Published under a CC BY 4.0 licence

OPEN O

ACCESS

555

https://doi.org/10.1107/S2056989024003785

Synthesis and crystal structures of 5,17-dibromo-26,28-dihydroxy-25,27-dipropynyloxycalix[4]arene, 5,17-dibromo-26,28-dipropoxy-25,27dipropynyloxycalix[4]arene and 25,27-bis(2azidoethoxy)-5,17-dibromo-26,28-dihydroxycalix[4]arene

Alexander Gorbunov,^a Stanislav Bezzubov,^b Maria Malakhova,^a Vladimir Kovalev^a and Ivan Vatsouro^a*

^aDepartment of Chemistry, Lomonosov Moscow State University, Lenin's Hills, 1-3, Moscow, 119991, Russian Federation, and ^bN. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russian Federation. *Correspondence e-mail: vatsouro@petrol.chem.msu.ru

The calixarenes, 5,17-dibromo-26,28-dihydroxy-25,27-dipropynyloxycalix[4]arene (C₃₄H₂₆Br₂O₄, 1), 5,17-dibromo-26,28-dipropoxy-25,27-dipropynyloxycalix[4]arene (C₄₀H₃₈Br₂O₄, 2) and 25,27-bis(2-azidoethoxy)-5,17-dibromo-26,28dihydroxycalix[4]arene ($C_{32}H_{28}Br_2N_6O_4$, 3) possess a pinched cone molecular shape for 1 and 3, and a 1,3-alternate shape for compound 2. In calixarenes 1 and 3, the cone conformations are additionally stabilized by intramolecular $O-H\cdots O$ hydrogen bonds, while in calixarene 2 intramolecular $Br\cdots Br$ interactions consolidate the 1,3-alternate molecular conformation. The dense crystal packing of the cone dialkyne 1 is a consequence of $\pi - \pi$, C-H··· π and $C-H \cdots O$ interactions. In the crystal of the diazide 3, there are large channels extending parallel to the c axis, which are filled by highly disordered CH_2Cl_2 solvent molecules. Their contribution to the intensity data was removed by the SQUEEZE procedure that showed an accessible void volume of 585 $Å^3$ where there is room for 4.5 CH₂Cl₂ solvent molecules per unit cell. Rigid molecules of the 1,3-alternate calixarene 2 form a columnar head-to-tail packing parallel to [010] via van der Waals interactions, and the resulting columns are held together by weak C–H··· π contacts.

1. Chemical context

Calixarene macrocycles offer the possibility to combine several functional groups of a different nature and to preorganize them spatially. The polyfunctional nature of calixarenes allows their use in the development of new materials, drugs, substances for medical applications and in other areas of organic chemistry, biochemistry or materials science where supramolecular organizations are of importance. The versatility of calixarenes as molecular platforms is due to the availability of the polyphenolic macrocycles themselves, and to well-developed approaches for the exhaustive and partial modification of phenolic hydroxyl groups and/or aromatic para-positions (Asfari et al., 2001; Vicens et al., 2007; Bohmer, 2003; Neri et al., 2016). The modification of calixarene macrocycles by azide or alkyne functional groups makes them suitable for copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) (Song et al., 2014). Under the usual CuAAC conditions, biscalixarene (Gorbunov et al., 2021) or triscalixarene (Malakhova et al., 2022a) molecular semitubes were synthesized, and the processes of intramolecular oscillations

Accepted 24 April 2024

Received 5 April 2024

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; macrocycles; calix [4]arene; synthesis; NMR study.

CCDC references: 2350927; 2350926; 2350925

Supporting information: this article has supporting information at journals.iucr.org/e

ISSN 2056-9890

research communications

of Ag^+ inside them were studied (Malakhova *et al.*, 2022*b*). It is expected that grafting of additional substituents into the *para*-positions of phenolic fragments of the azide/alkynecontaining calix[4]arenes, on the one hand, should improve shielding of the internal cavity of the calixarene semitube and, on the other hand, may provide possibilities for further modifications of the multicalixarene assemblies. In this context, we synthesized the *para*-dibromo-substituted calix[4] arenes **1–3** bearing 2-azidoethyl and propargyl functionalities. The compositions and structures of the synthesized compounds were analyzed by ¹H, ¹³C NMR (Scheme S1, Figs. S1–S6 in the supporting information), and single-crystal X-ray diffraction.

2. Structural commentary

The calix[4]arenes **1** and **3** occupy general positions, while the macrocycle **2** possesses molecular *C*2 symmetry with the twofold rotation axis passing through the center of the calixarene cavity (Figs. 1–3). The cone conformation of **1** is stabilized by moderate intramolecular $O - H \cdot \cdot O$ hydrogen bonds (Table 1, Fig. 1). The *para*-bromo-substituted rings (the second Br atom (Br') is generated by the symmetry operation 1 - x, y, $\frac{1}{2} - z$) are located further apart [$d(C1-C5/C25_{centroid}-C13-C17/C27_{centroid}) = 7.4083$ (11) Å, interplanar angle 71.29 (6)°] than the unsubstituted ones [$d(C7-C11/C26_{centroid}-C19-C23/C28_{centroid}) = 6.1827$ (11) Å, interplanar angle 34.54 (6)°].

Figure 1

Molecular structure of 5,17-dibromo-26,28-dihydroxy-25,27-dipropynyloxycalix[4]arene (1), with displacement ellipsoids drawn at the 50% probability level. The minor part of the disordered bromine atom is omitted for clarity. $O-H \cdots O$ hydrogen bonds are shown by dotted lines.

Table 1

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O1−H1···O4	0.84	1.81	2.6270 (18)	165
$O3-H3\cdots O2$	0.84	2.02	2.8207 (18)	160

Table 2

Hydrogen-bond geometry (Å, $^\circ)$ for 3.

, ,				
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3-H3···O4	0.84	1.87	2.691 (3)	164
$O1-H1\cdots O2$	0.84	1.95	2.764 (3)	162

Compound 3 also has a cone conformation supported by intramolecular $O-H\cdots O$ hydrogen bonds (Table 2, Fig. 3) with the analogous mutual arrangement of the substituted

Figure 2

Molecular structure of 5,17-dibromo-26,28-dipropoxy-25,27-dipropyny-loxycalix[4]arene (2), with displacement ellipsoids drawn at the 50% probability level.

Figure 3

Molecular structure of 25,27-bis(2-azidoethoxy)-5,17-dibromo-26,28-dihydroxycalix[4]arene (3), with displacement ellipsoids drawn at the 50% probability level. $O-H\cdots O$ hydrogen bonds are shown by dotted lines. $[d(C1-C5/C25_{centroid}-C13-C17/C27_{centroid}) = 7.4401 (16) Å,$ interplanar angle 70.96 (9)°] and unsubstituted rings $[d(C7-C11/C26_{centroid}-C19-C23/C28_{centroid}) = 6.0604 (15) Å,$ interplanar angle 31.57 (9)°]. Compound **2** possesses a 1,3-alternate conformation with an intramolecular halogen…halogen interaction $[d(Br\cdots Br') = 3.9765 (4) Å]$. The closer contacts of the bromine atoms leads to a significant increase in the angle between the planes of the corresponding rings [C1-C6, 22.48 (6)°] and, as a result, an almost equal increase of the interplanar angle between the pair of unsubstituted rings [C8-C13, 21.63 (6)°].

¹H NMR spectra of compounds **1** and **3** are quite similar and simple due to the highly symmetrical structure of the calixarenes. Indeed, in each spectrum, a singlet corresponding to phenolic hydroxyl groups and two multiplets and a singlet from the aromatic calixarene H atoms are located in the lowfield part of the spectrum, while the doublet and triplet from the propargyl groups (for calixarene 1) and two multiplets from the azidoethyl fragments (for calixarene 3) as well as two doublets from the calixarene methylene bridges appear in the middle part of the spectrum. In the ¹³C NMR spectra of both compounds 1 and 3, the characteristic signal from the methylene bridges at \sim 31 ppm reflects a cone shape of the macrocycle. In the case of calixarene 2, the doublets from the methylene bridges in the ¹H NMR spectrum appear to be located closer to each other and have an increased spin-spin coupling constant value. In the ¹³C NMR spectrum of 2 the signal of the methylene groups appears downfield shifted with respect to the above cone calizarenes (\sim 37 ppm), which confirms a 1,3-alternate shape of the macrocycle.

3. Supramolecular features

In the crystal structure of **1** (Fig. 4), there are π - π -bonded centrosymmetric dimers $[d(C21\cdots C19-C23/C28_{centroid}) = 3.361 (2) Å$, centroid-to-centroid shift of 1.862 (3) Å], which are additionally stabilized by C-H··· π interactions between the H20 atom and the centroid of the C1-C5/C25 ring [3.1375 (8) Å, 147.00 (12)°], between the H21 atom and the centroid of the C7-C11/C26 ring [3.0179 (8) Å, 127.00 (12)°]

Figure 4

Fragment of the crystal packing of 5,17-dibromo-26,28-dihydroxy-25,27dipropynyloxycalix[4]arene (1). The minor part of the disordered bromine atom is omitted for clarity.

Figure 5

Fragment of the crystal packing of 5,17-dibromo-26,28-dipropoxy-25,27-dipropynyloxycalix[4]arene (2).

and between the H22 atom and the centroid of the C13–C17/ C27 ring [2.7990 (8) Å, 157.54 (12)°]. These dimers are linked into chains extending parallel to [011] *via* C–H···O contacts involving the H34 and the O1 atoms [$d(H \cdot \cdot O) =$ 2.3436 (13) Å, C–H···O angle = 164.45 (13)°]. The resulting chains are assembled by further C–H··· π interactions between the H31 atom and the mid-point of the triple C33– C34 bond [2.7043 (6) Å, 146.08 (13)°], forming thick layers parallel to (110). These layers are related to each other by inversion centers and are joint by π – π interactions [$d(C27 \cdot \cdot C13$ -C17/C27_{centroid}) = 3.623 (2) Å, centroid-tocentroid shift of 2.276 (3) Å].

In the crystal structure of **2** (Fig. 5), molecules form a columnar head-to-tail packing parallel to [010] *via* van der Waals interactions, with the columns held together by weak $C-H\cdots\pi$ contacts between the H16*B* atom and the centroid of the C1–C6 ring [2.862 (19) Å, 125.4 (10)°] and between the

Figure 6

Fragment of the crystal packing of 25,27-bis(2-azidoethoxy)-5,17-dibromo-26,28-dihydroxycalix[4]arene (3). H17*B* atom and the centroid of the C8–C13 ring [2.97 (2) Å, 120.1 (12)°].

In the crystal structure of **3** (Fig. 6), $C-H\cdots\pi$ contacts between the H31A atom and the centroid of the C1-C5/C25 ring [2.6130 (11) Å, 122.1 (2)°] and between the H29B atom and the centroid of the C13-C17/C27 ring [2.8400 (11) Å, 129.56 (18)°] organize molecules into large channels passing parallel to the c axis, which are filled by highly disordered CH₂Cl₂ solvent molecules. According to the applied SQUEEZE procedure (Spek, 2015), the solvent-accessible void volume is as large as 585 Å^3 per unit cell and contains fragments with an electron count of 171 e⁻. This correspond to about 4.5 CH₂Cl₂ molecules in the unit cell, or 0.25 CH₂Cl₂ molecules per formula unit. The nitrogen atoms of the azide groups have comparatively large displacement parameters because these groups are directed into the channels and do not participate in any strong intermolecular interactions. Adjacent channels are assembled into the tri-periodic structure by $\pi - \pi$ $[d(C21...C19-C23/C28_{centroid}) = 3.446 (4) \text{ A}, \text{ centroid-to-}$ centroid shift of 2.533 (4) Å] and C-H··· π interactions between the H20 atom and the centroid of the C1-C5/C25 ring $[3.0326 (11) \text{ Å}, 154.5 (2)^{\circ}]$ and between the H22 atom and the centroid of the C13-C17/C27 ring [3.6003 (11) Å, 152.69 (18)°].

