CRYSTALLOGRAPHIC COMMUNICATIONS

Received 4 June 2024
Accepted 12 June 2024

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; Hirshfeld surface analysis; phosphine sulfide.

CCDC reference: 2362349

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of dimethyl(phenyl)phosphine sulfide

Robin Risken, Yasin Mehmet Kuzu, Annika Schmidt and Carsten Strohmann*

Inorganic Chemistry, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany. *Correspondence e-mail: carsten.strohmann@tu-dortmund.de

The title compound, $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{PS}$, which melts below room temperature, was crystallized at low temperature. The $\mathrm{P}-\mathrm{S}$ bond length is 1.9623 (5) \AA and the major contributors to the Hirshfeld surface are $\mathrm{H} \cdots \mathrm{H}(58.1 \%)$, $\mathrm{S} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S}$ (13.4%) and $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ contacts (11.7\%).

1. Chemical context

The structure of the title compound, $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{PS}, \mathbf{1 1}$, is interesting for two reasons: firstly, the crystals are very temperature sensitive and secondly the chemical background of the substance itself. Although $\mathbf{1 1}$ has been known since 1962 (Monsanto Chemicals, 1962) and even commercially available, no crystal structure has been obtained until now. This might be due to its low melting point, which made measurements very difficult and only feasible with X-Temp 2 (Stalke, 1998), which makes crystal picking and mounting possible at very low temperatures. Phosphorus-based molecules are used in a large variety of different chemical applications as chiral ligands for enantioselective catalysis (Grabulosa, 2011). Compound $\mathbf{1 1}$ is a prochiral building block for P-stereogenic biphosphine ligands, which are used for transition-metal-catalyzed asymmetric reactions (Tang \& Zhang, 2003). This application makes an enantioselective synthesis indispensable, which is why different approaches have been reported. For the chemically similar phosphine-boranes, the desired enantiomer can be synthesized either under kinetic control with sec-BuLi and (-)-sparteine via an asymmetric deprotonation (Muci et al., 1995) or a thermodynamically controlled reaction with n BuLi and (-)-sparteine via dynamic resolution (Wolfe \& Livinghouse, 1998) (Fig. 1). For phosphine sulfides like compound 11, the synthetic approach is quite similar. Using n - BuLi and $(-)$-sparteine in $\mathrm{Et}_{2} \mathrm{O}$ results in an enantiometric

Asymmetric Deprotonation (Kinetic control)

Dynamic Resolution (Thermodynamic control)

Figure 1
Kinetic and thermodynamic approaches to synthesize chiral phosphine boranes.

Figure 2
More recent synthetic approaches for chiral phosphine sulfides and boranes.
ratio (e.r.) of 88:12 via a kinetically controlled reaction (Gammon et al., 2010) (Fig. 2). By trapping the lithiated intermediate, not only has a higher enantioselectivity of e.r. $=$ 93:7 been achieved, but it has also been discovered that the enantiomers can interconvert at temperatures above 253 K . One of the most recent synthetic approaches for phosphineboranes relies on the much cheaper (R, R)-TMCDA instead of $(-)$-sparteine and crystallization-induced dynamic resolution (CIDR). This synthesis achieves up to 80% yield and enantioselectivity of 98:2 (Kuzu et al., 2024).

11

2. Structural commentary

Compound 11, which was crystallized from toluene at 193 K , forms colorless needles in the monoclinic space group $P 2_{1} / n$. The P-tetrahedral molecule consists of two methyl groups and one phenyl group bound to the phosphine sulfide unit. The P1 - S1 bond length of 1.9623 (5) A matches the typical bond length for this species (Verschoor-Kirss et al., 2016; Blake et al., 1981). The phosphorus bond angles vary from 105.58 (6) ${ }^{\circ}$ for $\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 3$ to $113.55(5)^{\circ}$ for $\mathrm{C} 2-\mathrm{P} 1-\mathrm{S} 1$. These angles

Figure 3
The molecular structure of $\mathbf{1 1}$ showing 50% displacement ellipsoids.
are slightly distorted from the nominal angle of 109.5°, which is probably caused by the different steric effects of the substituents. The bond lengths and angles of the C3-C8 phenyl ring match with the typical lengths and angles for this familiar group (Lide, 2005). Atom S 1 is displaced from the plane of the C3-C8 ring by -0.549 (1) \AA with corresponding deviations for atoms C 1 and C 2 of the methyl groups of 1.839 (2) and -0.781 (1) \AA, respectively; the $\mathrm{C} 4-\mathrm{C} 3-\mathrm{P} 1-\mathrm{S} 1$ torsion angle is $23.85(12)^{\circ}$.

