

Received 28 May 2024 Accepted 29 May 2024

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: synthesis; crystal structure; trigonalbipyramidal coordination; cobalt thiocyanate; 2methylpyridine *N*-oxide.

CCDC references: 2359034; 2359033

Supporting information: this article has supporting information at journals.iucr.org/e

Syntheses and crystal structures of the five- and sixfold coordinated complexes diisoselenocyanatotris(2-methylpyridine *N*-oxide)cobalt(II) and diisoselenocyanatotetrakis(2-methylpyridine *N*-oxide)cobalt(II)

Christian Näther* and Inke Jess

Institut für Anorganische Chemie, Universität Kiel, Germany. *Correspondence e-mail: cnaether@ac.uni-kiel.de

The reaction of CoBr₂, KNCSe and 2-methylpyridine N-oxide (C₆H₇NO) in ethanol leads to the formation of crystals of $[Co(NCSe)_2(C_6H_7NO)_3]$ (1) and $[Co(NCSe)_2(C_6H_7NO)_4]$ (2) from the same reaction mixture. The asymmetric unit of **1** is built up of one Co^{II} cation, two NCSe⁻ isoselenocyanate anions and three 2-methylpyridine N-oxide coligands, with all atoms located on general positions. The asymmetric unit of 2 consists of two cobalt cations, four isoselenocanate anions and eight 2-methylpyridine N-oxide coligands in general positions, because two crystallographically independent complexes are present. In compound 1, the Co^{II} cations are fivefold coordinated to two terminally Nbonded anionic ligands and three 2-methylpyridine N-oxide coligands within a slightly distorted trigonal-bipyramidal coordination, forming discrete complexes with the O atoms occupying the equatorial sites. In compound 2, each of the two complexes is coordinated to two terminally N-bonded isoselenocyanate anions and four 2-methylpyridine N-oxide coligands within a slightly distorted cis-CoN₂O₄ octahedral coordination geometry. In the crystal structures of 1 and 2, the complexes are linked by weak $C-H\cdots$ Se and $C-H\cdots$ O contacts. Powder X-ray diffraction reveals that neither of the two compounds were obtained as a pure crystalline phase.

1. Chemical context

Numerous crystal structures of transition-metal thiocyanate coordination compounds have been reported in the literature, which are of interest not only because of their versatile structural behavior but also for their magnetic properties. In contrast, much less is known about the corresponding selenocyanate coordination compounds. This might originate from the fact that such compounds are frequently less stable and very often more difficult to prepare, especially if the focus is on the synthesis of compounds with bridging anionic ligands, which are of interest because of their promising magnetic properties. In this context, compounds based on cobalt are of special interest because they can show versatile magnetic behaviors including ferromagnetic ordering or single-chain magnet behavior (Mautner et al., 2018; Rams et al., 2017 and 2020). In this regard we have shown that, for example, exchange of seleno by thiocyanate anions leads to an increase of the energy barrier and the intrachain interactions (Neumann et al., 2019).

Concerning the structural behavior of cobalt thio- and selenocyanates, in most cases an octhaedral coordination geometry is observed, independent of the question whether discrete complexes or coordination polymers are considered. In rarer cases, especially with strong donor ligands, a tetrahedral coordination is found, with many examples for thiocyanates (Mautner et al., 2018; Neumann et al., 2018), whereas for selenocyanate compounds with additional coligands, no example has been reported. There are only two compounds with the composition CoHg(NCSe)₄ (Cambridge Structural Database refcode MURQOH; Li et al., 2006) and $[Co(NCSe)_4]^{2-}[(NH_4)_2]^+$ (QQQBEY; Kergoat *et al.*, 1970) that contain no additional coligands and in which the metal cations are either linked into chains or in which discrete complexes are formed. Finally, with $Co(NCS)_2$, compounds with a fivefold coordination are rarer than with a fourfold coordination, and with selenocyanate only three examples are found. This includes two discrete complexes with tridentate ligands [DUCVEF (Hopa et al., 2020) and VONXUT (Solanki & Kumar, 2014)] and one tetranuclear complex (QIRYOI; Das et al., 2018). In this context we have reported the first Co(NCS)₂ compound, which consists of chains, in which an alternating five- and sixfold Co^{II} coordination is observed (Böhme et al., 2022).

However, in most of our recent investigations we used pyridine derivatives as coligands, but recently we reported some compounds where we used pyridine N-oxide derivatives as coligands (Näther & Jess, 2023, 2024a,b). In the course of these investigations we obtained two different discrete complexes by the reaction of Co(NCS)₂ and 4-methylpyridine N-oxide (Näther & Jess, 2024a). In one of these complexes a trigonal-bipyramidal coordination and in the second complex an octahedral coordination is observed, which is surprising because $Co(NCS)_2$ compounds with a fivefold coordination and pyridine N-oxide coligands were unknown at this time. In further work we used 2-methylpyridine N-oxide as a coligand, which lead to the formation of Co(NCS)₂(2-methylpyridine Noxide)₃ in which the Co^{II} cations shows a trigonal-pyramidal coordination as was the case with 4-methylpyridine N-oxide as coligand (Näther & Jess, 2024c). Many experiments were performed but the corresponding octhaedral complex was not obtained. Based on these findings, we decided to try to prepare the corresponding compounds with Co(NCSe)₂ and in this context it is noted that no selenocyanate coordination compounds with pyridine N-oxide derivatives and transitionmetal cations are reported in the literature (see Database survey). Therefore, CoBr₂, KNCSe and 2-methylpyridine N-oxide were reacted, which lead to the formation of two different crystals that were investigated by single-crystal X-ray diffraction.

Fable 1				
Selected	geometric parameters	(Å,	°)	1

Selected geometric parameters (A,) for 1.							
Co1-N1	2.090 (3)	Co1-O21	2.011 (2)				
Co1-N2	2.047 (3)	Co1-O31	2.032 (2)				
Co1-O11	1.989 (2)						
N2-Co1-N1	176.24 (11)	O31-Co1-N1	84.07 (10)				
O11-Co1-N1	91.77 (10)	O31-Co1-N2	92.72 (10)				
O11-Co1-N2	88.63 (10)	C1-N1-Co1	156.2 (3)				
O11-Co1-O21	115.08 (11)	C2-N2-Co1	177.2 (2)				
O11-Co1-O31	127.68 (10)	N11-O11-Co1	118.91 (18)				
O21-Co1-N1	91.29 (10)	N21-O21-Co1	120.92 (18)				
O21-Co1-N2	91.92 (10)	N31-O31-Co1	118.01 (18)				
O21-Co1-O31	117.13 (10)						

2. Structural commentary

The asymmetric unit of compound 1, $Co(NCSe)_2(C_6H_7NO)_3$, consists of one crystallographically independent Co^{II} cation. two independent isoselenocyanate anions and three independent 2-methylpyridine N-oxide coligands that are located in general positions (Fig. 1). The metal cations are fivefold coordinated to two terminally N-bonded isoselenocyanate anions and three 2-methylpyridine N-oxide coligands, forming discrete complexes. The coordination around the metal centers can be described as a slightly distorted trigonal bipyramid with the anionic ligands in the axial and the coligands in the equatorial positions (Fig. 1 and Table 1). The Co-N bond lengths of the two independent isoselenocyanate anions are significantly different (Table 1). As expected, the thiocyanate C-N-Co bond angles are close to linearity, whereas the N-O-Co angles are close to 120°, because only one of the two lone pairs of the oxygen atom is involved in metal coordination (Table 1). Finally, it is noted that compound 1 is isotypic to the corresponding thiocyanate complex $Co(NCS)_2(C_6H_7NO)_3$, recently reported in the literature (Näther & Jess, 2024c).

Table 2	
Selected geometric parameters (Å, $^{\circ}$) for 2	

Co1-N1	2.105 (3)	Co2-N3	2.096 (3)
Co1-N2	2.096 (3)	Co2-N4	2.115 (3)
Co1-O11	2.104 (2)	Co2-O51	2.092 (2)
Co1-O21	2.081 (2)	Co2-O61	2.109 (2)
Co1-O31	2.103 (2)	Co2-O71	2.102 (2)
Co1-O41	2.086 (2)	Co2-O81	2.098 (2)
N2-Co1-N1	92.43 (11)	N3-Co2-N4	92.80 (10)
N2-Co1-O11	85.49 (11)	N3-Co2-O61	85.67 (9)
N2-Co1-O31	95.84 (10)	N3-Co2-O71	173.62 (9)
O11-Co1-N1	94.63 (10)	N3-Co2-O81	95.39 (9)
O21-Co1-N1	86.10 (10)	O51-Co2-N3	94.08 (10)
O21-Co1-N2	176.62 (11)	O51-Co2-N4	88.66 (10)
O21-Co1-O11	91.58 (10)	O51-Co2-O61	90.02 (9)
O21-Co1-O31	85.57 (8)	O51-Co2-O71	84.49 (9)
O21-Co1-O41	92.05 (10)	O51-Co2-O81	170.51 (9)
O31-Co1-N1	171.62 (10)	O61-Co2-N4	177.90 (9)
O31-Co1-O11	84.73 (8)	O71-Co2-N4	93.37 (9)
O41-Co1-N1	96.79 (10)	O71-Co2-O61	88.12 (8)
O41-Co1-N2	91.15 (12)	O81-Co2-N4	91.46 (10)
O41-Co1-O11	168.23 (9)	O81-Co2-O61	90.12 (8)
O41-Co1-O31	84.39 (8)	O81-Co2-O71	86.03 (8)
C1-N1-Co1	166.2 (3)	C3-N3-Co2	167.6 (2)
C2-N2-Co1	151.9 (3)	C4-N4-Co2	163.8 (3)
N11-O11-Co1	128.93 (17)	N51-O51-Co2	123.32 (18)
N21-O21-Co1	121.76 (17)	N61-O61-Co2	123.03 (16)
N31-O31-Co1	120.96 (15)	N71-O71-Co2	120.08 (16)
N41-O41-Co1	124.68 (19)	N81-O81-Co2	124.24 (16)

In compound **2**, $Co(NCS)_2(C_6H_7NO)_4$, two crystallographically independent complexes are present, in which each cobalt cation and each of the two crystallographically independent isoselenocyanate anions and each of the four independent 2-methylpyridine *N*-oxide coligands are in general positions (Fig. 2). In both of the complexes the metal cations are sixfold coordinated to two terminally N-bonded isocyanate anions and four 2-methylpyridine *N*-oxide ligands within slightly distorted octahedra (Fig. 2 and Table 2). Bond lengths and angles are comparable in both independent complexes. The Co–N distances of the isoselenocyanate anions and especially of the 2-methylpyridine *N*-oxide coligands in compound **2** are significantly longer than in compound **1**, which can be traced back to the higher coordination number of the metal ion. As in compound **1**, the

Figure 2

The molecular structure of compound 2 with displacement ellipsoids drawn at the 50% probability level.

