

Received 9 May 2024 Accepted 20 May 2024

Edited by D. R. Manke, University of Massachusetts Dartmouth, USA

Keywords: crystal structure; porphyrinoids; *meso*-phenylsecochlorins; pyrrole-modified porphyrins.

CCDC reference: 2356903

Supporting information: this article has supporting information at journals.iucr.org/e

Meenakshi Sharma,^a Christian Brückner^{a*} and Matthias Zeller^{b*}

^aDepartment of Chemistry, University of Connecticut, Unit 3060, Storrs, CT, 06269-3060, USA, and ^bDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA. *Correspondence e-mail: c.bruckner@uconn.edu, zeller4@purdue.edu

Title compound **1Ni**, $[Ni(C_{46}H_{32}N_4O_2)]$, a secochlorin nickel complex, was prepared by diol cleavage of a precursor *trans*-dihydroxydimethylchlorin. Two crystallographically independent molecules in the structure are related by pseudo-A lattice centering, with molecules differing mainly by a rotation of one of the acetyls and an adjacent phenyl groups. The two molecules have virtually identical conformations characterized by noticeable in-plane deformation in the A_{1g} mode and a prominent out-of-plane deformation in the B_{1u} (ruffling) mode. Directional interactions between molecules are scarce, limited to just a few $C-H\cdots$ O contacts, and intermolecular interactions are mostly dispersive in nature.

1. Chemical context

Chlorins are 7,8-dihydroporphyrins, *i.e.*, porphyrins reduced at one of the pyrrolic β , β' -double bonds (Borbas, 2016; Taniguchi & Lindsey, 2017; Lindsey, 2015). The chlorophylls, nature's light harvesting pigments, are magnesium complexes of chlorins (Taniguchi & Lindsey, 2017). In large part because of the role of this member of the 'pigments of life' (Battersby, 2000) in photosynthesis, chlorins are a broadly investigated compound class.

Secochlorins are compounds in which a pyrrolic β , β' -double bond was cleaved (Brückner et al., 2014; Thuita & Brückner, 2022). These compounds have no known precedent among the natural porphyrinic pigments or their degradation products (Kräutler, 2014; Wojaczyński, 2014). The handful of examples of secochlorins prepared to date were made by oxidative modifications of functionalized porphyrin or chlorin β , β' -bonds (Brückner *et al.*, 2014; Thuita & Brückner, 2022). The first secochlorin was discovered fortuitously (Chang et al., 1992). Since then, a number of rational oxidative β,β' -bond cleavage reaction sequences have been developed to prepare (metallo)secochlorins of the octaalkyl- (Adams et al., 1997; Sessler et al., 2001; Ryppa et al., 2009) and the meso-tetraarylporphyrin series (Brückner et al., 1998, 1999, 2005; McCarthy et al., 2004; Akhigbe et al., 2009; Sharma et al., 2016; Lo et al., 2012). Following a β,β' -bond-opening, subsequent intramolecular reactions of the secochlorins with the adjacent *meso*-aryl- or β -alkyl groups are not infrequent (Adams *et al.*, 1997; McCarthy et al., 2004; Ryppa et al., 2009; Banerjee et al., 2012; Zhu et al., 2022).

The title compound **1Ni**, a secochlorin nickel complex, was prepared by diol cleavage of *trans*-dihydroxychlorin **2Ni**, itself made in a multi-step process from *cis*-diol chlorin **3Ni** (Fig. 1). It has been used in the preparation of a number of

research communications

porphyrinoids containing non-pyrrolic heterocycles (Banerjee et al., 2012; Sharma et al., 2016).

Chlorin diol **3Ni** could also be cleaved, generating bisaldehyde **5Ni** (Brückner *et al.*, 1998, 1999, 2005). A comparison of the crystal structures of the dihydroxychlorins **2Ni/3Ni**

Figure 1

Synthetic pathway to secochlorin nickel(II) complexes **1Ni** and **5Ni** by oxidative diol cleavage of a precursor diol.

Figure 2 Displacement ellipsoid view of the two molecules of the structure of compound **1Ni** with atom-labeling scheme (50% probability ellipsoids). Left: molecule **1Ni-1**. Right: Molecule **1Ni-2**.

and the corresponding secochlorins **1Ni/5Ni** provides further insight into the conformational changes induced by breaking the structural integrity of the porphyrin framework (Brückner *et al.*, 2005) and the influence of β -alkylation.

2. Structural commentary

1Ni crystallized in a centrosymmetric triclinic setting in space group $P\overline{1}$, with two crystallographically independent molecules (Z' = 2) (Fig. 2). The structure of **1Ni** confirms its rare secochlorin bisketone connectivity that was previously derived spectroscopically and by means of subsequent reactions (Banerjee *et al.*, 2012; Sharma *et al.*, 2016). Bond lengths and angles are in the expected ranges. Noteworthy, however, are the C-N bonds around the cleavage site at N1, which show a clear asymmetry present in both molecules. The lengths for N1-C3 are 1.3687 (15) and 1.3661 (15) Å in the two molecules **1Ni-1** and **1Ni-2**, while the two N1-C20 bonds are substantially longer at 1.3879 (15) and 1.3997 (15) Å. For most of the other bonds of the secochlorin skeleton no such clear differentiation is observed.

The two crystallographically independent molecules of the secochlorinato nickel complex **1Ni** are related by pseudo-A lattice centering (Fig. 3). Exact translational symmetry is broken by different torsion angles for one of the acetyl groups

Figure 3

View down $[01\overline{1}]$ (slightly offset) showing the pseudo-A lattice centering relating the two molecules with each other (front: molecule **1Ni-1**; back: molecule **1Ni-2**). For clarity only selected labels for molecule 1 are shown.

Table 1		
Hydrogen-bond ge	eometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
C28_1-H28_1···O2_1	0.95	2.60	3.4517 (17)	149
C42_1-H42_1···O1_1	0.95	2.55	3.3855 (17)	147
C42_2-H42_2···O1_2	0.95	2.66	3.5120 (17)	149
$C6_1 - H6_1 \cdots O2_1^i$	0.95	2.49	3.3714 (16)	155
$C6_2 - H6_2 \cdot \cdot \cdot O2_2^{ii}$	0.95	2.57	3.3569 (17)	140
$C17_2 - H17_2 \cdot \cdot \cdot O1_2^{iii}$	0.95	2.40	3.2977 (16)	158

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 1, -y + 2, -z + 1; (iii) -x + 1, -y + 1, -z + 1.

(O1, C1, C2). In molecule 1, the N-C-C-O torsion angle between the non-pyrrolic N atom N1 and keto-oxygen O1 is $39.90 (19)^{\circ}$; in molecule 2 the same torsion angle is $-37.75 (17)^{\circ}$. The same torsion angles for the methyl C atom C1 instead of O1 are $143.45(13)^{\circ}$ (molecule 1) and $-130.33 (13)^{\circ}$ (molecule 2). The acetyl groups of the two molecules are thus rotated with respect to each other, by ca 78 and 86° for keto O and methyl C atoms, respectively. The different values for C and O atoms are caused by a slight nonplanarity of the acetyl group of molecule 1, with C1 being offset from the plane of the C3, C2 and O1 by 0.230 (5) Å. This rotation results in a significantly different $O1 \cdots O2$ distance in the two molecules: 2.7997 (17) Å in molecule 1, and 3.2286 (16) Å in molecule 2. It also places the methyl groups in the two molecules on opposite sides of their neighboring phenyl rings of C23 to C28, which in turn induces different orientations of this ring between the two molecules $[C3-C4-C23-C24 = -130.42 (14) \text{ and } 115.13 (15)^{\circ} \text{ for}$ molecules 1 and 2, respectively]. The different orientation of the phenyl ring prevents an intramolecular $C-H \cdots O$ hydrogen bond between C28 and O2 that is present in molecule 1 to be formed in molecule 2. A second $C-H \cdots O$ hydrogen bond (between C42 and O1) is present for both molecules (see Table 1 for numerical details). The phenyl group on the opposite end of the molecule (C35-C40) is also slightly modulated, but much less so than the acetyl group and C23–C28 (torsion angles only differ by ca 29°). The remaining atoms of the two molecules are related by close to perfect translational symmetry, and the conformations of their secochlorin cores are thus qualitatively and quantitatively very similar to each other.

Importantly, the structure determination of **1Ni** also allows for a detailed analysis of the conformation of the macrocycle. For both molecules **1Ni-1** and **1Ni-2** the conformations of the chromophores deviate greatly from planarity. On account of the small central nickel(II) ion inducing strain into the macrocycle, nickel(II) porphyrin and chlorin complexes tend to be non-planar, adopting commonly a ruffled conformation (Kingsbury & Senge, 2021). This is because the ruffled deformation mode effectively shortens the Ni–N bond lengths, without distorting the near-ideal planar coordination geometry of the four nitrogen donors around the metal. This is also the case here, and the N–Ni bond lengths vary only within a small margin, with values between 1.8845 (10) and 1.9128 (10) Å, and the coordination of the nickel atoms is close to perfectly square planar. To compare **1Ni** to other

Figure 4

Bar diagrams of the in-plane (a) and out-of-plane (b) macrocycles NSD deformation analyses of the compounds **1Ni-1**, **1Ni-2**, **2Ni**, and **5Ni**; analyses by the porphyrin NSD online tool (Kingsbury & Senge, 2021), based on the method of Shelnutt (Jentzen *et al.*, 1997). Stick representations of the X-ray single-crystal structures are shown below (c through *e*); for **1Ni**, only **1Ni-1** is shown; all H atoms attached to sp^3 -hybridized carbon atoms, all *meso*-aryl groups, as well as all disorder and solvents removed for clarity. Next to the stick structures are the in-plane skeletal plots of the porphyrin core of the compounds indicated (black trace), compared to that of a benchmark planar porphyrin [*meso*-tetra-phenylporphyrinato]copper(II) (red trace), as well as their out-of-plane skeletal plots.

related compounds and obtain a qualitative and quantitative analysis of its conformation, we performed a normal-coordinate structural decomposition (NSD) analysis of the macrocycle conformation of the two molecules of **1Ni-1** and **1Ni-2**, of the starting diol nickel complex **2Ni** and of its aldehyde analogue **5Ni** (Fig. 4) (Jentzen *et al.*, 1997; Kingsbury & Senge, 2021).

Both molecules **1Ni-1** and **1Ni-2** show in-plane compressed conformations, with the most prominent in-plane deformation in the A_{1g} mode. This is combined with drastically ruffled outof-plane deformations with significant waving and propellering contributions. These deformation modes are typical for nickel porphyrins and chlorins (Kingsbury & Senge, 2021) and their large extent was previously observed in secochlorins (Brückner *et al.*, 2005). The macrocycle conformation aligns the two ketone functionalities to be arranged antiparallel to each other. Qualitatively and quantitatively, the conformation of bisketone **1Ni** is very similar to that of bisaldehyde **5Ni**,

research communications

Packing view showing intra- and intermolecular $C-H\cdots O$ hydrogen bonds in **1Ni**. Molecules **1Ni-1** are to the left and right at (x, 0, z) and (x, 1, z), molecules **1Ni-2** at the center at $(x, \frac{1}{2}, z)$. Note that all $C-H\cdots O$ hydrogen bonds are formed between molecules 1, and between molecules 2, thus forming $C-H\cdots O$ bonded layers, while all interactions between molecules 1 and 2 are purely van der Waals in nature.

showing that the additional alkyl substituents in **1Ni** do not have any significant steric influence. While parent chlorin diol complex **2Ni** is also ruffled, it is much less so, with much smaller waving and propellering deformations as well. Accordingly, the average N-Ni bond length in **2Ni** is longer (1.908 Å) compared to the corresponding bond lengths found in **1Ni** (1.901 Å) or **5Ni** (1.893 Å). The changes observed upon ring-opening align with what was previously observed (Brückner *et al.*, 2005).

3. Supramolecular features

In addition to the intramolecular $C-H \cdots O$ bonds within each molecule, there are also a small number of weak $C-H \cdots O$ hydrogen bond-like interactions present that connect molecules of 1Ni with each other (Fig. 5; see Table 1 for numerical values and symmetry operators). Some weak $C-H\cdots\pi$ interactions are also present (not shown), but these are too weak to be classified as directional and they are unlikely to have any strong structure-determining effects. Instead, intermolecular interactions in the structure of 1Ni are dominated by non-directional dispersion interactions (van der Waals interactions). This is quantitatively confirmed by analysis of the Hirshfeld surfaces of the two molecules (Spackman & Byrom, 1997; Crystal Explorer, Spackman et al., 2021), which are dominated by $C \cdots H$ and $H \cdots H$ and reciprocal contacts, making up 23.5 and 59.2% of the Hirshfeld surface of 1Ni-1, and 23.2 and 58.7% for 1Ni-2. The shortest contacts are some of the $H \cdots H$ contacts, and the few directional $C-H \cdots O$ interactions (for visualization, see Fig. 6 showing the d_e versus d_i fingerprint plots for $H \cdots H$ and $H \cdots O$ contacts for **1Ni-1**). $N \cdots H$ and $Ni \cdots H$ contacts are also observed (5.0 and 2.0%)

Figure 6

Selected fingerprint plots highlighting the dominance of interactions involving H atoms in the structure of **1Ni**. Shown are d_e versus d_i plots (*Crystal Explorer*; Spackman *et al.*, 2021) of H···H interactions (left) and O···H/H···O interactions (right) for molecule **1Ni-1** (plots for molecule **1Ni-2** are equivalent).

for **1Ni-1**, 4.9% and 2.0% for **1Ni-2**), but distances are rather long and the interactions are non-directional. The deformation modes of the molecules also prevent any effective π -stacking interactions to be established in the structure, which is confirmed by the low number for C···C contacts on the Hirshfeld surface (3.6 and 3.0% for the two molecules).

