
| Monoclinic, $P2_1/c$              |
| a = 13.1510 (4)  Å                |
| b = 8.5584(2) Å                   |
| c = 18.2071 (6) Å                 |
| $\beta = 105.714 \ (3)^{\circ}$   |
| $V = 1972.65 (10) \text{ Å}^3$    |
| Z = 4                             |

## Data collection

SuperNova, Single source at offset, Eos diffractometer Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 15.9631 pixels mm<sup>-1</sup> ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022)

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.021$  $wR(F^2) = 0.054$ S = 1.104046 reflections 274 parameters 0 restraints F(000) = 1127.2  $D_x = 1.961 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 19506 reflections  $\theta = 2.9-29.0^{\circ}$   $\mu = 7.15 \text{ mm}^{-1}$  T = 100 KPlate, light brown  $0.3 \times 0.15 \times 0.1 \text{ mm}$ 

 $T_{\min} = 0.300, T_{\max} = 1.000$ 41833 measured reflections 4046 independent reflections 3672 reflections with  $I > 2\sigma(I)$   $R_{\text{int}} = 0.039$   $\theta_{\text{max}} = 26.4^\circ, \theta_{\text{min}} = 2.4^\circ$   $h = -16 \rightarrow 16$   $k = -10 \rightarrow 10$  $l = -22 \rightarrow 22$ 

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0191P)^2 + 6.3477P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.90$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.60$  e Å<sup>-3</sup>

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|      | x            | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|--------------|-------------|--------------|-----------------------------|-----------|
| Pt1  | 0.10321 (2)  | 0.48502 (2) | 0.33132 (2)  | 0.01955 (6)                 |           |
| N2   | -0.0487 (3)  | 0.4601 (4)  | 0.34836 (18) | 0.0235 (7)                  |           |
| C3   | -0.1264 (3)  | 0.3610 (5)  | 0.3186 (2)   | 0.0277 (9)                  |           |
| Н3   | -0.1190      | 0.2926      | 0.2807       | 0.033*                      |           |
| C4   | -0.2193 (3)  | 0.3556 (5)  | 0.3422 (3)   | 0.0335 (10)                 |           |
| H4   | -0.2720      | 0.2840      | 0.3202       | 0.040*                      |           |
| C5   | -0.2325 (3)  | 0.4558 (5)  | 0.3975 (3)   | 0.0313 (9)                  |           |
| Н5   | -0.2937      | 0.4517      | 0.4136       | 0.038*                      |           |
| C6   | -0.1525 (3)  | 0.5657 (5)  | 0.4300 (2)   | 0.0250 (8)                  |           |
| C7   | -0.0605 (3)  | 0.5634 (4)  | 0.4035 (2)   | 0.0206 (7)                  |           |
| C8   | -0.1587 (3)  | 0.6759 (5)  | 0.4861 (2)   | 0.0266 (9)                  |           |
| H8   | -0.2177      | 0.6783      | 0.5050       | 0.032*                      |           |
| C9   | -0.0776 (3)  | 0.7795 (5)  | 0.5129 (2)   | 0.0265 (9)                  |           |
| H9   | -0.0828      | 0.8525      | 0.5496       | 0.032*                      |           |
| C10  | 0.0138 (3)   | 0.7779 (4)  | 0.4862 (2)   | 0.0216 (8)                  |           |
| H10  | 0.0672       | 0.8504      | 0.5049       | 0.026*                      |           |
| C11  | 0.0246 (3)   | 0.6696 (4)  | 0.4326 (2)   | 0.0199 (7)                  |           |
| O12  | 0.11072 (19) | 0.6615 (3)  | 0.40694 (14) | 0.0202 (5)                  |           |
| C13  | 0.2494 (3)   | 0.5222 (4)  | 0.3234 (2)   | 0.0217 (8)                  |           |
| C14  | 0.3317 (3)   | 0.5838 (5)  | 0.3820(2)    | 0.0260 (8)                  |           |
| H14  | 0.3192       | 0.6096      | 0.4284       | 0.031*                      |           |
| C15  | 0.4312 (3)   | 0.6068 (5)  | 0.3723 (2)   | 0.0276 (8)                  |           |
| C16  | 0.4526 (3)   | 0.5653 (5)  | 0.3038 (2)   | 0.0261 (8)                  |           |
| C17  | 0.3717 (4)   | 0.5003 (5)  | 0.2454 (2)   | 0.0333 (10)                 |           |
| H17  | 0.3853       | 0.4708      | 0.1998       | 0.040*                      |           |
| C18  | 0.2703 (3)   | 0.4794 (5)  | 0.2550 (2)   | 0.0287 (9)                  |           |
| 019  | 0.5173 (2)   | 0.6665 (4)  | 0.42784 (16) | 0.0332 (7)                  |           |
| C20  | 0.4963 (3)   | 0.7129 (5)  | 0.4966 (2)   | 0.0305 (9)                  |           |
| H20A | 0.5622       | 0.7404      | 0.5334       | 0.037*                      |           |
| H20B | 0.4657       | 0.6256      | 0.5172       | 0.037*                      |           |
| C21  | 0.4215 (3)   | 0.8507 (5)  | 0.4859 (2)   | 0.0314 (9)                  |           |
| O22  | 0.4065 (2)   | 0.9443 (4)  | 0.43373 (18) | 0.0378 (7)                  |           |
| O23  | 0.3748 (2)   | 0.8571 (4)  | 0.54280 (19) | 0.0391 (7)                  |           |
| C24  | 0.3069 (5)   | 0.9896 (6)  | 0.5401 (4)   | 0.0515 (14)                 |           |
| H24A | 0.2574       | 0.9958      | 0.4905       | 0.077*                      |           |
| H24B | 0.3486       | 1.0832      | 0.5496       | 0.077*                      |           |
| H24C | 0.2692       | 0.9784      | 0.5782       | 0.077*                      |           |
| O25  | 0.5533 (2)   | 0.5945 (4)  | 0.29926 (17) | 0.0372 (7)                  |           |
| C26  | 0.5731 (4)   | 0.5677 (7)  | 0.2266 (3)   | 0.0484 (13)                 |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| H26A | 0.5261     | 0.6308     | 0.1886     | 0.073*      |            |
|------|------------|------------|------------|-------------|------------|
| H26B | 0.5615     | 0.4594     | 0.2132     | 0.073*      |            |
| H26C | 0.6448     | 0.5949     | 0.2294     | 0.073*      |            |
| C27  | 0.1773 (4) | 0.4205 (5) | 0.1925 (2) | 0.0351 (10) |            |
| H27A | 0.1998     | 0.3353     | 0.1655     | 0.042*      |            |
| H27B | 0.1506     | 0.5038     | 0.1563     | 0.042*      |            |
| C28  | 0.0905 (4) | 0.3645 (5) | 0.2267 (2) | 0.0356 (10) |            |
| H28  | 0.0194     | 0.3587     | 0.1916     | 0.043*      |            |
| C29  | 0.1124 (4) | 0.2580 (5) | 0.2867 (3) | 0.0355 (10) |            |
| H29A | 0.1808     | 0.2204     | 0.3062     | 0.043*      |            |
| H29B | 0.0588     | 0.2243     | 0.3072     | 0.043*      |            |
| O30  | 0.1772 (6) | 0.9369 (8) | 0.3617 (4) | 0.043 (3)   | 0.474 (11) |
|      |            |            |            |             |            |

Atomic displacement parameters  $(Å^2)$ 

|     | <b>T 7</b> 11 | 1.722       | T 733       | T 712        | 1713        | 1/23         |
|-----|---------------|-------------|-------------|--------------|-------------|--------------|
|     | 0             | 0           | 033         | 0            | U           | 025          |
| Pt1 | 0.02183 (8)   | 0.01695 (8) | 0.02025 (8) | -0.00247 (5) | 0.00636 (6) | -0.00315 (5) |
| N2  | 0.0254 (17)   | 0.0211 (16) | 0.0221 (16) | -0.0012 (13) | 0.0034 (13) | 0.0037 (13)  |
| C3  | 0.027 (2)     | 0.0211 (19) | 0.031 (2)   | -0.0032 (16) | 0.0027 (17) | 0.0019 (16)  |
| C4  | 0.024 (2)     | 0.028 (2)   | 0.044 (3)   | -0.0073 (17) | 0.0023 (19) | 0.0074 (19)  |
| C5  | 0.020 (2)     | 0.031 (2)   | 0.043 (2)   | -0.0008 (17) | 0.0088 (18) | 0.0131 (19)  |
| C6  | 0.0229 (19)   | 0.0227 (19) | 0.030(2)    | 0.0037 (15)  | 0.0080 (16) | 0.0129 (16)  |
| C7  | 0.0220 (18)   | 0.0165 (17) | 0.0231 (18) | 0.0017 (14)  | 0.0058 (15) | 0.0065 (14)  |
| C8  | 0.025 (2)     | 0.027 (2)   | 0.032 (2)   | 0.0074 (16)  | 0.0144 (17) | 0.0112 (17)  |
| C9  | 0.033 (2)     | 0.024 (2)   | 0.026 (2)   | 0.0113 (17)  | 0.0139 (17) | 0.0086 (16)  |
| C10 | 0.027 (2)     | 0.0167 (18) | 0.0210 (19) | 0.0015 (15)  | 0.0065 (15) | 0.0028 (14)  |
| C11 | 0.0224 (18)   | 0.0157 (17) | 0.0216 (18) | 0.0031 (14)  | 0.0059 (15) | 0.0055 (14)  |
| O12 | 0.0213 (13)   | 0.0191 (13) | 0.0217 (13) | -0.0015 (10) | 0.0084 (10) | -0.0020 (10) |
| C13 | 0.0231 (19)   | 0.0185 (18) | 0.0234 (19) | 0.0023 (14)  | 0.0063 (15) | 0.0007 (14)  |
| C14 | 0.029 (2)     | 0.026 (2)   | 0.026 (2)   | 0.0003 (16)  | 0.0114 (17) | -0.0068 (16) |
| C15 | 0.026 (2)     | 0.028 (2)   | 0.029 (2)   | 0.0002 (16)  | 0.0074 (17) | -0.0045 (17) |
| C16 | 0.024 (2)     | 0.031 (2)   | 0.026 (2)   | 0.0091 (17)  | 0.0104 (16) | 0.0040 (16)  |
| C17 | 0.035 (2)     | 0.040 (3)   | 0.028 (2)   | 0.0075 (19)  | 0.0138 (19) | -0.0071 (18) |
| C18 | 0.034 (2)     | 0.026 (2)   | 0.028 (2)   | 0.0000 (17)  | 0.0120 (18) | -0.0068 (16) |
| 019 | 0.0257 (15)   | 0.0421 (18) | 0.0327 (16) | -0.0013 (13) | 0.0093 (12) | -0.0056 (13) |
| C20 | 0.030 (2)     | 0.030(2)    | 0.030 (2)   | -0.0008 (17) | 0.0057 (17) | -0.0048 (17) |
| C21 | 0.028 (2)     | 0.033 (2)   | 0.035 (2)   | -0.0085 (18) | 0.0109 (18) | -0.0052 (19) |
| O22 | 0.0391 (18)   | 0.0350 (17) | 0.0384 (18) | -0.0060 (14) | 0.0092 (14) | 0.0021 (14)  |
| O23 | 0.0390 (18)   | 0.0357 (18) | 0.0486 (19) | 0.0007 (14)  | 0.0220 (15) | -0.0002 (15) |
| C24 | 0.056 (3)     | 0.043 (3)   | 0.065 (4)   | 0.009 (2)    | 0.032 (3)   | 0.004 (2)    |
| O25 | 0.0225 (15)   | 0.061 (2)   | 0.0305 (16) | 0.0052 (14)  | 0.0120 (12) | 0.0008 (15)  |
| C26 | 0.027 (2)     | 0.089 (4)   | 0.035 (3)   | 0.010 (3)    | 0.017 (2)   | 0.002 (3)    |
| C27 | 0.040 (3)     | 0.035 (2)   | 0.031 (2)   | -0.004 (2)   | 0.0107 (19) | -0.0076 (19) |
| C28 | 0.040 (3)     | 0.039 (3)   | 0.031 (2)   | -0.016 (2)   | 0.0144 (19) | -0.0216 (19) |
| C29 | 0.036 (2)     | 0.027 (2)   | 0.046 (3)   | -0.0042 (18) | 0.015 (2)   | -0.0167 (19) |
| O30 | 0.043 (4)     | 0.033 (4)   | 0.051 (5)   | 0.001 (3)    | 0.008 (3)   | -0.009 (3)   |