Table 3			
Hydrogen-bond geometry	(Å,	$^{\circ}$) for	1.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
C14-H14···Se1 ⁱ	0.95	3.00	3.920 (3)	163
$C15-H15\cdots O31^{i}$	0.95	2.49	3.305 (4)	144
C32-H32···Se2 ⁱⁱ	0.95	3.09	3.945 (4)	151
C26-H26B···O31	0.98	2.62	3.511 (4)	151

Symmetry codes: (i) x, y, z - 1; (ii) $x, -y + 2, z + \frac{1}{2}$.

Table 4Hydrogen-bond geometry (Å, $^{\circ}$) for 2.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C15-H15···O21	0.95	2.36	3.158 (4)	141
C26-H26C···O11	0.98	2.49	3.367 (5)	149
$C35-H35\cdots$ Se1 ⁱ	0.95	2.96	3.748 (3)	141
C36-H36C···O11	0.98	2.55	3.281 (4)	131
$C42 - H42 \cdot \cdot \cdot Se3^{ii}$	0.95	2.87	3.811 (4)	171
C52−H52···Se2 ⁱⁱⁱ	0.95	3.05	3.926 (3)	153
C55-H55···O61	0.95	2.45	3.245 (4)	141
$C56-H56B\cdots$ Se2 ⁱⁱⁱ	0.98	3.02	3.933 (3)	156
C65-H65···O81	0.95	2.40	3.140 (4)	135
$C66-H66A\cdots$ Se2 ^{iv}	0.98	3.14	3.807 (5)	126
$C75 - H75 \cdot \cdot \cdot Se3^{i}$	0.95	2.95	3.726 (3)	140
C75-H75···O81	0.95	2.62	3.075 (3)	110
C76−H76C···O51	0.98	2.61	3.354 (4)	133
$C86 - H86B \cdot \cdot \cdot Se1^{ii}$	0.98	3.14	4.109 (4)	169

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 1, -z; (iv) x - 1, y, z.

C-N-Co angles are more or less linear, whereas the N-O-Co angles tend to be 120° (Table 2).

3. Supramolecular features

In the crystal structure of compound 1 the complexes are linked by a relatively short $C-H \cdots$ Se contact of 3.00 Å into chains, which are connected into double chains by a slightly longer $C-H \cdots$ Se contact of 3.09 Å (Fig. 3 and Table 3). Within these chains, weak $C-H \cdots O$ contacts are observed (Fig. 3 and Table 3). These double chains propagate along the crystallographic *c*-axis direction and no directional intermolecular interactions are observed between them (Fig. 4).

In compound **2** the two crystallographically independent complexes are linked by one relatively short $C-H\cdots$ Se contact of 2.87 Å with an $C-H\cdots$ Se angle close to linearity

The crystal structure of compound **1** with view of a double chain that propagates along the crystallographic *a*-axis direction: $C-H\cdots$ Se and $C-H\cdots$ O contacts are shown with dashed lines.

Figure 4

The crystal structure of compound 1 viewed along the crystallographic *c*-axis direction: $C-H\cdots$ Se and $C-H\cdots$ O contacts are shown with dashed lines.

into dimeric units (Fig. 5 and Table 4). There are numerous additional C-H···Se and C-H···O contacts with angles far from linearity that connect the dimeric units into a three-dimensional network (Table 4). Within this network, the complexes the dimeric units are arranged into columns that stack along the crystallographic *a*-axis direction (Fig. 6).

4. Database survey

A search in the CSD (version 5.43, last update March 2023; Groom *et al.*, 2016) using CONQUEST (Bruno *et al.*, 2002) reveal that no transition-metal selenocyanate coordination compounds with pyridine *N*-oxide derivatives are reported. There is only one compound with 4,4'-bipyridine *N*,*N'*-dioxide

Figure 5 View of the dimeric unit in compound 2 with $C-H\cdots$ Se contacts shown with dashed lines.

Figure 6 Crystal structure of compound 2 viewed along the crystallographic *a*-axis direction. For clarity only the two $C-H\cdots$ Se and $C-H\cdots$ O contacts between the dimeric units are shown with dashed lines.

with the composition $Co(NCS)_2(4,4'-bipyridine N,N'-diox$ $ide)(H_2O)_2 \cdot H_2O$, in which the cobalt cations are octahedrally coordinated to two selenocyanate anions, two water molecules and two O atoms of the 4,4'-bipyridine N,N'-dioxide coligands and are linked into chains by the bridging 4,4'-bipyridine N,N'dioxide ligands (ROLJEI; Jana *et al.*, 2007).

It is also noted that with $Co(NCS)_2$ and pyridine *N*-oxide derivatives no structures with a fivefold coordination are reported in the CSD. There is only one recent example, which is $Co(NCS)_2(2$ -methylpyridine *N*-oxide)_3, already mentioned in the *Chemical context* section (Näther & Jess, 2024*c*).

5. Synthesis and crystallization

CoBr₂ (99%), KNCSe (98.5%) and 2-methylpyridine *N*-oxide (96%) were purchased from Sigma Aldrich. 0.25 mmol (54.7 mg) of CoBr₂, 0.5 mmol of KNCSe (72.0 mg) and 4 mmol (436.4 mg) of 2-methylpyridine *N*-oxide in 1 ml of ethanol were reacted for 3 d at room temperature, which led to the formation of crystals of compound **1** (pink needles) and **2** (pink blocks) in the same batch. Reacting the components in the stoichiometric ratios given by the formulae were also tried but pure crystalline phases were never obtained: powder X-ray diffraction shows that they are always contaminated with additional unknown crystalline phases and with KBr, which is also a product of this reaction.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. The hydrogen atoms were positioned with idealized geometry (methyl H atoms allowed to rotate and not to tip) and were refined with $U_{\iota so}(H) =$ $1.2U_{eg}(C)$ (1.5 for methyl H atoms) using a riding model.

Acknowledgements

This work was supported by the State of Schleswig-Holstein.

References

Böhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. & Näther, C. (2022). *Inorg. Chem.* 61, 16841–16855.

research communications

Table 5

Experimental details.

1	2
$[Co(NCSe)_2(C_6H_7NO)_3]$	$[Co(NCSe)_2(C_6H_7NO)_4]$
596.27	705.39
Monoclinic, Cc	Monoclinic, $P2_1/n$
100	100
12.07686 (6), 26.47661 (16), 7.25623 (4)	9.3825 (1), 39.9164 (3), 15.9920 (1)
104.2765 (5)	104.217 (1)
2248.56 (2)	5805.82 (9)
4	8
Cu Kα	Cu Ka
9.96	7.86
$0.18 \times 0.06 \times 0.04$	$0.16 \times 0.14 \times 0.12$
XtaLAB Synergy, Dualflex, HyPix	XtaLAB Synergy, Dualflex, HyPix
Multi-scan (CrysAlisPr; Rigaku OD, 2023)	Multi-scan (CrysAlis PRO; Rigaku OD, 2023)
0.468, 1.000	0.489, 0.596
49619, 4828, 4788	41815, 11937, 11197
0.035	0.020
0.640	0.640
0.020, 0.062, 0.83	0.038, 0.109, 1.05
4828	11937
283	711
2	0
H-atom parameters constrained	H-atom parameters constrained
0.25, -0.40	1.76, -0.67
Flack x determined using 2302 quotients	_
$[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)	
-0.0305 (14)	_
	1 $[Co(NCSe)_2(C_6H_7NO)_3]$ 596.27 Monoclinic, <i>Cc</i> 100 12.07686 (6), 26.47661 (16), 7.25623 (4) 104.2765 (5) 2248.56 (2) 4 Cu <i>Ka</i> 9.96 0.18 × 0.06 × 0.04 XtaLAB Synergy, Dualflex, HyPix Multi-scan (CrysAlisPr; Rigaku OD, 2023) 0.468, 1.000 49619, 4828, 4788 0.035 0.640 0.020, 0.062, 0.83 4828 283 2 H-atom parameters constrained 0.25, -0.40 Flack <i>x</i> determined using 2302 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)] (Parsons et al., 2013) -0.0305 (14)$

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 1999); XP in SHELXTL-PC (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

- Brandenburg, K. & Putz, H. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389– 397.
- Das, A., Goswami, S. & Ghosh, A. (2018). New J. Chem. 42, 19377– 19389.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hopa, C., Kara, H. & Aybey, A. (2020). J. Mol. Struct. **1202**, 127322–12732.
- Jana, A. D., Manna, S. C., Rosair, G. M., Drew, M. G. B., Mostafa, G. & Ray Chaudhuri, N. (2007). *Cryst. Growth Des.* 7, 1365–1372.
- Kergoat, R., Guerchais, J. E. & Genet, F. (1970). Bull. Soc. Fr. Miner. Crist. 93, 166–169.
- Li, S.-L., Fun, H.-K., Chantrapromma, S., Wu, J.-Y. & Tian, Y.-P. (2006). Acta Cryst. E62, i47–i49.
- Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). *Polyhedron*, 154, 436–442.
- Näther, C. & Jess, I. (2023). Acta Cryst. E79, 867-871.