4. Database survey

The structures most closely related to title compound **1Ni** are its aldehyde analogue **5Ni** [CSD (Groom *et al.*, 2016) code GUBWAB; Brückner *et al.*, 1999], as well as two related bisketone derivatives in which the C atoms of the cleaved pyrrole have been annelated to the adjacent phenyl rings to form an indaphyrin (*meso*-diphenylindaporphyrinato)platinum(II) (CSD entry SUNXAB; Lau *et al.*, 2009) and its bishydroxylated indachlorin counterpart (CSD entry OJEHAO; Samankumara *et al.*, 2015).

5. Synthesis and crystallization

The title compound **1Ni** was prepared by classic lead(IV)induced diol cleavage of *trans*-dihydroxychlorin **2Ni**. This diol was made in two steps from *cis*-diol **3Ni**: oxidation to dione **4Ni** (Daniell *et al.*, 2003), followed by double methyl-Grignard addition (Banerjee *et al.*, 2012). Crystals of **1Ni** were grown by slow evaporation of a solution of **1Ni** in CHCl₃/hexane to dryness. The spectroscopic data of **1Ni** have been reported previously (Banerjee *et al.*, 2012).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Two crystallographically independent molecules are present in the asymmetric unit of the structure. A common atom-naming scheme combined with residue numbers 1 and 2 were used for the two molecules, which are related by pseudo-A lattice centering. Exact translational symmetry is broken by different torsion angles of one of the acetyl groups (O1, C1, C2), of the adjacent phenyl group

Table 2	
Experimental	details.

Crystal data	
Chemical formula	$[Ni(C_{46}H_{32}N_4O_2)]$
Mr	731.46
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	14.1382 (5), 15.3202 (5), 18.3835 (7)
$lpha,eta,\gamma(^\circ)$	72.0900 (18), 69.6031 (19), 74.6737 (18)
$V(Å^3)$	3495.8 (2)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.60
Crystal size (mm)	$0.24\times0.16\times0.14$
Data collection	
Diffractometer	Bruker AXS D8 Quest
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.701, 0.747
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	226909, 26754, 19735
R _{int}	0.056
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.770
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.103, 1.01
No. of reflections	26754
No. of parameters	959
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	1.07, -0.42

Computer programs: APEX4 (Bruker, 2022), SAINT (Bruker, 2020), SHELXT (Sheldrick, 2015a), SHELXL2019/2 (Sheldrick, 2015b), ShelXle (Hübschle et al., 2011), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

C23 to C28), and of the phenyl group trans across the molecule (C35 to C40).

C-H bond distances were constrained to 0.95 Å for aromatic moieties, and to 0.98 Å for CH₃ moieties. Methyl CH₃ groups were allowed to rotate but not to tip to best fit the experimental electron density. $U_{iso}(H)$ values were set to a multiple of $U_{eq}(C)$ with 1.5 for CH₃ and 1.2 for C-H units, respectively.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-1625543 to MZ; grant No. CHE-1800361 to CB).

References

- Adams, K. R., Bonnett, R., Burke, P. J., Salgado, A. & Asunción Vallés, M. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1769-1772.
- Akhigbe, J., Ryppa, C., Zeller, M. & Brückner, C. (2009). J. Org. Chem. 74, 4927-4933.
- Banerjee, S., Zeller, M. & Brückner, C. (2012). J. Porphyrins Phthalocyanines, 16, 576–588.
- Battersby, A. R. (2000). Nat. Prod. Rep. 17, 507-526.
- Borbas, K. E. (2016). Handbook of Porphyrin Science, pp. 1-149. Singapore: World Scientific Publishing Company.

research communications

Brückner, C., Akhigbe, J. & Samankumara, L. (2014). Handbook of
Porphyrin Science, edited by K. M. Kadish, K. M. Smith & R.
Guilard, pp. 1–276. River Edge, NY: World Scientific.
Brückner, C., Hyland, M. A., Sternberg, E. D., MacAlpine, J., Rettig,
S. J., Patrick, B. O. & Dolphin, D. (2005). Inorg. Chim. Acta, 358,
2943–2953.
Brückner, C., Rettig, S. J. & Dolphin, D. (1998). J. Org. Chem. 63, 2094–2098.
Brückner, C., Sternberg, E. D., MacAlpine, J. K., Rettig, S. J. &
Dolphin, D. (1999). J. Am. Chem. Soc. 121, 2609-2610.
Bruker (2020). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2022). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.
Chang, C. K., Wu, W., Chern, SS. & Peng, SM. (1992). Angew.
Chem. Int. Ed. Engl. 31, 70–72.
Daniell, H. W., Williams, S. C., Jenkins, H. A. & Brückner, C. (2003).
Tetrahedron Lett. 44, 4045–4049.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta
<i>Cryst.</i> B72, 171–179.
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst.
44 , 1281–1284.
Jentzen, W., Song, XZ. & Shelnutt, J. A. (1997). J. Phys. Chem. B,
101 , 1684–1699.
Kingsbury, C. J. & Senge, M. O. (2021). Coord. Chem. Rev. 431, 213760, 23 pages.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J.
Appl. Cryst. 48, 3–10.
Kräutler, B. (2014). Chem. Soc. Rev. 43, 6227–6238.
Lau, K. S. F., Zhao, S., Ryppa, C., Jockusch, S., Turro, N. J., Zeller, M.,
Gouterman, M., Khalil, G. E. & Brückner, C. (2009). Inorg. Chem.
48 , 4067–4074.
Lindsey, J. S. (2015). Chem. Rev. 115, 6534-6620.
Lo, M., Lefebvre, JF., Marcotte, N., Tonnelé, C., Beljonne, D.,
Lazzaroni, R., Clément, S. & Richeter, S. (2012). Chem. Commun.
48 , 3460–3462.
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P.,
Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. &

- M Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
- McCarthy, J. R., Hyland, M. A. & Brückner, C. (2004). Org. Biomol. Chem. 2, 1484-1491.
- Ryppa, C., Niedzwiedzki, D., Morozowich, N. L., Srikanth, R., Zeller, M., Frank, H. A. & Brückner, C. (2009). Chem. Eur. J. 15, 5749-5762.
- Samankumara, L. P., Dorazio, S. J., Akhigbe, J., Li, R., Nimthong-Roldán, A., Zeller, M. & Brückner, C. (2015). Chem. Eur. J. 21, 11118-11128.
- Sessler, J. L., Shevchuk, S. V., Callaway, W. & Lynch, V. (2001). Chem. Commun. pp. 968-969.
- Sharma, M., Banerjee, S., Zeller, M. & Brückner, C. (2016). J. Org. Chem. 81, 12350-12356.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215-220
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.
- Taniguchi, M. & Lindsey, J. S. (2017). Chem. Rev. 117, 344-535.
- Thuita, D. W. & Brückner, C. (2022). Chem. Rev. 122, 7990-8052.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wojaczyński, J. (2014). Top. Heterocycl. Chem. 33, 143-202.
- Zhu, M., Zhang, H., Ran, G., Yao, Y., Yang, Z.-S., Ning, Y., Yu, Y., Zhang, R., Peng, X.-X., Wu, J., Jiang, Z., Zhang, W., Wang, B.-W., Gao, S. & Zhang, J.-L. (2022). Angew. Chem. Int. Ed. 61, e202204330.

Acta Cryst. (2024). E80, 649-653 [https://doi.org/10.1107/S2056989024004717]

Crystal structure of (6,9-diacetyl-5,10,15,20-tetraphenylsecochlorinato)nickel(II)

Meenakshi Sharma, Christian Brückner and Matthias Zeller

Computing details

(6,9-Diacetyl-5,10,15,20-tetraphenylsecochlorinato)nickel(II)

Crystal data

[Ni(C₄₆H₃₂N₄O₂)] $M_r = 731.46$ Triclinic, $P\overline{1}$ a = 14.1382 (5) Å b = 15.3202 (5) Å c = 18.3835 (7) Å a = 72.0900 (18)° $\beta = 69.6031$ (19)° $\gamma = 74.6737$ (18)° V = 3495.8 (2) Å³

Data collection

Bruker AXS D8 Quest diffractometer
Radiation source: fine focus sealed tube X-ray source
Triumph curved graphite crystal monochromator
Detector resolution: 7.4074 pixels mm⁻¹ ω and phi scans
Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.103$ S = 1.0126754 reflections 959 parameters 0 restraints Primary atom site location: dual Z = 4 F(000) = 1520 $D_x = 1.390 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9410 reflections $\theta = 2.2-33.1^{\circ}$ $\mu = 0.60 \text{ mm}^{-1}$ T = 150 K Block, black $0.24 \times 0.16 \times 0.14 \text{ mm}$

 $T_{\min} = 0.701, T_{\max} = 0.747$ 226909 measured reflections
26754 independent reflections
19735 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.056$ $\theta_{\text{max}} = 33.2^{\circ}, \theta_{\text{min}} = 1.9^{\circ}$ $h = -21 \rightarrow 21$ $k = -23 \rightarrow 23$ $l = -28 \rightarrow 28$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0457P)^2 + 1.6735P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 1.07$ e Å⁻³ $\Delta\rho_{min} = -0.42$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Nil 1	0.25969 (2)	0.35659 (2)	0.92873 (2)	0.01429 (4)	
01 1	0.50774 (9)	0.18303 (8)	1.05354 (7)	0.0319 (2)	
021	0.58223 (8)	0.33407 (9)	0.93406 (7)	0.0312 (2)	
N1_1	0.38355 (8)	0.31234 (7)	0.95721 (6)	0.01569 (18)	
N2 1	0.24377 (8)	0.46934 (7)	0.95719 (6)	0.01615 (18)	
N3_1	0.13540 (8)	0.40147 (8)	0.89948 (6)	0.01684 (19)	
N4 1	0.27362 (8)	0.24007 (7)	0.90697 (6)	0.01638 (18)	
C1 1	0.38050 (13)	0.22630 (10)	1.16637 (9)	0.0284 (3)	
H1A_1	0.309459	0.258994	1.173210	0.043*	
H1B_1	0.413305	0.249917	1.193665	0.043*	
H1C_1	0.381312	0.159369	1.189290	0.043*	
C2_1	0.43835 (11)	0.24268 (9)	1.07820 (8)	0.0209 (2)	
C3_1	0.39427 (9)	0.32810 (9)	1.02306 (7)	0.0165 (2)	
C4_1	0.35152 (9)	0.41150 (9)	1.04696 (7)	0.0165 (2)	
C5_1	0.29060 (9)	0.48299 (9)	1.00558 (7)	0.0164 (2)	
C6_1	0.26648 (10)	0.57957 (9)	1.00854 (8)	0.0196 (2)	
H6_1	0.289412	0.606624	1.038033	0.023*	
C7_1	0.20478 (10)	0.62434 (9)	0.96112 (8)	0.0201 (2)	
H7_1	0.177902	0.689164	0.949856	0.024*	
C8_1	0.18749 (9)	0.55514 (9)	0.93090 (7)	0.0174 (2)	
C9_1	0.11406 (9)	0.56829 (9)	0.89235 (7)	0.0173 (2)	
C10_1	0.08651 (9)	0.49248 (9)	0.88161 (7)	0.0177 (2)	
C11_1	-0.00208 (10)	0.49644 (10)	0.85849 (8)	0.0223 (2)	
H11_1	-0.046378	0.551116	0.840264	0.027*	
C12_1	-0.01033 (10)	0.40691 (10)	0.86772 (8)	0.0228 (2)	
H12_1	-0.063470	0.387129	0.859720	0.027*	
C13_1	0.07627 (10)	0.34801 (9)	0.89178 (8)	0.0189 (2)	
C14_1	0.09973 (10)	0.25128 (10)	0.90294 (8)	0.0202 (2)	
C15_1	0.19504 (10)	0.20055 (9)	0.90892 (8)	0.0192 (2)	
C16_1	0.23266 (11)	0.10522 (9)	0.90465 (9)	0.0233 (3)	
H16_1	0.193543	0.061951	0.907329	0.028*	
C17_1	0.33495 (11)	0.08832 (9)	0.89605 (8)	0.0221 (2)	
H17_1	0.381182	0.031590	0.890142	0.027*	
C18_1	0.35961 (10)	0.17279 (9)	0.89760 (7)	0.0172 (2)	
C19_1	0.45760 (9)	0.18739 (9)	0.88887 (7)	0.0166 (2)	
C20_1	0.46814 (9)	0.25855 (8)	0.91549 (7)	0.0160 (2)	
C21_1	0.56934 (10)	0.29057 (9)	0.89428 (8)	0.0196 (2)	
C22_1	0.65030 (11)	0.27887 (11)	0.81656 (9)	0.0269 (3)	
H22A 1	0.617494	0.276390	0.778420	0.040*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H22B 1	0.698974	0.220902	0.826505	0.040*
H22C 1	0.686832	0.331738	0.794441	0.040*
C23 1	0.38006 (10)	0.42935 (9)	1.11065 (7)	0.0178 (2)
C24_1	0.30557 (11)	0.45948 (10)	1.17573 (8)	0.0227 (2)
H24 1	0.235219	0.473075	1.177851	0.027*
C25_1	0.33437 (13)	0.46950 (11)	1.23718 (9)	0.0294 (3)
H25 1	0.283517	0.488885	1.281742	0.035*
C26_1	0.43730 (14)	0.45131 (11)	1.23382 (9)	0.0312 (3)
H26_1	0.456645	0.457235	1.276426	0.037*
C27_1	0.51154 (13)	0.42456 (11)	1.16830 (9)	0.0289 (3)
H27_1	0.582016	0.414031	1.165124	0.035*
C28_1	0.48303 (11)	0.41309 (10)	1.10711 (8)	0.0223 (2)
H28 1	0.534221	0.394005	1.062552	0.027*
C29 1	0.05941 (10)	0.66507 (9)	0.86838 (7)	0.0187 (2)
C30_1	0.11538 (11)	0.73360 (10)	0.81570 (8)	0.0232 (3)
H30 1	0.187249	0.717130	0.793280	0.028*
C31 1	0.06760 (12)	0.82552 (10)	0.79557 (9)	0.0292 (3)
H31 1	0.106785	0.871457	0.759764	0.035*
C32 1	-0.03757(13)	0.85035 (11)	0.82780 (10)	0.0312 (3)
H32 1	-0.070447	0.913249	0.814379	0.037*
C33 1	-0.09416 (12)	0.78273 (11)	0.87963 (9)	0.0290 (3)
H33 1	-0.166139	0.799422	0.901361	0.035*
C34 1	-0.04645 (10)	0.69064 (10)	0.90010 (8)	0.0233 (3)
H34 1	-0.085962	0.644895	0.935791	0.028*
C35_1	0.01980 (11)	0.20077 (10)	0.90774 (9)	0.0251 (3)
C36 1	-0.04101 (13)	0.16268 (12)	0.98291 (11)	0.0350 (3)
H36 1	-0.029458	0.167244	1.029413	0.042*
C37 ¹	-0.11882 (16)	0.11784 (15)	0.99029 (15)	0.0520 (5)
H37_1	-0.161147	0.093025	1.041775	0.062*
C38_1	-0.13451 (18)	0.10941 (17)	0.92327 (18)	0.0633 (7)
H38 1	-0.186691	0.077627	0.928461	0.076*
C39_1	-0.0749(2)	0.1468 (2)	0.84893 (18)	0.0702 (8)
H39 1	-0.085961	0.140904	0.802706	0.084*
C40_1	0.00205 (17)	0.19370 (17)	0.84066 (13)	0.0514 (5)
H40_1	0.042138	0.220664	0.788935	0.062*
C41 1	0.54657 (10)	0.11626 (9)	0.85978 (7)	0.0174 (2)
C42_1	0.60649 (11)	0.06204 (9)	0.90959 (8)	0.0223 (2)
H42 1	0.592115	0.072094	0.961150	0.027*
C43_1	0.68732 (11)	-0.00675 (10)	0.88368 (9)	0.0263 (3)
H43_1	0.727588	-0.043938	0.917916	0.032*
C44_1	0.70950 (11)	-0.02142(10)	0.80829 (9)	0.0243 (3)
H44 1	0.765823	-0.067452	0.790439	0.029*
C45_1	0.64910 (10)	0.03141 (10)	0.75884 (8)	0.0223 (2)
H45_1	0.663462	0.020808	0.707480	0.027*
C46_1	0.56776 (10)	0.09969 (9)	0.78457 (8)	0.0200 (2)
H46 1	0.526294	0.135331	0.750831	0.024*
Nil ²	0.28975 (2)	0.83249 (2)	0.43364 (2)	0.01364 (4)
01 2	0.50805 (9)	0.64893 (7)	0.56785 (6)	0.0283 (2)