Geometric parameters (Å, °)

| Pt1—N2      | 2.114 (3)   | C15—O19       | 1.395 (5) |
|-------------|-------------|---------------|-----------|
| Pt1-012     | 2.028 (2)   | C16—C17       | 1.399 (6) |
| Pt1-C13     | 1.993 (4)   | C16—O25       | 1.372 (5) |
| Pt1-C28     | 2.132 (4)   | С17—Н17       | 0.9300    |
| Pt1C29      | 2.123 (4)   | C17—C18       | 1.402 (6) |
| N2—C3       | 1.326 (5)   | C18—C27       | 1.513 (6) |
| N2—C7       | 1.377 (5)   | O19—C20       | 1.411 (5) |
| С3—Н3       | 0.9300      | C20—H20A      | 0.9700    |
| C3—C4       | 1.401 (6)   | C20—H20B      | 0.9700    |
| C4—H4       | 0.9300      | C20—C21       | 1.514 (6) |
| C4—C5       | 1.369 (6)   | C21—O22       | 1.217 (5) |
| С5—Н5       | 0.9300      | C21—O23       | 1.341 (5) |
| C5—C6       | 1.416 (6)   | O23—C24       | 1.436 (6) |
| C6—C7       | 1.420 (5)   | C24—H24A      | 0.9600    |
| C6—C8       | 1.409 (6)   | C24—H24B      | 0.9600    |
| C7—C11      | 1.427 (5)   | C24—H24C      | 0.9600    |
| С8—Н8       | 0.9300      | O25—C26       | 1.434 (5) |
| C8—C9       | 1.371 (6)   | C26—H26A      | 0.9600    |
| С9—Н9       | 0.9300      | C26—H26B      | 0.9600    |
| C9—C10      | 1.414 (5)   | C26—H26C      | 0.9600    |
| C10—H10     | 0.9300      | С27—Н27А      | 0.9700    |
| C10—C11     | 1.381 (5)   | С27—Н27В      | 0.9700    |
| C11—O12     | 1.339 (4)   | C27—C28       | 1.519 (6) |
| C13—C14     | 1.401 (5)   | C28—H28       | 0.9800    |
| C13—C18     | 1.394 (5)   | C28—C29       | 1.391 (7) |
| C14—H14     | 0.9300      | С29—Н29А      | 0.9300    |
| C14—C15     | 1.382 (5)   | С29—Н29В      | 0.9300    |
| C15—C16     | 1.396 (5)   |               |           |
|             |             |               |           |
| N2—Pt1—C28  | 103.50 (15) | O25—C16—C15   | 116.0 (4) |
| N2—Pt1—C29  | 96.79 (15)  | O25—C16—C17   | 125.1 (4) |
| O12—Pt1—N2  | 81.35 (11)  | C16—C17—H17   | 119.7     |
| O12—Pt1—C28 | 160.78 (15) | C16—C17—C18   | 120.6 (4) |
| O12—Pt1—C29 | 160.82 (15) | C18—C17—H17   | 119.7     |
| C13—Pt1—N2  | 174.70 (14) | C13—C18—C17   | 120.1 (4) |
| C13—Pt1—O12 | 93.43 (13)  | C13—C18—C27   | 116.4 (4) |
| C13—Pt1—C28 | 81.74 (16)  | C17—C18—C27   | 123.4 (4) |
| C13—Pt1—C29 | 87.83 (16)  | C15—O19—C20   | 115.6 (3) |
| C29—Pt1—C28 | 38.17 (18)  | O19—C20—H20A  | 109.1     |
| C3—N2—Pt1   | 131.3 (3)   | O19—C20—H20B  | 109.1     |
| C3—N2—C7    | 118.8 (3)   | O19—C20—C21   | 112.4 (3) |
| C7—N2—Pt1   | 109.8 (2)   | H20A—C20—H20B | 107.9     |
| N2—C3—H3    | 118.8       | C21—C20—H20A  | 109.1     |
| N2—C3—C4    | 122.4 (4)   | C21—C20—H20B  | 109.1     |
| С4—С3—Н3    | 118.8       | O22—C21—C20   | 125.1 (4) |
| С3—С4—Н4    | 120.0       | O22—C21—O23   | 124.4 (4) |

| C5—C4—C3                           | 120.0 (4)            | O23—C21—C20                                                                                                                   | 110.5 (4)  |
|------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------|------------|
| C5—C4—H4                           | 120.0                | C21—O23—C24                                                                                                                   | 114.6 (4)  |
| C4—C5—H5                           | 120.1                | O23—C24—H24A                                                                                                                  | 109.5      |
| C4—C5—C6                           | 119.7 (4)            | O23—C24—H24B                                                                                                                  | 109.5      |
| С6—С5—Н5                           | 120.1                | O23—C24—H24C                                                                                                                  | 109.5      |
| C5—C6—C7                           | 117.0 (4)            | H24A—C24—H24B                                                                                                                 | 109.5      |
| C8—C6—C5                           | 124.5 (4)            | H24A—C24—H24C                                                                                                                 | 109.5      |
| C8—C6—C7                           | 118.5 (4)            | H24B—C24—H24C                                                                                                                 | 109.5      |
| N2—C7—C6                           | 122.1 (3)            | C16—O25—C26                                                                                                                   | 116.4 (3)  |
| N2-C7-C11                          | 116.6 (3)            | 025—C26—H26A                                                                                                                  | 109.5      |
| C6-C7-C11                          | 121 3 (4)            | 025 - C26 - H26B                                                                                                              | 109.5      |
| C6-C8-H8                           | 120.0                | 025 - C26 - H26C                                                                                                              | 109.5      |
| C9-C8-C6                           | 1199(4)              | $H_{26} - C_{26} - H_{26}B$                                                                                                   | 109.5      |
| C9-C8-H8                           | 120.0                | $H_{26A} - C_{26} - H_{26C}$                                                                                                  | 109.5      |
| C8-C9-H9                           | 119.2                | $H_{26B} = C_{26} = H_{26C}$                                                                                                  | 109.5      |
| C8 - C9 - C10                      | 121 5 (4)            | $C_{18}$ $C_{27}$ $H_{27A}$                                                                                                   | 109.5      |
| C10-C9-H9                          | 119.2                | $C_{18} = C_{27} = H_{27}R$                                                                                                   | 109.7      |
| $C_{10} - C_{10} - H_{10}$         | 119.2                | $C_{18} - C_{27} - C_{28}$                                                                                                    | 109.7      |
| $C_{11} - C_{10} - C_{9}$          | 120.6 (4)            | $H_{27}^{-} = C_{27}^{-} = C_{28}^{-}$                                                                                        | 108.2      |
| $C_{11} = C_{10} = C_{10}$         | 110 7                | $C_{28}$ $C_{27}$ $H_{27}$                                                                                                    | 100.2      |
| C10-C11-C7                         | 119.7                | $C_{28} = C_{27} = H_{27}R$                                                                                                   | 109.7      |
| 012-011-07                         | 110.0 (3)            | Pt1H28                                                                                                                        | 116.0      |
| 012 - 011 - 010                    | 117.3(3)<br>122.7(3) | $C_{27}$ $C_{28}$ $P_{t1}$                                                                                                    | 100.0      |
| $C_{11} = C_{10} = C_{10}$         | 122.7(3)<br>112.7(2) | $C_{27} = C_{28} = H_{28}$                                                                                                    | 105.1 (5)  |
| C14 C12 Pt1                        | 112.7(2)<br>124.5(3) | $C_{27} = C_{28} = H_{128}$                                                                                                   | 70.5(2)    |
| C14 - C13 - It1<br>C18 - C12 - Pt1 | 124.3(3)<br>1168(3)  | $C_{29} = C_{28} = C_{27}$                                                                                                    | 120.6(4)   |
| $C_{10} = C_{13} = C_{14}$         | 110.0(3)<br>118.7(4) | $C_{29} = C_{28} = C_{27}$                                                                                                    | 120.0 (4)  |
| $C_{10} = C_{13} = C_{14}$         | 110.7 (4)            | C29-C20-H20A                                                                                                                  | 10.0       |
| C15 - C14 - H14                    | 119.4                | $\mathbf{P}_{1} = \mathbf{C}_{29} = \mathbf{H}_{29\mathbf{A}}$ $\mathbf{P}_{1} = \mathbf{C}_{29} = \mathbf{H}_{29\mathbf{A}}$ | 108.0      |
| C15 - C14 - C13                    | 121.2 (4)            | F11 - C29 - H29B                                                                                                              | 90.1       |
| C13 - C14 - H14                    | 119.4                | $C_{28} = C_{29} = F_{11}$                                                                                                    | (1.5(2))   |
| C14 - C15 - C10                    | 120.5(4)             | $C_{28}$ $C_{29}$ $H_{29R}$                                                                                                   | 120.0      |
| C14 - C15 - C19                    | 124.7 (3)            | C28—C29—H29B                                                                                                                  | 120.0      |
| 019 - 015 - 016                    | 114.9 (3)            | H29A—C29—H29B                                                                                                                 | 120.0      |
| C15—C16—C17                        | 119.0 (4)            |                                                                                                                               |            |
| <b>P41 N2 C2 C4</b>                | 174.9(2)             | C10 C11 O12 Pt1                                                                                                               | 179.0(2)   |
| Pt1 - N2 - C3 - C4                 | 1/4.8(3)             | C10 - C11 - O12 - P11                                                                                                         | 1/8.0(3)   |
| Pt1 = N2 = C7 = C0                 | -1/0.0(5)            | C13 - C14 - C15 - C10                                                                                                         | -1.0(0)    |
| PtI = N2 = C/ = CII                | 4.4 (4)              | C13 - C14 - C13 - O19                                                                                                         | -1/9.0(4)  |
| Pt1 = C13 = C14 = C13              | -1/9.8(3)            | C13 - C13 - C27 - C28                                                                                                         | -21.0(3)   |
| P(1-C13-C18-C17)                   | -1/9.5(5)            | C14 - C13 - C18 - C17                                                                                                         | -1.0(6)    |
| PtI = C13 = C18 = C27              | 4.3 (5)              | C14 - C13 - C18 - C27                                                                                                         | -1//.4(4)  |
| $N_2 - C_3 - C_4 - C_5$            | 0.5 (6)              | C14 - C15 - C16 - C17                                                                                                         | 0.1 (6)    |
| $N_2 - C_1 - C_{11} - C_{10}$      | 1/8.1(3)             | C14 - C15 - C16 - O25                                                                                                         | 1/9.2 (4)  |
| $N_2 - C_1 - C_{11} - O_{12}$      | -1.0(3)              | C14 - C15 - O19 - C20                                                                                                         | -5.5 (6)   |
| $C_3 = N_2 = C_7 = C_{11}$         | 0.8 (5)              | C15 - C16 - C17 - C18                                                                                                         | 1.0 (6)    |
| $C_3 = N_2 = C_1 = C_1$            | -1/8.8(3)            | C15-C16-O25-C26                                                                                                               | -1/3.7 (4) |
| C3—C4—C5—C6                        | 0.7 (6)              | C15—O19—C20—C21                                                                                                               | -65.7 (5)  |
| C4—C5—C6—C7                        | -1.1 (6)             | C16—C15—O19—C20                                                                                                               | 178.4 (4)  |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 178.8 (4) $0.4 (5)$ $179.9 (3)$ $-178.8 (4)$ $-1.5 (5)$ $178.8 (3)$ $-0.7 (6)$ $-1.2 (6)$ $1.1 (5)$ $-2.3 (4)$ $-179.6 (3)$ $0.0 (5)$ $-0.8 (6)$ $1.9 (5)$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} -0.5 \ (6) \\ 175.6 \ (4) \\ 5.4 \ (6) \\ 162.8 \ (4) \\ 2.0 \ (6) \\ 26.3 \ (5) \\ -51.9 \ (5) \\ 178.3 \ (4) \\ -2.6 \ (5) \\ -22.6 \ (6) \\ 158.3 \ (3) \\ 176.5 \ (4) \\ -2.6 \ (6) \\ -178.1 \ (4) \end{array}$ |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C9—C10—C11—C7                                        | 1.9 (5)                                                                                                                                                    | O25—C16—C17—C18                                      | -178.1 (4)                                                                                                                                                                                                                             |
| C9—C10—C11—O12                                       | -178.4 (3)                                                                                                                                                 | C27—C28—C29—Pt1                                      | 101.2 (4)                                                                                                                                                                                                                              |