- Näther, C. & Jess, I. (2024a). Acta Cryst. E80, 174-179.
- Näther, C. & Jess, I. (2024b). Acta Cryst. E80, 67-71.
- Näther, C. & Jess, I. (2024c). Acta Cryst. E80, 463-467.
- Neumann, T., Jess, I., Pielnhofer, F. & Näther, C. (2018). *Eur. J. Inorg. Chem.* pp. 4972–4981.
- Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652–2655.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017). *Phys. Chem. Chem. Phys.* **19**, 24534–24544.
- Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). *Chem. Eur. J.* 26, 2837–2851.
- Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Solanki, A. & Kumar, S. B. (2014). Polyhedron, 81, 323-328.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2024). E80, 704-708 [https://doi.org/10.1107/S2056989024005073]

Syntheses and crystal structures of the five- and sixfold coordinated complexes diisoselenocyanatotris(2-methylpyridine *N*-oxide)cobalt(II) and diisoseleno-cyanatotetrakis(2-methylpyridine *N*-oxide)cobalt(II)

Christian Näther and Inke Jess

Computing details

Diisoselenocyanatotris(2-methylpyridine N-oxide)cobalt(II) (1)

Crystal data

 $[Co(NCSe)_{2}(C_{6}H_{7}NO)_{3}]$ $M_{r} = 596.27$ Monoclinic, Cc a = 12.07686 (6) Å b = 26.47661 (16) Å c = 7.25623 (4) Å $\beta = 104.2765$ (5)° V = 2248.56 (2) Å³ Z = 4

Data collection

```
XtaLAB Synergy, Dualflex, HyPix
diffractometer
Radiation source: micro-focus sealed X-ray
tube, PhotonJet (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.0000 pixels mm<sup>-1</sup>
ω scans
Absorption correction: multi-scan
(CrysAlisPr; Rigaku OD, 2023)
```

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.020$ $wR(F^2) = 0.062$ S = 0.834828 reflections 283 parameters 2 restraints Primary atom site location: dual Hydrogen site location: inferred from neighbouring sites F(000) = 1180 $D_x = 1.761 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 35276 reflections $\theta = 3.3-79.5^{\circ}$ $\mu = 9.96 \text{ mm}^{-1}$ T = 100 KNeedle, pink $0.18 \times 0.06 \times 0.04 \text{ mm}$

 $T_{\min} = 0.468, T_{\max} = 1.000$ 49619 measured reflections 4828 independent reflections 4788 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{\max} = 80.4^{\circ}, \theta_{\min} = 3.3^{\circ}$ $h = -15 \rightarrow 15$ $k = -29 \rightarrow 33$ $l = -9 \rightarrow 9$

H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0682P)^{2} + 0.5399P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.25 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.40 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 2302 quotients $[(I^{+})-(I^{-})]/[(I^{+})+(I^{-})]$ (Parsons *et al.*, 2013) Absolute structure parameter: -0.0305 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Col	0.63215 (4)	0.86731 (2)	0.79899 (6)	0.01397 (11)	
N1	0.4748 (2)	0.83139 (10)	0.7711 (4)	0.0180 (5)	
C1	0.3847 (3)	0.82543 (12)	0.7960 (4)	0.0173 (6)	
Se1	0.24577 (3)	0.81838 (2)	0.84143 (4)	0.02001 (9)	
N2	0.7899 (2)	0.90028 (10)	0.8433 (4)	0.0184 (5)	
C2	0.8794 (3)	0.91870 (12)	0.8762 (4)	0.0172 (6)	
Se2	1.01804 (3)	0.94751 (2)	0.92765 (4)	0.02230 (10)	
011	0.6860 (2)	0.81331 (8)	0.6514 (4)	0.0209 (5)	
N11	0.6102 (2)	0.77961 (10)	0.5563 (4)	0.0169 (5)	
C11	0.5986 (3)	0.73433 (12)	0.6337 (4)	0.0173 (6)	
C12	0.5201 (3)	0.70021 (12)	0.5273 (4)	0.0185 (6)	
H12	0.512002	0.667709	0.577882	0.022*	
C13	0.4543 (3)	0.71294 (13)	0.3504 (5)	0.0210 (6)	
H13	0.399759	0.689803	0.280355	0.025*	
C14	0.4686 (3)	0.76001 (13)	0.2754 (5)	0.0218 (6)	
H14	0.423837	0.769563	0.153540	0.026*	
C15	0.5483 (3)	0.79260 (12)	0.3801 (5)	0.0204 (6)	
H15	0.560187	0.824548	0.328556	0.024*	
O21	0.55635 (18)	0.92647 (9)	0.6444 (3)	0.0199 (4)	
N21	0.4429 (2)	0.92698 (10)	0.5685 (4)	0.0178 (5)	
C21	0.3714 (3)	0.94192 (11)	0.6761 (5)	0.0194 (6)	
C22	0.2550 (3)	0.94443 (12)	0.5905 (5)	0.0220 (6)	
H22	0.203471	0.955060	0.662840	0.026*	
C23	0.2133 (3)	0.93161 (15)	0.4009 (5)	0.0247 (7)	
H23	0.133828	0.933923	0.342723	0.030*	
C24	0.2889 (3)	0.91531 (13)	0.2967 (5)	0.0236 (7)	
H24	0.261750	0.905660	0.167347	0.028*	
C25	0.4040 (3)	0.91336 (12)	0.3842 (5)	0.0219 (6)	
H25	0.456510	0.902355	0.314261	0.026*	
O31	0.6368 (2)	0.86742 (9)	1.0809 (3)	0.0189 (4)	
N31	0.7399 (2)	0.87014 (10)	1.2061 (4)	0.0183 (5)	
C31	0.7818 (3)	0.91535 (13)	1.2802 (4)	0.0204 (6)	
C32	0.8872 (3)	0.91558 (14)	1.4123 (5)	0.0237 (7)	
H32	0.918537	0.946696	1.466300	0.028*	
C33	0.9469 (3)	0.87135 (15)	1.4660 (5)	0.0250 (7)	
H33	1.018835	0.871934	1.556260	0.030*	
C34	0.9007 (3)	0.82600 (14)	1.3865 (5)	0.0237 (7)	
H34	0.940708	0.795231	1.421995	0.028*	
C35	0.7968 (3)	0.82592 (13)	1.2565 (5)	0.0207 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

0.764512	0.795027	1.201666	0.025*	
0.7123 (3)	0.96119 (14)	1.2166 (5)	0.0272 (7)	
0.641642	0.959482	1.259800	0.041*	
0.693531	0.963154	1.077488	0.041*	
0.755827	0.991225	1.270547	0.041*	
0.6698 (3)	0.72386 (14)	0.8287 (5)	0.0254 (7)	
0.648341	0.747113	0.919137	0.038*	
0.750650	0.728605	0.831326	0.038*	
0.657240	0.688988	0.864016	0.038*	
0.4234 (3)	0.95514 (13)	0.8779 (5)	0.0240 (7)	
0.481990	0.981121	0.883718	0.036*	
0.458476	0.924982	0.946474	0.036*	
0.364160	0.968028	0.936542	0.036*	
	0.764512 0.7123 (3) 0.641642 0.693531 0.755827 0.6698 (3) 0.648341 0.750650 0.657240 0.4234 (3) 0.481990 0.458476 0.364160	0.7645120.7950270.7123 (3)0.96119 (14)0.6416420.9594820.6935310.9631540.7558270.9912250.6698 (3)0.72386 (14)0.6483410.7471130.7506500.7286050.6572400.6889880.4234 (3)0.95514 (13)0.4819900.9811210.4584760.9249820.3641600.968028	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.0123 (2)	0.0146 (2)	0.0155 (2)	-0.00053 (16)	0.00419 (17)	-0.00040 (16)
N1	0.0142 (12)	0.0190 (12)	0.0223 (12)	-0.0031 (10)	0.0076 (10)	-0.0020 (10)
C1	0.0202 (16)	0.0154 (13)	0.0156 (13)	0.0006 (11)	0.0033 (11)	-0.0004 (10)
Se1	0.01337 (15)	0.02559 (18)	0.02267 (16)	-0.00155 (12)	0.00749 (11)	0.00275 (12)
N2	0.0150 (11)	0.0198 (13)	0.0207 (12)	-0.0042 (9)	0.0052 (9)	-0.0003 (10)
C2	0.0212 (16)	0.0171 (14)	0.0141 (13)	0.0035 (11)	0.0058 (11)	0.0010 (10)
Se2	0.01459 (16)	0.02685 (19)	0.02437 (17)	-0.00539 (12)	0.00272 (12)	-0.00185 (12)
011	0.0140 (11)	0.0206 (11)	0.0298 (12)	-0.0048 (8)	0.0087 (9)	-0.0088 (9)
N11	0.0111 (11)	0.0182 (13)	0.0229 (12)	-0.0018 (9)	0.0073 (9)	-0.0058 (10)
C11	0.0135 (13)	0.0216 (15)	0.0184 (13)	0.0005 (11)	0.0069 (11)	0.0000 (11)
C12	0.0170 (14)	0.0193 (15)	0.0221 (14)	-0.0012 (11)	0.0102 (11)	-0.0036 (12)
C13	0.0143 (14)	0.0268 (16)	0.0228 (15)	-0.0042 (12)	0.0064 (11)	-0.0062 (12)
C14	0.0169 (14)	0.0283 (17)	0.0210 (14)	0.0041 (12)	0.0061 (11)	0.0007 (12)
C15	0.0202 (14)	0.0180 (14)	0.0256 (15)	0.0042 (12)	0.0107 (12)	0.0025 (12)
O21	0.0115 (10)	0.0198 (11)	0.0272 (11)	-0.0002 (8)	0.0026 (8)	0.0065 (9)
N21	0.0153 (12)	0.0161 (12)	0.0215 (12)	0.0014 (9)	0.0035 (10)	0.0044 (10)
C21	0.0219 (16)	0.0151 (14)	0.0211 (15)	0.0015 (11)	0.0050 (13)	0.0021 (11)
C22	0.0188 (16)	0.0219 (16)	0.0264 (16)	0.0005 (11)	0.0075 (13)	0.0056 (11)
C23	0.0162 (14)	0.0279 (17)	0.0272 (16)	-0.0020 (13)	0.0001 (12)	0.0065 (13)
C24	0.0243 (16)	0.0250 (17)	0.0198 (14)	-0.0025 (13)	0.0021 (12)	0.0012 (12)
C25	0.0244 (15)	0.0221 (15)	0.0204 (14)	0.0045 (13)	0.0076 (12)	0.0034 (12)
O31	0.0143 (10)	0.0262 (12)	0.0154 (10)	-0.0044 (8)	0.0018 (8)	0.0000 (8)
N31	0.0160 (12)	0.0242 (14)	0.0153 (11)	-0.0008 (10)	0.0048 (10)	0.0015 (9)
C31	0.0212 (15)	0.0237 (16)	0.0174 (14)	-0.0062 (12)	0.0067 (12)	-0.0021 (11)
C32	0.0224 (16)	0.0298 (17)	0.0195 (14)	-0.0063 (12)	0.0061 (12)	-0.0021 (12)
C33	0.0192 (15)	0.038 (2)	0.0167 (14)	-0.0049 (13)	0.0031 (12)	0.0019 (13)
C34	0.0199 (15)	0.0302 (17)	0.0225 (15)	0.0053 (13)	0.0082 (12)	0.0067 (13)
C35	0.0235 (16)	0.0216 (15)	0.0187 (14)	-0.0017 (12)	0.0082 (12)	0.0004 (11)
C36	0.0259 (17)	0.0233 (17)	0.0313 (17)	-0.0018 (14)	0.0050 (14)	-0.0060 (14)
C16	0.0202 (15)	0.0311 (18)	0.0235 (16)	-0.0011 (12)	0.0029 (12)	0.0015 (13)
C26	0.0269 (18)	0.0223 (15)	0.0217 (15)	0.0038 (13)	0.0041 (13)	0.0004 (12)