O2_2	0.62162 (8)	0.80644 (8)	0.42677 (7)	0.0302 (2)
N1_2	0.41721 (8)	0.78939(7)	0.45871 (6)	0.01517 (18)
N2 2	0.27290 (8)	0.94258 (7)	0.46574 (6)	0.01558 (18)
N3 2	0.16423 (8)	0.87745 (7)	0.40596 (6)	0.01547 (18)
N4 2	0.30230 (8)	0.71786 (7)	0.40912 (6)	0.01522 (18)
$C1^{2}$	0.58250 (12)	0.75395 (11)	0.59279 (10)	0.0290 (3)
H1A 2	0.558184	0.739419	0.651304	0.044*
H1B 2	0 585476	0.820551	0 572148	0.044*
$H1C_2$	0.651045	0.717531	0 575406	0.044*
$C^2 2$	0.50988(10)	0.72984(9)	0 56124 (8)	0.0198(2)
C_2^2	0.43504(9)	0.80502 (8)	0.50121(0) 0.52168(7)	0.0190(2)
C_{4}^{2}	0.38177(9)	0.80002(0) 0.88045(8)	0.52100(7) 0.55537(7)	0.0101(2) 0.0162(2)
C_{-2}	0.30177(9)	0.00043(8)	0.55557(7)	0.0102(2)
$C5_2$	0.31330(9) 0.27751(10)	1.0/387(0)	0.52000(7) 0.53410(8)	0.0105(2) 0.0215(2)
С0_2 Ц6_2	0.27751(10) 0.202141	1.04587 (9)	0.55410 (8)	0.0215 (2)
$H0_2$	0.292141 0.21887 (10)	1.000722	0.370833	0.020°
U7_2	0.21887 (10)	1.09181 (9)	0.46497 (6)	0.0216(2)
H/_2	0.18/905	1.155/35	0.4/8491	0.026*
C8_2	0.21207 (9)	1.02/82 (8)	0.44431 (7)	0.0169 (2)
C9_2	0.14189 (9)	1.04319 (8)	0.40260 (7)	0.0168 (2)
C10_2	0.11645 (9)	0.96877 (8)	0.38785 (7)	0.0165 (2)
C11_2	0.02957 (10)	0.97407 (9)	0.36228 (8)	0.0215 (2)
H11_2	-0.013479	1.029283	0.343245	0.026*
C12_2	0.02063 (10)	0.88518 (10)	0.37046 (9)	0.0230 (3)
H12_2	-0.031828	0.866311	0.360766	0.028*
C13_2	0.10522 (9)	0.82533 (9)	0.39647 (8)	0.0180 (2)
C14_2	0.12783 (10)	0.72855 (9)	0.40686 (7)	0.0179 (2)
C15_2	0.22293 (10)	0.67784 (8)	0.41273 (7)	0.0168 (2)
C16_2	0.26007 (10)	0.58159 (9)	0.41017 (8)	0.0188 (2)
H16_2	0.220438	0.537605	0.415128	0.023*
C17_2	0.36288 (10)	0.56561 (8)	0.39928 (7)	0.0181 (2)
H17_2	0.409213	0.508973	0.393253	0.022*
C18 2	0.38782 (9)	0.65083 (8)	0.39867 (7)	0.0157 (2)
C19 ²	0.48674 (9)	0.66652 (8)	0.38682 (7)	0.0162 (2)
C20 2	0.49964 (9)	0.73750 (8)	0.41204 (7)	0.0158 (2)
C21 2	0.60192 (10)	0.76690 (9)	0.38690 (8)	0.0190 (2)
C22 2	0.67802 (11)	0.75820 (11)	0.30658 (9)	0.0270 (3)
H22A 2	0.734347	0.706390	0.314416	0.040*
$H22B^{2}$	0.705335	0.816194	0.279880	0.040*
H22C 2	0.643640	0.746389	0.273455	0.040*
C_{23}^{-2}	0.39074(10)	0 88720 (9)	0.63182.(8)	0.0201(2)
C_{24}^{-2}	0.43383(13)	0.95701(11)	0.63622(0)	0.0201(2) 0.0304(3)
H24 2	0.461139	1 001193	0.589070	0.037*
C_{25}^{-2}	0.43662 (16)	0.96161 (13)	0.309070	0.037
H25_2	0.465790	1 009207	0.70909 (13)	0.0447(3) 0.054*
C_{26}^{1123}	0.30721 (17)	0.80722 (14)	0.712757 0.77010(12)	0.034
U20_2	0.37/21 (17)	0.07733(14) 0.001222	0.77919(12)	0.0403(3)
1120_2	0.370030	0.201222	0.029270 0.77512(10)	0.030
$U_{2}/2$	0.33364 (10)	0.02/98(14)	0.77313(10)	0.0419(4)
H2/_2	0.329646	0./83414	0.822578	0.050*

C28 2	0.35222 (12)	0.82288 (12)	0.70191 (9)	0.0289 (3)
H28 2	0.323090	0.774892	0.699672	0.035*
C29 2	0.08651 (10)	1.14013 (9)	0.38022 (7)	0.0179 (2)
C30_2	0.14249 (11)	1.21040 (10)	0.33178 (9)	0.0248 (3)
H30 ²	0.215163	1.195838	0.313527	0.030*
C31 2	0.09302 (13)	1.30144 (10)	0.30996 (10)	0.0315 (3)
H31 ²	0.131933	1.348605	0.276725	0.038*
C32 ² 2	-0.01331 (13)	1.32372 (10)	0.33665 (10)	0.0311 (3)
H32 2	-0.047186	1.385792	0.321171	0.037*
C33 ²	-0.06940 (11)	1.25501 (10)	0.38582 (9)	0.0259 (3)
H33 ²	-0.141950	1.270177	0.404883	0.031*
C34 2	-0.02000 (10)	1.16353 (9)	0.40760 (8)	0.0205 (2)
H34 2	-0.059200	1.116750	0.441346	0.025*
C35_2	0.04848 (10)	0.67982 (9)	0.40823 (9)	0.0227 (2)
C36_2	-0.03873 (12)	0.67244 (12)	0.47409 (11)	0.0331 (3)
H36_2	-0.047012	0.698605	0.517019	0.040*
C37_2	-0.11354 (14)	0.62693 (14)	0.47709 (14)	0.0470 (5)
H37_2	-0.172623	0.621842	0.522162	0.056*
C38_2	-0.10216 (17)	0.58903 (15)	0.41462 (15)	0.0515 (5)
H38_2	-0.153674	0.558473	0.416581	0.062*
C39_2	-0.01596 (19)	0.59565 (16)	0.34947 (14)	0.0533 (6)
H39_2	-0.008131	0.569213	0.306810	0.064*
C40_2	0.05973 (15)	0.64087 (14)	0.34582 (11)	0.0388 (4)
H40_2	0.118940	0.645131	0.300818	0.047*
C41_2	0.57430 (9)	0.59449 (8)	0.35779 (7)	0.0165 (2)
C42_2	0.63499 (10)	0.54212 (9)	0.40731 (8)	0.0210 (2)
H42_2	0.623945	0.556485	0.456686	0.025*
C43_2	0.71183 (11)	0.46877 (10)	0.38480 (9)	0.0248 (3)
H43_2	0.752475	0.432818	0.419087	0.030*
C44_2	0.72899 (11)	0.44820 (10)	0.31237 (9)	0.0243 (3)
H44_2	0.781599	0.398362	0.296955	0.029*
C45_2	0.66938 (10)	0.50038 (10)	0.26241 (8)	0.0220 (2)
H45_2	0.681787	0.486610	0.212556	0.026*
C46_2	0.59137 (10)	0.57292 (9)	0.28510 (8)	0.0201 (2)
H46_2	0.549798	0.607702	0.251235	0.024*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1_1	0.01363 (7)	0.01572 (7)	0.01559 (7)	-0.00219 (5)	-0.00567 (5)	-0.00531 (5)
01_1	0.0388 (6)	0.0289 (5)	0.0262 (5)	0.0111 (5)	-0.0166 (5)	-0.0106 (4)
O2_1	0.0250 (5)	0.0426 (6)	0.0359 (6)	-0.0121 (5)	-0.0064 (4)	-0.0206 (5)
N1_1	0.0157 (4)	0.0169 (5)	0.0168 (4)	-0.0017 (4)	-0.0061 (4)	-0.0067 (4)
N2_1	0.0156 (4)	0.0177 (5)	0.0165 (4)	-0.0019 (4)	-0.0058 (4)	-0.0055 (4)
N3_1	0.0154 (4)	0.0189 (5)	0.0178 (5)	-0.0026 (4)	-0.0064(4)	-0.0051 (4)
N4_1	0.0165 (4)	0.0180 (5)	0.0172 (4)	-0.0045 (4)	-0.0065 (4)	-0.0047 (4)
C1_1	0.0365 (8)	0.0232 (6)	0.0215 (6)	-0.0060 (6)	-0.0057 (6)	-0.0022 (5)
C2_1	0.0246 (6)	0.0209 (6)	0.0211 (6)	-0.0032 (5)	-0.0109 (5)	-0.0062 (5)