4. Database survey

The crystal structures of more than 750 calix[4]arenes have been published so far, as revealed by a search of the Cambridge Structural Database (CSD, version 5.45, updated to November 2023; Groom *et al.*, 2016). The database analysis shows that calix[4]arenes, which are distally disubstituted at the lower rim, prefer a pinched cone conformation in solution and in the solid state, which agrees well with the result of the present study. In addition, there are three thiacalix[4]arenes having OH groups in distal positions of the lower rim: JIPQIJ01 (Dvořáková *et al.*, 2007); KURKAL, KURKEP (Wang *et al.*, 2015), which are isostructural with compound **3**. Several crystal structures of dibromo-substituted calix[4]arene 1,3-alternates have also been reported, in which the Br···Br distance varies from 3.967 (5) Å (BAGYAJ; Krebs *et al.*, 1998) to 4.112 (8) Å (KARNAT; Sykora *et al.*, 2005).

5. Synthesis and crystallization

The title compounds were prepared as follows:

5,17-Dibromo-26,28-dihydroxy-25,27-dipropynyloxycalix-[4]arene (1) (cone)

To a stirred solution of 26,28-dihydroxy-25,27-dipropynyloxycalix[4]arene (0.50 mg, 1.0 mmol) (Xu *et al.*, 1996) in dichloromethane *N*-bromosuccinimide (0.39 g, 2.2 mmol) was added and the resultant mixture stirred at 298 K for 24 h. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica, dichloromethane) followed by crystallization from a dichloromethane/ methanol solvent mixture. Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in a CH₂Cl₂/MeOH mixture (1:1 ν/ν). Yield 0.55 g (77%). M.p. 515–516 K. ESI-MS: *m/z*: 676.0516 $[M + NH_4]^+$ for C₃₄H₃₀Br₂NO₄ (676.0516). ¹H NMR (CDCl₃, 400 MHz): δ = 7.19 (*s*, 4H; ArH), 7.15 (*s*, 2H; OH), 6.88–6.83 (*m*, 4H; ArH), 6.80–6.75 (*m*, 2H; ArH), 4.76 (*d*, 4H, ⁴J_{HH} = 2.4 Hz; OCH₂), 4.34 (*d*, 4H, ²J_{HH} = 13.4 Hz; ArCH₂Ar), 3.35 (*d*, 4H, ²J_{HH} = 13.4 Hz; ArCH₂Ar), 2.58 (*t*, 2H, ⁴J_{HH} = 2.4 Hz; CH) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 152.12, 151.26, 132.62 (C_{Ar}), 130.83 (CH_{Ar}), 130.03 (C_{Ar}), 129.29, 125.91 (CH_{Ar}), 110.76 (C_{Ar}), 77.92 (CCH), 76.95 (CCH), 63.50 (OCH₂), 31.51 (ArCH₂Ar) ppm.

5,17-Dibromo-26,28-dipropoxy-25,27-dipropynyloxycalix-[4]arene (2) (1,3-alternate)

A mixture of calix[4]arene 1 (0.45g, 0.7 mmol) and anhydrous Cs₂CO₃ (0.90 g, 1.8 mmol) in dry DMF (15 ml) was stirred at room temperature for 2 h. 1-Iodopropane (0.40 ml, 4.1 mmol) was added and the mixture stirred for 48 h at 298 K. The solvent was removed under reduced pressure with heating below 333 K, and the residue was parted between dichloromethane and 2M HCl. The organic layer was separated, washed with water, dried with MgSO₄ and concentrated to dryness. The residue was purified by flash chromatography (silica, gradient from hexane to hexane/dichloromethane (1:1)). Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in a CH₂Cl₂/MeOH mixture (1:1 v/v). Yield 0.16 g (31%). M.p. 478–479 K. ESI-MS: m/z: 760.1462 $[M + NH_4]^+$ for C₄₀H₄₂Br₂NO₄ (760.1455). ¹H NMR (CDCl₃, 400 MHz): δ = 7.28 (s, 4H; ArH), 6.97 (d, 4H, ${}^{3}J_{HH}$ = 7.6 Hz; ArH), 6.72 (t, 2H, ${}^{3}J_{HH} = 7.6$ Hz; ArH), 4.22 (*d*, 4H, ${}^{4}J_{HH} = 2.4$ Hz; OCH₂CCH), 3.66 (d, 4H, ${}^{2}J_{HH}$ = 14.5 Hz; ArCH₂Ar), 3.57 (d, 4H, ${}^{2}J_{HH} = 14.5 Hz$; ArCH₂Ar), $3.49-3.43 (m, 4H; OCH_{2}CH_{2})$, 2.55 (t, 2H, ${}^{4}J_{HH}$ = 2.4 Hz; CCH), 1.67–1.57 (m, 4H; CH₂CH₃), 0.88 (t, 6H, ${}^{3}J_{HH} = 7.5$ Hz; CH₃) ppm; ${}^{13}C$ NMR (100 MHz, $CDCl_3$): $\delta = 155.40, 155.07, 135.09, 133.59 (C_{Ar}), 132.88, 130.15,$ 122.58 (CH_{Ar}), 114.72 (C_{Ar}), 79.48 (CCH), 75.14 (CCH), 73.68 (OCH₂CH₂), 58.77 (OCH₂CCH), 36.25 (ArCH₂Ar), 23.53 (CH₂CH₃), 10.34 (CH₃) ppm.

25,27-Bis(2-azidoethoxy)-5,17-dibromo-26,28-dihydroxycalix[4]arene (3) (cone)

To a stirred solution of 25,27-bis(2-azidoethoxy)-26,28-dihydroxycalix[4]arene (0.56 mg, 1.0 mmol) (Gorbunov et al., 2021) in dichloromethane N-bromosuccinimide (0.39 g, 2.2 mmol) was added and the resultant mixture stirred at 298 K for 24 h. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica, dichloromethane) followed by crystallization from dichloromethane/methanol solvent mixture. Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in a $CH_2Cl_2/$ MeOH mixture (1:1 v/v). Yield 0.63g (88%). M.p. 538–539 K. ESI-MS: m/z: 738.0861 $[M + NH_4]^+$ for $C_{32}H_{32}Br_2N_7O_4$ (738.0857). ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.57$ (*s*, 2H; OH), 7.19 (s, 4H; ArH), 6.91-6.86 (m, 4H; ArH), 6.81-6.76 (m, 2H; ArH), 4.29 (*d*, 4H, ${}^{2}J_{\text{HH}}$ = 13.2 Hz; ArCH₂Ar), 4.07–4.02 (*m*, 4H; CH₂CH₂), 3.88–3.83 (m, 4H; CH₂CH₂), 3.34 (d, 4H, ²J_{HH} = 13.2 Hz; ArCH₂Ar) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta =$

 Table 3

 Experimental details.

	1	2	3
Crystal data			
Chemical formula	$C_{34}H_{26}Br_2O_4$	$C_{40}H_{38}Br_2O_4$	$C_{32}H_{28}Br_2N_6O_4$
$M_{\rm r}$	658.37	742.52	720.42
Crystal system, space group	Triclinic, P1	Orthorhombic, Pbcn	Trigonal, $R\overline{3}$
Temperature (K)	100	100	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.1542 (3), 11.9156 (3), 11.9964 (4)	18.1223 (7), 9.9840 (4), 18.2863 (7)	36.3261 (7), 36.3261 (7), 12.1054 (4)
α, β, γ (°)	75.221 (1), 88.341 (1), 81.751 (1)	90, 90, 90	90, 90, 120
$V(\dot{A}^3)$	1388.90 (7)	3308.6 (2)	13834.0 (7)
Z	2	4	18
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	2.96	2.49	2.69
Crystal size (mm)	$0.32 \times 0.16 \times 0.12$	$0.35 \times 0.25 \times 0.22$	$0.37 \times 0.13 \times 0.1$
Data collection			
Diffractometer	Bruker D8 Venture	Bruker D8 Venture	Bruker D8 Venture
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.501, 0.746	0.545, 0.746	0.516, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	31619, 8481, 6661	55960, 5529, 4481	45251, 7804, 6043
R _{int}	0.043	0.060	0.047
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.715	0.736	0.671
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.087, 1.04	0.030, 0.069, 1.04	0.040, 0.097, 1.03
No. of reflections	8481	5529	7804
No. of parameters	373	283	399
No. of restraints	7	0	24
H-atom treatment	H-atom parameters constrained	Only H-atom coordinates refined	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.49, -0.80	0.42, -0.51	1.30, -1.12

Computer programs: APEX3 and SAINT (Bruker, 2017), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

152.40, 151.43, 132.23 (C_{Ar}), 130.84 (CH_{Ar}), 129.79 (C_{Ar}), 129.40, 125.77 (CH_{Ar}), 110.53 (C_{Ar}), 74.41 (OCH_2), 51.07 (CH_2N_3), 30.90 ($ArCH_2Ar$) ppm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All C-bound hydrogen atoms in the structures of 1 and 3 were placed in calculated positions and refined using a riding model [C-H = 0.94-0.97 Å] with $U_{\rm iso}({\rm H}) = 1.2-1.5U_{\rm eq}({\rm C})$]. Hydrogen atoms of hydroxy groups were located from difference electron-density maps and were refined with $U_{iso}(H) = 1.5U_{eq}(O)$. In the structure of 2, hydrogen atoms were located from difference electron-density maps and were refined freely. In the structure of 1, one bromine atom was found to be disordered over two positions with a refined occupancy ratio of 0.928 (5):0.072 (5). In the structure of 3, highly disordered solvent CH₂Cl₂ molecules are present. Their contributions to the intensity data was removed by the SQUEEZE procedure (Spek, 2015) as implemented in the OLEX2 package (Dolomanov et al., 2009). The SIMU instruction was used to restrain the U^{ij} components of the disordered bromine atoms in the structure of 1 and nitrogen atoms in the structure of 3. The most disagreeable reflections with an error/s.u. of more than 10 (100 in the data for $1; \overline{2}40$, $\overline{3}60$ and 030 in the data for 3) were omitted using the OMIT instruction in SHELXL (Sheldrick, 2015b).

Acknowledgements

X-ray diffraction studies were performed at the Centre of Shared Equipment of IGIC RAS.

Funding information

Funding for this research was provided by: Russian Science Foundation (grant No. 22-73-00052, https://rscf.ru/en/project/ 22-73-00052/).

References

- Asfari, Z., Bohmer, V., Harrowfield, J. & Vicens, J. (2001). *Calixarenes* 2001, p. 692. Dordrecht: Kluwer Academic Publishers.
- Bohmer, V. (2003). *Calixarenes in The Chemistry of Phenols* edited by Z. Rappoport, pp. 1369–1454. New York: John Wiley & Sons.
- Bruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Dvořáková, H., Lang, J., Vlach, J., Sýkora, J., Čajan, M., Himl, M., Pojarová, M., Stibor, I. & Lhoták, P. (2007). *J. Org. Chem.* **72**, 7157– 7166.
- Gorbunov, A., Ozerov, N., Malakhova, M., Eshtukov, A., Cheshkov, D., Bezzubov, S., Kovalev, V. & Vatsouro, I. (2021). *Org. Chem. Front.* **8**, 3853–3866.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.