Geometric parameters (Å, °)

Co1—N1	2.090 (3)	C22—C23	1.385 (5)	
Co1—N2	2.047 (3)	C23—H23	0.9500	
Co1-011	1.989 (2)	C23—C24	1.390 (5)	
Co1—O21	2.011 (2)	C24—H24	0.9500	
Co1-O31	2.032 (2)	C24—C25	1.379 (5)	
N1-C1	1.157 (4)	C25—H25	0.9500	
C1—Se1	1.797 (3)	O31—N31	1.350 (4)	
N2—C2	1.156 (4)	N31—C31	1.358 (4)	
C2—Se2	1.794 (3)	N31—C35	1.361 (4)	
011—N11	1.341 (3)	C31—C32	1.392 (5)	
N11-C11	1.346 (4)	C31—C36	1.483 (5)	
N11—C15	1.357 (4)	C32—H32	0.9500	
C11—C12	1.397 (4)	C32—C33	1.380 (5)	
C11—C16	1.490 (4)	С33—Н33	0.9500	
C12—H12	0.9500	C33—C34	1.388 (5)	
C12—C13	1.374 (5)	C34—H34	0.9500	
С13—Н13	0.9500	C34—C35	1.371 (5)	
C13—C14	1.387 (5)	С35—Н35	0.9500	
C14—H14	0.9500	C36—H36A	0.9800	
C14—C15	1.374 (5)	C36—H36B	0.9800	
C15—H15	0.9500	C36—H36C	0.9800	
O21—N21	1.345 (3)	C16—H16A	0.9800	
N21—C21	1.358 (4)	C16—H16B	0.9800	
N21—C25	1.353 (4)	C16—H16C	0.9800	
C21—C22	1.392 (5)	C26—H26A	0.9800	
C21—C26	1.485 (4)	C26—H26B	0.9800	
С22—Н22	0.9500	C26—H26C	0.9800	
N2—Co1—N1	176.24 (11)	C24—C23—H23	120.4	
O11—Co1—N1	91.77 (10)	C23—C24—H24	120.5	
011—Co1—N2	88.63 (10)	C25—C24—C23	119.0 (3)	
011—Co1—O21	115.08 (11)	C25—C24—H24	120.5	
011—Co1—O31	127.68 (10)	N21—C25—C24	120.6 (3)	
O21—Co1—N1	91.29 (10)	N21—C25—H25	119.7	
O21—Co1—N2	91.92 (10)	C24—C25—H25	119.7	
O21—Co1—O31	117.13 (10)	N31—O31—Co1	118.01 (18)	
O31—Co1—N1	84.07 (10)	O31—N31—C31	120.3 (3)	
O31—Co1—N2	92.72 (10)	O31—N31—C35	117.1 (3)	
C1—N1—Co1	156.2 (3)	C31—N31—C35	122.5 (3)	
N1-C1-Se1	177.6 (3)	N31—C31—C32	117.7 (3)	
C2—N2—Co1	177.2 (2)	N31—C31—C36	118.1 (3)	
N2—C2—Se2	179.8 (3)	C32—C31—C36	124.2 (3)	
N11-011-Co1	118.91 (18)	C31—C32—H32	119.5	
011—N11—C11	120.4 (3)	C33—C32—C31	121.1 (3)	
011—N11—C15	117.6 (3)	С33—С32—Н32	119.5	
C11—N11—C15	121.9 (3)	С32—С33—Н33	120.4	

N11—C11—C12	118.2 (3)	C32—C33—C34	119.2 (3)
N11—C11—C16	117.8 (3)	С34—С33—Н33	120.4
C12—C11—C16	124.0 (3)	С33—С34—Н34	120.2
C11—C12—H12	119.5	C35—C34—C33	119.6 (3)
C13—C12—C11	121.0 (3)	С35—С34—Н34	120.2
C13—C12—H12	119.5	N31—C35—C34	119.9 (3)
C12—C13—H13	120.4	N31—C35—H35	120.0
C12—C13—C14	119.2 (3)	С34—С35—Н35	120.0
C14—C13—H13	120.4	С31—С36—Н36А	109.5
C13—C14—H14	120.5	С31—С36—Н36В	109.5
C15—C14—C13	119.0 (3)	С31—С36—Н36С	109.5
C15—C14—H14	120.5	H36A—C36—H36B	109.5
N11—C15—C14	120.7 (3)	H36A—C36—H36C	109.5
N11—C15—H15	119.7	H36B—C36—H36C	109.5
C14—C15—H15	119.7	C11—C16—H16A	109.5
N21—O21—Co1	120.92 (18)	C11—C16—H16B	109.5
O21—N21—C21	119.7 (3)	C11—C16—H16C	109.5
O21—N21—C25	118.2 (3)	H16A—C16—H16B	109.5
C21—N21—C25	122.1 (3)	H16A—C16—H16C	109.5
N21—C21—C22	118.2 (3)	H16B—C16—H16C	109.5
N21—C21—C26	117.5 (3)	C21—C26—H26A	109.5
C22—C21—C26	124.3 (3)	C21—C26—H26B	109.5
C21—C22—H22	119.6	C21—C26—H26C	109.5
C23—C22—C21	120.8 (3)	H26A—C26—H26B	109.5
C23—C22—H22	119.6	H26A—C26—H26C	109.5
C22—C23—H23	120.4	H26B—C26—H26C	109.5
C22—C23—C24	119.3 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A	
C14—H14…Se1 ⁱ	0.95	3.00	3.920 (3)	163	
C15—H15…O31 ⁱ	0.95	2.49	3.305 (4)	144	
C32—H32…Se2 ⁱⁱ	0.95	3.09	3.945 (4)	151	
C26—H26B····O31	0.98	2.62	3.511 (4)	151	

Symmetry codes: (i) *x*, *y*, *z*-1; (ii) *x*, -*y*+2, *z*+1/2.

Diisoselenocyanatotetrakis(2-methylpyridine N-oxide)cobalt(II) (2)

Crystal	data
---------	------

$[Co(NCSe)_2(C_6H_2NO)_4]$	F(000) = 2824
$M_r = 705.39$	$D_{\rm x} = 1.614 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Cu Ka radiation, $\lambda = 1.54184$ Å
a = 9.3825(1) Å	Cell parameters from 27892 reflections
b = 39.9164 (3) Å	$\theta = 3.1 - 79.1^{\circ}$
c = 15.9920 (1) Å	$\mu = 7.86 \text{ mm}^{-1}$
$\beta = 104.217 (1)^{\circ}$	T = 100 K
V = 5805.82 (9) Å ³	Block, pink
Z = 8	$0.16 \times 0.14 \times 0.12 \text{ mm}$

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer	$T_{\min} = 0.489, T_{\max} = 0.596$ 41815 measured reflections
Radiation source: micro-focus sealed X-ray	11937 independent reflections
tube, PhotonJet (Cu) X-ray Source	11197 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int}=0.020$
Detector resolution: 10.0000 pixels mm ⁻¹	$\theta_{\text{max}} = 80.4^{\circ}, \theta_{\text{min}} = 2.2^{\circ}$
ω scans	$h = -7 \rightarrow 11$
Absorption correction: multi-scan	$k = -49 \rightarrow 50$
(CrysAlisPro; Rigaku OD, 2023)	$l = -20 \rightarrow 20$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.109$	$w = 1/[\sigma^2(F_o^2) + (0.0611P)^2 + 6.3002P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
11937 reflections	$(\Delta/\sigma)_{\rm max} = 0.003$
711 parameters	$\Delta \rho_{\rm max} = 1.76 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$

Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Col	0.85687 (5)	0.30073 (2)	0.25349 (3)	0.03255 (11)	
N1	0.7045 (3)	0.30528 (7)	0.32998 (18)	0.0439 (6)	
C1	0.6211 (3)	0.30086 (8)	0.37078 (19)	0.0398 (6)	
Se1	0.48879 (4)	0.29344 (2)	0.43375 (2)	0.04996 (10)	
N2	0.8337 (3)	0.35121 (7)	0.21658 (19)	0.0467 (6)	
C2	0.7640 (3)	0.37377 (7)	0.18443 (19)	0.0375 (6)	
Se2	0.65659(3)	0.40942 (2)	0.13745 (2)	0.04001 (9)	
011	0.6964 (2)	0.29141 (6)	0.13849 (13)	0.0414 (5)	
N11	0.5621 (2)	0.27903 (6)	0.12825 (15)	0.0346 (5)	
C11	0.4567 (3)	0.28858 (8)	0.05670 (19)	0.0398 (6)	
C12	0.3196 (3)	0.27392 (8)	0.0426 (2)	0.0431 (7)	
H12	0.246440	0.279411	-0.008091	0.052*	
C13	0.2868 (3)	0.25143 (8)	0.1007 (2)	0.0465 (7)	
H13	0.191510	0.241859	0.091308	0.056*	
C14	0.3960 (3)	0.24317 (8)	0.1730 (2)	0.0447 (7)	
H14	0.375413	0.227885	0.213985	0.054*	
C15	0.5335 (3)	0.25683 (7)	0.1859 (2)	0.0390 (6)	
H15	0.608527	0.250736	0.235095	0.047*	
C16	0.4994 (4)	0.31461 (11)	0.0004 (2)	0.0534 (9)	
H16A	0.535110	0.334590	0.034815	0.080*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H16B	0.413754	0.320524	-0.046059	0.080*
H16C	0.577394	0.305811	-0.024481	0.080*
O21	0.8669 (2)	0.25020 (6)	0.28634 (16)	0.0469 (5)
N21	0.9700 (3)	0.23026 (6)	0.27081 (16)	0.0373 (5)
C21	0.9424 (5)	0.20957 (10)	0.2003 (2)	0.0566 (9)
C22	1.0556 (6)	0.18664 (9)	0.1935 (3)	0.0640 (12)
H22	1.038070	0.171341	0.146527	0.077*
C23	1.1853 (5)	0.18606 (10)	0.2511 (3)	0.0663 (11)
H23	1.259130	0.170516	0.245622	0.080*
C24	1.2092 (5)	0.20788 (11)	0.3168 (3)	0.0611 (10)
H24	1.302134	0.208032	0.357349	0.073*
C25	1.1028 (4)	0.22996 (9)	0.3268 (2)	0.0445 (7)
H25	1.123087	0.245224	0.373844	0.053*
C26	0.8030 (5)	0.21089 (12)	0.1372 (3)	0.0676 (11)
H26A	0.724731	0.203455	0.163751	0.101*
H26B	0.806154	0.196186	0.088647	0.101*
H26C	0.783446	0.233942	0.116457	0.101*
031	1 0078 (2)	0.28863 (5)	0.18030(12)	0.0339(4)
N31	1.007(2)	0.31146 (6)	0.16405(12)	0.0305(4)
C31	1.0651(3)	0.32881(7)	0.08905(17)	0.0332(5)
C32	1 1666 (3)	0.32001(7) 0.35134(7)	0.000000(17) 0.07174(19)	0.0352(5) 0.0370(6)
H32	1 142666	0.363892	0.019694	0.044*
C33	1.3017(3)	0.35587(7)	0.12868 (19)	0.0373 (6)
Н33	1.370726	0.371318	0.116247	0.045*
C34	1.370720	0.37734(7)	0.110247 0.20473 (19)	0.045
СJ4 Н34	1.3347 (3)	0.339968	0.244894	0.043*
C35	1.727507 1.2331 (3)	0.337700	0.244074 0.22133 (18)	0.043
Н35	1.2551(5)	0.31325(7) 0.302541	0.22133 (18)	0.0337 (3)
C36	0.0211(3)	0.302541 0.32107 (9)	0.275140 0.02853(10)	0.040
U36A	0.9211(3)	0.32107 (3)	0.02855 (19)	0.0432 (7)
1130A 1136D	0.910201	0.23/103	-0.024614	0.065*
H36C	0.911002	0.334001	0.024014	0.065*
П30C	0.841333	0.520950	0.055521	0.063°
041 N41	1.0443(3) 1.0420(2)	0.31139(7) 0.22764(7)	0.33039(13)	0.0314(0)
N41 C41	1.0439 (3)	0.52704(7) 0.25725(0)	0.42399(10)	0.0446(0)
C41 C42	1.1138 (4)	0.33723(9) 0.27286(0)	0.4411(2) 0.5101(2)	0.0440(7)
C42	1.11/9 (4)	0.37280 (9)	0.5191(2) 0.522417	0.0526 (8)
H42	1.109421	0.393427	0.532417	0.063°
C45	1.0484 (5)	0.33906 (10)	0.5778(2)	0.0624 (10)
H43	1.050575	0.370045	0.630794	0.075^{*}
C44	0.9753 (5)	0.32870 (10)	0.5574(2)	0.0605 (10)
H44	0.925918	0.318/49	0.596364	0.073*
C45	0.9748 (4)	0.31314 (10)	0.4806 (2)	0.0512 (8)
H45	0.926239	0.292243	0.466866	0.061*
C46	1.1844 (4)	0.37162 (10)	0.3753 (2)	0.0529 (8)
H46A	1.268379	0.357690	0.371152	0.079*
H46B	1.218275	0.394423	0.392139	0.079*
H46C	1.112834	0.372203	0.319137	0.079*
Co2	0.05490 (5)	0.55048 (2)	0.26790 (3)	0.03372 (11)

N3	-0.1122 (3)	0.55122 (7)	0.33403 (17)	0.0399 (5)
C3	-0.1889 (3)	0.54722 (7)	0.37930 (19)	0.0366 (6)
Se3	-0.30340 (4)	0.54154 (2)	0.45399 (2)	0.04069 (9)
N4	0.0266 (3)	0.60176 (7)	0.23483 (17)	0.0417 (6)
C4	-0.0233 (3)	0.62762 (8)	0.21203 (18)	0.0364 (6)
Se4	-0.10390 (4)	0.66802 (2)	0.17864 (2)	0.04073 (9)
051	-0.0877(2)	0.53873 (6)	0.14900 (14)	0.0443 (5)
N51	-0.2280(3)	0.53048 (6)	0.13995 (16)	0.0372 (5)
C51	-0.3329(3)	0.54714 (7)	0.08062 (19)	0.0374 (6)
C52	-0.4772(3)	0.53760 (8)	0.06833(19)	0.0385 (6)
H52	-0 550788	0 548674	0.025880	0.046*
C53	-0.5174(3)	0.51215 (8)	0.1167(2)	0.0413 (6)
H53	-0.617456	0.505829	0.108496	0.050*
C54	-0.4072(4)	0.49608 (8)	0.100100	0.020 0.0425(7)
Н54	-0.431603	0.478620	0.211947	0.051*
C55	-0.2633(4)	0.50544 (8)	0.211947 0.1879(2)	0.031 0.0424(7)
U55	-0.188053	0.404262	0.1079(2)	0.0424(7) 0.051*
1155 C56	0.188033	0.494202	0.229107	0.051°
U56A	-0.2814(4) -0.224618	0.57467 (9)	0.0324(2) 0.073505	0.0327 (8)
	-0.224018	0.591042	0.075505	0.079*
HOOB	-0.300020	0.580115	-0.004/55	0.079*
H30C	-0.219314	0.303030	-0.003085	0.079*
061	0.0747(2)	0.49913 (5)	0.29973 (13)	0.0359 (4)
N61	0.1925 (3)	0.48096 (6)	0.29677 (15)	0.0338 (5)
C61	0.1780 (4)	0.45543 (9)	0.2397 (2)	0.0499 (8)
C62	0.2985 (4)	0.43517 (9)	0.2418 (3)	0.0577 (9)
H62	0.289413	0.417190	0.201929	0.069*
C63	0.4301 (4)	0.44036 (8)	0.2998 (2)	0.0482 (8)
H63	0.510759	0.425707	0.302108	0.058*
C64	0.4434 (4)	0.46748 (9)	0.3553 (2)	0.0456 (7)
H64	0.534361	0.472043	0.395294	0.055*
C65	0.3234 (3)	0.48773 (8)	0.35187 (19)	0.0401 (6)
H65	0.332637	0.506706	0.388678	0.048*
C66	0.0321 (5)	0.45120 (16)	0.1783 (4)	0.098 (2)
H66A	-0.041594	0.445915	0.210397	0.147*
H66B	0.036981	0.432891	0.138290	0.147*
H66C	0.004750	0.472002	0.145805	0.147*
O71	0.2211 (2)	0.54389 (5)	0.20202 (13)	0.0365 (4)
N71	0.3090 (3)	0.56936 (6)	0.19452 (15)	0.0340 (5)
C71	0.2769 (3)	0.58840 (7)	0.12162 (18)	0.0362 (6)
C72	0.3756 (3)	0.61346 (8)	0.1133 (2)	0.0403 (6)
H72	0.355116	0.627086	0.063102	0.048*
C73	0.5027 (3)	0.61885 (8)	0.1768 (2)	0.0409 (6)
H73	0.569491	0.636000	0.170536	0.049*
C74	0.5312 (3)	0.59888 (8)	0.2498 (2)	0.0402 (6)
H74	0.618290	0.602127	0.294180	0.048*
C75	0.4328 (3)	0.57434 (7)	0.25761 (18)	0.0364 (6)
H75	0.451851	0.560697	0.307813	0.044*
C76	0.1424 (3)	0.57984 (9)	0.0544 (2)	0.0442 (7)
	•••••	···· · · · · · · · · · · · · · · · · ·	······································	···· ··· · · · · · · · · · · · · · · ·