C3_1	0.0165 (5)	0.0189 (5)	0.0170 (5)	-0.0025 (4)	-0.0070 (4)	-0.0063 (4)
C4_1	0.0161 (5)	0.0187 (5)	0.0170 (5)	-0.0030 (4)	-0.0056 (4)	-0.0066 (4)
C5 1	0.0152 (5)	0.0182 (5)	0.0174 (5)	-0.0028(4)	-0.0047 (4)	-0.0069 (4)
C6 1	0.0194 (6)	0.0192 (5)	0.0230 (6)	-0.0040 (4)	-0.0057 (5)	-0.0089(5)
C7_1	0.0201 (6)	0.0175 (5)	0.0233 (6)	-0.0017 (4)	-0.0064(5)	-0.0067 (5)
C8_1	0.0166 (5)	0.0178 (5)	0.0180 (5)	-0.0016 (4)	-0.0052 (4)	-0.0055 (4)
C9_1	0.0152 (5)	0.0193 (5)	0.0161 (5)	-0.0011 (4)	-0.0043 (4)	-0.0043 (4)
$C10^{-1}$	0.0151 (5)	0.0214 (6)	0.0170 (5)	-0.0019(4)	-0.0058(4)	-0.0049 (4)
C11 1	0.0174 (5)	0.0270 (6)	0.0244 (6)	-0.0007(5)	-0.0106(5)	-0.0065(5)
C12 1	0.0174 (6)	0.0284 (7)	0.0263 (6)	-0.0039(5)	-0.0094(5)	-0.0083(5)
C13_1	0.0161(5)	0.0234 (6)	0.0191(5)	-0.0055(4)	-0.0058(4)	-0.0054(5)
$C14_{1}$	0.0194 (6)	0.0238(6)	0.0209 (6)	-0.0084(5)	-0.0065(5)	-0.0054(5)
$C15_1$	0.0198 (6)	0.0205 (6)	0.0198(5)	-0.0058(5)	-0.0072(4)	-0.0047(4)
$C16_1$	0.0170(0)	0.0205(0)	0.0190(0)	-0.0081(5)	-0.0111(5)	-0.0051(5)
$C17_{1}$	0.0271(7)	0.0175(6)	0.0268(6)	-0.0040(5)	-0.0100(5)	-0.0071(5)
$C18_1$	0.0299(0) 0.0194(5)	0.0175(0)	0.0200(0)	-0.0025(4)	-0.0076(4)	-0.0051(4)
$C19_1$	0.0178(5)	0.0170(5)	0.0177(5)	-0.0029(1)	-0.0070(4)	-0.0058(4)
C_{10}^{-1}	0.0178(5)	0.0176(5)	0.0100(5)	-0.0009(4)	-0.0070(4)	-0.0059(4)
C_{20}^{-1}	0.0156(5)	0.0170(5)	0.0101(5) 0.0241(6)	-0.0018(4)	-0.0001(4)	-0.0057(4)
C_{21}^{-1}	0.0100(5)	0.0194(0)	0.0241(0) 0.0291(7)	-0.0075(5)	0.0075(5)	-0.0004(5)
C_{22}^{-1}	0.0227(0) 0.0223(6)	0.0203(7)	0.0291(7)	-0.0073(3)	-0.0000(3)	-0.0090(3)
C_{23}_{1}	0.0225(0)	0.0178(5)	0.0107(5)	-0.0037(4)	-0.0074(4)	-0.0000(4)
C_{24}_{1}	0.0200(0)	0.0232(0)	0.0198(0)	-0.0042(3)	-0.0051(5)	-0.0124(5)
C_{25}^{-1}	0.0403(8)	0.0300(7)	0.0204(0)	-0.0000(0)	-0.0180(6)	-0.0024(3)
$C_{20}1$	0.0472(9)	0.0314(7)	0.0234(7)	-0.0092(7)	-0.0165(0)	-0.0098(0)
C_{27}^{-1}	0.0329(7)	0.0338(8)	0.0298(7)	-0.0079(0) -0.0061(5)	-0.0100(0)	-0.0108(0) -0.0088(5)
C_{20}^{-1}	0.0230(0)	0.0204(0)	0.0222(0)	-0.0001(3)	-0.0085(3)	-0.0088(3)
C_{29}_{1}	0.0177(3)	0.0197(3)	0.0170(3)	0.0008(4) -0.0021(5)	-0.0063(4) -0.0067(5)	-0.0047(4) -0.0024(5)
$C30_1$	0.0211(0)	0.0218(0)	0.0237(0)	-0.0021(3)	-0.0007(3)	-0.0024(3)
C_{22}	0.0314(7)	0.0227(0)	0.0293(7)	-0.0041(0)	-0.0119(6)	0.0024(3)
$C32_1$	0.0325 (8)	0.0223(7)	0.0348 (8)	0.0043 (6)	-0.0155(6)	-0.0024 (6)
C33_1	0.0226 (6)	0.0293 (7)	0.0299 (7)	0.0058 (5)	-0.0086 (5)	-0.00/4 (6)
C34_1	0.0198 (6)	0.0252 (6)	0.0208 (6)	0.0008 (5)	-0.0057 (5)	-0.0043 (5)
C35_1	0.0214 (6)	0.0253 (6)	0.0341 (7)	-0.00/5(5)	-0.0114(5)	-0.00/8(5)
C36_1	0.0337(8)	0.0299 (8)	0.0424 (9)	-0.0146 (6)	-0.00/6 (/)	-0.0063 (7)
$C3/_1$	0.0419 (10)	0.0411 (10)	0.0732 (15)	-0.0254 (9)	-0.0101 (10)	-0.0063 (10)
C38_1	0.0483 (12)	0.0566 (13)	0.103 (2)	-0.0304 (11)	-0.0321(13)	-0.0149 (13)
C39_1	0.0726 (17)	0.092 (2)	0.0810 (18)	-0.0400 (15)	-0.0403 (15)	-0.0267 (15)
C40_1	0.0539 (12)	0.0751 (15)	0.0450 (11)	-0.0336 (11)	-0.0198 (9)	-0.0167 (10)
C41_1	0.0179 (5)	0.0162 (5)	0.0190 (5)	-0.0013 (4)	-0.0066 (4)	-0.0055 (4)
C42_1	0.0258 (6)	0.0217 (6)	0.0228 (6)	0.0020 (5)	-0.0131 (5)	-0.0085 (5)
C43_1	0.0265 (7)	0.0230 (6)	0.0333 (7)	0.0052 (5)	-0.0168 (6)	-0.0108 (5)
C44_1	0.0203 (6)	0.0223 (6)	0.0307 (7)	0.0014 (5)	-0.0073 (5)	-0.0116 (5)
C45_1	0.0220 (6)	0.0227 (6)	0.0210 (6)	-0.0013 (5)	-0.0040 (5)	-0.0084 (5)
C46_1	0.0214 (6)	0.0199 (6)	0.0189 (5)	-0.0004 (5)	-0.0072 (5)	-0.0058 (4)
Nil_2	0.01412 (7)	0.01168 (7)	0.01588 (7)	0.00009 (5)	-0.00590 (5)	-0.00456 (5)
01_2	0.0418 (6)	0.0154 (4)	0.0287 (5)	0.0027 (4)	-0.0177 (5)	-0.0046 (4)
O2_2	0.0261 (5)	0.0371 (6)	0.0332 (6)	-0.0126 (4)	-0.0036 (4)	-0.0162 (5)
N1_2	0.0159 (4)	0.0135 (4)	0.0170 (4)	-0.0003(3)	-0.0063(4)	-0.0051 (3)

N2_2	0.0166 (4)	0.0133 (4)	0.0173 (4)	0.0000 (3)	-0.0062 (4)	-0.0050 (4)
N3_2	0.0151 (4)	0.0143 (4)	0.0173 (4)	-0.0007 (3)	-0.0056 (4)	-0.0045 (4)
N4_2	0.0157 (4)	0.0131 (4)	0.0171 (4)	-0.0002 (3)	-0.0057 (4)	-0.0049 (3)
C1 2	0.0254 (7)	0.0317 (7)	0.0349 (8)	0.0023 (6)	-0.0180 (6)	-0.0104 (6)
C2 2	0.0214 (6)	0.0185 (5)	0.0187 (5)	0.0013 (4)	-0.0083(5)	-0.0046 (4)
C3 2	0.0176 (5)	0.0138 (5)	0.0174 (5)	-0.0017 (4)	-0.0063 (4)	-0.0038 (4)
C4 2	0.0180 (5)	0.0151 (5)	0.0177 (5)	-0.0024 (4)	-0.0072 (4)	-0.0052 (4)
C5 2	0.0176 (5)	0.0148 (5)	0.0197 (5)	-0.0009 (4)	-0.0069 (4)	-0.0061 (4)
C6 2	0.0228 (6)	0.0177 (6)	0.0290 (6)	0.0015 (5)	-0.0112 (5)	-0.0123 (5)
C7 2	0.0223 (6)	0.0152 (5)	0.0291 (6)	0.0011 (4)	-0.0100 (5)	-0.0089 (5)
C8 2	0.0164 (5)	0.0134 (5)	0.0194 (5)	0.0006 (4)	-0.0053 (4)	-0.0046 (4)
C9 2	0.0164 (5)	0.0149 (5)	0.0163 (5)	0.0002 (4)	-0.0041 (4)	-0.0032 (4)
C10 2	0.0160 (5)	0.0157 (5)	0.0164 (5)	0.0000 (4)	-0.0055 (4)	-0.0033 (4)
C11 2	0.0198 (6)	0.0208 (6)	0.0248 (6)	0.0022 (5)	-0.0116 (5)	-0.0060(5)
C12 2	0.0191 (6)	0.0245 (6)	0.0290 (7)	0.0000 (5)	-0.0124 (5)	-0.0085 (5)
C13 2	0.0166 (5)	0.0185 (5)	0.0200 (5)	-0.0020 (4)	-0.0066 (4)	-0.0059 (4)
C14 2	0.0175 (5)	0.0185 (5)	0.0191 (5)	-0.0030 (4)	-0.0060 (4)	-0.0057 (4)
C15 2	0.0190 (5)	0.0154 (5)	0.0171 (5)	-0.0037 (4)	-0.0054 (4)	-0.0048 (4)
C16 2	0.0233 (6)	0.0151 (5)	0.0193 (5)	-0.0040 (4)	-0.0068(5)	-0.0046 (4)
C17_2	0.0239 (6)	0.0140 (5)	0.0174 (5)	-0.0015 (4)	-0.0072(4)	-0.0055 (4)
C18 2	0.0188 (5)	0.0136 (5)	0.0159 (5)	-0.0001 (4)	-0.0067 (4)	-0.0053 (4)
C19_2	0.0175 (5)	0.0153 (5)	0.0154 (5)	0.0013 (4)	-0.0063 (4)	-0.0052 (4)
C20_2	0.0156 (5)	0.0148 (5)	0.0170 (5)	0.0006 (4)	-0.0065 (4)	-0.0046 (4)
C21 2	0.0181 (5)	0.0162 (5)	0.0215 (6)	-0.0010 (4)	-0.0060 (4)	-0.0041 (4)
C22 2	0.0233 (6)	0.0320 (7)	0.0228 (6)	-0.0079 (6)	-0.0012(5)	-0.0064 (5)
C23 2	0.0214 (6)	0.0198 (6)	0.0231 (6)	0.0018 (4)	-0.0112 (5)	-0.0099 (5)
C24 2	0.0387 (8)	0.0216 (6)	0.0416 (8)	-0.0015 (6)	-0.0247 (7)	-0.0105 (6)
C25 2	0.0596 (12)	0.0327 (9)	0.0645 (12)	0.0075 (8)	-0.0443 (11)	-0.0262(9)
C26 2	0.0631 (13)	0.0490 (11)	0.0394 (9)	0.0152 (9)	-0.0348 (9)	-0.0254 (8)
C27 2	0.0516 (11)	0.0508 (11)	0.0225 (7)	0.0007 (9)	-0.0145 (7)	-0.0114 (7)
C28 2	0.0321 (7)	0.0357 (8)	0.0205 (6)	-0.0070 (6)	-0.0076 (5)	-0.0078 (6)
C29 2	0.0191 (5)	0.0152 (5)	0.0162 (5)	0.0012 (4)	-0.0051 (4)	-0.0030 (4)
C30_2	0.0208 (6)	0.0200 (6)	0.0263 (6)	-0.0017 (5)	-0.0039(5)	-0.0003(5)
C31 2	0.0318 (8)	0.0179 (6)	0.0344 (8)	-0.0028(5)	-0.0073 (6)	0.0041 (5)
C32 2	0.0331 (8)	0.0181 (6)	0.0351 (8)	0.0052 (5)	-0.0138 (6)	-0.0007 (6)
C33 2	0.0222 (6)	0.0210 (6)	0.0293 (7)	0.0059 (5)	-0.0081 (5)	-0.0061 (5)
C34 2	0.0188 (6)	0.0189 (6)	0.0190 (5)	0.0007 (4)	-0.0042 (4)	-0.0027 (4)
C35 2	0.0208 (6)	0.0199 (6)	0.0310 (7)	-0.0051 (5)	-0.0114 (5)	-0.0053 (5)
C36 2	0.0245 (7)	0.0303 (8)	0.0442 (9)	-0.0082(6)	-0.0039 (6)	-0.0126 (7)
C37 ²	0.0272 (8)	0.0414 (10)	0.0714 (14)	-0.0150 (7)	-0.0060(8)	-0.0138 (9)
C38 2	0.0454 (11)	0.0474 (11)	0.0769 (15)	-0.0252(9)	-0.0286 (11)	-0.0092 (10)
C39 2	0.0707 (15)	0.0594 (13)	0.0539 (12)	-0.0339(12)	-0.0297 (11)	-0.0144 (10)
C40_2	0.0469 (10)	0.0483 (10)	0.0332 (8)	-0.0235 (8)	-0.0128 (7)	-0.0122 (7)
C41 2	0.0169 (5)	0.0164 (5)	0.0165 (5)	0.0011 (4)	-0.0062(4)	-0.0063 (4)
C42 2	0.0234 (6)	0.0205 (6)	0.0201 (6)	0.0032 (5)	-0.0098 (5)	-0.0084 (5)
C43 2	0.0239 (6)	0.0244 (6)	0.0268 (6)	0.0074 (5)	-0.0136 (5)	-0.0098 (5)
C44 2	0.0204 (6)	0.0242 (6)	0.0289 (7)	0.0049 (5)	-0.0077 (5)	-0.0139 (5)
C45_2	0.0203 (6)	0.0269 (6)	0.0198 (6)	0.0001 (5)	-0.0043 (5)	-0.0122 (5)
_	· /	· /	× /	× /	× /	· · ·