- Krebs, F. C., Larsen, M., Jørgensen, M., Jensen, P. R., Bielecki, M. & Schaumburg, K. (1998). J. Org. Chem. 63, 9872–9879.
- Malakhova, M., Gorbunov, A., Lentin, I., Kovalev, V. & Vatsouro, I. (2022b). Org. Biomol. Chem. 20, 8092–8103.
- Malakhova, M., Gorbunov, A., Ozerov, N., Korniltsev, I., Ermolov, K., Bezzubov, S., Kovalev, V. & Vatsouro, I. (2022*a*). Org. Chem. Front. 9, 3084–3092.
- Neri, P., Sessler, J. & Wang, M.-X. (2016). *Calixarenes and Beyond*, p. 1062. Cham: Springer.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

- Song, M., Sun, Z., Han, C., Tian, D., Li, H. & Kim, J. (2014). *Chem. Asian J.* **9**, 2344–2357.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Sýkora, J., Budka, J., Lhoták, P., Stibor, I. & Císařová, I. (2005). Org. Biomol. Chem. 3, 2572–2578.
- Vicens, J., Harrowfield, J. & Baklouti, L. (2007). *Calixarenes in the Nanoworld*, p. 395. Cham: Springer.
- Wang, W., Yang, W., Guo, R. & Gong, S. (2015). *CrystEngComm*, **17**, 7663–7675.
- Xu, W., Vittal, J. & Puddephatt, R. (1996). Can. J. Chem. 74, 766-774.

Acta Cryst. (2024). E80, 555-560 [https://doi.org/10.1107/S2056989024003785]

Synthesis and crystal structures of 5,17-dibromo-26,28-dihydroxy-25,27dipropynyloxycalix[4]arene, 5,17-dibromo-26,28-dipropoxy-25,27dipropynyloxycalix[4]arene and 25,27-bis(2-azidoethoxy)-5,17-dibromo-26,28dihydroxycalix[4]arene

Alexander Gorbunov, Stanislav Bezzubov, Maria Malakhova, Vladimir Kovalev and Ivan Vatsouro

Computing details

5,17-Dibromo-26,28-dihydroxy-25,27-dipropynyloxycalix[4]arene (1)

Crystal data

 $C_{34}H_{26}Br_{2}O_{4}$ $M_{r} = 658.37$ Triclinic, *P*1 *a* = 10.1542 (3) Å *b* = 11.9156 (3) Å *c* = 11.9964 (4) Å *a* = 75.221 (1)° *β* = 88.341 (1)° *γ* = 81.751 (1)° *V* = 1388.90 (7) Å³

Data collection

Bruker D8 Venture diffractometer Radiation source: microfocus sealed X-ray tube, Incoatec I μ S microsource Focusing mirrors monochromator Detector resolution: 10.4 pixels mm⁻¹ ω -scan Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.087$ S = 1.048481 reflections 373 parameters 7 restraints Z = 2 F(000) = 664 $D_x = 1.574 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9976 reflections $\theta = 2.5-30.5^{\circ}$ $\mu = 2.96 \text{ mm}^{-1}$ T = 100 K Block, yellow $0.32 \times 0.16 \times 0.12 \text{ mm}$

 $T_{\min} = 0.501, T_{\max} = 0.746$ 31619 measured reflections 8481 independent reflections 6661 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.043$ $\theta_{\text{max}} = 30.6^{\circ}, \theta_{\text{min}} = 1.8^{\circ}$ $h = -14 \rightarrow 14$ $k = -17 \rightarrow 17$ $l = -16 \rightarrow 17$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0365P)^2 + 0.736P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.49$ e Å⁻³ $\Delta\rho_{min} = -0.80$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	0.13667 (2)	0.10801 (2)	0.34716 (2)	0.02325 (6)	
Br3	0.4344 (16)	0.8992 (4)	0.7623 (12)	0.0478 (18)	0.072 (5)
01	0.37255 (13)	0.20076 (13)	0.76345 (11)	0.0175 (3)	
H1	0.455133	0.201641	0.759281	0.026*	
O4	0.62310 (13)	0.22902 (12)	0.77582 (11)	0.0147 (3)	
O2	0.21281 (13)	0.28716 (12)	0.93959 (11)	0.0149 (3)	
O3	0.45446 (13)	0.37816 (12)	0.88209 (12)	0.0175 (3)	
Н3	0.381434	0.360749	0.910983	0.026*	
C1	0.40950 (19)	0.16828 (16)	0.57182 (16)	0.0142 (4)	
C25	0.32705 (19)	0.18609 (16)	0.66343 (16)	0.0140 (4)	
C2	0.3504 (2)	0.14541 (16)	0.47770 (16)	0.0164 (4)	
H2	0.404008	0.131552	0.415021	0.020*	
C23	0.60857 (18)	0.28084 (16)	0.57005 (16)	0.0142 (4)	
C26	0.14200 (18)	0.37135 (17)	0.85034 (16)	0.0144 (4)	
C5	0.18917 (19)	0.18555 (17)	0.65907 (16)	0.0158 (4)	
C28	0.63632 (18)	0.31164 (16)	0.67091 (16)	0.0136 (4)	
C4	0.1333 (2)	0.16353 (17)	0.56418 (17)	0.0177 (4)	
H4	0.040104	0.162716	0.560404	0.021*	
C20	0.68421 (18)	0.49935 (17)	0.56564 (16)	0.0155 (4)	
H20	0.707334	0.574420	0.563143	0.019*	
C7	0.08651 (18)	0.33525 (18)	0.76248 (16)	0.0159 (4)	
C27	0.45330 (19)	0.49577 (16)	0.85977 (16)	0.0144 (4)	
C3	0.2149 (2)	0.14269 (17)	0.47470 (16)	0.0173 (4)	
C33	0.70622 (19)	0.05765 (18)	0.91211 (17)	0.0183 (4)	
C30	0.0378 (2)	0.18942 (18)	1.04971 (17)	0.0183 (4)	
C19	0.66961 (18)	0.42045 (17)	0.67255 (16)	0.0137 (4)	
C16	0.5776 (2)	0.65712 (18)	0.79072 (16)	0.0182 (4)	
H16	0.656387	0.687064	0.759724	0.022*	
C13	0.34441 (19)	0.57215 (17)	0.88396 (16)	0.0153 (4)	
C11	0.13953 (18)	0.48938 (17)	0.84800 (16)	0.0151 (4)	
C32	0.74233 (19)	0.14878 (18)	0.81472 (17)	0.0174 (4)	
H32A	0.810036	0.190259	0.838597	0.021*	
H32B	0.779649	0.113938	0.751985	0.021*	
C22	0.62569 (19)	0.36187 (17)	0.46568 (16)	0.0163 (4)	
H22	0.610029	0.343350	0.395175	0.020*	
C6	0.10297 (19)	0.20789 (18)	0.75864 (17)	0.0182 (4)	
H6A	0.014234	0.185145	0.751264	0.022*	
H6B	0.143676	0.158222	0.831971	0.022*	
C12	0.21709 (19)	0.52806 (18)	0.93450 (17)	0.0163 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

1112 4	0 1(05(4	0.501192	0.0(0(97	0.020*	
HI2A	0.160564	0.591182	0.960687	0.020*	
H12B	0.239323	0.461186	1.002593	0.020*	
C8	0.02054 (19)	0.42259 (19)	0.67312 (17)	0.0196 (4)	
H8	-0.019001	0.400917	0.612324	0.023*	
C24	0.56005 (19)	0.16485 (17)	0.57366 (17)	0.0161 (4)	
H24A	0.596010	0.106554	0.644376	0.019*	
H24B	0.597657	0.136945	0.506871	0.019*	
C29	0.1451 (2)	0.26107 (18)	1.04853 (16)	0.0185 (4)	
H29A	0.106800	0.335589	1.066540	0.022*	
H29B	0.210651	0.218888	1.109793	0.022*	
C34	0.6739 (2)	-0.01519 (19)	0.99099 (19)	0.0218 (4)	
H34	0.647887	-0.073636	1.054290	0.026*	
C21	0.66540 (19)	0.46942 (17)	0.46356 (17)	0.0168 (4)	
H21	0.679652	0.522512	0.391855	0.020*	
C14	0.3541 (2)	0.69105 (18)	0.86054 (17)	0.0186 (4)	
H14	0.280958	0.744225	0.875755	0.022*	
C15	0.4698 (2)	0.73211 (17)	0.81518 (17)	0.0202 (4)	
C17	0.57032 (19)	0.53733 (17)	0.81171 (16)	0.0143 (4)	
C18	0.68642 (18)	0.45380 (18)	0.78479 (16)	0.0159 (4)	
H18A	0.697858	0.381654	0.848659	0.019*	
H18B	0.768496	0.490555	0.780692	0.019*	
С9	0.0116 (2)	0.5402 (2)	0.67141 (18)	0.0219 (4)	
Н9	-0.036051	0.598057	0.611156	0.026*	
C31	-0.0464 (2)	0.13008 (19)	1.05713 (18)	0.0224 (4)	
H31	-0.114571	0.082004	1.063136	0.027*	
C10	0.07224 (19)	0.57330 (18)	0.75746 (17)	0.0188 (4)	
H10	0.067891	0.654129	0.754765	0.023*	
Br2	0.48141 (12)	0.89367 (4)	0.79296 (8)	0.03315 (19)	0.928 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02602 (12)	0.02894 (12)	0.01807 (10)	-0.00387 (9)	-0.00172 (8)	-0.01170 (8)
Br3	0.069 (4)	0.023 (2)	0.058 (3)	-0.023 (2)	0.021 (3)	-0.015 (2)
01	0.0128 (6)	0.0278 (8)	0.0150 (6)	-0.0074 (6)	0.0039 (5)	-0.0092 (6)
04	0.0113 (6)	0.0160 (7)	0.0140 (6)	0.0000 (5)	0.0021 (5)	0.0003 (5)
02	0.0143 (6)	0.0176 (7)	0.0125 (6)	-0.0027 (5)	0.0027 (5)	-0.0032 (5)
O3	0.0125 (6)	0.0134 (6)	0.0264 (7)	-0.0036 (5)	0.0043 (5)	-0.0044 (6)
C1	0.0163 (9)	0.0103 (8)	0.0159 (8)	-0.0030(7)	0.0038 (7)	-0.0028 (7)
C25	0.0166 (9)	0.0129 (8)	0.0135 (8)	-0.0043 (7)	0.0020 (7)	-0.0044 (7)
C2	0.0223 (10)	0.0132 (9)	0.0138 (8)	-0.0022 (7)	0.0042 (7)	-0.0041 (7)
C23	0.0100 (8)	0.0152 (9)	0.0176 (9)	-0.0016 (7)	0.0032 (7)	-0.0049 (7)
C26	0.0095 (8)	0.0197 (9)	0.0139 (8)	-0.0013 (7)	0.0025 (7)	-0.0044 (7)
C5	0.0157 (9)	0.0169 (9)	0.0164 (9)	-0.0050(7)	0.0034 (7)	-0.0061 (7)
C28	0.0105 (8)	0.0150 (9)	0.0139 (8)	-0.0013 (7)	0.0028 (6)	-0.0015 (7)
C4	0.0167 (9)	0.0193 (10)	0.0186 (9)	-0.0044 (8)	0.0008 (7)	-0.0065 (8)
C20	0.0111 (8)	0.0163 (9)	0.0189 (9)	-0.0036 (7)	0.0017 (7)	-0.0032 (7)
C7	0.0099 (8)	0.0238 (10)	0.0161 (9)	-0.0045 (7)	0.0052 (7)	-0.0083 (8)