### Hydrogen-bond geometry (Å, °)

*Cg*1 is the centroid of ring C6–C11.

| D—H···A                     | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|-----------------------------|-------------|-------|--------------|---------|
| C27—H27A···Cg1 <sup>i</sup> | 0.97        | 2.81  | 3.465 (4)    | 125     |

Symmetry code: (i) -x, y-1/2, -z+1/2.

[4-Methoxy-5-(2-oxo-2-propoxyethoxy)-2-(prop-2-en-1-yl)phenyl](quinoline-2-carboxylato)platinum(II) (II)

### Crystal data

| $[Pt(C_{15}H_{19}O_4)(C_{10}H6NO_2)]$<br>$M_r = 630.55$<br>Monoclinic, $P2_1/n$<br>a = 8.2857 (4) Å<br>b = 18.5001 (9) Å<br>c = 14.6282 (7) Å<br>$\beta = 102.014$ (5)°<br>V = 2193.18 (19) Å <sup>3</sup><br>Z = 4                                                                                            | F(000) = 1232<br>$D_x = 1.910 \text{ Mg m}^{-3}$<br>Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 8290 reflections<br>$\theta = 2.9-29.0^{\circ}$<br>$\mu = 6.44 \text{ mm}^{-1}$<br>T = 100  K<br>Block, orange<br>$0.4 \times 0.4 \times 0.3 \text{ mm}$                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data collection                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 |
| SuperNova, Single source at offset, Eos<br>diffractometer<br>Radiation source: micro-focus sealed X-ray<br>tube, SuperNova (Mo) X-ray Source<br>Mirror monochromator<br>Detector resolution: 15.9631 pixels mm <sup>-1</sup><br>ω scans<br>Absorption correction: multi-scan<br>(CrysAlisPro; Rigaku OD, 2022) | $T_{\min} = 0.669, T_{\max} = 1.000$ 23965 measured reflections 5366 independent reflections 4652 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.057$ $\theta_{\text{max}} = 29.1^{\circ}, \theta_{\text{min}} = 2.6^{\circ}$ $h = -11 \rightarrow 11$ $k = -25 \rightarrow 24$ $l = -19 \rightarrow 19$ |
| Refinement                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                 |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.033$                                                                                                                                                                                                                           | $wR(F^2) = 0.070$<br>S = 1.05<br>5366 reflections                                                                                                                                                                                                                                                               |