H76A	0.149950	0.556819	0.034623	0.066*
H76B	0.131994	0.595263	0.005540	0.066*
H76C	0.056233	0.581794	0.078453	0.066*
O81	0.2256 (2)	0.56159 (5)	0.37630 (13)	0.0377 (4)
N81	0.2060 (3)	0.56779 (6)	0.45506 (15)	0.0344 (5)
C81	0.2607 (4)	0.59684 (8)	0.4944 (2)	0.0445 (7)
C82	0.2398 (4)	0.60311 (9)	0.5759 (2)	0.0532 (8)
H82	0.275400	0.623445	0.604265	0.064*
C83	0.1686 (4)	0.58051 (9)	0.6165 (2)	0.0493 (8)
H83	0.154145	0.585270	0.672016	0.059*
C84	0.1182 (3)	0.55068 (8)	0.57515 (19)	0.0414 (7)
H84	0.070081	0.534572	0.602321	0.050*
C85	0.1390 (3)	0.54478 (7)	0.49424 (19)	0.0361 (6)
H85	0.105963	0.524319	0.465635	0.043*
C86	0.3388 (5)	0.61941 (10)	0.4461 (3)	0.0604 (10)
H86A	0.425429	0.607893	0.436153	0.091*
H86B	0.369744	0.639797	0.479800	0.091*
H86C	0.272588	0.625365	0.390545	0.091*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0293 (2)	0.0352 (2)	0.0326 (2)	-0.00107 (18)	0.00656 (18)	-0.00012 (18)
N1	0.0374 (14)	0.0524 (15)	0.0443 (14)	-0.0012 (11)	0.0144 (11)	-0.0022 (12)
C1	0.0345 (15)	0.0467 (16)	0.0352 (14)	0.0014 (12)	0.0029 (12)	-0.0006 (12)
Se1	0.03537 (18)	0.0772 (3)	0.03717 (17)	0.00101 (16)	0.00861 (13)	0.00799 (16)
N2	0.0508 (16)	0.0349 (13)	0.0565 (16)	0.0015 (12)	0.0173 (13)	0.0009 (12)
C2	0.0350 (15)	0.0401 (15)	0.0394 (14)	-0.0072 (12)	0.0130 (12)	-0.0054 (12)
Se2	0.03332 (16)	0.04557 (17)	0.03953 (16)	0.00037 (12)	0.00586 (12)	0.00369 (13)
O11	0.0252 (10)	0.0594 (13)	0.0384 (10)	-0.0092 (9)	0.0053 (8)	0.0014 (9)
N11	0.0258 (11)	0.0396 (12)	0.0383 (12)	-0.0030 (9)	0.0080 (9)	-0.0060 (10)
C11	0.0323 (15)	0.0492 (16)	0.0377 (14)	-0.0002 (12)	0.0081 (11)	-0.0080 (13)
C12	0.0297 (15)	0.0510(17)	0.0459 (16)	0.0020 (12)	0.0039 (12)	-0.0121 (14)
C13	0.0300 (15)	0.0416 (16)	0.067 (2)	-0.0044 (12)	0.0099 (14)	-0.0127 (15)
C14	0.0352 (16)	0.0343 (14)	0.065 (2)	-0.0014 (12)	0.0143 (14)	-0.0021 (14)
C15	0.0295 (14)	0.0368 (14)	0.0508 (17)	0.0009 (11)	0.0098 (12)	-0.0024 (12)
C16	0.0357 (16)	0.084 (3)	0.0388 (16)	-0.0021 (16)	0.0054 (13)	0.0087 (16)
O21	0.0314 (11)	0.0444 (12)	0.0667 (15)	0.0046 (9)	0.0153 (10)	0.0183 (11)
N21	0.0359 (13)	0.0325 (11)	0.0430 (13)	-0.0004 (9)	0.0087 (10)	0.0075 (10)
C21	0.064 (2)	0.056 (2)	0.0451 (18)	-0.0266 (18)	0.0046 (16)	0.0075 (15)
C22	0.094 (3)	0.0383 (17)	0.076 (3)	-0.0175 (19)	0.053 (3)	-0.0129 (17)
C23	0.079 (3)	0.049 (2)	0.082 (3)	0.013 (2)	0.042 (2)	0.018 (2)
C24	0.058 (2)	0.075 (3)	0.055 (2)	0.0298 (19)	0.0229 (18)	0.0284 (19)
C25	0.0399 (17)	0.0553 (18)	0.0366 (15)	0.0067 (14)	0.0061 (12)	0.0069 (13)
C26	0.050 (2)	0.074 (3)	0.078 (3)	-0.0026 (19)	0.014 (2)	-0.016 (2)
O31	0.0311 (10)	0.0344 (9)	0.0371 (10)	-0.0043 (8)	0.0099 (8)	-0.0001 (8)
N31	0.0272 (11)	0.0329 (11)	0.0316 (11)	-0.0007 (9)	0.0078 (9)	-0.0018 (9)
C31	0.0292 (13)	0.0383 (14)	0.0315 (13)	0.0015 (11)	0.0066 (10)	-0.0002 (11)

C32	0.0371 (15)	0.0378 (14)	0.0376 (14)	0.0008 (11)	0.0120 (11)	0.0037 (11)
C33	0.0342 (14)	0.0367 (14)	0.0434 (15)	-0.0029 (11)	0.0143 (12)	-0.0024 (12)
C34	0.0285 (14)	0.0414 (14)	0.0372 (14)	-0.0016 (11)	0.0062 (11)	-0.0062 (11)
C35	0.0289 (13)	0.0385 (14)	0.0321 (13)	0.0028 (11)	0.0042 (10)	0.0004 (11)
C36	0.0333 (15)	0.0616 (19)	0.0323 (14)	-0.0040 (13)	0.0036 (11)	0.0033 (13)
O41	0.0393 (12)	0.0758 (16)	0.0382 (11)	-0.0101 (11)	0.0080 (9)	-0.0183 (11)
N41	0.0452 (15)	0.0552 (16)	0.0322 (12)	-0.0049(12)	0.0074 (11)	-0.0044 (11)
C41	0.0459 (17)	0.0533 (18)	0.0338 (14)	-0.0029(14)	0.0082 (12)	0.0004 (13)
C42	0.066 (2)	0.0513 (19)	0.0411 (17)	-0.0090(17)	0.0142 (16)	-0.0054 (14)
C43	0.093 (3)	0.062 (2)	0.0349 (16)	-0.011 (2)	0.0193 (18)	-0.0065 (15)
C44	0.082 (3)	0.062 (2)	0.0416 (18)	-0.009(2)	0.0224 (18)	0.0056 (16)
C45	0.056 (2)	0.058 (2)	0.0395 (16)	-0.0083(16)	0.0112 (14)	0.0010 (15)
C46	0.052(2)	0.068(2)	0.0418 (17)	-0.0070(17)	0.0171 (15)	-0.0013(16)
Co2	0.0298(2)	0.0371(2)	0.0348 (2)	0.00232 (18)	0.00881 (18)	0.00530 (18)
N3	0.0324(13)	0.0271(2)	0.0431(13)	0.0058(10)	0.0126(11)	0.0073(11)
C3	0.0321(13) 0.0332(14)	0.0352(14)	0.0396(14)	0.0032(11)	0.0057(12)	0.0050(11)
Se3	0.03533(17)	0.04521(18)	0.04398(17)	0.00154(13)	0.01443(13)	0.00795(13)
N4	0.0429(14)	0.0413(13)	0.0428(13)	0.0078 (11)	0.0143(11)	0.0071(11)
C4	0.0339(14)	0.0448(15)	0.0315(13)	-0.0039(12)	0.0101(11)	0.0007(11)
Se4	0.04327(18)	0.03789(16)	0.03780 (16)	-0.00041(13)	0.00378(13)	0.00388(12)
051	0.0297(10)	0.0599(13)	0.0411 (11)	-0.0058(9)	0.0044 (8)	0.0130(10)
N51	0.0299(12)	0.0425(13)	0.0391(12)	-0.0036(10)	0.0080 (9)	0.0048(10)
C51	0.0354(15)	0.0400(14)	0.0363(14)	-0.0005(12)	0.0079(11)	0.0040(12)
C52	0.0336(15)	0.0420(15)	0.0391(15)	0.0017(12)	0.0075(12)	-0.0036(12)
C53	0.0349(15)	0.0416(15)	0.0512(17)	-0.0037(12)	0.0075(12)	-0.0086(12)
C54	0.0319(13) 0.0442(17)	0.0371(14)	0.0512(17) 0.0504(17)	-0.0033(12)	0.0196 (14)	0.0013(13)
C55	0.0426(17)	0.0371(11) 0.0418(15)	0.0201(17) 0.0440(16)	0.0023(12)	0.0131(13)	0.0019(13)
C56	0.0430(18)	0.060(2)	0.0491 (18)	-0.0083(15)	-0.0005(14)	0.0199(16)
061	0.0310(10)	0.0356(10)	0.0424(10)	0.0030 (8)	0.0114 (8)	0.0052 (8)
N61	0.0332(12)	0.0338(11)	0.0372(12)	0.0012 (9)	0.0138 (9)	0.0042(9)
C61	0.0402(18)	0.0509 (18)	0.062 (2)	-0.0072(14)	0.0186 (15)	-0.0162(16)
C62	0.050(2)	0.0446 (18)	0.085(3)	-0.0064(15)	0.0305 (19)	-0.0185(18)
C63	0.0441(18)	0.0400 (16)	0.069(2)	0.0063 (13)	0.0302 (16)	0.0114 (15)
C64	0.0376 (16)	0.0554(18)	0.0449(16)	0.0079(14)	0.0124(13)	0.0098(14)
C65	0.0368(15)	0.0440(15)	0.0380 (14)	0.0053(12)	0.0067(12)	0.0010(12)
C66	0.043(2)	0.128 (5)	0.116 (4)	-0.008(3)	0.007 (2)	-0.080(4)
071	0.0330(10)	0.0382(10)	0.0408 (10)	-0.0011(8)	0.0138 (8)	0.0027 (8)
N71	0.0307(12)	0.0377(12)	0.0358(11)	0.0014 (9)	0.0123 (9)	0.0024(9)
C71	0.0333(14)	0.0413(15)	0.0357(14)	0.0042(11)	0.0118(11)	0.0021(11)
C72	0.0393(16)	0.0438(15)	0.0394(14)	0.0040(12)	0.0127(12)	0.0062(12)
C73	0.0392(16)	0.0392(15)	0.0397(11)	-0.0008(12)	0.0127(12) 0.0142(13)	0.0002(12)
C74	0.0392(10) 0.0322(15)	0.0392(15) 0.0482(16)	0.0396(15)	0.0000(12)	0.0112(13) 0.0075(12)	-0.0014(13)
C75	0.0322(13) 0.0332(14)	0.0406(15)	0.0351(13)	0.0010(12) 0.0044(11)	0.0070(12)	0 0040 (11)
C76	0.0352(11) 0.0359(16)	0.0599(19)	0.0373(15)	-0.0003(14)	0.0000(11) 0.0099(12)	0.0010(11) 0.0044(14)
081	0.0350(10)	0.0459 (11)	0.0331 (10)	-0.0007(8)	0.0103 (8)	-0.0007(8)
N81	0.0330(12)	0.0372(12)	0.0322 (11)	0.0029 (9)	0.0066 (9)	0.0020 (9)
C81	0.0486 (18)	0.0406(15)	0.0414 (16)	-0.0075(13)	0.0054 (13)	-0.0007(13)
C82	0.066 (2)	0.0497 (18)	0.0386 (16)	-0.0079 (16)	0.0022 (15)	-0.0091(14)
	···· (-)		······································	······································	··· · = ()	······································

C83	0.054 (2)	0.061 (2)	0.0305 (14)	0.0028 (16)	0.0052 (13)	-0.0016 (14)
C84	0.0346 (15)	0.0523 (17)	0.0355 (14)	0.0044 (13)	0.0049 (12)	0.0092 (13)
C85	0.0314 (14)	0.0367 (14)	0.0382 (14)	0.0017 (11)	0.0046 (11)	0.0043 (11)
C86	0.073 (3)	0.0489 (19)	0.060 (2)	-0.0216 (18)	0.0177 (19)	-0.0026 (17)

Geometric parameters (Å, °)