C27	0.0160 (9)	0.0144 (9)	0.0130 (8)	-0.0040 (7)	-0.0017 (7)	-0.0026 (7)
C3	0.0238 (10)	0.0158 (9)	0.0144 (9)	-0.0040 (8)	-0.0009 (7)	-0.0066 (7)
C33	0.0144 (9)	0.0186 (10)	0.0210 (9)	0.0015 (7)	-0.0021 (7)	-0.0052 (8)
C30	0.0202 (10)	0.0202 (10)	0.0144 (9)	-0.0010 (8)	0.0035 (7)	-0.0057 (8)
C19	0.0085 (8)	0.0178 (9)	0.0146 (8)	-0.0031 (7)	0.0014 (6)	-0.0033 (7)
C16	0.0197 (10)	0.0218 (10)	0.0159 (9)	-0.0110 (8)	0.0019 (7)	-0.0056 (8)
C13	0.0170 (9)	0.0166 (9)	0.0137 (8)	-0.0038 (7)	0.0003 (7)	-0.0057 (7)
C11	0.0099 (8)	0.0201 (9)	0.0160 (9)	-0.0017 (7)	0.0035 (7)	-0.0065 (7)
C32	0.0122 (9)	0.0196 (10)	0.0177 (9)	0.0010 (7)	0.0012 (7)	-0.0017 (8)
C22	0.0152 (9)	0.0190 (9)	0.0151 (9)	-0.0033 (7)	0.0022 (7)	-0.0050 (7)
C6	0.0139 (9)	0.0255 (10)	0.0196 (9)	-0.0082 (8)	0.0046 (7)	-0.0113 (8)
C12	0.0146 (9)	0.0183 (9)	0.0177 (9)	-0.0018 (7)	0.0024 (7)	-0.0081 (8)
C8	0.0096 (9)	0.0335 (12)	0.0170 (9)	-0.0007 (8)	0.0011 (7)	-0.0104 (8)
C24	0.0156 (9)	0.0150 (9)	0.0188 (9)	-0.0023 (7)	0.0048 (7)	-0.0065 (7)
C29	0.0200 (10)	0.0231 (10)	0.0145 (9)	-0.0068 (8)	0.0044 (7)	-0.0070 (8)
C34	0.0190 (10)	0.0203 (10)	0.0237 (10)	-0.0008(8)	0.0005 (8)	-0.0025 (8)
C21	0.0137 (9)	0.0185 (9)	0.0163 (9)	-0.0032 (7)	0.0028 (7)	-0.0006 (7)
C14	0.0225 (10)	0.0169 (9)	0.0183 (9)	-0.0027 (8)	0.0036 (8)	-0.0080(8)
C15	0.0315 (11)	0.0154 (9)	0.0168 (9)	-0.0090 (8)	0.0040 (8)	-0.0068 (8)
C17	0.0145 (9)	0.0178 (9)	0.0118 (8)	-0.0042 (7)	0.0000 (7)	-0.0046 (7)
C18	0.0112 (9)	0.0222 (10)	0.0154 (9)	-0.0040 (7)	0.0004 (7)	-0.0058 (8)
C9	0.0131 (9)	0.0290 (11)	0.0195 (10)	0.0040 (8)	-0.0006 (7)	-0.0025 (9)
C31	0.0180 (10)	0.0266 (11)	0.0243 (10)	-0.0057 (8)	0.0042 (8)	-0.0087 (9)
C10	0.0155 (9)	0.0194 (10)	0.0203 (9)	0.0015 (8)	0.0048 (7)	-0.0053 (8)
Br2	0.0503 (4)	0.01800 (14)	0.0381 (3)	-0.01664 (17)	0.0244 (2)	-0.01573 (14)

Geometric parameters (Å, °)

Br1—C3	1.9052 (19)	C30—C31	1.173 (3)
Br3—C15	1.913 (5)	C19—C18	1.519 (3)
O1—H1	0.8400	C16—H16	0.9500
O1—C25	1.359 (2)	C16—C15	1.385 (3)
O4—C28	1.403 (2)	C16—C17	1.397 (3)
O4—C32	1.439 (2)	C13—C12	1.517 (3)
O2—C26	1.400 (2)	C13—C14	1.390 (3)
O2—C29	1.442 (2)	C11—C12	1.518 (3)
О3—Н3	0.8400	C11—C10	1.393 (3)
O3—C27	1.356 (2)	C32—H32A	0.9900
C1—C25	1.403 (3)	C32—H32B	0.9900
C1—C2	1.397 (3)	C22—H22	0.9500
C1—C24	1.524 (3)	C22—C21	1.392 (3)
C25—C5	1.403 (3)	C6—H6A	0.9900
С2—Н2	0.9500	C6—H6B	0.9900
C2—C3	1.383 (3)	C12—H12A	0.9900
C23—C28	1.398 (3)	C12—H12B	0.9900
C23—C22	1.396 (3)	C8—H8	0.9500
C23—C24	1.523 (3)	C8—C9	1.386 (3)
C26—C7	1.396 (3)	C24—H24A	0.9900

C26—C11	1.396 (3)	C24—H24B	0.9900
C5—C4	1.385 (3)	С29—Н29А	0.9900
C5—C6	1.516 (3)	С29—Н29В	0.9900
C28—C19	1.391 (3)	С34—Н34	0.9500
C4—H4	0.9500	C21—H21	0.9500
C4—C3	1.388 (3)	C14—H14	0.9500
C20—H20	0.9500	C14—C15	1.381 (3)
C20—C19	1.402 (3)	C15—Br2	1.895 (2)
C20—C21	1.385 (3)	C17—C18	1.513 (3)
C7—C6	1.515 (3)	C18—H18A	0.9900
C7—C8	1.398 (3)	C18—H18B	0.9900
C27—C13	1.401 (3)	С9—Н9	0.9500
C27—C17	1.405 (3)	C9—C10	1.384 (3)
C33—C32	1.456 (3)	C31—H31	0.9500
C33—C34	1,184 (3)	C10—H10	0.9500
C30—C29	1.475 (3)		0.7000
C25—O1—H1	109 5	H32A—C32—H32B	108 5
$C_{28} - 04 - C_{32}$	114 33 (14)	C_{23} C_{22} H_{22}	119.6
$C_{26} = 0^{2} = C_{29}^{29}$	115 53 (14)	C_{21} C_{22} C_{23} C	120.87 (18)
$C_{20} = 02 = 023$	109 5	$C_{21} = C_{22} = C_{23}$	119.6
C_{25} C_{1} C_{24}	123 34 (17)	C5-C6-H6A	109.2
$C_{2} = C_{1} = C_{2}^{2}$	125.54(17) 117.70(17)	C5-C6-H6B	109.2
$C_2 - C_1 - C_2 A$	117.70(17) 118.84(17)	C_{7} C_{6} C_{5}	112 17 (16)
01 025 01	123.84(17)	C7 C6 H6A	100.2
01 - 025 - 05	123.04(17) 114.80(16)	$C7 \qquad C6 \qquad H6B$	109.2
C1 = C25 = C5	114.00(10) 121.22(17)		109.2
$C_1 = C_2 = C_3$	121.32 (17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.9
$C_1 = C_2 = C_1$	119.0	$C_{13} = C_{12} = C_{11}$	100.2
$C_3 = C_2 = C_1$	120.79 (18)	$C_{13} = C_{12} = H_{12} R_{12}$	109.2
$C_{3} = C_{2} = C_{2}$	119.0	$C_{13} - C_{12} - H_{12A}$	109.2
$C_{20} = C_{23} = C_{24}$	121.36(17) 117.02(17)	C11 - C12 - H12A	109.2
$C_{22} = C_{23} = C_{28}$	117.03(17) 121.28(17)	$\begin{array}{c} \text{CII} \\ \text{CII} \\ \text{CII} \\ \text{CII} \\ \text{CIII} \\ \text{CIIII} \\ \text{CIIII} \\ \text{CIIIIII } \\ \text{CIIIIIII } \\ \text{CIIIIII } \\ \text{CIIIIIII } \\ \text{CIIIIII } \\ \text{CIIIIIII } \\ \text{CIIIIIII } \\ \text{CIIIIIIII } \\ CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	109.2
$C_{22} = C_{23} = C_{24}$	121.36(17)	$\Pi I Z A - C I Z - \Pi I Z B$	107.9
$C_{1} = C_{20} = 0_{2}$	119.1/(17)	C^{-}	119.3
$C/-C_{20}$	122.50(17)	C_{2}	121.32 (19)
C11 - C26 - O2	118.10 (16)	C_{2} C_{2} H_{2}	119.3
$C_{25} = C_{5} = C_{6}$	119./5 (17)	C1 - C24 - H24A	108.4
C4 - C5 - C25	119.64 (17)	C1 - C24 - H24B	108.4
C4 - C5 - C6	120.61 (17)	$C_{23} = C_{24} = C_{14}$	115.60 (16)
C23—C28—O4	117.21 (17)	C23—C24—H24A	108.4
C19—C28—O4	119.01 (16)	C23—C24—H24B	108.4
C19—C28—C23	123.71 (17)	H24A—C24—H24B	107.4
C5—C4—H4	120.4	02—C29—C30	113.22 (16)
C5—C4—C3	119.26 (18)	O2—C29—H29A	108.9
C3—C4—H4	120.4	O2—C29—H29B	108.9
С19—С20—Н20	119.5	С30—С29—Н29А	108.9
C21—C20—H20	119.5	С30—С29—Н29В	108.9
C21—C20—C19	120.95 (18)	H29A—C29—H29B	107.7

C26—C7—C6	122.24 (17)	С33—С34—Н34	180.0
C26—C7—C8	117.23 (19)	C20—C21—C22	120.23 (18)
C8—C7—C6	120.43 (18)	C20—C21—H21	119.9
O3—C27—C13	123.07 (17)	C22—C21—H21	119.9
O3—C27—C17	115.61 (17)	C13—C14—H14	119.9
C13—C27—C17	121.31 (18)	C15—C14—C13	120.17 (19)
C2—C3—Br1	120.20 (15)	C15—C14—H14	119.9
C2—C3—C4	121.25 (18)	C16—C15—Br3	128.5 (3)
C4—C3—Br1	118.55 (15)	C16—C15—Br2	120.16 (15)
C34—C33—C32	178.5 (2)	C14—C15—Br3	108.5 (4)
C31—C30—C29	176.3 (2)	C14—C15—C16	121.34 (18)
C28—C19—C20	117.00 (17)	C14—C15—Br2	118.44 (16)
C28—C19—C18	121.74 (16)	C27—C17—C18	120.63 (17)
C20—C19—C18	121.25 (17)	C16—C17—C27	118.52 (18)
C15—C16—H16	120.1	C16—C17—C18	120.85 (17)
C15—C16—C17	119.89 (18)	C19—C18—H18A	108.9
C17—C16—H16	120.1	C19—C18—H18B	108.9
C27—C13—C12	121.59 (17)	C17—C18—C19	113.51 (16)
C14—C13—C27	118.76 (18)	C17—C18—H18A	108.9
C14—C13—C12	119.65 (17)	C17—C18—H18B	108.9
C26—C11—C12	122.03 (17)	H18A—C18—H18B	107.7
C10—C11—C26	118.15 (18)	С8—С9—Н9	120.0
C10-C11-C12	119.61 (18)	С10—С9—С8	119.99 (19)
O4—C32—C33	107.29 (15)	С10—С9—Н9	120.0
O4—C32—H32A	110.3	С30—С31—Н31	180.0
O4—C32—H32B	110.3	C11—C10—H10	119.7
С33—С32—Н32А	110.3	C9—C10—C11	120.69 (19)
С33—С32—Н32В	110.3	С9—С10—Н10	119.7
O1—C25—C5—C4	-175.79 (17)	C27—C13—C12—C11	-70.9 (2)
O1—C25—C5—C6	3.6 (3)	C27—C13—C14—C15	-0.6 (3)
O4—C28—C19—C20	178.82 (16)	C27—C17—C18—C19	80.0 (2)
O4—C28—C19—C18	-2.5 (3)	C19—C20—C21—C22	2.9 (3)
O2—C26—C7—C6	-1.5 (3)	C16—C17—C18—C19	-100.8 (2)
O2—C26—C7—C8	-177.89 (16)	C13—C27—C17—C16	1.5 (3)
O2—C26—C11—C12	3.5 (3)	C13—C27—C17—C18	-179.27 (17)
O2-C26-C11-C10	178.24 (16)	C13—C14—C15—Br3	167.1 (6)
O3—C27—C13—C12	-1.7 (3)	C13—C14—C15—C16	0.8 (3)
O3—C27—C13—C14	178.42 (17)	C13—C14—C15—Br2	-176.50 (15)
O3—C27—C17—C16	-177.58 (16)	C11—C26—C7—C6	172.93 (17)
O3—C27—C17—C18	1.6 (3)	C11—C26—C7—C8	-3.5 (3)
C1—C25—C5—C4	2.0 (3)	C32—O4—C28—C23	89.9 (2)
C1—C25—C5—C6	-178.60 (18)	C32—O4—C28—C19	-93.1 (2)
C1-C2-C3-Br1	-178.64 (14)	C22—C23—C28—O4	-178.14 (16)
C1—C2—C3—C4	0.6 (3)	C22—C23—C28—C19	5.0 (3)
C25—C1—C2—C3	1.2 (3)	C22—C23—C24—C1	-86.3 (2)
C25—C1—C24—C23	-68.5 (2)	C6—C5—C4—C3	-179.61 (18)
C25—C5—C4—C3	-0.2(3)	C6—C7—C8—C9	-175.93 (18)