| 300 parameters                        | $w = 1/[\sigma^2(F_o^2) + (0.0204P)^2 + 5.0718P]$         |
|---------------------------------------|-----------------------------------------------------------|
| 0 restraints                          | where $P = (F_o^2 + 2F_c^2)/3$                            |
| Hydrogen site location: inferred from | $(\Delta/\sigma)_{\rm max} = 0.003$                       |
| neighbouring sites                    | $\Delta \rho_{\rm max} = 2.16 \text{ e } \text{\AA}^{-3}$ |
| H-atom parameters constrained         | $\Delta \rho_{\min} = -1.73 \text{ e} \text{ Å}^{-3}$     |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|      | x            | у            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|--------------|-------------|-----------------------------|--|
| Pt1  | -0.05560 (2) | 0.61639 (2)  | 0.09345 (2) | 0.01722 (6)                 |  |
| C2   | -0.3155 (5)  | 0.6274 (2)   | 0.0693 (3)  | 0.0219 (9)                  |  |
| H2A  | -0.3776      | 0.6082       | 0.0108      | 0.026*                      |  |
| H2B  | -0.3664      | 0.6180       | 0.1221      | 0.026*                      |  |
| C3   | -0.2450 (5)  | 0.6967 (2)   | 0.0656 (3)  | 0.0204 (9)                  |  |
| Н3   | -0.2631      | 0.7194       | 0.0038      | 0.024*                      |  |
| C4   | -0.2226 (6)  | 0.7476 (2)   | 0.1480 (3)  | 0.0233 (10)                 |  |
| H4A  | -0.3286      | 0.7671       | 0.1538      | 0.028*                      |  |
| H4B  | -0.1520      | 0.7875       | 0.1385      | 0.028*                      |  |
| C5   | -0.1454 (5)  | 0.7072 (2)   | 0.2364 (3)  | 0.0183 (9)                  |  |
| C6   | -0.0619 (5)  | 0.6442 (2)   | 0.2243 (3)  | 0.0164 (8)                  |  |
| C7   | 0.0167 (5)   | 0.6048 (2)   | 0.3027 (3)  | 0.0195 (9)                  |  |
| H7   | 0.0717       | 0.5621       | 0.2947      | 0.023*                      |  |
| C8   | 0.0134 (5)   | 0.6286 (2)   | 0.3922 (3)  | 0.0191 (9)                  |  |
| C9   | -0.0748 (5)  | 0.6916 (2)   | 0.4044 (3)  | 0.0180 (9)                  |  |
| C10  | -0.1524 (5)  | 0.7309 (2)   | 0.3268 (3)  | 0.0194 (9)                  |  |
| H10  | -0.2091      | 0.7730       | 0.3347      | 0.023*                      |  |
| 011  | -0.0792 (4)  | 0.70854 (15) | 0.4954 (2)  | 0.0207 (6)                  |  |
| C12  | -0.1635 (6)  | 0.7729 (2)   | 0.5106 (3)  | 0.0248 (10)                 |  |
| H12A | -0.1152      | 0.8133       | 0.4850      | 0.037*                      |  |
| H12B | -0.1546      | 0.7800       | 0.5765      | 0.037*                      |  |
| H12C | -0.2777      | 0.7689       | 0.4805      | 0.037*                      |  |
| 013  | 0.0916 (4)   | 0.59562 (16) | 0.4739 (2)  | 0.0228 (7)                  |  |
| C14  | 0.1812 (6)   | 0.5321 (2)   | 0.4651 (3)  | 0.0219 (9)                  |  |
| H14A | 0.2499       | 0.5392       | 0.4196      | 0.026*                      |  |
| H14B | 0.1061       | 0.4924       | 0.4442      | 0.026*                      |  |
| C15  | 0.2864 (5)   | 0.5154 (2)   | 0.5592 (3)  | 0.0204 (9)                  |  |
| 016  | 0.3081 (4)   | 0.55414 (18) | 0.6260 (2)  | 0.0335 (8)                  |  |
| O17  | 0.3562 (4)   | 0.45000 (16) | 0.5567 (2)  | 0.0259 (7)                  |  |
| C18  | 0.4476 (6)   | 0.4221 (2)   | 0.6464 (3)  | 0.0262 (10)                 |  |
| H18A | 0.3748       | 0.4161       | 0.6899      | 0.031*                      |  |
| H18B | 0.5357       | 0.4550       | 0.6736      | 0.031*                      |  |
| C19  | 0.5177 (6)   | 0.3497 (2)   | 0.6249 (3)  | 0.0298 (11)                 |  |
| H19A | 0.6013       | 0.3571       | 0.5883      | 0.036*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| H19B | 0.4307      | 0.3202       | 0.5886       | 0.036*      |
|------|-------------|--------------|--------------|-------------|
| C20  | 0.5934 (6)  | 0.3109 (3)   | 0.7157 (3)   | 0.0348 (12) |
| H20A | 0.6450      | 0.2670       | 0.7016       | 0.052*      |
| H20B | 0.5084      | 0.2997       | 0.7491       | 0.052*      |
| H20C | 0.6744      | 0.3415       | 0.7533       | 0.052*      |
| N21  | 0.0072 (4)  | 0.59004 (18) | -0.0416 (2)  | 0.0165 (7)  |
| C22  | -0.0717 (6) | 0.6046 (2)   | -0.1330 (3)  | 0.0210 (9)  |
| C23  | -0.2406 (6) | 0.6240 (2)   | -0.1543 (3)  | 0.0229 (10) |
| H23  | -0.2981     | 0.6286       | -0.1063      | 0.027*      |
| C24  | -0.3208 (7) | 0.6363 (2)   | -0.2454 (3)  | 0.0295 (11) |
| H24  | -0.4326     | 0.6477       | -0.2585      | 0.035*      |
| C25  | -0.2346 (7) | 0.6316 (2)   | -0.3190 (3)  | 0.0301 (11) |
| H25  | -0.2888     | 0.6408       | -0.3802      | 0.036*      |
| C26  | -0.0716 (7) | 0.6135 (2)   | -0.2999 (3)  | 0.0272 (11) |
| H26  | -0.0144     | 0.6117       | -0.3482      | 0.033*      |
| C27  | 0.0111 (6)  | 0.5975 (2)   | -0.2081 (3)  | 0.0225 (10) |
| C28  | 0.1770 (6)  | 0.5718 (2)   | -0.1873 (3)  | 0.0262 (10) |
| H28  | 0.2359      | 0.5675       | -0.2346      | 0.031*      |
| C29  | 0.2488 (6)  | 0.5537 (2)   | -0.0978 (3)  | 0.0228 (10) |
| H29  | 0.3547      | 0.5344       | -0.0840      | 0.027*      |
| C30  | 0.1604 (5)  | 0.5647 (2)   | -0.0265 (3)  | 0.0201 (9)  |
| C31  | 0.2456 (5)  | 0.5489 (2)   | 0.0731 (3)   | 0.0194 (9)  |
| O32  | 0.3826 (4)  | 0.52108 (16) | 0.0902 (2)   | 0.0251 (7)  |
| O33  | 0.1638 (3)  | 0.56700 (16) | 0.13703 (19) | 0.0205 (6)  |
|      |             |              |              |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|--------------|--------------|--------------|--------------|-------------|--------------|
| Pt1 | 0.01864 (10) | 0.01974 (10) | 0.01431 (10) | 0.00199 (6)  | 0.00582 (7) | 0.00078 (6)  |
| C2  | 0.019 (2)    | 0.024 (2)    | 0.023 (2)    | 0.0026 (18)  | 0.0041 (19) | -0.0017 (18) |
| C3  | 0.019 (2)    | 0.026 (2)    | 0.016 (2)    | 0.0077 (18)  | 0.0024 (17) | 0.0028 (17)  |
| C4  | 0.027 (2)    | 0.015 (2)    | 0.026 (2)    | 0.0021 (18)  | 0.002 (2)   | -0.0026 (17) |
| C5  | 0.019 (2)    | 0.0157 (19)  | 0.019 (2)    | -0.0028 (17) | 0.0017 (17) | 0.0021 (16)  |
| C6  | 0.017 (2)    | 0.0179 (19)  | 0.016 (2)    | -0.0012 (17) | 0.0053 (16) | 0.0001 (16)  |
| C7  | 0.018 (2)    | 0.019 (2)    | 0.023 (2)    | 0.0052 (17)  | 0.0076 (18) | 0.0005 (17)  |
| C8  | 0.020 (2)    | 0.023 (2)    | 0.016 (2)    | -0.0004 (18) | 0.0055 (17) | 0.0013 (17)  |
| C9  | 0.019 (2)    | 0.0162 (19)  | 0.020 (2)    | -0.0033 (17) | 0.0058 (18) | -0.0026 (16) |
| C10 | 0.021 (2)    | 0.0148 (19)  | 0.022 (2)    | 0.0019 (17)  | 0.0044 (18) | -0.0035 (17) |
| 011 | 0.0299 (17)  | 0.0166 (14)  | 0.0164 (15)  | 0.0046 (13)  | 0.0064 (13) | -0.0026 (12) |
| C12 | 0.026 (2)    | 0.023 (2)    | 0.025 (2)    | 0.0059 (19)  | 0.005 (2)   | -0.0056 (19) |
| O13 | 0.0315 (18)  | 0.0233 (15)  | 0.0135 (15)  | 0.0115 (14)  | 0.0043 (13) | 0.0014 (12)  |
| C14 | 0.028 (2)    | 0.021 (2)    | 0.019 (2)    | 0.0087 (19)  | 0.0093 (19) | 0.0023 (17)  |
| C15 | 0.023 (2)    | 0.022 (2)    | 0.019 (2)    | 0.0069 (18)  | 0.0114 (18) | 0.0034 (17)  |
| O16 | 0.045 (2)    | 0.0364 (19)  | 0.0175 (17)  | 0.0176 (17)  | 0.0040 (15) | -0.0044 (14) |
| O17 | 0.0318 (18)  | 0.0206 (16)  | 0.0248 (17)  | 0.0071 (14)  | 0.0050 (14) | 0.0029 (13)  |
| C18 | 0.029 (3)    | 0.030 (2)    | 0.021 (2)    | 0.007 (2)    | 0.0062 (19) | 0.0090 (19)  |
| C19 | 0.040 (3)    | 0.016 (2)    | 0.034 (3)    | 0.000 (2)    | 0.009 (2)   | 0.0036 (19)  |
| C20 | 0.037 (3)    | 0.027 (3)    | 0.037 (3)    | -0.002 (2)   | 0.001 (2)   | 0.007 (2)    |
|     |              |              |              |              |             |              |

| N21 | 0.0200 (18) | 0.0166 (17) | 0.0143 (17) | 0.0002 (14)  | 0.0067 (14) | 0.0017 (13)  |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C22 | 0.030 (3)   | 0.0138 (19) | 0.020(2)    | -0.0051 (18) | 0.0066 (19) | -0.0021 (16) |
| C23 | 0.030 (3)   | 0.021 (2)   | 0.018 (2)   | 0.0016 (19)  | 0.007 (2)   | -0.0034 (17) |
| C24 | 0.037 (3)   | 0.029 (2)   | 0.020 (2)   | 0.003 (2)    | -0.002 (2)  | 0.0030 (19)  |
| C25 | 0.050 (3)   | 0.020 (2)   | 0.017 (2)   | 0.002 (2)    | 0.001 (2)   | 0.0040 (18)  |
| C26 | 0.044 (3)   | 0.019 (2)   | 0.020 (2)   | -0.009 (2)   | 0.010 (2)   | -0.0025 (17) |
| C27 | 0.036 (3)   | 0.0148 (19) | 0.020(2)    | -0.0104 (19) | 0.013 (2)   | -0.0057 (17) |
| C28 | 0.037 (3)   | 0.023 (2)   | 0.024 (2)   | -0.005 (2)   | 0.019 (2)   | -0.0091 (19) |
| C29 | 0.023 (2)   | 0.021 (2)   | 0.027 (2)   | -0.0051 (18) | 0.011 (2)   | -0.0051 (18) |
| C30 | 0.024 (2)   | 0.0136 (19) | 0.025 (2)   | -0.0048 (17) | 0.0101 (19) | -0.0045 (17) |
| C31 | 0.021 (2)   | 0.017 (2)   | 0.021 (2)   | -0.0026 (17) | 0.0062 (18) | -0.0045 (17) |
| O32 | 0.0193 (16) | 0.0266 (17) | 0.0302 (18) | 0.0015 (14)  | 0.0067 (14) | -0.0010 (14) |
| O33 | 0.0195 (16) | 0.0270 (16) | 0.0147 (15) | 0.0020 (13)  | 0.0034 (12) | -0.0008 (12) |
|     |             |             |             |              |             |              |

Geometric parameters (Å, °)

| Pt1—C2   | 2.118 (4) | C15—O17  | 1.345 (5) |
|----------|-----------|----------|-----------|
| Pt1—C3   | 2.138 (4) | O17—C18  | 1.466 (5) |
| Pt1—C6   | 1.993 (4) | C18—H18A | 0.9700    |
| Pt1-N21  | 2.200 (3) | C18—H18B | 0.9700    |
| Pt1-033  | 2.016 (3) | C18—C19  | 1.519 (6) |
| C2—H2A   | 0.9700    | C19—H19A | 0.9700    |
| C2—H2B   | 0.9700    | C19—H19B | 0.9700    |
| C2—C3    | 1.413 (6) | C19—C20  | 1.524 (6) |
| С3—Н3    | 0.9800    | C20—H20A | 0.9600    |
| C3—C4    | 1.511 (6) | C20—H20B | 0.9600    |
| C4—H4A   | 0.9700    | C20—H20C | 0.9600    |
| C4—H4B   | 0.9700    | N21—C22  | 1.387 (5) |
| C4—C5    | 1.515 (6) | N21—C30  | 1.328 (5) |
| C5—C6    | 1.385 (6) | C22—C23  | 1.415 (6) |
| C5—C10   | 1.406 (6) | C22—C27  | 1.417 (6) |
| С6—С7    | 1.400 (6) | С23—Н23  | 0.9300    |
| С7—Н7    | 0.9300    | C23—C24  | 1.378 (6) |
| С7—С8    | 1.387 (6) | C24—H24  | 0.9300    |
| С8—С9    | 1.407 (6) | C24—C25  | 1.413 (7) |
| C8—O13   | 1.378 (5) | C25—H25  | 0.9300    |
| C9—C10   | 1.388 (6) | C25—C26  | 1.362 (7) |
| C9—011   | 1.375 (5) | C26—H26  | 0.9300    |
| C10—H10  | 0.9300    | C26—C27  | 1.405 (6) |
| O11—C12  | 1.422 (5) | C27—C28  | 1.425 (7) |
| C12—H12A | 0.9600    | C28—H28  | 0.9300    |
| C12—H12B | 0.9600    | C28—C29  | 1.363 (6) |
| C12—H12C | 0.9600    | С29—Н29  | 0.9300    |
| O13—C14  | 1.411 (5) | C29—C30  | 1.407 (6) |
| C14—H14A | 0.9700    | C30—C31  | 1.510 (6) |
| C14—H14B | 0.9700    | C31—O32  | 1.224 (5) |
| C14—C15  | 1.500 (6) | C31—O33  | 1.307 (5) |
| C15—O16  | 1.195 (5) |          |           |