3. Supramolecular features

To better understand the intermolecular interactions of 11, a Hirshfeld surface analysis was performed. In Fig. 3 the Hirshfeld surface analysis is mapped over $d_{\text {norm }}$ in the range of -0.07 to 1.20 a.u. (Spackman \& Jayatilaka, 2009) and generated by CrystalExplorer21 (Spackman et al., 2021) using red dots to represent close contacts. Atom S 1 has close contacts to atoms $\mathrm{H} 1 A(\mathrm{H} \cdots \mathrm{S}=2.87 \AA)$ and $\mathrm{H} 2 C(2.95 \AA)$ of the methyl groups of a neighboring molecule displaced by translation in the a-axis direction. For further visualization of the percentage of the respective interactions, two-dimensional fingerprint plots (McKinnon et al., 2007) were generated and these are shown in Fig. 4. The most significant contacts in the solid state are the $\mathrm{H} \cdots \mathrm{H}$ interactions, contributing 58.1% of the total

Figure 4
Hirshfeld surface analysis of $\mathbf{1 1}$ showing close contacts in the crystal.

Figure 5
Two-dimensional fingerprint plots for compound 11, showing (a) all contributions and $(b)-(d)$ contributions between specific interacting atom pairs.
surface (Fig. 5). The S $\cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S}(13.4 \%$) and $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ interactions (11.7\%) are less impactful in comparison.

4. Database survey

Similar molecules to $\mathbf{1 1}$ can vary either in the attached heteroatom such as the previously discussed phosphine boranes (Muci et al., 1995; Kuzu et al., 2024) or they can vary in their organic substituents (Gammon et al., 2010). A search in the Cambridge Structural Database (WebCSD, March 2024; Groom et al., 2016) for phosphine sulfides lead to many similar structures with different organic substituents. Some of those structures contain aromatic substituents such as three phenyl rings (CSD refcode BAQTOC; Arca et al., 1999) or even larger substituents like an anthracene group (BARWEA; Schillmöller et al., 2021). Structures with smaller substituents are also known, for example, butyronitrile (KADJEE; Blake et al., 1981).

5. Synthesis and crystallization

In a round-bottom flask equipped with a condenser dimethyl(phenyl)phosphane ($1.00 \mathrm{~g}, 7.24 \mathrm{mmol}, 1$ eq.) and sulfur ($2.23 \mathrm{~g}, 8.69 \mathrm{mmol}, 1.2$ eq.) were dissolved in 20 ml of toluene. While stirring, the mixture was heated under reflux to 373 K and then stirred overnight without heating. The resulting mixture was filtered through 3 cm of celite and washed with diethyl ether. The organic phase was dried with magnesium sulfate and the solvent was removed in vacuo, yielding a slightly yellow oil of dimethyl(phenyl)phosphine sulfide

Table 1
Experimental details.
Crystal data

Chemical formula	$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{PS}$
$M_{\text {r }}$	170.20
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	100
$a, b, c(\AA)$	6.2805 (2), 7.6549 (2), 19.3578 (8)
$\beta\left({ }^{\circ}\right.$)	99.372 (2)
$V\left(\AA^{3}\right)$	918.23 (5)
Z	4
Radiation type	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	4.17
Crystal size (mm)	$0.14 \times 0.13 \times 0.10$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.465, 0.587
No. of measured, independent and observed $[I>2 \sigma(I)$] reflections	12606, 1886, 1745
$R_{\text {int }}$	0.029
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.626
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.024, 0.064, 1.06
No. of reflections	1886
No. of parameters	93
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.34,-0.23$

Computer programs: APEX2 and SAINT (Bruker, 2018), SHELXT (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).
$(1.04 \mathrm{~g}, 85 \%)$. The oil was dissolved in hot toluene and recrystallized at 193 K , forming colorless needles.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were geometrically placed $(\mathrm{C}-\mathrm{H}=0.95-0.98 \AA)$ and refined as riding atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}($ methyl C).

Funding information

Funding for this research was provided by: Fonds der Chemischen Industrie (scholarship to Annika Schmidt); Avicenna Studienwerk (scholarship to Mehmet Yasin Kuzu); Studienstiftung des Deutschen Volkes (scholarship to Annika Schmidt).

References

Arca, M., Demartin, F., Devillanova, F. A., Garau, A., Isaia, F., Lippolis, V. \& Verani, G. (1999). J. Chem. Soc. Dalton Trans. pp. 3069-3073.
Blake, A. J., Howie, R. A. \& McQuillan, G. P. (1981). Acta Cryst. B37, 1959-1962.
Bruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Gammon, J. J., Gessner, V. H., Barker, G. R., Granander, J., Whitwood, A. C., Strohmann, C., O’Brien, P. \& Kelly, B. (2010). J. Am. Chem. Soc. 132, 13922-13927.
Grabulosa, A. (2011). P-Stereogenic Ligands in Enantioselective Catalysis. Cambridge: RSC Publishing, .
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Kuzu, M. Y., Schmidt, A. \& Strohmann, C. (2024). Angew. Chem. Int. Ed. e202319665.
Lide (2005). Editor. CRC Handbook of Chemistry and Physics, Internet Version. Boca Raton, FL: CRC Press.
McKinnon, J. J., Jayatilaka, D. \& Spackman, M. A. (2007). Chem. Commип. pp. 3814-3816.
Monsanto Chemicals (1962). American Patent No. US3053900A