C25—C5—C6—C7	72.9 (2)	C12—C13—C14—C15	179.61 (18)
C2-C1-C25-O1	175.13 (17)	C12—C11—C10—C9	173.74 (18)
C2—C1—C25—C5	-2.4 (3)	C8—C7—C6—C5	64.4 (2)
C2-C1-C24-C23	115.69 (19)	C8—C9—C10—C11	-1.7 (3)
C23—C28—C19—C20	-4.4 (3)	C24—C1—C25—O1	-0.8 (3)
C23—C28—C19—C18	174.25 (17)	C24—C1—C25—C5	-178.33 (18)
C23—C22—C21—C20	-2.2 (3)	C24—C1—C2—C3	177.25 (17)
C26—O2—C29—C30	74.3 (2)	C24—C23—C28—O4	2.7 (3)
C26—C7—C6—C5	-111.9 (2)	C24—C23—C28—C19	-174.19 (17)
C26—C7—C8—C9	0.5 (3)	C24—C23—C22—C21	177.62 (17)
C26—C11—C12—C13	101.7 (2)	C29—O2—C26—C7	-105.57 (19)
C26—C11—C10—C9	-1.1 (3)	C29—O2—C26—C11	79.8 (2)
C5-C4-C3-Br1	178.16 (15)	C21—C20—C19—C28	0.3 (3)
C5—C4—C3—C2	-1.1 (3)	C21—C20—C19—C18	-178.34 (17)
C28—O4—C32—C33	-170.24 (16)	C14—C13—C12—C11	108.9 (2)
C28—C23—C22—C21	-1.6 (3)	C15—C16—C17—C27	-1.3 (3)
C28—C23—C24—C1	92.9 (2)	C15—C16—C17—C18	179.50 (18)
C28—C19—C18—C17	-104.1 (2)	C17—C27—C13—C12	179.24 (17)
C4—C5—C6—C7	-107.7 (2)	C17—C27—C13—C14	-0.6 (3)
C20-C19-C18-C17	74.5 (2)	C17—C16—C15—Br3	-163.2 (8)
C7—C26—C11—C12	-170.94 (17)	C17—C16—C15—C14	0.2 (3)
C7—C26—C11—C10	3.8 (3)	C17—C16—C15—Br2	177.39 (15)
C7—C8—C9—C10	2.0 (3)	C10-C11-C12-C13	-72.9 (2)

Hydrogen-bond geometry (Å, °)

Crystal data

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
01—H1…O4	0.84	1.81	2.6270 (18)	165
O3—H3…O2	0.84	2.02	2.8207 (18)	160

5,17-Dibromo-26,28-dipropoxy-25,27-dipropynyloxycalix[4]arene (2)

$\begin{array}{l} C_{40}H_{38}Br_{2}O_{4} \\ M_{r} = 742.52 \\ \text{Orthorhombic, } Pbcn \\ a = 18.1223 \ (7) \text{ Å} \\ b = 9.9840 \ (4) \text{ Å} \\ c = 18.2863 \ (7) \text{ Å} \\ V = 3308.6 \ (2) \text{ Å}^{3} \\ Z = 4 \\ F(000) = 1520 \end{array}$	$D_x = 1.491 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9929 reflections $\theta = 2.3-31.5^{\circ}$ $\mu = 2.49 \text{ mm}^{-1}$ T = 100 K Block, colourless $0.35 \times 0.25 \times 0.22 \text{ mm}$
Data collection	
Bruker D8 Venture diffractometer	Absorption correction: multi-scan (<i>SADABS</i> ; Krause <i>et al.</i> , 2015)
Radiation source: microfocus sealed X-ray tube, Incoatec I μ S microsource	$T_{\min} = 0.545, T_{\max} = 0.746$ 55960 measured reflections
Focusing mirrors monochromator	5529 independent reflections
Detector resolution: 10.4 pixels mm ⁻¹	4481 reflections with $I > 2\sigma(I)$
ω–scan	$R_{\rm int} = 0.060$

$\theta_{\rm max} = 31.5^{\circ}, \theta_{\rm min} = 2.2^{\circ}$	$k = -14 \rightarrow 14$
$h = -26 \rightarrow 26$	$l = -26 \rightarrow 26$
Refinement	
Refinement on F^2	Primary atom site location: dual
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Only H-atom coordinates refined
$wR(F^2) = 0.069$	$w = 1/[\sigma^2(F_o^2) + (0.0275P)^2 + 1.7553P]$
S = 1.04	where $P = (F_0^2 + 2F_c^2)/3$
5529 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
283 parameters	$\Delta ho_{ m max} = 0.42 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.58375 (2)	0.73040 (2)	0.32024 (2)	0.01950 (5)
01	0.63861 (5)	0.13925 (9)	0.35764 (5)	0.01210 (18)
O2	0.40187 (5)	0.38259 (9)	0.37445 (5)	0.01229 (19)
C1	0.57053 (7)	0.33574 (14)	0.39089 (7)	0.0121 (2)
C2	0.55903 (7)	0.47314 (14)	0.38265 (8)	0.0132 (2)
H2	0.5264 (10)	0.5205 (18)	0.4150 (10)	0.022 (5)*
C3	0.59636 (7)	0.54202 (14)	0.32816 (8)	0.0139 (3)
C4	0.64115 (7)	0.47686 (13)	0.27830 (7)	0.0130 (2)
H4	0.6605 (9)	0.5244 (16)	0.2376 (9)	0.014 (4)*
C5	0.65355 (7)	0.33956 (13)	0.28585 (7)	0.0113 (2)
C6	0.62149 (7)	0.27266 (13)	0.34495 (7)	0.0113 (2)
C7	0.52365 (8)	0.25329 (14)	0.44288 (8)	0.0131 (2)
H7A	0.5539 (10)	0.1879 (17)	0.4687 (9)	0.011 (4)*
H7B	0.4995 (10)	0.3097 (18)	0.4804 (9)	0.017 (4)*
C8	0.46578 (7)	0.17719 (14)	0.39939 (7)	0.0118 (2)
C9	0.47238 (8)	0.03988 (14)	0.38663 (8)	0.0148 (3)
H9	0.5125 (10)	-0.0059 (17)	0.4081 (9)	0.018 (4)*
C10	0.42317 (8)	-0.02671 (15)	0.34115 (8)	0.0157 (3)
H10	0.4300 (10)	-0.116 (2)	0.3325 (10)	0.019 (5)*
C11	0.36687 (8)	0.04353 (14)	0.30659 (8)	0.0141 (3)
H11	0.3354 (10)	0.0006 (18)	0.2722 (10)	0.020 (4)*
C12	0.35870 (7)	0.18099 (14)	0.31759 (7)	0.0122 (2)
C13	0.40748 (7)	0.24448 (13)	0.36548 (7)	0.0112 (2)
C14	0.69566 (7)	0.26270 (14)	0.22740 (8)	0.0126 (2)
H14A	0.7316 (10)	0.2045 (18)	0.2481 (10)	0.019 (5)*
C15	0.70695 (8)	0.12828 (14)	0.39858 (8)	0.0139 (3)
H15A	0.7029 (9)	0.1811 (17)	0.4442 (9)	0.012 (4)*
H15B	0.7467 (10)	0.1659 (17)	0.3699 (9)	0.014 (4)*

C16	0.72114 (8)	-0.01789 (14)	0.41520 (8)	0.0136 (3)
H16A	0.7153 (9)	-0.0676 (17)	0.3706 (10)	0.015 (4)*
H16B	0.7734 (11)	-0.0273 (18)	0.4308 (10)	0.022 (5)*
C17	0.67134 (9)	-0.07477 (16)	0.47447 (8)	0.0182 (3)
H17A	0.6817 (11)	-0.169 (2)	0.4837 (10)	0.027 (5)*
H17B	0.6797 (12)	-0.027(2)	0.5232 (12)	0.037 (6)*
H17C	0.6186 (11)	-0.0630 (19)	0.4634 (10)	0.027 (5)*
C18	0.35282 (8)	0.42342 (14)	0.43170 (8)	0.0148 (3)
H18A	0.3726 (10)	0.4016 (17)	0.4800 (10)	0.016 (4)*
H18B	0.3044 (10)	0.3780 (17)	0.4257 (9)	0.016 (4)*
C19	0.34403 (8)	0.56881 (15)	0.42539 (8)	0.0167 (3)
C20	0.33838 (9)	0.68613 (16)	0.41828 (9)	0.0227 (3)
H14B	0.7229 (11)	0.324 (2)	0.1945 (11)	0.034*
H20	0.3365 (13)	0.776 (2)	0.4114 (12)	0.041 (6)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Br1	0.02093 (8)	0.00958 (7)	0.02800 (9)	0.00170 (5)	-0.00372 (6)	-0.00016 (5)
O1	0.0104 (4)	0.0103 (4)	0.0157 (5)	0.0006 (3)	-0.0024 (4)	0.0012 (4)
O2	0.0125 (4)	0.0102 (4)	0.0142 (4)	0.0004 (3)	0.0032 (4)	-0.0016 (3)
C1	0.0094 (6)	0.0146 (6)	0.0124 (6)	-0.0005 (5)	-0.0023 (4)	-0.0006 (5)
C2	0.0112 (5)	0.0140 (6)	0.0146 (6)	0.0003 (5)	-0.0015 (5)	-0.0035 (5)
C3	0.0133 (6)	0.0098 (6)	0.0185 (7)	-0.0008(4)	-0.0052 (5)	-0.0012 (5)
C4	0.0128 (6)	0.0124 (6)	0.0136 (6)	-0.0020(5)	-0.0024(5)	0.0014 (5)
C5	0.0092 (5)	0.0127 (6)	0.0121 (6)	-0.0005 (4)	-0.0021 (4)	-0.0008 (5)
C6	0.0099 (5)	0.0104 (6)	0.0136 (6)	-0.0005 (5)	-0.0027 (5)	0.0002 (5)
C7	0.0119 (6)	0.0148 (6)	0.0125 (6)	0.0001 (5)	0.0004 (5)	0.0011 (5)
C8	0.0107 (5)	0.0140 (6)	0.0107 (6)	-0.0004(5)	0.0025 (5)	0.0007 (5)
C9	0.0131 (6)	0.0146 (6)	0.0167 (6)	0.0023 (5)	0.0017 (5)	0.0030 (5)
C10	0.0166 (6)	0.0115 (6)	0.0188 (7)	0.0002 (5)	0.0041 (5)	0.0006 (5)
C11	0.0136 (6)	0.0135 (6)	0.0152 (6)	-0.0015 (5)	0.0007 (5)	-0.0004 (5)
C12	0.0113 (6)	0.0129 (6)	0.0125 (6)	-0.0006(5)	0.0020 (5)	0.0015 (5)
C13	0.0115 (6)	0.0111 (6)	0.0111 (6)	-0.0005 (4)	0.0033 (4)	0.0007 (4)
C14	0.0098 (6)	0.0143 (6)	0.0138 (6)	0.0007 (5)	-0.0002(5)	0.0004 (5)
C15	0.0115 (6)	0.0144 (6)	0.0157 (6)	0.0003 (5)	-0.0028 (5)	0.0018 (5)
C16	0.0124 (6)	0.0137 (6)	0.0148 (6)	0.0028 (5)	0.0017 (5)	0.0030 (5)
C17	0.0169 (7)	0.0198 (7)	0.0181 (7)	0.0017 (6)	0.0015 (5)	0.0065 (6)
C18	0.0165 (6)	0.0138 (6)	0.0141 (6)	0.0004 (5)	0.0044 (5)	-0.0019 (5)
C19	0.0151 (6)	0.0194 (7)	0.0156 (6)	0.0006 (5)	0.0029 (5)	-0.0023 (5)
C20	0.0268 (8)	0.0173 (7)	0.0240 (8)	0.0014 (6)	0.0063 (6)	-0.0012 (6)