| C2—Pt1—C3   | 38.79 (16)  | C15—C14—H14A  | 110.2     |
|-------------|-------------|---------------|-----------|
| C2-Pt1-N21  | 107.11 (15) | C15—C14—H14B  | 110.2     |
| C3—Pt1—N21  | 106.53 (14) | O16—C15—C14   | 125.9 (4) |
| C6—Pt1—C2   | 84.62 (17)  | O16—C15—O17   | 124.7 (4) |
| C6—Pt1—C3   | 80.72 (16)  | O17—C15—C14   | 109.4 (4) |
| C6—Pt1—N21  | 167.94 (15) | C15—O17—C18   | 115.9 (3) |
| C6—Pt1—O33  | 90.88 (14)  | O17—C18—H18A  | 110.6     |
| O33—Pt1—C2  | 156.21 (14) | O17—C18—H18B  | 110.6     |
| O33—Pt1—C3  | 162.41 (14) | O17—C18—C19   | 105.9 (4) |
| O33—Pt1—N21 | 79.46 (12)  | H18A—C18—H18B | 108.7     |
| Pt1—C2—H2A  | 116.5       | C19—C18—H18A  | 110.6     |
| Pt1—C2—H2B  | 116.5       | C19—C18—H18B  | 110.6     |
| H2A—C2—H2B  | 113.5       | C18—C19—H19A  | 109.7     |
| C3—C2—Pt1   | 71.3 (2)    | C18—C19—H19B  | 109.7     |
| C3—C2—H2A   | 116.5       | C18—C19—C20   | 109.9 (4) |
| C3—C2—H2B   | 116.5       | H19A—C19—H19B | 108.2     |
| Pt1—C3—H3   | 116.0       | С20—С19—Н19А  | 109.7     |
| C2—C3—Pt1   | 69.9 (2)    | C20—C19—H19B  | 109.7     |
| С2—С3—Н3    | 116.0       | C19—C20—H20A  | 109.5     |
| C2—C3—C4    | 121.2 (4)   | C19—C20—H20B  | 109.5     |
| C4—C3—Pt1   | 108.5 (3)   | C19—C20—H20C  | 109.5     |
| С4—С3—Н3    | 116.0       | H20A—C20—H20B | 109.5     |
| C3—C4—H4A   | 109.8       | H20A—C20—H20C | 109.5     |
| C3—C4—H4B   | 109.8       | H20B-C20-H20C | 109.5     |
| C3—C4—C5    | 109.5 (3)   | C22—N21—Pt1   | 132.1 (3) |
| H4A—C4—H4B  | 108.2       | C30—N21—Pt1   | 109.0 (3) |
| C5—C4—H4A   | 109.8       | C30—N21—C22   | 118.1 (4) |
| C5—C4—H4B   | 109.8       | N21—C22—C23   | 120.5 (4) |
| C6—C5—C4    | 116.1 (4)   | N21—C22—C27   | 121.4 (4) |
| C6—C5—C10   | 120.1 (4)   | C23—C22—C27   | 118.0 (4) |
| C10—C5—C4   | 123.8 (4)   | С22—С23—Н23   | 119.7     |
| C5—C6—Pt1   | 117.0 (3)   | C24—C23—C22   | 120.6 (4) |
| C5—C6—C7    | 119.6 (4)   | С24—С23—Н23   | 119.7     |
| C7—C6—Pt1   | 123.5 (3)   | C23—C24—H24   | 119.7     |
| С6—С7—Н7    | 119.7       | C23—C24—C25   | 120.5 (5) |
| C8—C7—C6    | 120.7 (4)   | C25—C24—H24   | 119.7     |
| С8—С7—Н7    | 119.7       | С24—С25—Н25   | 120.2     |
| C7—C8—C9    | 119.8 (4)   | C26—C25—C24   | 119.7 (4) |
| O13—C8—C7   | 125.5 (4)   | С26—С25—Н25   | 120.2     |
| O13—C8—C9   | 114.8 (4)   | C25—C26—H26   | 119.5     |
| C10—C9—C8   | 119.6 (4)   | C25—C26—C27   | 120.9 (5) |
| O11—C9—C8   | 115.6 (4)   | C27—C26—H26   | 119.5     |
| O11—C9—C10  | 124.8 (4)   | C22—C27—C28   | 117.8 (4) |
| C5-C10-H10  | 119.9       | C26—C27—C22   | 120.1 (5) |
| C9—C10—C5   | 120.2 (4)   | C26—C27—C28   | 122.1 (4) |
| C9—C10—H10  | 119.9       | C27—C28—H28   | 120.1     |
| C9-011-C12  | 117.1 (3)   | C29—C28—C27   | 119.7 (4) |

| O11—C12—H12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5      | С29—С28—Н28                         | 120.1      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------|------------|
| O11—C12—H12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5      | С28—С29—Н29                         | 120.5      |
| O11—C12—H12C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5      | C28—C29—C30                         | 119.1 (4)  |
| H12A—C12—H12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5      | С30—С29—Н29                         | 120.5      |
| H12A—C12—H12C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5      | N21—C30—C29                         | 123.7 (4)  |
| H12B—C12—H12C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5      | N21—C30—C31                         | 117.8 (4)  |
| C8—O13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 116.8 (3)  | C29—C30—C31                         | 118.5 (4)  |
| O13—C14—H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.2      | O32—C31—C30                         | 120.3 (4)  |
| O13—C14—H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.2      | O32—C31—O33                         | 124.0 (4)  |
| O13—C14—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 107.7 (3)  | O33—C31—C30                         | 115.7 (4)  |
| H14A—C14—H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108.5      | C31-O33-Pt1                         | 117.2 (3)  |
| Pt1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -100.0(4)  | 013-014-015-017                     | 171 5 (3)  |
| Pt1-C3-C4-C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -30.0(4)   | $C_{14}$ $C_{15}$ $C_{17}$ $C_{18}$ | -1731(4)   |
| $P_{11} = C_{1} = C_{1} = C_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1773(3)    | $C_{15} = 0.17 = C_{18} = C_{19}$   | -178.4(4)  |
| $P_{11} = C_{0} = C_{7} = C_{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -183(6)    | 016 $017$ $017$ $018$               | 80(6)      |
| $P_{1} = 1021 - 022 - 023$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 164.5(3)   | $017 \ C18 \ C19 \ C20$             | -1715(4)   |
| $P_{1} = \frac{1}{12} = \frac{1}{22} = \frac$ | -160.3(3)  | N21 C22 C23 C24                     | -177.9(4)  |
| Pt1 = N21 = C30 = C29<br>Pt1 = N21 = C30 = C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -109.3(3)  | $N_{21} = C_{22} = C_{23} = C_{24}$ | -170.2(4)  |
| $C_{1}^{2} C_{2}^{2} C_{4}^{2} C_{5}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (4)        | $N_{21} = C_{22} = C_{27} = C_{20}$ | 179.2(4)   |
| $C_2 = C_3 = C_4 = C_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47.2(5)    | $N_{21} = C_{22} = C_{21} = C_{28}$ | 2.0(0)     |
| $C_{3} = C_{4} = C_{5} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.0(3)    | $N_{21} = C_{30} = C_{31} = O_{32}$ | 173.2(4)   |
| $C_{4} = C_{5} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -100.3(4)  | $N_{21} = C_{30} = C_{31} = 0.000$  | -3.0(3)    |
| C4 = C5 = C6 = F11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0(3)     | $C_{22} = N_{21} = C_{30} = C_{29}$ | 1.9 (0)    |
| C4 - C5 - C0 - C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 178.3 (4)  | $C_{22} = N_2 I = C_{30} = C_{31}$  | -180.0(3)  |
| C4 - C5 - C10 - C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1/8.3(4)  | $C_{22} = C_{23} = C_{24} = C_{25}$ | -1.8 (/)   |
| $C_{5}$ $C_{6}$ $C_{7}$ $C_{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.8(6)    | $C_{22} = C_{27} = C_{28} = C_{29}$ | 1.4 (6)    |
| C6—C5—C10—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4 (6)    | $C_{23}$ $C_{22}$ $C_{27}$ $C_{26}$ | 3.5 (6)    |
| C6-C7-C8-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4 (6)    | $C_{23}$ $C_{22}$ $C_{27}$ $C_{28}$ | -1/4./ (4) |
| C6-C/-C8-O13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -17/.4(4)  | $C_{23}$ $C_{24}$ $C_{25}$ $C_{26}$ | 1.2 (7)    |
| C/C8C9C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2.5 (6)   | C24—C25—C26—C27                     | 1.7 (7)    |
| C7—C8—C9—O11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 176.3 (4)  | C25—C26—C27—C22                     | -4.1 (6)   |
| C7—C8—O13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.4 (6)   | C25—C26—C27—C28                     | 174.0 (4)  |
| C8—C9—C10—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2 (6)    | C26—C27—C28—C29                     | -176.7 (4) |
| C8—C9—O11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 178.3 (4)  | C27—C22—C23—C24                     | -0.6 (6)   |
| C8—O13—C14—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 167.0 (4)  | C27—C28—C29—C30                     | -3.6 (6)   |
| C9—C8—O13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 179.8 (4)  | C28—C29—C30—N21                     | 2.0 (6)    |
| C10—C5—C6—Pt1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -178.8 (3) | C28—C29—C30—C31                     | -176.1 (4) |
| C10—C5—C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.5 (6)   | C29—C30—C31—O32                     | -6.5 (6)   |
| C10-C9-O11-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2.9 (6)   | C29—C30—C31—O33                     | 173.3 (4)  |
| O11—C9—C10—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -177.5 (4) | C30—N21—C22—C23                     | 173.0 (4)  |
| O13—C8—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 177.3 (4)  | C30—N21—C22—C27                     | -4.2 (6)   |
| O13—C8—C9—O11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -4.0 (5)   | C30-C31-O33-Pt1                     | -2.6 (4)   |
| O13—C14—C15—O16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -9.7 (6)   | O32—C31—O33—Pt1                     | 177.2 (3)  |

### Hydrogen-bond geometry (Å, °)

| Cg1 and Cg2 are the centroids of rings C5–C10 and C22–C27, respectively. |  |
|--------------------------------------------------------------------------|--|
|--------------------------------------------------------------------------|--|

| <i>D</i> —Н | H···A                                               | $D \cdots A$                                                                                                                                                | D—H··· $A$                                                                                         |
|-------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 0.96        | 2.52                                                | 3.462 (6)                                                                                                                                                   | 168                                                                                                |
| 0.93        | 2.26                                                | 3.159 (5)                                                                                                                                                   | 164                                                                                                |
| 0.93        | 2.43                                                | 3.334 (6)                                                                                                                                                   | 166                                                                                                |
| 0.97        | 2.97                                                | 3.711 (5)                                                                                                                                                   | 134                                                                                                |
| 0.96        | 2.78                                                | 3.605 (6)                                                                                                                                                   | 144                                                                                                |
|             | <i>D</i> —H<br>0.96<br>0.93<br>0.93<br>0.97<br>0.96 | D—H         H…A           0.96         2.52           0.93         2.26           0.93         2.43           0.97         2.97           0.96         2.78 | D—HH···AD···A0.962.523.462 (6)0.932.263.159 (5)0.932.433.334 (6)0.972.973.711 (5)0.962.783.605 (6) |

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*, *y*, *z*-1; (iii) -*x*+1, -*y*+1, -*z*; (iv) -*x*, -*y*+1, -*z*+1; (v) -*x*+1/2, *y*-1/2, -*z*+1/2.