Co1—N1	2.105 (3)	Co2—N3	2.096 (3)
Co1—N2	2.096 (3)	Co2—N4	2.115 (3)
Co1-011	2.104 (2)	Co2—O51	2.092 (2)
Co1-021	2.081 (2)	Co2—O61	2.109 (2)
Co1-031	2.103 (2)	Co2—O71	2.102 (2)
Co1—O41	2.086 (2)	Co2—O81	2.098 (2)
N1C1	1.149 (4)	N3—C3	1.150 (4)
C1—Se1	1.805 (3)	C3—Se3	1.806 (3)
N2—C2	1.157 (4)	N4—C4	1.155 (4)
C2—Se2	1.798 (3)	C4—Se4	1.805 (3)
O11—N11	1.325 (3)	O51—N51	1.330 (3)
N11—C11	1.370 (4)	N51—C51	1.361 (4)
N11—C15	1.352 (4)	N51—C55	1.350 (4)
C11—C12	1.380 (4)	C51—C52	1.374 (4)
C11—C16	1.493 (5)	C51—C56	1.495 (4)
C12—H12	0.9500	С52—Н52	0.9500
C12—C13	1.380 (5)	C52—C53	1.384 (4)
C13—H13	0.9500	С53—Н53	0.9500
C13—C14	1.383 (5)	C53—C54	1.391 (5)
C14—H14	0.9500	C54—H54	0.9500
C14—C15	1.369 (4)	C54—C55	1.371 (5)
С15—Н15	0.9500	С55—Н55	0.9500
C16—H16A	0.9800	С56—Н56А	0.9800
C16—H16B	0.9800	C56—H56B	0.9800
C16—H16C	0.9800	C56—H56C	0.9800
O21—N21	1.322 (3)	O61—N61	1.332 (3)
N21—C21	1.370 (5)	N61—C61	1.353 (4)
N21—C25	1.344 (4)	N61—C65	1.351 (4)
C21—C22	1.426 (6)	C61—C62	1.383 (5)
C21—C26	1.444 (6)	C61—C66	1.485 (6)
C22—H22	0.9500	C62—H62	0.9500
C22—C23	1.334 (7)	C62—C63	1.366 (6)
С23—Н23	0.9500	С63—Н63	0.9500
C23—C24	1.341 (6)	C63—C64	1.385 (5)
C24—H24	0.9500	С64—Н64	0.9500
C24—C25	1.371 (5)	C64—C65	1.376 (4)
С25—Н25	0.9500	С65—Н65	0.9500
C26—H26A	0.9800	С66—Н66А	0.9800
C26—H26B	0.9800	C66—H66B	0.9800
C26—H26C	0.9800	C66—H66C	0.9800
O31—N31	1.330 (3)	O71—N71	1.333 (3)

N31—C31	1.354 (4)	N71—C71	1.362 (4)
N31—C35	1.359 (3)	N71—C75	1.353 (4)
C31—C32	1.386 (4)	C71—C72	1.391 (4)
C31—C36	1.488 (4)	C71—C76	1.483 (4)
С32—Н32	0.9500	С72—Н72	0.9500
C32—C33	1.379 (4)	C72—C73	1.380 (4)
C33—H33	0.9500	C73—H73	0.9500
C_{33} C_{34}	1.392(4)	C73 - C74	1 384 (4)
C_{34} H_{34}	0.0500	C74 H74	0.0500
C_{24} C_{25}	1,272(4)	C74 C75	1.272(4)
C34—C33	1.575 (4)	C/4-C/3	1.373 (4)
С35—Н35	0.9500	C/5—H/5	0.9500
С36—Н36А	0.9800	C/6—H/6A	0.9800
С36—Н36В	0.9800	С76—Н76В	0.9800
C36—H36C	0.9800	С76—Н76С	0.9800
O41—N41	1.338 (3)	O81—N81	1.340 (3)
N41—C41	1.347 (4)	N81—C81	1.358 (4)
N41—C45	1.364 (4)	N81—C85	1.351 (4)
C41—C42	1.386 (4)	C81—C82	1.387 (5)
C41—C46	1.490 (5)	C81—C86	1.491 (5)
C42—H42	0.9500	C82—H82	0.9500
C42-C43	1 382 (5)	C82—C83	1 377 (5)
C43—H43	0.9500	C83—H83	0.9500
C43 - C44	1 392 (6)	C83-C84	1.387(5)
	0.0500	C84 $H84$	0.0500
C44—I144	0.9300	C_{04} C_{05}	0.9300
C44—C45	1.376 (3)	C84—C85	1.375 (4)
C45—H45	0.9500	C85—H85	0.9500
C46—H46A	0.9800	C86—H86A	0.9800
C46—H46B	0.9800	C86—H86B	0.9800
C46—H46C	0.9800	C86—H86C	0.9800
N2—Co1—N1	92.43 (11)	N3—Co2—N4	92.80 (10)
N2—Co1—O11	85.49 (11)	N3—Co2—O61	85.67 (9)
N2—Co1—O31	95.84 (10)	N3—Co2—O71	173.62 (9)
011—Co1—N1	94.63 (10)	N3—Co2—O81	95.39 (9)
O21—Co1—N1	86.10 (10)	O51—Co2—N3	94.08 (10)
O21—Co1—N2	176.62 (11)	O51—Co2—N4	88.66 (10)
O21—Co1—O11	91.58 (10)	O51—Co2—O61	90.02 (9)
021 - 001 - 031	85 57 (8)	$051 - Co^2 - 071$	84 49 (9)
021 - 001 - 041	92.05 (10)	$051 - C_0 - 081$	170 51 (9)
O_{21}^{-1} C_{01}^{-1} N1	171.62 (10)	061 Co2 N4	177.00(0)
031 - 01 - 011	1/1.02(10)	001 - 002 - 04	177.30(3)
	84.75 (8)	0/1 - 0.2 - 0.1	93.37 (9)
U41 - U01 - N1	90.79(10)	0/1 - 02 - 061	δδ.12 (δ)
U41—C01—N2	91.15 (12)	081—Co2—N4	91.46 (10)
041—Co1—O11	168.23 (9)	081—Co2—O61	90.12 (8)
O41—Co1—O31	84.39 (8)	081—Co2—O71	86.03 (8)
C1—N1—Co1	166.2 (3)	C3—N3—Co2	167.6 (2)
N1—C1—Se1	179.1 (3)	N3—C3—Se3	177.7 (3)
C2—N2—Co1	151.9 (3)	C4—N4—Co2	163.8 (3)

N2—C2—Se2	178.3 (3)	N4—C4—Se4	178.5 (3)
N11—O11—Co1	128.93 (17)	N51—O51—Co2	123.32 (18)
011—N11—C11	118.0 (2)	O51—N51—C51	118.8 (2)
O11—N11—C15	120.1 (2)	O51—N51—C55	119.7 (2)
C15—N11—C11	121.9 (3)	C55—N51—C51	121.5 (3)
N11—C11—C12	118.1 (3)	N51—C51—C52	118.9 (3)
N11—C11—C16	116.8 (3)	N51—C51—C56	116.8 (3)
C12—C11—C16	125.0 (3)	C52—C51—C56	124.3 (3)
C11—C12—H12	119.4	С51—С52—Н52	119.4
C13—C12—C11	121.2 (3)	C51—C52—C53	121.2 (3)
C13—C12—H12	119.4	С53—С52—Н52	119.4
С12—С13—Н13	120.8	С52—С53—Н53	120.9
C12—C13—C14	118.4 (3)	C52—C53—C54	118.2 (3)
C14—C13—H13	120.8	С54—С53—Н53	120.9
C13—C14—H14	119.7	С53—С54—Н54	120.0
C15—C14—C13	120.6 (3)	C55—C54—C53	120.0 (3)
C15—C14—H14	119.7	С55—С54—Н54	120.0
N11—C15—C14	119.7 (3)	N51—C55—C54	120.3 (3)
N11—C15—H15	120.1	N51—C55—H55	119.9
C14—C15—H15	120.1	С54—С55—Н55	119.9
C11—C16—H16A	109.5	С51—С56—Н56А	109.5
C11—C16—H16B	109.5	С51—С56—Н56В	109.5
C11—C16—H16C	109.5	С51—С56—Н56С	109.5
H16A—C16—H16B	109.5	H56A—C56—H56B	109.5
H16A—C16—H16C	109.5	H56A—C56—H56C	109.5
H16B—C16—H16C	109.5	H56B—C56—H56C	109.5
N21—O21—Co1	121.76 (17)	N61—O61—Co2	123.03 (16)
O21—N21—C21	121.3 (3)	O61—N61—C61	119.2 (3)
O21—N21—C25	118.7 (3)	O61—N61—C65	119.8 (2)
C25—N21—C21	120.0 (3)	C65—N61—C61	121.0 (3)
N21—C21—C22	117.2 (3)	N61—C61—C62	118.5 (3)
N21—C21—C26	120.6 (4)	N61—C61—C66	117.1 (3)
C22—C21—C26	122.3 (4)	C62—C61—C66	124.4 (3)
C21—C22—H22	119.1	С61—С62—Н62	119.2
C23—C22—C21	121.9 (4)	C63—C62—C61	121.7 (3)
С23—С22—Н22	119.1	С63—С62—Н62	119.2
С22—С23—Н23	120.7	С62—С63—Н63	120.7
C22—C23—C24	118.6 (4)	C62—C63—C64	118.5 (3)
С24—С23—Н23	120.7	С64—С63—Н63	120.7
C23—C24—H24	119.2	С63—С64—Н64	120.4
C23—C24—C25	121.5 (4)	C65—C64—C63	119.3 (3)
C25—C24—H24	119.2	С65—С64—Н64	120.4
N21—C25—C24	120.7 (3)	N61—C65—C64	120.8 (3)
N21_C25_H25	× /		110 (
1121 023 1123	119.6	N61—C65—H65	119.6
C24—C25—H25	119.6 119.6	N61—C65—H65 C64—C65—H65	119.6 119.6
C24—C25—H25 C21—C26—H26A	119.6 119.6 109.5	N61—C65—H65 C64—C65—H65 C61—C66—H66A	119.6 119.6 109.5
C24—C25—H25 C21—C26—H26A C21—C26—H26B	119.6 119.6 109.5 109.5	N61—C65—H65 C64—C65—H65 C61—C66—H66A C61—C66—H66B	119.6 119.6 109.5 109.5