Geometric parameters (Å, °)

Br1—C3	1.9002 (14)	C10—H10	0.91 (2)
O1—C6	1.3872 (16)	C10—C11	1.390 (2)
O1—C15	1.4513 (16)	C11—H11	0.950 (18)
O2—C13	1.3923 (15)	C11—C12	1.3949 (19)

O2—C18	1.4325 (16)	C12—C13	1.3966 (19)
C1—C2	1.3957 (19)	C12C14 ⁱ	1.5209 (19)
C1—C6	1.3982 (18)	C14—H14A	0.952 (18)
C1—C7	1.5176 (19)	C14—H14B	0.99 (2)
С2—Н2	0.961 (18)	C15—H15A	0.990 (17)
C2—C3	1.387 (2)	C15—H15B	0.967 (17)
C3—C4	1.3833 (19)	C15—C16	1.5126 (19)
C4—H4	0.950 (17)	C16—H16A	0.962 (18)
C4—C5	1.3959 (18)	C16—H16B	0.992 (19)
C5—C6	1.3971 (19)	C16—C17	1.520 (2)
C5—C14	1.5211 (19)	С17—Н17А	0.97 (2)
С7—Н7А	0.974 (17)	С17—Н17В	1.02 (2)
С7—Н7В	0.990 (18)	С17—Н17С	0.98 (2)
C7—C8	1.5197 (19)	C18—H18A	0.978 (17)
C8—C9	1.3957 (19)	C18—H18B	0.993 (18)
C8—C13	1.3971 (18)	C18—C19	1.465 (2)
C9—H9	0.944 (18)	C19—C20	1.183 (2)
C9—C10	1 389 (2)	C20—H20	0.90(2)
	(-)		0190 (_)
C6—O1—C15	110.46 (10)	C11—C12—C13	118.02 (12)
$C_{13} - C_{2} - C_{18}$	114.41 (10)	$C_{11} - C_{12} - C_{14^{i}}$	121.23(12)
$C_{2}-C_{1}-C_{6}$	118.46 (12)	$C13-C12-C14^{i}$	120.38(12)
C2-C1-C7	121.14 (12)	02-C13-C8	118.64 (12)
C6—C1—C7	120.12(12)	02-C13-C12	118.50(12)
C1—C2—H2	120.6 (11)	C12-C13-C8	122.59 (12)
C_{3} — C_{2} — C_{1}	119.48 (13)	C5-C14-H14A	111.9 (11)
C3—C2—H2	119.9 (11)	C5-C14-H14B	111.3 (13)
C2-C3-Br1	119.14 (10)	$C12^{i}$ — $C14$ — $C5$	109.01 (11)
C4—C3—Br1	119.07 (11)	C12 ⁱ —C14—H14A	109.3 (11)
C4—C3—C2	121.77 (13)	C12 ⁱ —C14—H14B	109.0 (12)
C3—C4—H4	119.9 (10)	H14A—C14—H14B	106.2 (16)
C3—C4—C5	119.42 (13)	01—C15—H15A	109.4 (10)
C5—C4—H4	120.6 (10)	01—C15—H15B	109.1 (10)
C4—C5—C6	118.62 (12)	01-C15-C16	108.76 (11)
C4—C5—C14	120.45 (12)	H15A—C15—H15B	107.8 (14)
C6-C5-C14	120.73(12)	C16—C15—H15A	110.9 (10)
01-C6-C1	118.67 (12)	C16—C15—H15B	110.9 (10)
01-C6-C5	119.70 (12)	C15—C16—H16A	108.0 (10)
C5-C6-C1	121.60 (12)	C15—C16—H16B	108.1 (10)
C1—C7—H7A	110.6 (10)	C_{15} C_{16} C_{17}	113.74 (12)
C1—C7—H7B	111.9 (10)	H_{16A} $-C_{16}$ $-H_{16B}$	107.4(14)
C1-C7-C8	109 25 (11)	C17—C16—H16A	10, 10 (11)
H7A-C7-H7B	107.1 (14)	C17—C16—H16B	109.0(10)
C8-C7-H7A	107.1(11) 107.9(10)	C16—C17—H17A	109.0(10)
C8—C7—H7B	110.0 (10)	C16—C17—H17B	111.1(12)
C9 - C8 - C7	121.29 (12)	C16—C17—H17C	112.6 (11)
C9 - C8 - C13	117 57 (12)	H17A - C17 - H17B	105 8 (16)
$C_{13} - C_{8} - C_{7}$	120.91 (12)	H17A - C17 - H17C	109.8 (16)
	120.71 (12)		107.0 (10)

С8—С9—Н9	118.1 (11)	H17B—C17—H17C	105.5 (16)
C10—C9—C8	121.02 (13)	O2—C18—H18A	111.7 (10)
С10—С9—Н9	120.8 (11)	O2—C18—H18B	109.8 (10)
С9—С10—Н10	118.9 (12)	O2—C18—C19	106.97 (11)
C9—C10—C11	120.13 (13)	H18A—C18—H18B	108.7 (14)
C11—C10—H10	120.8 (12)	C19—C18—H18A	109.4 (10)
C10-C11-H11	120.9 (11)	C19—C18—H18B	110.3 (10)
C10-C11-C12	120.58 (13)	C20—C19—C18	177.81 (16)
C12—C11—H11	118.4 (11)	С19—С20—Н20	176.8 (15)
Br1—C3—C4—C5	176.93 (10)	C7—C8—C9—C10	-173.85 (13)
O1—C15—C16—C17	-73.91 (15)	C7—C8—C13—O2	-2.26 (18)
C1-C2-C3-Br1	-177.17 (10)	C7—C8—C13—C12	171.66 (12)
C1—C2—C3—C4	4.4 (2)	C8—C9—C10—C11	1.0 (2)
C1—C7—C8—C9	105.00 (14)	C9—C8—C13—O2	-176.87 (12)
C1—C7—C8—C13	-69.41 (16)	C9—C8—C13—C12	-2.95 (19)
C2-C1-C6-O1	173.62 (12)	C9—C10—C11—C12	-0.6 (2)
C2-C1-C6-C5	-8.25 (19)	C10-C11-C12-C13	-1.5 (2)
C2—C1—C7—C8	101.52 (14)	C10-C11-C12-C14 ⁱ	171.60 (13)
C2—C3—C4—C5	-4.7 (2)	C11—C12—C13—O2	177.27 (11)
C3—C4—C5—C6	-1.51 (19)	C11—C12—C13—C8	3.34 (19)
C3—C4—C5—C14	173.39 (12)	C13—O2—C18—C19	-170.66 (11)
C4—C5—C6—O1	-173.87 (11)	C13—C8—C9—C10	0.7 (2)
C4—C5—C6—C1	8.02 (19)	C14—C5—C6—O1	11.25 (19)
C4C5C14C12 ⁱ	-104.49 (14)	C14—C5—C6—C1	-166.87 (12)
C6-01-C15-C16	176.59 (11)	C14 ⁱ —C12—C13—O2	4.09 (18)
C6-C1-C2-C3	1.98 (19)	C14 ⁱ —C12—C13—C8	-169.84 (12)
C6—C1—C7—C8	-72.24 (15)	C15—O1—C6—C1	-98.40 (14)
C6-C5-C14-C12 ⁱ	70.31 (16)	C15—O1—C6—C5	83.44 (15)
C7—C1—C2—C3	-171.87 (12)	C18—O2—C13—C8	-96.01 (14)
C7—C1—C6—O1	-12.46 (18)	C18—O2—C13—C12	89.82 (14)
C7—C1—C6—C5	165.67 (12)		

Symmetry code: (i) -x+1, y, -z+1/2.

25,27-Bis(2-azidoethoxy)-5,17-dibromo-26,28-dihydroxycalix[4]arene (3)

Crystal data

 $C_{32}H_{28}Br_2N_6O_4$ $M_r = 720.42$ Trigonal, R3 a = 36.3261 (7) Å c = 12.1054 (4) Å $V = 13834.0 (7) \text{ Å}^3$ Z = 18F(000) = 6552 $D_x = 1.557 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9927 reflections $\theta = 2.2-28.3^{\circ}$ $\mu = 2.69 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.37 \times 0.13 \times 0.1 \text{ mm}$ Data collection