Chlorido[4-methoxy-5-(2-oxo-2-propoxyethoxy)-2-(prop-2-en-1-yl)phenyl]\ (quinoline)platinum(II) (III)

Crystal data

| $[Pt(C_{15}H_{19}O_4)Cl(C_9H_7N)]$      | F(000) = 1216                                         |
|-----------------------------------------|-------------------------------------------------------|
| $M_r = 623.00$                          | $D_{\rm x} = 1.833 {\rm Mg} {\rm m}^{-3}$             |
| Monoclinic, $P2_1/c$                    | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 14.576 (2) Å                        | Cell parameters from 3865 reflections                 |
| b = 11.0945 (9) Å                       | $\theta = 2.9 - 29.0^{\circ}$                         |
| c = 15.700 (2)  Å                       | $\mu = 6.36 \text{ mm}^{-1}$                          |
| $\beta = 117.197 \ (18)^{\circ}$        | T = 114  K                                            |
| V = 2258.1 (6) Å <sup>3</sup>           | Block, colourless                                     |
| Z = 4                                   | $0.27 \times 0.2 \times 0.16 \text{ mm}$              |
| Data collection                         |                                                       |
| SuperNova, Single source at offset, Eos | $T_{\rm min} = 0.579, \ T_{\rm max} = 1.000$          |
| diffractometer                          | 8975 measured reflections                             |

Supervova, Single source at onset, Eos diffractometer
Radiation source: SuperNova (Mo) X-ray Source
Mirror monochromator
Detector resolution: 15.9631 pixels mm<sup>-1</sup> ω scans
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022)

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.030$  $wR(F^2) = 0.056$ S = 1.044603 reflections 292 parameters 288 restraints  $T_{\min} = 0.579, T_{\max} = 1.000$ 8975 measured reflections 4603 independent reflections 3885 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.028$  $\theta_{\max} = 26.4^{\circ}, \theta_{\min} = 2.4^{\circ}$  $h = -9 \rightarrow 18$  $k = -12 \rightarrow 13$  $l = -19 \rightarrow 19$ 

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0148P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.85$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -1.07$  e Å<sup>-3</sup>

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|               | x                      | v                      | Ζ                      | $U_{\rm iso}^*/U_{\rm eq}$ | Occ. (<1) |
|---------------|------------------------|------------------------|------------------------|----------------------------|-----------|
| Pt1A          | 0.48946 (7)            | 0.89396 (12)           | 0.13147 (5)            | 0.02532 (15)               | 0.928 (7) |
| Pt1B          | 0.4763 (6)             | 0.8600 (18)            | 0.1469 (11)            | 0.028 (2)                  | 0.072 (7) |
| C12           | 0.38195 (9)            | 0.97795 (9)            | 0.18873 (8)            | 0.0360 (3)                 |           |
| N3            | 0.6140 (3)             | 0.9769 (3)             | 0.2531 (2)             | 0.0344 (9)                 |           |
| C4            | 0.6343 (3)             | 1.0901 (3)             | 0.2431 (3)             | 0.0329 (10)                |           |
| H4            | 0.6028                 | 1.1231                 | 0.1803                 | 0.039*                     |           |
| C5            | 0.6988(3)              | 1.1655 (4)             | 0.3182 (3)             | 0.0340 (10)                |           |
| H5            | 0.7100                 | 1.2471                 | 0.3072                 | 0.041*                     |           |
| C6            | 0.7452 (3)             | 1,1163 (4)             | 0.4087(3)              | 0.0355 (11)                |           |
| H6            | 0.7887                 | 1.1645                 | 0.4620                 | 0.043*                     |           |
| C7            | 0.7282(3)              | 0.9938 (3)             | 0.4222(3)              | 0.0257 (9)                 |           |
| C8            | 0.7262(3)<br>0.7764(3) | 0.9375(4)              | 0.1222(3)<br>0.5128(3) | 0.0287(9)                  |           |
| H8            | 0.8211                 | 0.9833                 | 0.5672                 | 0.047*                     |           |
| C9            | 0.0211<br>0.7601 (4)   | 0.8201 (4)             | 0.5239 (3)             | 0.047<br>0.0437 (12)       |           |
| НО            | 0.7944                 | 0.7827                 | 0.5850                 | 0.052*                     |           |
| C10           | 0.7944<br>0.6017 (3)   | 0.7542(4)              | 0.3830                 | 0.032                      |           |
| H10           | 0.6798                 | 0.7342 (4)             | 0.4516                 | 0.0370 (11)                |           |
| C11           | 0.6798                 | 0.8035 (4)             | 0.4510<br>0.3544(3)    | 0.044<br>0.0327(10)        |           |
| UП<br>H11     | 0.5950                 | 0.8055 (4)             | 0.3018                 | 0.0327 (10)                |           |
| C12           | 0.5950                 | 0.7505                 | 0.3013                 | 0.039                      |           |
| C12<br>C12    | 0.0004(3)              | 0.9204(4)<br>0.8736(4) | 0.5413(3)              | 0.0283(9)                  |           |
|               | 0.5817(5)<br>0.5462    | 0.8730 (4)             | -0.0023(3)             | 0.0330 (11)                | 0.028 (7) |
|               | 0.5402                 | 0.0797                 | 0.0004                 | 0.042*                     | 0.928(7)  |
|               | 0.0490                 | 0.9143                 | 0.0922                 | 0.042*                     | 0.928(7)  |
| ПІЗА<br>1112D | 0.5452                 | 0.8820                 | -0.0082                | 0.042*                     | 0.072(7)  |
|               | 0.0470                 | 0.9164                 | 0.0940                 | $0.042^{\circ}$            | 0.072 (7) |
| U14           | 0.3739 (3)             | 0.7028 (4)             | 0.1010 (5)             | 0.0329 (10)                | 0.029(7)  |
| HI4A          | 0.6406                 | 0.7350                 | 0.1570                 | 0.039*                     | 0.928 (7) |
| H14           | 0.6423                 | 0./33/                 | 0.1542                 | 0.039*                     | 0.072(7)  |
|               | 0.5035 (3)             | 0.6634 (4)             | 0.0397 (3)             | 0.0346 (10)                |           |
| HISA          | 0.5298                 | 0.6288                 | -0.0030                | 0.042*                     |           |
| HISB          | 0.5005                 | 0.5982                 | 0.0814                 | 0.042*                     |           |
| C16           | 0.3968 (3)             | 0./144 (3)             | -0.0195 (3)            | 0.0280 (9)                 |           |
| CI7           | 0.3226 (3)             | 0.6564 (4)             | -0.1006 (3)            | 0.0300 (10)                |           |
| H17           | 0.3400                 | 0.5851                 | -0.1234                | 0.036*                     |           |
| C18           | 0.2236 (3)             | 0.7023 (4)             | -0.1478 (3)            | 0.0332 (10)                |           |
| C19           | 0.2006 (3)             | 0.8102 (4)             | -0.1163 (3)            | 0.0313 (10)                |           |
| C20           | 0.2743 (3)             | 0.8681 (4)             | -0.0358 (3)            | 0.0293 (10)                |           |
| H20           | 0.2569                 | 0.9412                 | -0.0152                | 0.035*                     |           |
| C21           | 0.3737 (3)             | 0.8207 (4)             | 0.0156 (3)             | 0.0271 (9)                 |           |
| 022           | 0.1425 (2)             | 0.6476 (3)             | -0.2244 (2)            | 0.0414 (8)                 |           |
| C23           | 0.1632 (4)             | 0.5393 (4)             | -0.2615 (3)            | 0.0449 (13)                |           |
| H23A          | 0.0989                 | 0.5085                 | -0.3134                | 0.067*                     |           |
| H23B          | 0.1921                 | 0.4790                 | -0.2104                | 0.067*                     |           |
| H23C          | 0.2127                 | 0.5560                 | -0.2862                | 0.067*                     |           |
| O24           | 0.1004 (2)             | 0.8561 (3)             | -0.1605 (2)            | 0.0408 (8)                 |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| C25  | 0.0681 (3) | 0.8996 (4) | -0.2554 (3) | 0.0401 (11) |
|------|------------|------------|-------------|-------------|
| H25A | -0.0078    | 0.8928     | -0.2920     | 0.048*      |
| H25B | 0.0988     | 0.8486     | -0.2875     | 0.048*      |
| C26  | 0.0989 (3) | 1.0276 (4) | -0.2567 (3) | 0.0400 (11) |
| O27  | 0.1496 (3) | 1.0896 (3) | -0.1889 (2) | 0.0551 (10) |
| O28  | 0.0592 (2) | 1.0647 (3) | -0.3482 (2) | 0.0442 (8)  |
| C29  | 0.0798 (4) | 1.1888 (4) | -0.3643 (3) | 0.0493 (13) |
| H29A | 0.1551     | 1.2023     | -0.3376     | 0.059*      |
| H29B | 0.0521     | 1.2452     | -0.3329     | 0.059*      |
| C30  | 0.0280 (4) | 1.2087 (5) | -0.4703 (4) | 0.0563 (14) |
| H30A | -0.0463    | 1.1898     | -0.4964     | 0.068*      |
| H30B | 0.0580     | 1.1533     | -0.5004     | 0.068*      |
| C31  | 0.0407 (5) | 1.3383 (5) | -0.4953 (4) | 0.082 (2)   |
| H31A | 0.0183     | 1.3446     | -0.5642     | 0.123*      |
| H31B | 0.1133     | 1.3619     | -0.4599     | 0.123*      |
| H31C | -0.0015    | 1.3917     | -0.4777     | 0.123*      |
|      |            |            |             |             |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|      | $U^{11}$     | $U^{22}$    | $U^{33}$     | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|------|--------------|-------------|--------------|---------------|--------------|---------------|
| Pt1A | 0.03098 (18) | 0.0218 (3)  | 0.02215 (15) | -0.00439 (19) | 0.01123 (11) | -0.00014 (15) |
| Pt1B | 0.0265 (18)  | 0.025 (4)   | 0.034 (3)    | -0.0041 (19)  | 0.0147 (16)  | -0.008 (3)    |
| Cl2  | 0.0431 (7)   | 0.0342 (6)  | 0.0336 (6)   | -0.0016 (5)   | 0.0199 (5)   | -0.0052 (5)   |
| N3   | 0.043 (2)    | 0.0285 (18) | 0.0320 (19)  | -0.0023 (17)  | 0.0173 (17)  | 0.0005 (15)   |
| C4   | 0.041 (3)    | 0.022 (2)   | 0.037 (2)    | 0.001 (2)     | 0.019 (2)    | -0.0007 (18)  |
| C5   | 0.046 (3)    | 0.024 (2)   | 0.041 (2)    | -0.006 (2)    | 0.027 (2)    | -0.0057 (19)  |
| C6   | 0.039 (3)    | 0.033 (2)   | 0.040 (2)    | -0.008 (2)    | 0.024 (2)    | -0.0127 (19)  |
| C7   | 0.028 (2)    | 0.024 (2)   | 0.028 (2)    | -0.0006 (18)  | 0.0148 (18)  | -0.0030 (17)  |
| C8   | 0.036 (3)    | 0.042 (2)   | 0.034 (2)    | 0.002 (2)     | 0.012 (2)    | 0.001 (2)     |
| C9   | 0.046 (3)    | 0.044 (3)   | 0.036 (3)    | 0.006 (2)     | 0.014 (2)    | 0.005 (2)     |
| C10  | 0.044 (3)    | 0.035 (2)   | 0.034 (2)    | 0.000 (2)     | 0.019 (2)    | 0.0068 (19)   |
| C11  | 0.039 (3)    | 0.030 (2)   | 0.031 (2)    | -0.004(2)     | 0.017 (2)    | 0.0006 (18)   |
| C12  | 0.027 (2)    | 0.035 (2)   | 0.028 (2)    | 0.0028 (18)   | 0.0154 (18)  | 0.0003 (17)   |
| C13  | 0.032 (2)    | 0.041 (2)   | 0.029 (2)    | 0.000(2)      | 0.011 (2)    | -0.006(2)     |
| C14  | 0.029 (2)    | 0.035 (2)   | 0.030 (2)    | 0.0054 (19)   | 0.010 (2)    | -0.0046 (19)  |
| C15  | 0.043 (3)    | 0.026 (2)   | 0.033 (2)    | 0.000(2)      | 0.015 (2)    | -0.0003 (19)  |
| C16  | 0.032 (2)    | 0.023 (2)   | 0.030 (2)    | -0.0052 (18)  | 0.0152 (18)  | -0.0013 (17)  |
| C17  | 0.039 (2)    | 0.025 (2)   | 0.032 (2)    | -0.0077 (19)  | 0.0208 (19)  | -0.0044 (18)  |
| C18  | 0.036 (2)    | 0.037 (2)   | 0.027 (2)    | -0.0155 (19)  | 0.0151 (19)  | -0.0079 (19)  |
| C19  | 0.028 (2)    | 0.044 (2)   | 0.026 (2)    | -0.0048 (19)  | 0.0158 (18)  | -0.0027 (19)  |
| C20  | 0.035 (2)    | 0.031 (2)   | 0.027 (2)    | -0.0017 (19)  | 0.0176 (18)  | -0.0036 (18)  |
| C21  | 0.031 (2)    | 0.026 (2)   | 0.027 (2)    | -0.0050 (18)  | 0.0158 (17)  | 0.0036 (17)   |
| O22  | 0.0353 (18)  | 0.0500 (18) | 0.0359 (18)  | -0.0150 (16)  | 0.0139 (15)  | -0.0166 (15)  |
| C23  | 0.050 (3)    | 0.048 (3)   | 0.038 (3)    | -0.022 (3)    | 0.023 (3)    | -0.017 (2)    |
| O24  | 0.0267 (16)  | 0.063 (2)   | 0.0324 (17)  | -0.0006 (15)  | 0.0134 (14)  | -0.0076 (16)  |
| C25  | 0.029 (2)    | 0.055 (3)   | 0.029 (2)    | 0.005 (2)     | 0.007 (2)    | -0.009 (2)    |
| C26  | 0.026 (2)    | 0.051 (3)   | 0.033 (2)    | 0.009 (2)     | 0.005 (2)    | -0.010 (2)    |
| O27  | 0.053 (2)    | 0.047 (2)   | 0.0369 (19)  | 0.0049 (18)   | -0.0032 (18) | -0.0113 (16)  |