C46_2	0.0197 (6)	0.0225 (6)	0.0183 (5)	0.0019 (5)	-0.0069 (4)	-0.0085 (5)
Geometri	ic parameters (Å,	<i>°)</i>				
Ni1 1—	N2 1	1.8911	(11)	Ni1 2—N2 2	1	.8845 (10)
Ni1 1-1	N4 1	1.8930	(11)	Ni1 2—N4 2	1	.8934 (10)
Ni1 1—1	N1 1	1.8957	(10)	Ni1 2—N3 2	1	.9106 (10)
Ni1 1-1	N3_1	1.9084	(11)	Ni1_2—N1_2	1	.9128 (10)
01 1-0	22^{-1}	1.2141	(17)	$01^{-}2-C2^{-}2$	1	.2141 (16)
02 1-0	221 1	1.2122	(16)	02 ² —C2 ¹ 2	1	.2192 (16)
N1 1-0	$-23 \overline{1}$	1.3687	(15)	$N1^{-}2-C3^{-}2$	1	.3661 (15)
N1 1-0	$2\overline{20}$ 1	1.3879	(15)	$N1^{-}2-C2^{-}2$	1	.3997 (15)
N2 1-0	51	1.3680	(15)	N2 2—C5 2	1	.3661 (16)
N2 1-0	28 1	1.3853	(16)	N2 ² —C8 ²	1	.3880 (15)
N3 1-0	C10 1	1.3772	(16)	N3 2-C10 2	1	.3766 (15)
N3 1-0	C13 ¹	1.3804	(16)	N3 ² —C13 ²	1	.3796 (16)
N4 1-0	C18 ⁻ 1	1.3678	(16)	N4 2—C18 2	1	.3626 (15)
N4 1-0	C15_1	1.3844	(16)	N4 2—C15 2	1	.3879 (16)
C1 1-C	2 1	1.514 (2	2)	C1 2 - C2 2	1	.508 (2)
C1 1—E	IIA 1	0.9800	-)	C1 2—H1A 2	0	.9800
C1 1—E	I1B 1	0.9800		C1 2—H1B 2	0	.9800
C1 1—E	11C ¹	0.9800		C1_2—H1C_2	0	.9800
C2 1-C	23^{-1}	1.5239	(18)	$C2^{-}2-C3^{-}2$	1	.5336 (17)
C3 1—C	24 1	1.3938	(17)	$C_{3}^{-} 2 - C_{4}^{-} 2$	1	.3934 (17)
C4 1—C	25 1	1.4022	(17)	C4 2—C5 2	1	.4075 (17)
C4 1—C	223 1	1.4808	(16)	C4 2—C23 2	1	.4908 (17)
C5 1—C	C6 1	1.4417	(17)	C5 2—C6 2	1	.4452 (17)
C6 1—C	27 1	1.3556	(19)	C6 2—C7 2	1	.3544 (19)
C6 1—E	I6 1	0.9500	()	C6 2—H6 2	0	.9500
C7 1—C	28 1	1.4442	(18)	C7 2—C8 2	1	.4420 (18)
C7 1—H	I7 1	0.9500		C7 2—H7 2	0	.9500
C8_1—C	29 1	1.3912	(17)	$C8^{-}2-C9^{-}2$	1	.3870 (17)
C9 1—C	210 1	1.4048	(18)	C9 2—C10 2	1	.4063 (17)
C9 1-C	29 1	1.4898	(18)	C9 2—C29 2	1	.4906 (17)
C10 1—	C11 1	1.4381	(17)	C10 2-C11 2	1	.4362 (18)
C11 ¹ —	C12_1	1.361 (2	2)	C11 ² —C12 ²	1	.3583 (19)
C11 ⁻ 1—	H11 1	0.9500	,	C11 2—H11 2	0	.9500
C12_1—	C13 1	1.4342	(19)	C12 2—C13 2	1	.4315 (18)
C12 1—	H12 1	0.9500		C12_2—H12_2	0	.9500
C13 ¹ —	C14 1	1.3960	(19)	C13 ² —C14 ²	1	.3981 (18)
C14 1—	C15_1	1.3889	(19)	C14 2—C15 2	1	.3858 (18)
C14 1—	C35 1	1.4948	(18)	C14 2—C35 2	1	.4927 (18)
C15 ¹ —	C16_1	1.4328	(19)	C15 ² —C16 ²	1	.4383 (17)
C16 1-	C17_1	1.361 (2	2)	C16 ² —C17 ²	1	.3609 (18)
C16_1—	H16 1	0.9500		C16 ² —H16 ²	0	.9500
C17 ¹ —	C18_1	1.4371	(17)	C17 2—C18 2	1	.4355 (17)
C17 ¹ —	H17 1	0.9500	× /	C17 ² —H17 ²	0	.9500
C18_1—	C19_1	1.4078	(17)	C18 2—C19 2	1	.4121 (17)

C19_1—C20_1	1.3839 (17)	C19_2—C20_2	1.3801 (17)
C19 ⁻ 1—C41 ⁻ 1	1.4902 (17)	C19 ² —C41 ²	1.4881 (16)
C20 1—C21 1	1.5179 (17)	C20 2—C21 2	1.5027 (18)
C21_1—C22_1	1.5142 (19)	C21 2—C22 2	1.5145 (19)
C22_1—H22A_1	0.9800	C22_2—H22A_2	0.9800
C22_1—H22B_1	0.9800	C22 2—H22B 2	0.9800
C22_1—H22C_1	0.9800	C22_2—H22C_2	0.9800
C23 1—C28 1	1.3922 (18)	C23 ² —C28 ²	1.393 (2)
C23_1—C24_1	1.3992 (18)	C23 ² —C24 ²	1.3977 (19)
C24 1—C25 1	1.3878 (19)	C24 2—C25 2	1.392 (2)
C24 1—H24 1	0.9500	C24 2—H24 2	0.9500
C25 ¹ —C26 ¹	1.390 (2)	C25 ² —C26 ²	1.388 (3)
C25_1—H25_1	0.9500	C25 ² —H25 ²	0.9500
C26_1—C27_1	1.384 (2)	C26_2—C27_2	1.373 (3)
C26_1—H26_1	0.9500	C26 2—H26 2	0.9500
C27_1—C28_1	1.3906 (19)	C27 ² —C28 ²	1.391 (2)
C27_1—H27_1	0.9500	C27 ² —H27 ²	0.9500
C28 1—H28 1	0.9500	C28 2—H28 2	0.9500
C29 ¹ —C30 ¹	1.3950 (19)	C29 ² —C34 ²	1.3952 (18)
C29_1—C34_1	1.3985 (18)	C29 ² —C30 ²	1.3957 (18)
C30_1—C31_1	1.388 (2)	C30_2—C31_2	1.390 (2)
C30_1—H30_1	0.9500	C30_2—H30_2	0.9500
C31 ⁻ 1—C32 ⁻ 1	1.390 (2)	C31 ² —C32 ²	1.391 (2)
C31_1—H31_1	0.9500	C31 2—H31 2	0.9500
C32 ¹ —C33 ¹	1.386 (2)	C32 ² —C33 ²	1.382 (2)
C32 ¹ —H32 ¹	0.9500	C32_2—H32_2	0.9500
C33 ⁻ 1—C34 ⁻ 1	1.391 (2)	C33 ² —C34 ²	1.3944 (18)
C33 ¹ —H33 ¹	0.9500	C33 ² —H33 ²	0.9500
C34_1—H34_1	0.9500	C34 2—H34 2	0.9500
C35 ¹ —C40 ¹	1.381 (2)	C35 ² —C40 ²	1.393 (2)
C35 1—C36 1	1.389 (2)	C35 ² —C36 ²	1.396 (2)
C36 1—C37 1	1.392 (2)	C36 2—C37 2	1.390 (2)
C36_1—H36_1	0.9500	C36_2—H36_2	0.9500
C37_1—C38_1	1.374 (4)	C37 ² —C38 ²	1.383 (3)
C37_1—H37_1	0.9500	C37_2—H37_2	0.9500
C38_1—C39_1	1.370 (4)	C38_2_C39_2	1.380 (3)
C38_1—H38_1	0.9500	C38_2—H38_2	0.9500
C39_1—C40_1	1.397 (3)	C39_2_C40_2	1.394 (2)
C39_1—H39_1	0.9500	C39_2—H39_2	0.9500
C40_1—H40_1	0.9500	C40_2—H40_2	0.9500
C41 1—C42 1	1.3953 (18)	C41 2—C42 2	1.3928 (17)
C41 ⁻ 1C46 ⁻ 1	1.3975 (17)	C41 ² —C46 ²	1.3993 (17)
C42 1—C43 1	1.3915 (19)	C42 ² —C43 ²	1.3934 (18)
C42_1—H42_1	0.9500	C42_2—H42_2	0.9500
C43_1—C44_1	1.386 (2)	C43_2—C44_2	1.3869 (19)
C43_1—H43_1	0.9500	C43_2—H43_2	0.9500
C44 1—C45 1	1.391 (2)	C44 ² —C45 ²	1.387 (2)
C44 1—H44 1	0.9500	C44 2—H44 2	0.9500

C45_1—C46_1	1.3891 (18)	C45_2-C46_2	1.3935 (18)
C45_1—H45_1	0.9500	C45_2—H45_2	0.9500
C46_1—H46_1	0.9500	C46_2—H46_2	0.9500
N2_1-Ni1_1-N4_1	176.50 (5)	N2_2-Ni1_2-N4_2	175.90 (5)
N2_1-Ni1_1-N1_1	90.06 (4)	N2_2-Ni1_2-N3_2	90.19 (4)
N4_1-Ni1_1-N1_1	88.86 (4)	N4_2-Ni1_2-N3_2	90.20 (4)
N2_1-Ni1_1-N3_1	89.92 (5)	N2_2-Ni1_2-N1_2	89.59 (4)
N4_1-Ni1_1-N3_1	91.19 (5)	N4_2-Ni1_2-N1_2	90.12 (4)
N1_1—Ni1_1—N3_1	179.68 (5)	N3_2-Ni1_2-N1_2	178.50 (5)
C3 1—N1 1—C20 1	114.99 (10)	C3 ² —N1 ² —C20 ²	115.41 (10)
C3 1—N1 1—N11 1	121.95 (8)	C3 ² —N1 ² —N1 ²	124.13 (8)
C20 1—N1 1—N1 1	123.00 (8)	C20 2—N1 2—N1 2	120.46 (8)
C5 1 - N2 1 - C8 1	106.09 (10)	$C5 \ 2 - N2 \ 2 - C8 \ 2$	106.48 (10)
C5 1—N2 1—Ni1 1	126.12 (9)	C5 ² —N2 ² —Ni ¹ 2	125.72 (8)
C8_1—N2_1—Ni1_1	127.72 (8)	C8 ² —N2 ² —Ni1 ²	127.65 (8)
C10 1—N3 1—C13 1	106.00 (10)	C10 2—N3 2—C13 2	105.79 (10)
C10_1—N3_1—Ni1_1	127.71 (9)	C10 2—N3 2—Ni1 2	127.17 (8)
C13 ¹ —N3 ¹ —Ni1 ¹	126.29 (9)	C13 ² —N3 ² —Ni1 ²	126.99 (8)
C18 1—N4 1—C15 1	106.00 (10)	C18 2—N4 2—C15 2	105.74 (10)
C18 ⁻ 1—N4 ⁻ 1—Ni1 ⁻ 1	127.08 (8)	C18 2—N4 2—Ni1 2	126.63 (8)
C15 ¹ —N4 ¹ —Ni1 ¹	126.32 (9)	C15 2—N4 2—Ni1 2	126.67 (8)
C2 1—C1 1—H1A 1	109.5	C2 2-C1 2-H1A 2	109.5
C2 1—C1 1—H1B 1	109.5	C2 ² —C1 ² —H1B ²	109.5
H1A 1—C1 1—H1B 1	109.5	H1A 2—C1 2—H1B 2	109.5
C2 1—C1 1—H1C 1	109.5	C2 2—C1 2—H1C 2	109.5
H1A 1—C1 1—H1C 1	109.5	H1A 2—C1 2—H1C 2	109.5
H1B_1—C1_1—H1C_1	109.5	H1B 2—C1 2—H1C 2	109.5
01 1-C2 1-C1 1	119.75 (13)	$01 \ 2 - C2 \ 2 - C1 \ 2$	120.23 (12)
01_1-C2_1-C3_1	122.85 (12)	01_2-C2_2-C3_2	117.78 (12)
C1 ⁻ 1C2 ⁻ 1C3 ⁻ 1	116.68 (12)	C1 ² —C2 ² —C3 ²	121.98 (12)
N1 1-C3 1-C4 1	122.96 (11)	N1 ² —C3 ² —C4 ²	123.14 (11)
N1 ⁻¹ -C3 ⁻¹ -C2 ⁻¹	115.49 (11)	N1 ² —C3 ² —C2 ²	117.19 (10)
$C4^{-1}-C3^{-1}-C2^{-1}$	120.56 (11)	$C4^{-}2-C3^{-}2-C2^{-}2$	119.38 (11)
C3 ¹ -C4 ¹ -C5 ¹	120.68 (11)	C3 ² -C4 ² -C5 ²	120.86 (11)
C3 ¹ -C4 ¹ -C2 ³ 1	119.78 (11)	$C3^{-}2-C4^{-}2-C2^{-}3^{-}2$	121.66 (11)
C5 ¹ —C4 ¹ —C23 ¹	119.17 (11)	C5 ² —C4 ² —C23 ²	117.42 (11)
N2 1—C5 1—C4 1	123.75 (11)	N2 ² —C5 ² —C4 ²	124.37 (11)
N2 ⁻¹ -C5 ⁻¹ -C6 ⁻¹	110.40 (11)	N2 ² -C5 ² -C6 ²	109.94 (11)
C4_1—C5_1—C6_1	125.84 (11)	C4 ² —C5 ² —C6 ²	125.68 (11)
C7 ¹ —C6 ¹ —C5 ¹	106.76 (11)	C7 ² —C6 ² —C5 ²	106.94 (11)
C7_1_C6_1_H6_1	126.6	C7 ² —C6 ² —H6 ²	126.5
C5_1_C6_1_H6_1	126.6	С5 2—С6 2—Н6 2	126.5
C6_1—C7_1—C8_1	107.26 (11)	C6 ² —C7 ² —C8 ²	107.30 (11)
C6_1_C7_1_H7_1	126.4	C6 2—C7 2—H7 2	126.4
C8_1—C7_1—H7_1	126.4	C8 ² —C7 ² —H7 ²	126.4
N2 1-C8 1-C9 1	124.27 (11)	C9 2—C8 2—N2 2	124.72 (11)
N2 1—C8 1—C7 1	109.40 (11)	C9 2—C8 2—C7 2	125.10 (11)
	× /		