Bruker D8 Venture diffractometer Radiation source: microfocus sealed X-ray tube, Incoatec I μ S microsource Focusing mirrors monochromator Detector resolution: 10.4 pixels mm ⁻¹ ω -scan Absorption correction: multi-scan (<i>SADABS</i> ; Krause <i>et al.</i> , 2015)	$T_{\min} = 0.516, T_{\max} = 0.746$ 45251 measured reflections 7804 independent reflections 6043 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.047$ $\theta_{\text{max}} = 28.5^{\circ}, \theta_{\text{min}} = 1.8^{\circ}$ $h = -47 \rightarrow 48$ $k = -48 \rightarrow 48$ $l = -16 \rightarrow 16$
Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.097$ S = 1.03 7804 reflections 399 parameters	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0383P)^2 + 55.0341P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 1.30$ e Å ⁻³
24 restraints	$\Delta \rho_{\rm min} = -1.12 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Br2	0.77808 (2)	0.64422 (2)	0.11845 (2)	0.02592 (8)
Br1	0.94747 (2)	0.64087 (2)	1.04746 (3)	0.03614 (9)
O4	0.73344 (6)	0.53322 (6)	0.69360 (15)	0.0235 (4)
O3	0.76702 (7)	0.53195 (7)	0.49646 (16)	0.0304 (5)
Н3	0.754079	0.534255	0.551158	0.046*
01	0.81215 (6)	0.53626 (7)	0.71561 (16)	0.0296 (4)
H1	0.821251	0.526224	0.667258	0.044*
O2	0.82909 (7)	0.50491 (6)	0.52611 (17)	0.0317 (5)
C16	0.75008 (8)	0.60698 (9)	0.3311 (2)	0.0237 (5)
H16	0.735357	0.622450	0.332302	0.028*
C15	0.77434 (8)	0.60962 (9)	0.2407 (2)	0.0233 (5)
C3	0.90557 (9)	0.61047 (9)	0.9377 (2)	0.0260 (6)
C2	0.86500 (9)	0.60483 (9)	0.9485 (2)	0.0241 (5)
H2	0.858609	0.617607	1.008329	0.029*
C24	0.78870 (8)	0.57243 (9)	0.8817 (2)	0.0231 (5)
H24A	0.784545	0.580534	0.956822	0.028*
H24B	0.768569	0.541658	0.872265	0.028*
C10	0.89056 (9)	0.60072 (9)	0.3603 (2)	0.0274 (6)
H10	0.889258	0.612151	0.290757	0.033*
C20	0.76455 (9)	0.64427 (10)	0.6366 (2)	0.0296 (6)
H20	0.760226	0.660610	0.582331	0.036*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C17	0.74717 (8)	0.58147 (9)	0.4209 (2)	0.0241 (5)
C11	0.85771 (9)	0.56095 (9)	0.3911 (2)	0.0255 (6)
C14	0.79580 (8)	0.58721 (9)	0.2352 (2)	0.0238 (5)
H14	0.812203	0.589504	0.171789	0.029*
C19	0.74568 (9)	0.60024 (9)	0.6231 (2)	0.0257 (6)
C25	0.84464 (9)	0.56262 (9)	0.7832 (2)	0.0248 (6)
C28	0.75217 (8)	0.57733 (9)	0.7062 (2)	0.0226 (5)
C13	0.79333 (8)	0.56136 (9)	0.3226 (2)	0.0241 (5)
C8	0.92731 (9)	0.60764 (10)	0.5302 (2)	0.0308 (6)
H8	0.950790	0.624029	0.577501	0.037*
C1	0.83381 (9)	0.58053 (9)	0.8717(2)	0.0231 (5)
C5	0.88617(9)	0.56989 (9)	0.7704(2)	0.0277(6)
C23	0.77852(8)	0.59706 (9)	0.7970(2)	0.0277(5)
C22	0.79695 (9)	0.64103(9)	0.8067(2)	0.0227(6)
H22	0.814878	0.655309	0.867784	0.033*
C21	0.78926 (10)	0.65330)	0.007704 0.7275(2)	0.0304 (6)
H21	0.801203	0.603985	0.7273 (2)	0.0304 (0)
C7	0.80577 (0)	0.075765	0.750510	0.037
C/	0.89377(9) 0.01627(0)	0.50770(10)	0.5055(2) 0.8403(2)	0.0277(0)
U4 U4	0.91027(9)	0.59509 (10)	0.8495(2)	0.0290 (0)
П 4 С26	0.944407	0.598510 0.54477(0)	0.642044 0.4021(2)	0.030°
C20	0.80100(9)	0.54477(9)	0.4921(2)	0.0201(0)
C27	0.70895(9)	0.55855(9)	0.4131(2)	0.0248(0)
	0.72006 (9)	0.57839 (10)	0.5199 (2)	0.0287 (6)
HIðA	0.700519	0.548016	0.536836	0.034*
HI8B	0.702496	0.591249	0.500219	0.034*
C31	0.69060 (9)	0.50925 (10)	0.7339 (2)	0.0309 (6)
H31A	0.674011	0.522648	0.709611	0.037*
H31B	0.690578	0.508623	0.815710	0.037*
C9	0.92504 (9)	0.62399 (10)	0.4281 (3)	0.0316 (6)
H9	0.947183	0.651128	0.405307	0.038*
N4	0.66469 (11)	0.46548 (11)	0.5687 (3)	0.0530 (8)
C6	0.89773 (11)	0.55028 (11)	0.6759 (2)	0.0337 (7)
H6A	0.878111	0.519168	0.676259	0.040*
H6B	0.926863	0.555358	0.687975	0.040*
C12	0.81799 (9)	0.53781 (10)	0.3211 (2)	0.0293 (6)
H12A	0.799872	0.508657	0.350041	0.035*
H12B	0.825950	0.535615	0.244215	0.035*
C32	0.67100 (10)	0.46485 (11)	0.6891 (3)	0.0393 (7)
H32A	0.689825	0.453040	0.704496	0.047*
H32B	0.643333	0.446505	0.725666	0.047*
C29	0.83526 (12)	0.47048 (10)	0.4902 (3)	0.0410 (8)
H29A	0.860714	0.472574	0.526160	0.049*
H29B	0.839456	0.471768	0.409152	0.049*
N5	0.68006 (13)	0.44967 (14)	0.5103 (3)	0.0736 (11)
C30	0.79672 (14)	0.42988 (11)	0.5213 (4)	0.0551 (10)
H30A	0.797717	0.405718	0.486638	0.066*
H30B	0.770974	0.429853	0.494378	0.066*
N6	0.69206 (17)	0.43548 (18)	0.4454 (4)	0.1068 (16)

N1	0.79469 (12)	0.42496 (12)	0.6448 (3)	0.0627 (10)	
N2	0.76567 (14)	0.42481 (14)	0.6888 (3)	0.0696 (10)	
N3	0.74014 (17)	0.42453 (19)	0.7425 (4)	0.0991 (13)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Br2	0.02212 (13)	0.02979 (15)	0.02155 (13)	0.00975 (11)	-0.00145 (10)	0.00350 (11)
Br1	0.02894 (16)	0.03163 (16)	0.04687 (19)	0.01439 (13)	-0.00821 (13)	-0.00860 (13)
04	0.0183 (9)	0.0272 (10)	0.0253 (9)	0.0116 (8)	0.0057 (7)	0.0035 (8)
O3	0.0372 (12)	0.0398 (12)	0.0249 (10)	0.0273 (10)	0.0095 (9)	0.0086 (9)
01	0.0292 (10)	0.0423 (12)	0.0267 (10)	0.0249 (10)	-0.0010 (8)	-0.0068 (9)
O2	0.0373 (11)	0.0288 (11)	0.0378 (12)	0.0233 (10)	0.0125 (9)	0.0051 (9)
C16	0.0219 (13)	0.0267 (14)	0.0244 (13)	0.0135 (11)	-0.0011 (10)	0.0006 (11)
C15	0.0197 (12)	0.0256 (13)	0.0197 (12)	0.0077 (11)	-0.0018 (10)	0.0023 (10)
C3	0.0247 (14)	0.0212 (13)	0.0298 (14)	0.0098 (11)	-0.0020 (11)	0.0003 (11)
C2	0.0282 (14)	0.0241 (13)	0.0225 (13)	0.0150 (12)	0.0035 (11)	0.0017 (10)
C24	0.0244 (13)	0.0294 (14)	0.0189 (12)	0.0160 (12)	0.0042 (10)	0.0027 (10)
C10	0.0304 (15)	0.0353 (15)	0.0268 (14)	0.0241 (13)	0.0082 (11)	0.0067 (12)
C20	0.0309 (15)	0.0396 (16)	0.0299 (15)	0.0263 (14)	0.0116 (12)	0.0124 (13)
C17	0.0216 (13)	0.0302 (14)	0.0225 (13)	0.0144 (11)	0.0015 (10)	0.0029 (11)
C11	0.0276 (14)	0.0314 (14)	0.0276 (14)	0.0223 (12)	0.0028 (11)	-0.0030 (11)
C14	0.0196 (12)	0.0277 (14)	0.0208 (12)	0.0093 (11)	0.0007 (10)	-0.0030 (11)
C19	0.0247 (13)	0.0369 (15)	0.0236 (13)	0.0215 (12)	0.0088 (11)	0.0069 (11)
C25	0.0297 (14)	0.0289 (14)	0.0213 (13)	0.0189 (12)	0.0016 (11)	0.0031 (11)
C28	0.0214 (12)	0.0284 (14)	0.0236 (13)	0.0167 (11)	0.0084 (10)	0.0041 (11)
C13	0.0224 (13)	0.0267 (14)	0.0240 (13)	0.0128 (11)	-0.0013 (10)	-0.0031 (11)
C8	0.0274 (15)	0.0386 (17)	0.0346 (16)	0.0227 (14)	-0.0008 (12)	-0.0072 (13)
C1	0.0246 (13)	0.0256 (13)	0.0238 (13)	0.0161 (11)	0.0054 (11)	0.0046 (11)
C5	0.0356 (16)	0.0351 (15)	0.0246 (13)	0.0268 (13)	0.0064 (12)	0.0052 (12)
C23	0.0223 (13)	0.0302 (14)	0.0214 (12)	0.0174 (11)	0.0077 (10)	0.0045 (11)
C22	0.0284 (14)	0.0332 (15)	0.0257 (14)	0.0192 (13)	0.0083 (11)	0.0015 (11)
C21	0.0341 (16)	0.0288 (15)	0.0352 (16)	0.0208 (13)	0.0124 (13)	0.0047 (12)
C7	0.0306 (15)	0.0393 (16)	0.0278 (14)	0.0283 (14)	0.0034 (11)	-0.0011 (12)
C4	0.0257 (14)	0.0385 (16)	0.0307 (15)	0.0205 (13)	0.0059 (12)	0.0066 (13)
C26	0.0299 (14)	0.0278 (14)	0.0292 (14)	0.0209 (12)	0.0084 (11)	0.0024 (11)
C27	0.0229 (13)	0.0281 (14)	0.0244 (13)	0.0134 (11)	0.0006 (10)	0.0033 (11)
C18	0.0239 (14)	0.0434 (17)	0.0262 (14)	0.0224 (13)	0.0051 (11)	0.0097 (12)
C31	0.0204 (13)	0.0369 (16)	0.0323 (15)	0.0118 (12)	0.0079 (11)	0.0106 (13)
C9	0.0260 (14)	0.0332 (16)	0.0408 (17)	0.0188 (13)	0.0081 (13)	0.0022 (13)
N4	0.0470 (18)	0.0516 (19)	0.0449 (18)	0.0130 (15)	-0.0156 (15)	-0.0026 (15)
C6	0.0432 (18)	0.0516 (19)	0.0262 (15)	0.0386 (16)	0.0029 (13)	0.0018 (13)
C12	0.0338 (15)	0.0337 (15)	0.0267 (14)	0.0215 (13)	0.0005 (12)	-0.0049 (12)
C32	0.0264 (15)	0.0382 (18)	0.0444 (19)	0.0094 (14)	-0.0015 (14)	0.0092 (15)
C29	0.055 (2)	0.0330 (17)	0.0484 (19)	0.0324 (17)	0.0147 (16)	0.0051 (14)
N5	0.066 (2)	0.071 (2)	0.059 (2)	0.0148 (19)	-0.0020 (19)	-0.0098 (19)
C30	0.067 (3)	0.0323 (18)	0.072 (3)	0.0296 (19)	0.008 (2)	0.0039 (18)
N6	0.103 (3)	0.106 (3)	0.080 (3)	0.029 (3)	0.016 (3)	-0.020 (3)

N1	0.066 (2)	0.063 (2)	0.074 (2)	0.0436 (19)	0.0163 (19)	0.0304 (19)
N2	0.075 (2)	0.096 (3)	0.063 (2)	0.063 (2)	-0.0062 (19)	-0.004 (2)
N3	0.098 (3)	0.151 (4)	0.074 (3)	0.082 (3)	-0.008 (2)	-0.011 (3)