| O28 | 0.0387 (19) | 0.0484 (19) | 0.0340 (18) | 0.0061 (16) | 0.0068 (15) | -0.0079 (15) |
|-----|-------------|-------------|-------------|-------------|-------------|--------------|
| C29 | 0.043 (3)   | 0.045 (3)   | 0.048 (3)   | 0.015 (2)   | 0.011 (2)   | -0.002 (2)   |
| C30 | 0.055 (3)   | 0.069 (3)   | 0.046 (3)   | 0.019 (3)   | 0.024 (3)   | 0.004 (3)    |
| C31 | 0.118 (6)   | 0.066 (4)   | 0.057 (4)   | 0.038 (4)   | 0.036 (4)   | 0.010 (3)    |

Geometric parameters (Å, °)

| Pt1A—Cl2                          | 2.3281 (14) | C14—C15                     | 1.526 (5)             |
|-----------------------------------|-------------|-----------------------------|-----------------------|
| Pt1A—N3                           | 2.149 (4)   | C15—H15A                    | 0.9900                |
| Pt1A—C13                          | 2.091 (4)   | C15—H15B                    | 0.9900                |
| Pt1A—C14                          | 2.117 (4)   | C15—C16                     | 1.510 (5)             |
| Pt1A—C21                          | 2.003 (4)   | C16—C17                     | 1.395 (5)             |
| Pt1B—Cl2                          | 2.205 (6)   | C16—C21                     | 1.406 (5)             |
| Pt1B—N3                           | 2.330 (11)  | C17—H17                     | 0.9500                |
| Pt1B—C13                          | 2.45 (2)    | C17—C18                     | 1.383 (6)             |
| Pt1B—C14                          | 2.178 (9)   | C18—C19                     | 1.394 (6)             |
| Pt1B—C21                          | 1.965 (9)   | C18—O22                     | 1.382 (5)             |
| N3—C4                             | 1.316 (5)   | C19—C20                     | 1.386 (5)             |
| N3—C12                            | 1.354 (5)   | C19—O24                     | 1.395 (5)             |
| C4—H4                             | 0.9500      | С20—Н20                     | 0.9500                |
| C4—C5                             | 1.400 (6)   | C20—C21                     | 1.400 (5)             |
| С5—Н5                             | 0.9500      | O22—C23                     | 1.427 (5)             |
| C5—C6                             | 1.377 (6)   | С23—Н23А                    | 0.9800                |
| С6—Н6                             | 0.9500      | С23—Н23В                    | 0.9800                |
| C6—C7                             | 1.415 (5)   | С23—Н23С                    | 0.9800                |
| C7—C8                             | 1.412 (5)   | O24—C25                     | 1.425 (5)             |
| C7—C12                            | 1.414 (5)   | C25—H25A                    | 0.9900                |
| C8—H8                             | 0.9500      | C25—H25B                    | 0.9900                |
| C8—C9                             | 1.350 (6)   | C25—C26                     | 1.492 (6)             |
| С9—Н9                             | 0.9500      | C26—O27                     | 1.197 (5)             |
| C9—C10                            | 1.404 (6)   | C26—O28                     | 1.344 (5)             |
| C10—H10                           | 0.9500      | O28—C29                     | 1.456 (5)             |
| C10-C11                           | 1.362 (5)   | С29—Н29А                    | 0.9900                |
| C11—H11                           | 0.9500      | C29—H29B                    | 0.9900                |
| C11—C12                           | 1.424 (5)   | C29—C30                     | 1.496 (6)             |
| C13—H13C                          | 0.9900      | С30—Н30А                    | 0.9900                |
| C13—H13D                          | 0.9900      | C30—H30B                    | 0.9900                |
| C13—H13A                          | 0.9900      | C30—C31                     | 1.524 (7)             |
| C13—H13B                          | 0.9900      | C31—H31A                    | 0.9800                |
| C13—C14                           | 1.392 (5)   | C31—H31B                    | 0.9800                |
| C14—H14A                          | 1.0000      | C31—H31C                    | 0.9800                |
| C14—H14                           | 1.0000      |                             |                       |
| N3_Pt1A_C12                       | 85.99 (10)  | C13—C14—H14                 | 114.9                 |
| C13 Pt1A C12                      | 161 77 (14) | $C_{13}$ $C_{14}$ $C_{15}$  | 1217(4)               |
| C13 - Pt1A - N3                   | 91 42 (16)  | $C_{15} - C_{14} - C_{15}$  | 121.7(7)<br>109 2 (3) |
| C13 Pt1A C14                      | 38 62 (14)  | C15 - C14 - Pt1R            | 109.2(5)<br>101.2(5)  |
| C14 $Pt1A$ $C12$                  | 159 56 (15) | $C_{15}$ $C_{14}$ $H_{144}$ | 115 7                 |
| $O_{17} - I_{11} I_{11} - O_{12}$ | 157.50 (15) |                             | 11.0.1                |