C9_1-C8_1-C7_1	125.61 (12)	N2_2-C8_2-C7_2	109.18 (11)
C8_1—C9_1—C10_1	121.36 (12)	C8_2_C9_2_C10_2	121.26 (11)
C8 1—C9 1—C29 1	117.74 (11)	C8 2—C9 2—C29 2	118.14 (11)
C10 1-C9 1-C29 1	120.73 (11)	C10 2-C9 2-C29 2	120.36 (11)
N3 1—C10 1—C9 1	124.35 (11)	N3 2—C10 2—C9 2	124.11 (11)
N3 1-C10 1-C11 1	109.92 (11)	N3 ² —C10 ² —C11 ²	109.93 (11)
C9 ⁻ 1-C10 ⁻ 1-C11 ⁻ 1	125.44 (12)	C9 ² —C10 ² —C11 ²	125.47 (11)
$C1\overline{2} 1 - C1\overline{1} 1 - C1\overline{0} 1$	106.90 (12)	C12 2-C11 2-C10 2	107.00 (11)
C12 1—C11 1—H11 1	126.6	C12 2—C11 2—H11 2	126.5
C10_1—C11_1—H11_1	126.6	C10_2—C11_2—H11_2	126.5
C11_1—C12_1—C13_1	107.12 (12)	C11 2—C12 2—C13 2	107.00 (12)
C11 1—C12 1—H12 1	126.4	C11 2—C12 2—H12 2	126.5
C13 1—C12 1—H12 1	126.4	C13 2—C12 2—H12 2	126.5
N3 1—C13 1—C14 1	124.80 (12)	N3 2-C13 2-C14 2	124.81 (11)
$N_3 = -C_{13} = -C_{12} = 1$	109.91 (11)	N3 2—C13 2—C12 2	110.12(11)
$C_{14} = C_{13} = C_{12} = 1$	125.25(12)	$C_{14} = C_{13} = C_{12} = C_{12} = C_{12}$	125.00(12)
$C_{15} = C_{14} = C_{13} = C_{13} = C_{13} = C_{14} = C_{13} = C_{14} = C_{13} = C_{14} = C_{13} = C_{14} = C$	122.22(12) 122.27(12)	$C_{15}^{-2} = C_{14}^{-2} = C_{13}^{-2} = $	123.00(12) 121.64(11)
$C_{15} = C_{14} = C_{15} = 1$	1122.27(12) 118.93(12)	$C_{15}^{-2} = C_{14}^{-2} = C_{15}^{-2}$	121.01(11) 119.60(11)
$C_{13}^{-1} - C_{14}^{-1} - C_{35}^{-1}$	118.80 (12)	$C_{13}^{-2} = C_{14}^{-2} = C_{35}^{-2} = C_{14}^{-2} = C_{35}^{-2} = C_{14}^{-2} = C_{35}^{-2} = C_{14}^{-2} = C_{14}^{-2} = C_{15}^{-2} = $	119.00 (11)
$N_{4} = C_{15} = C_{14} = C_$	123 63 (12)	$C_{13}^{-2} = C_{14}^{-2} = C_{33}^{-2}$	123.45(11)
$N4_1 - C15_1 - C16_1$	123.03(12) 109.74(11)	$C14_2 - C15_2 - C16_2$	125.45(11) 126.11(11)
$C_{14} = C_{15} = C_{16} = C_{16}$	125 89 (12)	$N_{4} = 2 - C_{15} = 2 - C_{16} = 2$	120.11(11) 109.72(11)
$C_{17}^{-1} = C_{16}^{-1} = C_{15}^{-1}$	125.09(12) 107 11 (11)	$C_{17}^{-2} = C_{16}^{-2} = C_{15}^{-2}$	109.72(11) 106.83(11)
$C_{17}^{-1} = C_{16}^{-1} = H_{16}^{-1}$	126.4	$C_{17}^{-2} = C_{16}^{-2} = C_{15}^{-2}$	126.6
$C_{15} = C_{16} = C_{16} = H_{16} = H_{16}$	126.4	$C_{15}^{-2} = C_{16}^{-2} = H_{16}^{-2}$	126.6
$C_{16} = C_{17} = C_{18} = C$	106.80 (12)	$C_{16}^{-2} = C_{17}^{-2} = C_{18}^{-2}$	106 79 (11)
$C_{16} = C_{17} = C_{17} = H_{17} = H_{17}$	126.6	C16 2-C17 2-H17 2	126.6
$C_{10}^{-1} = C_{17}^{-1} = H_{17}^{-1}$	126.6	C18 2—C17 2—H17 2	126.6
$N_{4} = 0.01 + 0.01 + 0.01 + 0.000 + 0.000 + 0.000 + 0.00000 + 0.00000 + 0.0000 + 0.00000 + 0.0000000 + 0.00000 + 0.0000 + 0.00$	123.53 (11)	N4 2C18 2C19 2	120.0 123.16(11)
$N4_1 - C18_1 - C17_1$	110.26 (11)	$N_{-2} = C_{10} = 2 = C_{17} = 2$ N4 2 = C_{18} 2 = C_{17} = 2	123.10(11) 110.73(11)
$C_{19} = C_{18} = C_{17} = C_{17}$	126 19 (12)	$C_{19}^{-2} = C_{18}^{-2} = C_{17}^{-2}$	126.08 (11)
$C_{10}^{-1} = C_{10}^{-1} = C_{10}^{-1} = C_{10}^{-1}$	120.19(12) 120.46(11)	$C_{10}^{-2} = C_{10}^{-2} = $	120.06(11) 120.95(11)
C_{20}^{-1} C_{19}^{-1} C_{18}^{-1} C_{41}^{-1}	120.40(11) 122.21(11)	$C_{20} = 2 - C_{19} = 2 - C_{18} = 2$	120.93(11) 122.01(11)
$C_{20}^{-1} - C_{19}^{-1} - C_{41}^{-1}$	122.21(11) 116.80(11)	$C_{20}^{-2} = C_{19}^{-2} = C_{11}^{-2}$	122.01(11) 116.37(11)
$C_{10} = 1 - C_{10} = 1 - C_{11} - C_{11} = 1$	110.09(11) 121.30(11)	$C_{10} = 2 - C_{10} = 2 - C_{11} = 2$	121.86(11)
$C_{19}^{-1} - C_{20}^{-1} - N_{1}^{-1}$	121.39(11) 123.37(11)	$C19_2 - C20_2 - R1_2$	121.30(11) 121.72(11)
$N_{1} = C_{20} = C_{21} = C_{21}$	123.37(11) 114.92(10)	N1 = 2 - 20 = 2 - 21 = 2	121.72(11) 116.33(10)
$N_1 = C_2 $	114.92(10) 110.18(12)	$N_{12} = C_{20} = C_{21} = C_{21}$	110.33(10) 120.02(12)
$02_1 - 021_1 - 022_1$	119.10(12) 121.03(12)	$02_2 - 021_2 - 020_2$	120.92(12) 118.27(12)
$02_1 - 021_1 - 020_1$	121.03(12) 110.22(11)	$02_2 - 021_2 - 022_2$	110.27(12) 120.42(11)
$C_{22}I = C_{21}I = C_{20}I$	119.52 (11)	$C_{20} = C_{21} = C_{22} = C$	120.45 (11)
$C_{21} = C_{22} = C$	109.5	C_{21}_{2} C_{22}_{2} $C_{$	109.5
$C_{21} = C_{22} = T_{122} = T_{122$	109.5	C_{21}_{2} $-C_{22}_{2}$ $-H_{22}B_{2}_{2}$	109.5
$H22A_1 - C22_1 - H22B_1$	109.5	$H22A_2 - C22_2 - H22B_2$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$U_{21} = U_{22} = U$	109.5
$ \begin{array}{c} \Pi 22A_I \longrightarrow \mathbb{C}22_I \longrightarrow \mathbb{H}22\mathbb{C}_1 \\ \Pi 22B_I \longrightarrow \mathbb{C}22_I \longrightarrow \mathbb{H}22\mathbb{C}_1 \\ \end{array} $	109.5	$\Pi 22A_2 - U22_2 - H22U_2$	109.5
$\Pi_{22} \square \Pi_{22} \square \square \Pi_{22} \square \square \Pi_{22} \square \square \Pi_{22} \square $	109.3	$\Pi_{22} \square $	109.3
1 - 1 - 23 - 1 - 24 - 1	119.10 (12)	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	118.74(13)
C28_1—C23_1—C4_1	119.38 (11)	0.28_2-0.23_2-0.4_2	118.70(12)

C24 1—C23 1—C4 1	121.43 (12)	C24 2—C23 2—C4 2	122.54 (13)
C25 ¹ —C24 ¹ —C23 ¹	120.05 (14)	C25 ² —C24 ² —C2 ³ 2	119.80 (16)
C25 ¹ —C24 ¹ —H24 ¹	120.0	C25 ² —C24 ² —H24 ²	120.1
C23 ¹ —C24 ¹ —H24 ¹	120.0	C23 ² —C24 ² —H24 ²	120.1
C24 1—C25 1—C26 1	120.31 (14)	C26 ² —C25 ² —C24 ²	120.66 (17)
C24 1—C25 1—H25 1	119.8	C26 2—C25 2—H25 2	119.7
C26 1—C25 1—H25 1	119.8	C24 2—C25 2—H25 2	119.7
C27 ¹ —C26 ¹ —C25 ¹	119.88 (13)	C27 ² —C26 ² —C25 ²	119.79 (16)
C27 ¹ —C26 ¹ —H26 ¹	120.1	C27 ² —C26 ² —H26 ²	120.1
C25 ¹ —C26 ¹ —H26 ¹	120.1	C25 ² —C26 ² —H26 ²	120.1
C26 1—C27 1—C28 1	120.04 (14)	C26 ² —C27 ² —C28 ²	120.08 (18)
C26_1—C27_1—H27_1	120.0	C26 2—C27 2—H27 2	120.0
C28 1—C27 1—H27 1	120.0	C28 2—C27 2—H27 2	120.0
C27 ¹ —C28 ¹ —C23 ¹	120.51 (13)	C27 ² —C28 ² —C23 ²	120.91 (16)
C27_1—C28_1—H28_1	119.7	C27 ² —C28 ² —H28 ²	119.5
C23 1—C28 1—H28 1	119.7	C23 ² —C28 ² —H28 ²	119.5
C30 1—C29 1—C34 1	118.59 (12)	C34 2—C29 2—C30 2	118.63 (12)
C30 1—C29 1—C9 1	119.49 (11)	C34 2—C29 2—C9 2	122.00 (11)
C34 1—C29 1—C9 1	121.85 (12)	C30 2—C29 2—C9 2	119.35 (11)
C31 1—C30 1—C29 1	120.97 (13)	C31 2—C30 2—C29 2	120.67 (13)
C31 1—C30 1—H30 1	119.5	C31 2—C30 2—H30 2	119.7
C29 1—C30 1—H30 1	119.5	C29 2—C30 2—H30 2	119.7
C30 1—C31 1—C32 1	120.01 (14)	C30 2—C31 2—C32 2	120.20 (14)
C30 1—C31 1—H31 1	120.0	C30 2—C31 2—H31 2	119.9
C32 1—C31 1—H31 1	120.0	C32 2—C31 2—H31 2	119.9
C33 1—C32 1—C31 1	119.56 (14)	C33 2—C32 2—C31 2	119.61 (13)
C33 1—C32 1—H32 1	120.2	C33 ² —C32 ² —H32 ²	120.2
C31 1—C32 1—H32 1	120.2	C31 ² —C32 ² —H32 ²	120.2
C32 ¹ —C33 ¹ —C34 ¹	120.55 (14)	C32 ² —C33 ² —C34 ²	120.32 (13)
C32 ¹ —C33 ¹ —H33 ¹	119.7	C32 ² —C33 ² —H33 ²	119.8
C34 1—C33 1—H33 1	119.7	C34 2—C33 2—H33 2	119.8
C33 1—C34 1—C29 1	120.32 (13)	C33 ² —C34 ² —C29 ²	120.55 (13)
C33 1—C34 1—H34 1	119.8	C33 ² —C34 ² —H34 ²	119.7
C29 1—C34 1—H34 1	119.8	C29 2—C34 2—H34 2	119.7
C40 1—C35 1—C36 1	119.26 (15)	C40 2—C35 2—C36 2	119.25 (14)
C40 1—C35 1—C14 1	122.55 (15)	C40 2—C35 2—C14 2	121.69 (13)
C36 ¹ —C35 ¹ —C14 ¹	118.15 (13)	C36 2—C35 2—C14 2	119.06 (13)
C35 ¹ —C36 ¹ —C37 ¹	120.20 (18)	C37 ² —C36 ² —C35 ²	120.23 (17)
C35 ¹ —C36 ¹ —H36 ¹	119.9	C37 ² —C36 ² —H36 ²	119.9
C37 ¹ —C36 ¹ —H36 ¹	119.9	C35 ² —C36 ² —H36 ²	119.9
C38 1—C37 1—C36 1	120.1 (2)	C38 2—C37 2—C36 2	120.17 (19)
C38 1—C37 1—H37 1	119.9	C38 2—C37 2—H37 2	119.9
C36 1—C37 1—H37 1	119.9	C36 2—C37 2—H37 2	119.9
C39 1—C38 1—C37 1	119.99 (18)	C39 2—C38 2—C37 2	119.96 (17)
C39 1—C38 1—H38 1	120.0	C39 2—C38 2—H38 2	120.0
C37 1—C38 1—H38 1	120.0	C37 2—C38 2—H38 2	120.0
C38 1—C39 1—C40 1	120.4 (2)	C38 2—C39 2—C40 2	120.44 (19)
C38 1—C39 1—H39 1	119.8	C38 2—C39 2—H39 2	119.8