Geometric parameters	(Å,	9	
----------------------	-----	---	--

Br2—C15	1.902 (3)	C28—C23	1.397 (4)	
Br1—C3	1.903 (3)	C13—C27	1.400 (4)	
O4—C28	1.401 (3)	C13—C12	1.517 (4)	
O4—C31	1.436 (3)	C8—H8	0.9500	
O3—H3	0.8400	C8—C7	1.383 (4)	
O3—C27	1.356 (3)	C8—C9	1.391 (4)	
01—H1	0.8400	C5—C4	1.382 (4)	
O1—C25	1.360 (3)	C5—C6	1.514 (4)	
O2—C26	1.397 (3)	C23—C22	1.394 (4)	
O2—C29	1.444 (3)	C22—H22	0.9500	
С16—Н16	0.9500	C22—C21	1.392 (4)	
C16—C15	1.377 (4)	C21—H21	0.9500	
C16—C17	1.399 (4)	C7—C26	1.394 (4)	
C15—C14	1.382 (4)	C7—C6	1.519 (4)	
C3—C2	1.389 (4)	C4—H4	0.9500	
C3—C4	1.380 (4)	C18—H18A	0.9900	
С2—Н2	0.9500	C18—H18B	0.9900	
C2—C1	1.388 (4)	C31—H31A	0.9900	
C24—H24A	0.9900	C31—H31B	0.9900	
C24—H24B	0.9900	C31—C32	1.501 (5)	
C24—C1	1.518 (4)	С9—Н9	0.9500	
C24—C23	1.523 (4)	N4—C32	1.477 (4)	
C10—H10	0.9500	N4—N5	1.209 (5)	
C10-C11	1.388 (4)	C6—H6A	0.9900	
C10—C9	1.378 (4)	C6—H6B	0.9900	
С20—Н20	0.9500	C12—H12A	0.9900	
C20—C19	1.400 (4)	C12—H12B	0.9900	
C20—C21	1.374 (4)	C32—H32A	0.9900	
C17—C27	1.408 (4)	С32—Н32В	0.9900	
C17—C18	1.519 (4)	C29—H29A	0.9900	
C11—C26	1.394 (4)	C29—H29B	0.9900	
C11—C12	1.515 (4)	C29—C30	1.488 (5)	
C14—H14	0.9500	N5—N6	1.139 (6)	
C14—C13	1.387 (4)	С30—Н30А	0.9900	
C19—C28	1.399 (4)	С30—Н30В	0.9900	
C19—C18	1.522 (4)	C30—N1	1.502 (5)	
C25—C1	1.408 (4)	N1—N2	1.179 (5)	
C25—C5	1.404 (4)	N2—N3	1.128 (6)	
C28—O4—C31	114.6 (2)	C20—C21—C22	120.6 (3)	
С27—О3—Н3	109.5	C20—C21—H21	119.7	
С25—01—Н1	109.5	C22—C21—H21	119.7	

C26—O2—C29	113.0 (2)	C8—C7—C26	118.0 (3)
С15—С16—Н16	120.1	C8—C7—C6	120.8 (3)
C15—C16—C17	119.8 (2)	C26—C7—C6	121.2 (3)
C17—C16—H16	120.1	C3—C4—C5	120.2 (3)
C16—C15—Br2	119.7 (2)	C3—C4—H4	119.9
C16—C15—C14	121.8 (2)	С5—С4—Н4	119.9
C14—C15—Br2	118.5 (2)	C11—C26—O2	118.9 (3)
C2—C3—Br1	120.1 (2)	C7—C26—O2	118.5 (3)
C4—C3—Br1	118.5 (2)	C7—C26—C11	122.6 (3)
C4—C3—C2	121.3 (3)	O3—C27—C17	122.8 (2)
С3—С2—Н2	120.0	O3—C27—C13	116.0 (2)
C1—C2—C3	120.0 (3)	C13—C27—C17	121.2 (2)
C1—C2—H2	120.0	C17—C18—C19	113.8 (2)
H24A—C24—H24B	107.8	C17—C18—H18A	108.8
C1—C24—H24A	109.0	C17—C18—H18B	108.8
C1—C24—H24B	109.0	C19—C18—H18A	108.8
C1—C24—C23	112.8 (2)	C19—C18—H18B	108.8
C23—C24—H24A	109.0	H18A—C18—H18B	107.7
C23—C24—H24B	109.0	O4—C31—H31A	110.0
C11—C10—H10	119.2	O4—C31—H31B	110.0
С9—С10—Н10	119.2	O4—C31—C32	108.4 (2)
C9—C10—C11	121.5 (3)	H31A—C31—H31B	108.4
С19—С20—Н20	119.6	С32—С31—Н31А	110.0
C21—C20—H20	119.6	С32—С31—Н31В	110.0
C21—C20—C19	120.8 (3)	С10—С9—С8	119.8 (3)
C16—C17—C27	118.3 (2)	С10—С9—Н9	120.1
C16—C17—C18	119.6 (2)	С8—С9—Н9	120.1
C27—C17—C18	122.1 (2)	N5—N4—C32	117.2 (4)
C10—C11—C26	117.3 (3)	C5—C6—C7	113.5 (2)
C10-C11-C12	120.8 (3)	С5—С6—Н6А	108.9
C26—C11—C12	121.8 (3)	С5—С6—Н6В	108.9
C15—C14—H14	120.1	С7—С6—Н6А	108.9
C15—C14—C13	119.9 (2)	С7—С6—Н6В	108.9
C13—C14—H14	120.1	H6A—C6—H6B	107.7
C20—C19—C18	120.9 (2)	C11—C12—C13	110.4 (2)
C28—C19—C20	117.6 (3)	C11—C12—H12A	109.6
C28—C19—C18	121.4 (3)	C11—C12—H12B	109.6
O1—C25—C1	116.0 (2)	C13—C12—H12A	109.6
O1—C25—C5	122.6 (2)	C13—C12—H12B	109.6
C5—C25—C1	121.3 (3)	H12A—C12—H12B	108.1
C19—C28—O4	118.2 (2)	C31—C32—H32A	109.8
C23—C28—O4	119.3 (2)	C31—C32—H32B	109.8
C23—C28—C19	122.4 (3)	N4—C32—C31	109.5 (3)
C14—C13—C27	118.9 (2)	N4—C32—H32A	109.8
C14—C13—C12	121.1 (2)	N4—C32—H32B	109.8
C27—C13—C12	119.9 (2)	H32A—C32—H32B	108.2
С7—С8—Н8	119.6	O2—C29—H29A	110.1
C7—C8—C9	120.7 (3)	O2—C29—H29B	110.1

С9—С8—Н8	119.6	O2—C29—C30	107.8 (3)
C2—C1—C24	121.9 (2)	H29A—C29—H29B	108.5
C2—C1—C25	118.4 (2)	С30—С29—Н29А	110.1
C25—C1—C24	119.7 (2)	С30—С29—Н29В	110.1
C25—C5—C6	121.3 (3)	N6—N5—N4	172.0 (6)
C4—C5—C25	118.8 (3)	С29—С30—Н30А	109.7
C4—C5—C6	119.8 (3)	С29—С30—Н30В	109.7
C28—C23—C24	122.3 (2)	C29—C30—N1	109.6 (3)
C22—C23—C24	119.8 (3)	H30A—C30—H30B	108.2
C22—C23—C28	117.9 (2)	N1—C30—H30A	109.7
С23—С22—Н22	119.8	N1—C30—H30B	109.7
C21—C22—C23	120.5 (3)	N2—N1—C30	116.2 (4)
C21—C22—H22	119.8	N3—N2—N1	171.8 (5)
Br2-C15-C14-C13	-179.3 (2)	C8—C7—C26—O2	-178.4 (2)
Br1-C3-C2-C1	-176.2 (2)	C8—C7—C26—C11	-2.0 (4)
Br1—C3—C4—C5	177.3 (2)	C8—C7—C6—C5	75.5 (4)
O4—C28—C23—C24	1.7 (4)	C1—C24—C23—C28	106.9 (3)
O4—C28—C23—C22	179.5 (2)	C1—C24—C23—C22	-70.9 (3)
O4—C31—C32—N4	-69.0 (3)	C1—C25—C5—C4	2.7 (4)
O1—C25—C1—C2	174.8 (2)	C1—C25—C5—C6	179.4 (3)
O1—C25—C1—C24	-4.4 (4)	C5—C25—C1—C2	-1.7 (4)
O1—C25—C5—C4	-173.5 (3)	C5-C25-C1-C24	179.1 (2)
O1—C25—C5—C6	3.1 (4)	C23—C24—C1—C2	107.3 (3)
O2-C29-C30-N1	-69.2 (4)	C23—C24—C1—C25	-73.5 (3)
C16—C15—C14—C13	-0.3 (4)	C23—C22—C21—C20	-2.2 (4)
C16—C17—C27—O3	-177.9 (3)	C21—C20—C19—C28	1.3 (4)
C16—C17—C27—C13	0.7 (4)	C21—C20—C19—C18	-177.0 (2)
C16—C17—C18—C19	-109.8 (3)	C7—C8—C9—C10	1.5 (4)
C15—C16—C17—C27	-1.0 (4)	C4—C3—C2—C1	2.5 (4)
C15—C16—C17—C18	-179.5 (3)	C4—C5—C6—C7	-115.9 (3)
C15—C14—C13—C27	0.0 (4)	C26—O2—C29—C30	-174.4 (3)
C15—C14—C13—C12	-177.4 (2)	C26—C11—C12—C13	108.9 (3)
C3—C2—C1—C24	178.3 (2)	C26—C7—C6—C5	-102.6 (3)
C3—C2—C1—C25	-0.9 (4)	C27—C17—C18—C19	71.7 (4)
C2—C3—C4—C5	-1.5 (4)	C27—C13—C12—C11	-76.6 (3)
C24—C23—C22—C21	177.5 (2)	C18—C17—C27—O3	0.6 (4)
C10-C11-C26-O2	179.7 (2)	C18—C17—C27—C13	179.2 (3)
C10-C11-C26-C7	3.3 (4)	C18—C19—C28—O4	-1.6 (4)
C10-C11-C12-C13	-66.7 (3)	C18—C19—C28—C23	174.4 (2)
C20—C19—C28—O4	-180.0(2)	C31—O4—C28—C19	-86.8(3)
C20—C19—C28—C23	-4.0 (4)	C31—O4—C28—C23	97.1 (3)
C20-C19-C18-C17	80.6 (3)	C9—C10—C11—C26	-2.2(4)
C17—C16—C15—Br2	179.8 (2)	C9—C10—C11—C12	173.6 (2)
C17—C16—C15—C14	0.8 (4)	C9—C8—C7—C26	-0.5 (4)
C11—C10—C9—C8	-0.1 (4)	C9—C8—C7—C6	-178.6 (2)
C14—C13—C27—O3	178.5 (2)	C6—C5—C4—C3	-177.8 (3)
C14—C13—C27—C17	-0.2 (4)	C6—C7—C26—O2	-0.2 (4)

C14—C13—C12—C11	100.8 (3)	C6—C7—C26—C11	176.2 (2)
C19—C20—C21—C22	1.7 (4)	C12—C11—C26—O2	3.9 (4)
C19—C28—C23—C24	-174.3 (2)	C12—C11—C26—C7	-172.5 (2)
C19—C28—C23—C22	3.5 (4)	C12—C13—C27—O3	-4.0 (4)
C25—C5—C4—C3	-1.1 (4)	C12—C13—C27—C17	177.2 (3)
C25—C5—C6—C7	67.5 (4)	C29—O2—C26—C11	90.4 (3)
C28—O4—C31—C32	165.3 (2)	C29—O2—C26—C7	-93.0 (3)
C25—C5—C6—C7	67.5 (4)	C29—O2—C26—C11	90.4 (3)
C28—O4—C31—C32	165.3 (2)	C29—O2—C26—C7	-93.0 (3)
C28—C19—C18—C17	-97.7 (3)	C29—C30—N1—N2	115.8 (4)
C28—C23—C22—C21	-0.4 (4)	N5—N4—C32—C31	125.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
O3—H3…O4	0.84	1.87	2.691 (3)	164
O1—H1…O2	0.84	1.95	2.764 (3)	162