| C14—Pt1A—N3   | 98.43 (15)  | C15—C14—H14   | 114.9     |
|---------------|-------------|---------------|-----------|
| C21—Pt1A—Cl2  | 94.43 (13)  | C14—C15—H15A  | 109.7     |
| C21—Pt1A—N3   | 178.23 (17) | C14—C15—H15B  | 109.7     |
| C21—Pt1A—C13  | 87.65 (17)  | H15A—C15—H15B | 108.2     |
| C21—Pt1A—C14  | 81.77 (16)  | C16—C15—C14   | 109.7 (3) |
| Cl2—Pt1B—N3   | 84.7 (3)    | C16—C15—H15A  | 109.7     |
| Cl2—Pt1B—C13  | 139.1 (12)  | C16—C15—H15B  | 109.7     |
| N3—Pt1B—C13   | 78.8 (6)    | C17—C16—C15   | 122.7 (4) |
| C14—Pt1B—Cl2  | 173.3 (14)  | C17—C16—C21   | 121.3 (4) |
| C14—Pt1B—N3   | 91.5 (4)    | C21—C16—C15   | 115.9 (4) |
| C14—Pt1B—C13  | 34.4 (3)    | C16—C17—H17   | 119.8     |
| C21—Pt1B—Cl2  | 99.5 (3)    | C18—C17—C16   | 120.3 (4) |
| C21—Pt1B—N3   | 150.2 (15)  | С18—С17—Н17   | 119.8     |
| C21—Pt1B—C13  | 79.0 (6)    | C17—C18—C19   | 119.1 (4) |
| C21—Pt1B—C14  | 81.1 (4)    | O22—C18—C17   | 125.0 (4) |
| C4—N3—Pt1A    | 116.6 (3)   | O22—C18—C19   | 115.9 (4) |
| C4—N3—Pt1B    | 127.8 (7)   | C18—C19—O24   | 120.2 (4) |
| C4—N3—C12     | 118.8 (4)   | C20-C19-C18   | 120.7 (4) |
| C12—N3—Pt1A   | 123.8 (3)   | C20—C19—O24   | 118.9 (4) |
| C12—N3—Pt1B   | 111.5 (7)   | С19—С20—Н20   | 119.4     |
| N3—C4—H4      | 117.6       | C19—C20—C21   | 121.2 (4) |
| N3—C4—C5      | 124.8 (4)   | С21—С20—Н20   | 119.4     |
| С5—С4—Н4      | 117.6       | C16—C21—Pt1A  | 116.3 (3) |
| С4—С5—Н5      | 121.4       | C16—C21—Pt1B  | 113.2 (4) |
| C6—C5—C4      | 117.2 (4)   | C20—C21—Pt1A  | 126.3 (3) |
| С6—С5—Н5      | 121.4       | C20—C21—Pt1B  | 127.8 (4) |
| С5—С6—Н6      | 120.1       | C20—C21—C16   | 117.3 (4) |
| C5—C6—C7      | 119.8 (4)   | C18—O22—C23   | 117.9 (4) |
| С7—С6—Н6      | 120.1       | O22—C23—H23A  | 109.5     |
| C8—C7—C6      | 122.3 (4)   | O22—C23—H23B  | 109.5     |
| C8—C7—C12     | 119.5 (4)   | O22—C23—H23C  | 109.5     |
| C12—C7—C6     | 118.2 (4)   | H23A—C23—H23B | 109.5     |
| С7—С8—Н8      | 119.3       | H23A—C23—H23C | 109.5     |
| C9—C8—C7      | 121.4 (4)   | H23B—C23—H23C | 109.5     |
| С9—С8—Н8      | 119.3       | C19—O24—C25   | 114.5 (3) |
| С8—С9—Н9      | 120.6       | O24—C25—H25A  | 109.2     |
| C8—C9—C10     | 118.7 (4)   | O24—C25—H25B  | 109.2     |
| С10—С9—Н9     | 120.6       | O24—C25—C26   | 112.2 (4) |
| C9—C10—H10    | 118.6       | H25A—C25—H25B | 107.9     |
| C11—C10—C9    | 122.8 (4)   | C26—C25—H25A  | 109.2     |
| C11—C10—H10   | 118.6       | C26—C25—H25B  | 109.2     |
| C10—C11—H11   | 120.5       | O27—C26—C25   | 127.0 (5) |
| C10—C11—C12   | 119.0 (4)   | O27—C26—O28   | 124.3 (5) |
| C12—C11—H11   | 120.5       | O28—C26—C25   | 108.7 (4) |
| N3—C12—C7     | 121.1 (4)   | C26—O28—C29   | 116.9 (4) |
| N3—C12—C11    | 120.3 (4)   | O28—C29—H29A  | 110.3     |
| C7—C12—C11    | 118.6 (4)   | O28—C29—H29B  | 110.3     |
| Pt1A—C13—H13C | 116.4       | O28—C29—C30   | 107.1 (4) |
|               |             |               |           |

| Pt1A—C13—H13D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 116.4                | H29A—C29—H29B                                | 108.6       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------|-------------|
| Pt1B—C13—H13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 117.6                | С30—С29—Н29А                                 | 110.3       |
| Pt1B-C13-H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 117.6                | С30—С29—Н29В                                 | 110.3       |
| H13C—C13—H13D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 113.4                | С29—С30—Н30А                                 | 109.3       |
| H13A—C13—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114.7                | С29—С30—Н30В                                 | 109.3       |
| C14—C13—Pt1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71.7 (3)             | C29—C30—C31                                  | 111.5 (4)   |
| C14—C13—Pt1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62.0 (5)             | H30A—C30—H30B                                | 108.0       |
| C14—C13—H13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 116.4                | C31—C30—H30A                                 | 109.3       |
| C14—C13—H13D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 116.4                | C31—C30—H30B                                 | 109.3       |
| C14—C13—H13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 117.6                | C30-C31-H31A                                 | 109.5       |
| C14—C13—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 117.6                | $C_{30}$ $C_{31}$ $H_{31B}$                  | 109.5       |
| Pt1A-C14-H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 115.7                | $C_{30}$ $-C_{31}$ $-H_{31C}$                | 109.5       |
| Pt1B-C14-H14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 114.9                | $H_{31A}$ $C_{31}$ $H_{31B}$                 | 109.5       |
| C13 - C14 - Pt1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 69.7(2)              | $H_{31A} = C_{31} = H_{31C}$                 | 109.5       |
| C13 - C14 - Pt1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83 7 (8)             | $H_{31}B_{}C_{31}H_{31}C$                    | 109.5       |
| $C_{13}$ $C_{14}$ $H_{14A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115 7                | listb-cst-liste                              | 109.5       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 115.7                |                                              |             |
| $Pt1\Delta N3 C4 C5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 167.9 (3)            | C15-C16-C17-C18                              | 174 9 (4)   |
| $P_{11} = N_{3} = C_{12} = C_{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1681(3)             | $C_{15}$ $C_{16}$ $C_{21}$ $P_{t1A}$         | 50(5)       |
| $P_{t1A} = N_3 = C_{12} = C_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.1(5)             | $C_{15} = C_{16} = C_{21} = T_{17} = T_{17}$ | -115(0)     |
| $P_{11} = 0.000 - 0.000 - 0.000 - 0.000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.00000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 0.0000 0.000000 - 0.00000 - 0.0000 - 0.0000 -$ | 11.9(3)              | $C_{15} = C_{16} = C_{21} = C_{20}$          | -177.8(3)   |
| $P_{11} = C_{12} = C_{14} = C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.3(4)             | $C_{15} = C_{10} = C_{21} = C_{20}$          | 177.8(3)    |
| Pt1R N3 C4 C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.0(4)              | $C_{10} = C_{17} = C_{18} = C_{17}$          | -175.2(0)   |
| $P_{t1B} = N_3 = C_4 = C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -164.3(4)            | $C_{10} = C_{17} = C_{18} = O_{22}$          | -170.2(4)   |
| $P_{11} = N_{2} = C_{12} = C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -104.3(4)            | C17 = C16 = C21 = Pt1A                       | -1/9.2(3)   |
| $\begin{array}{c} \text{Plid} \text{N3} \text{Cl2} \text{Cl1} \\ \text{Plid} \text{Cl2} \text{Cl1} \\ \text{Plid} \text{Cl2} \text{Cl2} \text{Cl1} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.7(3)              | C17 - C16 - C21 - PUB                        | 104.3(9)    |
| P(1B - C13 - C14 - C13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.5 (4)<br>40.6 (8) | C17 - C10 - C21 - C20                        | -2.0(6)     |
| PIIB - C14 - C15 - C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40.0 (8)             | C17 - C18 - C19 - C20                        | -3.2(0)     |
| $N_{3} - C_{4} - C_{5} - C_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0(/)               | C17 - C18 - C19 - O24                        | -1//./(4)   |
| C4 = N3 = C12 = C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.1 (6)              | C17 - C18 - C22 - C23                        | -3.9(6)     |
| C4—N3— $C12$ — $C11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1/8.9(4)            | C18 - C19 - C20 - C21                        | 0.5 (6)     |
| C4—C5—C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1 (6)              | C18—C19—O24—C25                              | -69.9 (5)   |
| C5-C6-C7-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 178.0 (4)            | C19 - C18 - O22 - C23                        | 177.7 (4)   |
| C5—C6—C7—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2.0 (6)             | C19—C20—C21—Pt1A                             | 178.9 (3)   |
| C6-C7-C8-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -179.1 (4)           | C19—C20—C21—Pt1B                             | -162.0 (11) |
| C6—C7—C12—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9 (6)              | C19—C20—C21—C16                              | 2.0 (6)     |
| C6—C7—C12—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -179.1 (4)           | C19—O24—C25—C26                              | -86.2 (4)   |
| C7—C8—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.7 (7)             | C20—C19—O24—C25                              | 115.6 (4)   |
| C8—C7—C12—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -179.1 (4)           | C21—C16—C17—C18                              | -0.6 (6)    |
| C8—C7—C12—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9 (6)              | O22—C18—C19—C20                              | 175.4 (4)   |
| C8—C9—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7 (7)              | O22—C18—C19—O24                              | 0.9 (6)     |
| C9—C10—C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1 (7)              | O24—C19—C20—C21                              | 175.1 (3)   |
| C10—C11—C12—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 178.1 (4)            | O24—C25—C26—O27                              | 4.0 (7)     |
| C10—C11—C12—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.8 (6)             | O24—C25—C26—O28                              | -175.4 (3)  |
| C12—N3—C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2.1 (7)             | C25—C26—O28—C29                              | 179.3 (4)   |
| C12—C7—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9 (6)              | C26—O28—C29—C30                              | -179.8 (4)  |
| C13—C14—C15—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -48.9 (5)            | O27—C26—O28—C29                              | -0.1 (7)    |
| C14—C15—C16—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 161.5 (4)            | O28—C29—C30—C31                              | 177.4 (4)   |
| C14—C15—C16—C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -22.8 (5)            |                                              |             |

## Hydrogen-bond geometry (Å, °)

*Cg*1 is the centroid of ring C16–C21.

| D—H···A                                | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|----------------------------------------|-------------|-------|--------------|---------|
| C9—H9…O27 <sup>i</sup>                 | 0.95        | 2.59  | 3.445 (5)    | 150     |
| C23—H23 <i>C</i> ···Cl2 <sup>ii</sup>  | 0.98        | 2.70  | 3.618 (6)    | 157     |
| C29—H29 <i>B</i> ···O24 <sup>iii</sup> | 0.99        | 2.50  | 3.381 (7)    | 148     |
| C6—H6··· $Cg1^{iv}$                    | 0.95        | 2.73  | 3.269 (5)    | 117     |

Symmetry codes: (i) -x+1, y-1/2, -z-1/2; (ii) x, -y+3/2, z-1/2; (iii) -x, y+1/2, -z-1/2; (iv) -x+1, y+1/2, -z+1/2.