C40_1-C39_1-H39_1	119.8	C40_2—C39_2—H39_2	119.8
C35_1—C40_1—C39_1	119.9 (2)	C35_2—C40_2—C39_2	119.95 (18)
C35_1—C40_1—H40_1	120.0	C35_2—C40_2—H40_2	120.0
C39_1—C40_1—H40_1	120.0	C39_2—C40_2—H40_2	120.0
C42_1—C41_1—C46_1	119.32 (12)	C42_2—C41_2—C46_2	119.39 (11)
C42_1—C41_1—C19_1	119.83 (11)	C42_2—C41_2—C19_2	119.00 (11)
C46_1—C41_1—C19_1	120.77 (11)	C46_2-C41_2-C19_2	121.38 (11)
C43_1—C42_1—C41_1	119.96 (12)	C41_2—C42_2—C43_2	120.33 (12)
C43_1—C42_1—H42_1	120.0	C41_2—C42_2—H42_2	119.8
C41_1—C42_1—H42_1	120.0	C43_2—C42_2—H42_2	119.8
C44_1—C43_1—C42_1	120.47 (13)	C44_2-C43_2-C42_2	120.04 (12)
C44_1—C43_1—H43_1	119.8	C44_2—C43_2—H43_2	120.0
C42 1—C43 1—H43 1	119.8	C42 2—C43 2—H43 2	120.0
C43_1—C44_1—C45_1	119.84 (13)	C43_2—C44_2—C45_2	120.04 (12)
C43 ¹ —C44 ¹ —H44 ¹	120.1	C43 ² —C44 ² —H44 ²	120.0
C45 ¹ —C44 ¹ —H44 ¹	120.1	C45 ² —C44 ² —H44 ²	120.0
C46 ¹ —C45 ¹ —C44 ¹	119.99 (12)	C44 ² —C45 ² —C46 ²	120.23 (12)
C46 ¹ —C45 ¹ —H45 ¹	120.0	C44 ² —C45 ² —H45 ²	119.9
C44 ¹ —C45 ¹ —H45 ¹	120.0	C46 ² —C45 ² —H45 ²	119.9
C45 ¹ —C46 ¹ —C41 ¹	120.39 (12)	C45 ² —C46 ² —C41 ²	119.97 (12)
C45 ¹ —C46 ¹ —H46 ¹	119.8	C45 ² —C46 ² —H46 ²	120.0
C41 ¹ —C46 ¹ —H46 ¹	119.8	C41 ² —C46 ² —H46 ²	120.0
N2_1-Ni1_1-N1_1-C3_1	39.81 (10)	C42_1—C41_1—C46_1—C45_1	-1.5 (2)
N4_1—Ni1_1—N1_1—C3_1	-136.86 (10)	C19_1—C41_1—C46_1—C45_1	-178.15 (12)
N2_1-Ni1_1-N1_1-C20_1	-143.06 (10)	N3_2-Ni1_2-N2_2-C5_2	154.78 (11)
N4_1-Ni1_1-N1_1-C20_1	40.28 (10)	N1_2-Ni1_2-N2_2-C5_2	-26.71 (11)
N1_1—Ni1_1—N2_1—C5_1	-19.48 (10)	N3_2-Ni1_2-N2_2-C8_2	-20.15 (11)
N3_1—Ni1_1—N2_1—C5_1	160.83 (10)	N1_2-Ni1_2-N2_2-C8_2	158.36 (11)
N1_1—Ni1_1—N2_1—C8_1	157.04 (11)	N3_2_Ni1_2_N4_2_C18_2	165.64 (10)
N3 1—Ni1 1—N2 1—C8 1	-22.64 (11)	N1 2—Ni1 2—N4 2—C18 2	-12.89 (11)
N1_1—Ni1_1—N4_1—C18_1	-14.98 (11)	N3_2_Ni1_2_N4_2_C15_2	-27.18 (10)
N3_1—Ni1_1—N4_1—C18_1	164.71 (11)	N1_2_Ni1_2_N4_2_C15_2	154.29 (10)
N1 1—Ni1 1—N4 1—C15 1	154.90 (11)	C20 2—N1 2—C3 2—C4 2	154.90 (12)
N3 ¹ —Ni1 ¹ —N4 ¹ —C15 ¹	-25.42 (11)	Ni1 2—N1 2—C3 2—C4 2	-25.72 (17)
C20 1—N1 1—C3 1—C4 1	144.70 (12)	C20 2—N1 2—C3 2—C2 2	-31.32 (15)
Ni1 1—N1 1—C3 1—C4 1	-37.95 (16)	Ni1 2—N1 2—C3 2—C2 2	148.07 (9)
C20 1—N1 1—C3 1—C2 1	-46.59 (15)	O1 2—C2 2—C3 2—N1 2	-37.75 (17)
Ni1 1—N1 1—C3 1—C2 1	130.76 (10)	C1 ² —C2 ² —C3 ² —N1 ²	143.45 (13)
01 1—C2 1—C3 1—N1 1	39.90 (19)	O1 2—C2 2—C3 2—C4 2	136.28 (13)
C1 1—C2 1—C3 1—N1 1	-130.33 (13)	C1 ² —C2 ² —C3 ² —C4 ²	-42.52 (18)
01_1-C2_1-C3_1-C4_1	-151.09 (14)	N1 2—C3 2—C4 2—C5 2	-7.22 (19)
C1 1—C2 1—C3 1—C4 1	38.67 (17)	C2 ² —C3 ² —C4 ² —C5 ²	179.12 (11)
N1 1—C3 1—C4 1—C5 1	2.82 (19)	N1 2—C3 2—C4 2—C23 2	169.86 (12)
C2 ¹ —C3 ¹ —C4 ¹ —C5 ¹	-165.34 (12)	C2 ² —C3 ² —C4 ² —C23 ²	-3.80 (18)
N1 1—C3 1—C4 1—C23 1	-170.12 (11)	C8 2—N2 2—C5 2—C4 2	-178.62 (12)
C2 ¹ —C3 ¹ —C4 ¹ —C23 ¹	21.71 (18)	Ni1 2—N2 2—C5 2—C4 2	5 57 (18)
	=10,1(10)		2.27 (10)
C8_1—N2_1—C5 1—C4 1	177.17 (12)	C8_2—N2_2—C5_2—C6_2	0.42 (14)

Ni1_1—N2_1—C5_1—C4_1	-5.69 (18)	Ni1_2-N2_2-C5_2-C6_2	-175.40 (9)
C8_1—N2_1—C5_1—C6_1	-1.73 (14)	C3_2_C4_2_C5_2_N2_2	18.0 (2)
Ni1_1—N2_1—C5_1—C6_1	175.41 (8)	C23_2-C4_2-C5_2-N2_2	-159.19 (12)
C3_1—C4_1—C5_1—N2_1	20.07 (19)	C3_2-C4_2-C5_2-C6_2	-160.86 (13)
C23_1-C4_1-C5_1-N2_1	-166.94 (11)	C23_2—C4_2—C5_2—C6_2	21.93 (19)
C3_1—C4_1—C5_1—C6_1	-161.20 (12)	N2_2-C5_2-C6_2-C7_2	-2.88 (16)
C23_1—C4_1—C5_1—C6_1	11.78 (19)	C4_2-C5_2-C6_2-C7_2	176.14 (13)
N2_1-C5_1-C6_1-C7_1	-0.22 (15)	C5_2-C6_2-C7_2-C8_2	4.00 (15)
C4_1-C5_1-C6_1-C7_1	-179.09 (12)	C5_2_N2_2_C8_2_C9_2	-166.97 (12)
C5_1-C6_1-C7_1-C8_1	2.00 (15)	Ni1_2-N2_2-C8_2-C9_2	8.74 (18)
C5 1—N2 1—C8 1—C9 1	-167.75 (12)	C5 2—N2 2—C8 2—C7 2	2.07 (14)
Ni1 1—N2 1—C8 1—C9 1	15.17 (18)	Ni1 2—N2 2—C8 2—C7 2	177.78 (9)
C5 1—N2 1—C8 1—C7 1	2.96 (14)	C6 2—C7 2—C8 2—C9 2	165.08 (13)
Ni1 1—N2 1—C8 1—C7 1	-174.12 (9)	C6 2—C7 2—C8 2—N2 2	-3.91 (15)
C6 1—C7 1—C8 1—N2 1	-3.17 (15)	N2 2—C8 2—C9 2—C10 2	8.94 (19)
C6_1_C7_1_C8_1_C9_1	167.39 (13)	C7 ² —C8 ² —C9 ² —C10 ²	-158.39 (13)
N2 1—C8 1—C9 1—C10 1	4.21 (19)	N2 2—C8 2—C9 2—C29 2	-176.68 (11)
C7 ¹ —C8 ¹ —C9 ¹ —C10 ¹	-164.99 (12)	C7 ² —C8 ² —C9 ² —C29 ²	15.99 (19)
N2 1—C8 1—C9 1—C29 1	179.48 (11)	C13 2—N3 2—C10 2—C9 2	169.02 (12)
C7 ¹ —C8 ¹ —C9 ¹ —C29 ¹	10.28 (19)	Ni1 2—N3 2—C10 2—C9 2	-13.63 (17)
C13 1—N3 1—C10 1—C9 1	171.29 (12)	C13 2—N3 2—C10 2—C11 2	-3.32(14)
Ni1 1—N3 1—C10 1—C9 1	-8.88 (18)	Ni1 2—N3 2—C10 2—C11 2	174.03 (9)
C13 1—N3 1—C10 1—C11 1	-2.88(14)	C8 2—C9 2—C10 2—N3 2	-6.32 (19)
Ni1 1—N3 1—C10 1—C11 1	176.95 (9)	C29 2-C9 2-C10 2-N3 2	179.42 (11)
C8 1—C9 1—C10 1—N3 1	-7.29 (19)	C8 2—C9 2—C10 2—C11 2	164.83 (12)
C29 1—C9 1—C10 1—N3 1	177.58 (11)	C29 2—C9 2—C10 2—C11 2	-9.42(19)
C8 1—C9 1—C10 1—C11 1	165.98 (12)	N3 2—C10 2—C11 2—C12 2	4.29 (15)
C29 1—C9 1—C10 1—C11 1	-9.14 (19)	C9 2—C10 2—C11 2—C12 2	-167.93(12)
N3 1—C10 1—C11 1—C12 1	4.04 (15)	C10 2-C11 2-C12 2-C13 2	-3.36 (15)
C9 1—C10 1—C11 1—C12 1	-170.06(13)	C10 2—N3 2—C13 2—C14 2	178.23 (12)
C10 1-C11 1-C12 1-C13 1	-3.42 (15)	Ni1 2—N3 2—C13 2—C14 2	0.87 (18)
C10 1—N3 1—C13 1—C14 1	178.53 (12)	C10 2—N3 2—C13 2—C12 2	1.21 (14)
Ni1 1—N3 1—C13 1—C14 1	-1.30(19)	Ni1 2—N3 2—C13 2—C12 2	-176.14 (9)
C10 1—N3 1—C13 1—C12 1	0.73 (14)	C11 2—C12 2—C13 2—N3 2	1.43 (16)
Ni1 1—N3 1—C13 1—C12 1	-179.10 (9)	C11 ² —C12 ² —C13 ² —C14 ²	-175.58 (13)
C11 1—C12 1—C13 1—N3 1	1.77 (16)	N3 2—C13 2—C14 2—C15 2	-12.8 (2)
C11 1—C12 1—C13 1—C14 1	-176.01 (13)	C12 2—C13 2—C14 2—C15 2	163.74 (13)
N3 1—C13 1—C14 1—C15 1	-12.0 (2)	N3 2-C13 2-C14 2-C35 2	169.71 (12)
C12 1—C13 1—C14 1—C15 1	165.47 (13)	C12 2—C13 2—C14 2—C35 2	-13.7 (2)
N3 1—C13 1—C14 1—C35 1	168.68 (12)	C13 2—C14 2—C15 2—N4 2	0.21 (19)
C12 1—C13 1—C14 1—C35 1	-13.9(2)	C35 2—C14 2—C15 2—N4 2	177.64 (12)
$C_{18} = -N_4 = -C_{15} = -C_{14} $	-167.68(12)	$C_{13} = C_{14} = C_{15} = C_{16} = C_{16}$	-169.01(12)
Ni1 1—N4 1—C15 1—C14 1	20.71 (18)	C35 2—C14 2—C15 2—C16 2	8.4 (2)
$C_{18} = -N_4 = -C_{15} = -C_{16} = -C_{16}$	2.93 (14)	$C_{18} = -N_4 = -C_{15} = -C_{14} = -C_{15} $	-166.51(12)
Nil 1—N4 1—C15 1—C16 1	-168.68 (9)	Ni1 2—N4 2—C15 2—C14 2	24.16 (17)
C13 1—C14 1—C15 1—N4 1	2.1 (2)	C18 2—N4 2—C15 2—C16 2	4.26 (13)
C35 1—C14 1—C15 1—N4 1	-178.56(12)	Nil 2—N4 2—C15 2—C16 2	-165.08(8)
$C_{13} = C_{14} = C_{15} = C_{16} = C_{16}$	-166.96(13)	$C_{14} = C_{15} = C_{16} = C_{17} = C$	166.20(12)