H26A—C26—H26B	109.5	H66A—C66—H66B	109.5
H26A—C26—H26C	109.5	H66A—C66—H66C	109.5
H26B—C26—H26C	109.5	H66B—C66—H66C	109.5
N31—O31—Co1	120.96 (15)	N71—O71—Co2	120.08 (16)
O31—N31—C31	119.5 (2)	O71—N71—C71	119.4 (2)
O31—N31—C35	118.6 (2)	O71—N71—C75	118.8 (2)
C31—N31—C35	121.7 (2)	C75—N71—C71	121.7 (3)
N31—C31—C32	118.5 (3)	N71—C71—C72	118.0 (3)
N31—C31—C36	117.2 (3)	N71—C71—C76	117.5 (3)
C32—C31—C36	124.3 (3)	C72—C71—C76	124.4 (3)
C31—C32—H32	119.4	С71—С72—Н72	119.4
C33—C32—C31	121.2 (3)	C73—C72—C71	121.2 (3)
С33—С32—Н32	119.4	С73—С72—Н72	119.4
С32—С33—Н33	120.7	С72—С73—Н73	120.5
C32—C33—C34	118.7 (3)	C72—C73—C74	118.9 (3)
С34—С33—Н33	120.7	С74—С73—Н73	120.5
С33—С34—Н34	120.2	С73—С74—Н74	120.3
C35—C34—C33	119.6 (3)	C75—C74—C73	119.5 (3)
С35—С34—Н34	120.2	С75—С74—Н74	120.3
N31—C35—C34	120.4 (3)	N71—C75—C74	120.7 (3)
N31—C35—H35	119.8	N71—C75—H75	119.6
С34—С35—Н35	119.8	С74—С75—Н75	119.6
С31—С36—Н36А	109.5	С71—С76—Н76А	109.5
С31—С36—Н36В	109.5	С71—С76—Н76В	109.5
С31—С36—Н36С	109.5	С71—С76—Н76С	109.5
H36A—C36—H36B	109.5	Н76А—С76—Н76В	109.5
H36A—C36—H36C	109.5	Н76А—С76—Н76С	109.5
H36B—C36—H36C	109.5	H76B—C76—H76C	109.5
N41—O41—Co1	124.68 (19)	N81—O81—Co2	124.24 (16)
O41—N41—C41	119.5 (3)	081—N81—C81	118.0 (2)
O41—N41—C45	118.9 (3)	O81—N81—C85	119.8 (2)
C41—N41—C45	121.6 (3)	C85—N81—C81	122.1 (3)
N41—C41—C42	118.8 (3)	N81—C81—C82	117.7 (3)
N41—C41—C46	118.2 (3)	N81—C81—C86	117.0 (3)
C42—C41—C46	123.0 (3)	C82—C81—C86	125.4 (3)
C41—C42—H42	119.4	C81—C82—H82	119.3
C43—C42—C41	121.2 (3)	C83—C82—C81	121.5 (3)
C43—C42—H42	119.4	C83—C82—H82	119.3
C42—C43—H43	120.8	C82—C83—H83	120.5
C42—C43—C44	118.4 (3)	C82—C83—C84	119.1 (3)
C44—C43—H43	120.8	C84—C83—H83	120.5
C43—C44—H44	120.1	C83—C84—H84	120.5
C_{45} C_{44} C_{43}	1197(3)	C85 - C84 - C83	1190(3)
C45 - C44 - H44	120.1	C85—C84—H84	120.5
N41—C45—C44	120.2 (3)	N81—C85—C84	120.6 (3)
N41—C45—H45	119.9	N81—C85—H85	1197
C44—C45—H45	119.9	C84—C85—H85	119.7
C41—C46—H46A	109 5	C81—C86—H86A	109 5
	10/.0		10/.0

C41—C46—H46B	109.5	C81—C86—H86B	109.5
C41—C46—H46C	109.5	C81—C86—H86C	109.5
H46A—C46—H46B	109.5	H86A—C86—H86B	109.5
H46A—C46—H46C	109.5	H86A—C86—H86C	109.5
H46B—C46—H46C	109.5	H86B—C86—H86C	109.5
Co1—O11—N11—C11	151.0 (2)	Co2—O51—N51—C51	128.0 (2)
Co1-011-N11-C15	-31.1 (4)	Co2-051-N51-C55	-53.5 (4)
Co1-021-N21-C21	-99.2 (3)	Co2—O61—N61—C61	-115.5 (3)
Co1—O21—N21—C25	82.3 (3)	Co2—O61—N61—C65	66.0 (3)
Co1-031-N31-C31	-95.3 (2)	Co2—O71—N71—C71	-95.9 (3)
Co1-031-N31-C35	88.6 (3)	Co2—O71—N71—C75	88.0 (3)
Co1-041-N41-C41	-117.7 (3)	Co2—O81—N81—C81	-125.5(2)
Co1-041-N41-C45	63.6 (4)	Co2—O81—N81—C85	57.2 (3)
O11—N11—C11—C12	175.4 (3)	O51—N51—C51—C52	177.0 (3)
O11—N11—C11—C16	-5.4 (4)	O51—N51—C51—C56	-2.7(4)
O11—N11—C15—C14	-177.4 (3)	O51—N51—C55—C54	-178.2(3)
N11—C11—C12—C13	3.0 (5)	N51—C51—C52—C53	1.8 (5)
C11—N11—C15—C14	0.3 (4)	C51—N51—C55—C54	0.2 (5)
C11—C12—C13—C14	-1.6(5)	C51—C52—C53—C54	-0.8(5)
C12—C13—C14—C15	-0.5(5)	C52—C53—C54—C55	-0.4(5)
C13—C14—C15—N11	1.1 (5)	C53—C54—C55—N51	0.7 (5)
C15—N11—C11—C12	-2.4(4)	C55—N51—C51—C52	-1.5(5)
C15—N11—C11—C16	176.8 (3)	C55—N51—C51—C56	178.8 (3)
C16—C11—C12—C13	-176.1 (3)	C56—C51—C52—C53	-178.5(3)
O21—N21—C21—C22	-174.0(3)	O61—N61—C61—C62	-175.1(3)
O21—N21—C21—C26	4.8 (5)	O61—N61—C61—C66	5.1 (5)
O21—N21—C25—C24	175.0 (3)	O61—N61—C65—C64	174.1 (3)
N21—C21—C22—C23	-2.6 (5)	N61—C61—C62—C63	0.1 (6)
C21—N21—C25—C24	-3.5 (5)	C61—N61—C65—C64	-4.3 (5)
C21—C22—C23—C24	-0.4 (6)	C61—C62—C63—C64	-2.5 (6)
C22—C23—C24—C25	1.5 (6)	C62—C63—C64—C65	1.7 (5)
C23—C24—C25—N21	0.4 (6)	C63—C64—C65—N61	1.7 (5)
C25—N21—C21—C22	4.5 (4)	C65—N61—C61—C62	3.4 (5)
C25—N21—C21—C26	-176.7 (3)	C65—N61—C61—C66	-176.5 (4)
C26—C21—C22—C23	178.6 (4)	C66—C61—C62—C63	179.9 (5)
O31—N31—C31—C32	-177.0 (2)	O71—N71—C71—C72	-176.0 (2)
O31—N31—C31—C36	0.1 (4)	O71—N71—C71—C76	1.0 (4)
O31—N31—C35—C34	176.7 (2)	O71—N71—C75—C74	175.7 (3)
N31—C31—C32—C33	0.8 (4)	N71—C71—C72—C73	0.2 (4)
C31—N31—C35—C34	0.7 (4)	C71—N71—C75—C74	-0.3 (4)
C31—C32—C33—C34	-0.2 (4)	C71—C72—C73—C74	-0.1(5)
C32—C33—C34—C35	-0.2 (4)	C72—C73—C74—C75	-0.2(5)
C33—C34—C35—N31	-0.1 (4)	C73—C74—C75—N71	0.4 (5)
C35—N31—C31—C32	-1.1 (4)	C75—N71—C71—C72	0.0 (4)
C35—N31—C31—C36	176.1 (3)	C75—N71—C71—C76	176.9 (3)
C36—C31—C32—C33	-176.2 (3)	C76—C71—C72—C73	-176.5 (3)
O41—N41—C41—C42	-177.2 (3)	O81—N81—C81—C82	179.9 (3)
	× /		

O41—N41—C41—C46	2.4 (5)	O81—N81—C81—C86	-0.2 (4)
O41—N41—C45—C44	178.6 (3)	O81—N81—C85—C84	179.9 (3)
N41—C41—C42—C43	-1.8 (6)	N81—C81—C82—C83	1.2 (5)
C41—N41—C45—C44	0.0 (6)	C81—N81—C85—C84	2.7 (4)
C41—C42—C43—C44	0.8 (7)	C81—C82—C83—C84	0.7 (6)
C42—C43—C44—C45	0.5 (7)	C82—C83—C84—C85	-0.9(5)
C43—C44—C45—N41	-1.0 (6)	C83—C84—C85—N81	-0.7(4)
C45—N41—C41—C42	1.4 (5)	C85—N81—C81—C82	-2.9(5)
C45—N41—C41—C42 C45—N41—C41—C46 C46—C41—C42—C43	-179.0 (3) 178.6 (4)	C85—N81—C81—C82 C85—N81—C81—C86 C86—C81—C82—C83	2.9 (3) 177.0 (3) -178.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
С15—Н15…О21	0.95	2.36	3.158 (4)	141
C26—H26C…O11	0.98	2.49	3.367 (5)	149
C35—H35···Se1 ⁱ	0.95	2.96	3.748 (3)	141
C36—H36C…O11	0.98	2.55	3.281 (4)	131
C42—H42···Se3 ⁱⁱ	0.95	2.87	3.811 (4)	171
C52—H52···Se2 ⁱⁱⁱ	0.95	3.05	3.926 (3)	153
C55—H55…O61	0.95	2.45	3.245 (4)	141
C56—H56B····Se2 ⁱⁱⁱ	0.98	3.02	3.933 (3)	156
C65—H65···O81	0.95	2.40	3.140 (4)	135
C66—H66A···Se2 ^{iv}	0.98	3.14	3.807 (5)	126
C75—H75…Se3 ⁱ	0.95	2.95	3.726 (3)	140
C75—H75…O81	0.95	2.62	3.075 (3)	110
C76—H76C···O51	0.98	2.61	3.354 (4)	133
C86—H86 <i>B</i> ···Se1 ⁱⁱ	0.98	3.14	4.109 (4)	169

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*, -*y*+1, -*z*; (iv) *x*-1, *y*, *z*.