C35 1—C14 1—C15 1—C16 1	12.4 (2)	N4 2-C15 2-C16 2-C17 2	-4.26 (14)
N4 1—C15 1—C16 1—C17 1	-3.01 (16)	C15 2-C16 2-C17 2-C18 2	2.45 (14)
C14 1—C15 1—C16 1—C17 1	167.33 (13)	C15 ² —N4 ² —C18 ² —C19 ²	175.66 (11)
C15 ⁻ 1—C16 ⁻ 1—C17 ⁻ 1—C18 ⁻ 1	1.81 (16)	Ni1 2—N4 2—C18 2—C19 2	-14.99 (17)
C15 ⁻ 1—N4 ⁻ 1—C18 ⁻ 1—C19 ⁻ 1	176.72 (12)	C15 2—N4 2—C18 2—C17 2	-2.73 (13)
Ni1 1—N4 1—C18 1—C19 1	-11.76 (18)	Ni1 2—N4 2—C18 2—C17 2	166.61 (8)
C15 1—N4 1—C18 1—C17 1	-1.80 (14)	C16 2—C17 2—C18 2—N4 2	0.13 (14)
Nil 1—N4 1—C18 1—C17 1	169.73 (9)	C16 2—C17 2—C18 2—C19 2	-178.21 (12)
C16 1—C17 1—C18 1—N4 1	-0.04 (15)	N4 2—C18 2—C19 2—C20 2	22.87 (18)
C16 1—C17 1—C18 1—C19 1	-178.51 (13)	C17 2—C18 2—C19 2—C20 2	-158.98 (12)
N4 1—C18 1—C19 1—C20 1	21.94 (19)	N4 2—C18 2—C19 2—C41 2	-166.25 (11)
C17 1—C18 1—C19 1—C20 1	-159.78 (13)	C17 2—C18 2—C19 2—C41 2	11.90 (18)
N4 1—C18 1—C19 1—C41 1	-165.57 (11)	C18 2—C19 2—C20 2—N1 2	7.98 (18)
C17 1—C18 1—C19 1—C41 1	12.70 (19)	C41 2—C19 2—C20 2—N1 2	-162.37(11)
C18 1—C19 1—C20 1—N1 1	5.43 (18)	C18 2—C19 2—C20 2—C21 2	-168.41(11)
C41 1—C19 1—C20 1—N1 1	-166.64(11)	C41 2—C19 2—C20 2—C21 2	21.23 (18)
C18 1—C19 1—C20 1—C21 1	-167.78(12)	C3 2—N1 2—C20 2—C19 2	135.71 (12)
C41 1—C19 1—C20 1—C21 1	20.15 (19)	Ni1 2—N1 2—C20 2—C19 2	-43.69(15)
C3 1—N1 1—C20 1—C19 1	135.50 (12)	C3 2—N1 2—C20 2—C21 2	-47.71 (15)
Ni1 1—N1 1—C20 1—C19 1	-41.81 (16)	Ni1 2—N1 2—C20 2—C21 2	132.89 (9)
C3 1—N1 1—C20 1—C21 1	-50.75 (15)	C19 2—C20 2—C21 2—O2 2	-156.63 (13)
Ni1 1—N1 1—C20 1—C21 1	131.93 (10)	N1 2—C20 2—C21 2—O2 2	26.78 (18)
C19 1—C20 1—C21 1—O2 1	-160.19 (13)	C19 2—C20 2—C21 2—C22 2	30.58 (18)
N1 1—C20 1—C21 1—O2 1	26.20 (18)	N1 2—C20 2—C21 2—C22 2	-146.01 (12)
C19 1—C20 1—C21 1—C22 1	27.72 (19)	C3 ² —C4 ² —C23 ² —C28 ²	-66.61 (18)
N1 1—C20 1—C21 1—C22 1	-145.89 (12)	C5 ² —C4 ² —C23 ² —C28 ²	110.57 (15)
C3 ⁻ 1—C4 ⁻ 1—C23 ⁻ 1—C28 ⁻ 1	47.55 (18)	C3 ² —C4 ² —C23 ² —C24 ²	115.13 (15)
C5 ¹ —C4 ¹ —C23 ¹ —C28 ¹	-125.51 (14)	C5 ² —C4 ² —C23 ² —C24 ²	-67.69 (17)
C3 ¹ —C4 ¹ —C23 ¹ —C24 ¹	-130.42 (14)	C28 2—C23 2—C24 2—C25 2	-0.6 (2)
C5_1-C4_1-C23_1-C24_1	56.53 (17)	C4_2_C23_2_C24_2_C25_2	177.65 (14)
C28_1—C23_1—C24_1—C25_1	-2.4 (2)	C23_2—C24_2—C25_2—C26_2	0.2 (3)
C4 1—C23 1—C24 1—C25 1	175.60 (13)	C24 2—C25 2—C26 2—C27 2	0.6 (3)
$C23_1 - C24_1 - C25_1 - C26_1$	1.1 (2)	C25_2_C26_2_C27_2_C28_2	-0.8 (3)
C24 1—C25 1—C26 1—C27 1	1.1 (2)	C26 ² —C27 ² —C28 ² —C23 ²	0.4 (3)
C25_1—C26_1—C27_1—C28_1	-2.0 (2)	C24_2—C23_2—C28_2—C27_2	0.4 (2)
C26_1—C27_1—C28_1—C23_1	0.7 (2)	C4_2_C23_2_C28_2_C27_2	-177.98 (15)
C24_1—C23_1—C28_1—C27_1	1.4 (2)	C8_2_C9_2_C29_2_C34_2	-119.00 (14)
C4_1—C23_1—C28_1—C27_1	-176.57 (13)	C10_2-C9_2-C29_2-C34_2	55.43 (17)
C8_1-C9_1-C29_1-C30_1	59.97 (17)	C8_2-C9_2-C29_2-C30_2	59.66 (17)
C10_1—C9_1—C29_1—C30_1	-124.73 (14)	C10_2-C9_2-C29_2-C30_2	-125.91 (14)
C8_1-C9_1-C29_1-C34_1	-116.99 (14)	C34_2-C29_2-C30_2-C31_2	-1.3 (2)
C10_1-C9_1-C29_1-C34_1	58.30 (18)	C9_2-C29_2-C30_2-C31_2	-179.96 (14)
C34_1-C29_1-C30_1-C31_1	0.6 (2)	C29_2—C30_2—C31_2—C32_2	0.3 (3)
C9_1-C29_1-C30_1-C31_1	-176.44 (13)	C30_2—C31_2—C32_2—C33_2	0.8 (3)
C29_1—C30_1—C31_1—C32_1	-0.2 (2)	C31_2—C32_2—C33_2—C34_2	-1.0 (2)
C30_1—C31_1—C32_1—C33_1	-0.4 (2)	C32_2—C33_2—C34_2—C29_2	0.1 (2)
C31_1—C32_1—C33_1—C34_1	0.6 (2)	C30_2—C29_2—C34_2—C33_2	1.0 (2)
C32_1—C33_1—C34_1—C29_1	-0.2 (2)	C9_2—C29_2—C34_2—C33_2	179.70 (12)

C30_1—C29_1—C34_1—C33_1 C9_1—C29_1—C34_1—C33_1 C15_1_C14_1_C25_1_C40_1	-0.4 (2) 176.56 (13)	C15_2C14_2C35_2C40_2 C13_2C14_2C35_2C40_2 C15_2C14_2C35_2C40_2	-68.11 (19) 109.40 (17)
C13_1C14_1C35_1C40_1 C13_1C14_1C35_1C40_1 C15_1C14_1C35_1C36_1	-57.1 (2) 82.3 (2) 85.30 (18)	C13_2C14_2C35_2C36_2 C13_2C14_2C35_2C36_2 C40_2C35_2C36_2C37_2	-71.18(18) -0.2(3)
C13_1—C14_1—C35_1—C36_1	-95.35 (17)	C14_2—C35_2—C36_2—C37_2	-179.63(16)
C40_1—C35_1—C36_1—C37_1	0.1 (3)	C35_2—C36_2—C37_2—C38_2	-0.3(3)
C14_1—C35_1—C36_1—C37_1	177 75 (17)	C36_2—C37_2—C38_2—C39_2	0.6(3)
C35_1-C36_1-C37_1-C38_1	1.3 (3)	C37_2-C38_2-C39_2-C40_2	-0.4 (4)
C36_1-C37_1-C38_1-C39_1	-1.3 (4)	C36_2-C35_2-C40_2-C39_2	0.4 (3)
C37_1—C38_1—C39_1—C40_1	0.0 (4)	C14_2-C35_2-C40_2-C39_2	179.78 (18)
C36_1—C35_1—C40_1—C39_1	-1.4 (3)	C38_2-C39_2-C40_2-C35_2	-0.1 (3)
C14_1—C35_1—C40_1—C39_1	-179.0 (2)	C20_2-C19_2-C41_2-C42_2	56.12 (17)
C38_1C39_1C40_1C35_1	1.4 (4)	C18_2C19_2C41_2C42_2	-114.65 (14)
C20_1C19_1C41_1C42_1	57.29 (18)	C20_2C19_2C41_2C46_2	-129.46 (14)
C18_1C19_1C41_1C42_1	-115.05 (14)	C18_2C19_2C41_2C46_2	59.77 (16)
C20_1C19_1C41_1C46_1 C18_1C19_1C41_1C46_1 C46_1 -C41_1C46_1	-126.06 (14) 61.60 (16)	C46_2C41_2C42_2C43_2 C19_2C41_2C42_2C43_2 C41_2C42_2C43_2	-0.2 (2) 174.36 (13)
$C46_1 - C41_1 - C42_1 - C43_1$ $C19_1 - C41_1 - C42_1 - C43_1$ $C41_1 - C42_1 - C43_1 - C44_1$	0.9 (2) 177.64 (13) 0.6 (2)	C41_2C42_2C43_2C44_2 C42_2C43_2C44_2C45_2 C43_2C44_2C45_2C46_2	-0.3(2) -0.7(2)
C42_1—C43_1—C44_1—C45_1	-1.6 (2)	C44_2C45_2C46_2C41_2	1.3 (2)
C43_1—C44_1—C45_1—C46_1	1.0 (2)	C42_2C41_2C46_2C45_2	-0.8 (2)
C44_1—C45_1—C46_1—C41_1	0.5 (2)	C19_2C41_2C46_2C45_2	-175.22 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
C28_1—H28_1···O2_1	0.95	2.60	3.4517 (17)	149
C42_1—H42_1…O1_1	0.95	2.55	3.3855 (17)	147
C42_2—H42_2···O1_2	0.95	2.66	3.5120 (17)	149
$C6_1$ —H6_1···O2_1 ⁱ	0.95	2.49	3.3714 (16)	155
C6_2—H6_2···O2_2 ⁱⁱ	0.95	2.57	3.3569 (17)	140
C17_2—H17_2…O1_2 ⁱⁱⁱ	0.95	2.40	3.2977 (16)	158

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) -*x*+1, -*y*+2, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1.