Muci, A. R., Campos, K. R. \& Evans, D. A. (1995). J. Am. Chem. Soc. 117, 9075-9076.
Schillmöller, T., Herbst-Irmer, R. \& Stalke, D. (2021). Adv. Opt. Mater. 9, 2001814.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spackman, M. A. \& Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. \& Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.
Stalke, D. (1998). Chem. Soc. Rev. 27, 171.
Tang, W. \& Zhang, X. (2003). Chem. Rev. 103, 3029-3070.
Verschoor-Kirss, M. J., Hendricks, O., Verschoor, C. M., Conry, R. \& Kirss, R. U. (2016). Inorg. Chim. Acta, 450, 30-38.
Wolfe, B. \& Livinghouse, T. (1998). J. Am. Chem. Soc. 120, 5116-5117.

supporting information

Crystal structure and Hirshfeld surface analysis of dimethyl(phenyl)phosphine sulfide

Robin Risken, Yasin Mehmet Kuzu, Annika Schmidt and Carsten Strohmann

Computing details

Dimethyl(phenyl) phosphanethione

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{PS}$

$M_{r}=170.20$
Monoclinic, $P 2_{1} / n$
$a=6.2805$ (2) \AA
$b=7.6549$ (2) \AA
$c=19.3578(8) \AA$
$\beta=99.372$ (2) ${ }^{\circ}$
$V=918.23(5) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.465, T_{\text {max }}=0.587$
12606 measured reflections
$F(000)=360$
$D_{\mathrm{x}}=1.231 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 3458 reflections
$\theta=4.6-79.2^{\circ}$
$\mu=4.17 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, colourless
$0.14 \times 0.13 \times 0.10 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.064$
$S=1.06$
1886 reflections
93 parameters
0 restraints
Primary atom site location: dual

1886 independent reflections
1745 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=74.7^{\circ}, \theta_{\text {min }}=4.6^{\circ}$
$h=-7 \rightarrow 7$
$k=-9 \rightarrow 7$
$l=-24 \rightarrow 23$

> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.031 P)^{2}+0.342 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.34$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.23$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
P1	$0.42807(5)$	$0.75930(4)$	$0.57224(2)$	$0.02071(10)$
S1	$0.73232(5)$	$0.79603(5)$	$0.56424(2)$	$0.02966(11)$
C3	$0.3919(2)$	$0.57849(16)$	$0.62992(6)$	$0.0225(3)$
C8	$0.1928(2)$	$0.49493(18)$	$0.62617(7)$	$0.0280(3)$
H8	0.0754	0.5285	0.5913	0.034^{*}
C2	$0.2586(2)$	$0.71634(18)$	$0.48984(7)$	$0.0267(3)$
H2A	0.3014	0.6055	0.4708	0.040^{*}
H2B	0.2743	0.8110	0.4570	0.040^{*}
H2C	0.1078	0.7091	0.4968	0.040^{*}
C1	$0.3115(2)$	$0.94645(17)$	$0.60830(7)$	$0.0268(3)$
H1A	0.1620	0.9205	0.6133	0.040^{*}
H1B	0.3142	1.0466	0.5769	0.040^{*}
H1C	0.3950	0.9741	0.6543	0.040^{*}
C4	$0.5618(2)$	$0.52745(19)$	$0.68113(7)$	$0.0320(3)$
H4	0.6990	0.5816	0.6836	0.038^{*}
C7	$0.1657(2)$	$0.36298(19)$	$0.67315(8)$	$0.0331(3)$
H7	0.0303	0.3056	0.6700	0.040^{*}
C6	$0.3345(3)$	$0.31482(19)$	$0.72440(8)$	$0.0357(3)$
H6	0.3152	0.2250	0.7567	0.043^{*}
C5	$0.5320(3)$	$0.3975(2)$	$0.72876(8)$	$0.0398(4)$
H5	0.6477	0.3654	0.7645	0.048^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	$0.01838(17)$	$0.02128(17)$	$0.02246(17)$	$0.00095(11)$	$0.00330(12)$	$0.00012(12)$
S1	$0.01915(17)$	$0.03201(19)$	$0.0385(2)$	$0.00062(12)$	$0.00678(13)$	$0.00507(14)$
C3	$0.0253(6)$	$0.0205(6)$	$0.0223(6)$	$0.0025(5)$	$0.0058(5)$	$-0.0015(5)$
C8	$0.0261(7)$	$0.0248(6)$	$0.0337(7)$	$-0.0002(5)$	$0.0066(5)$	$-0.0004(5)$
C2	$0.0266(7)$	$0.0291(7)$	$0.0238(6)$	$0.0010(5)$	$0.0021(5)$	$-0.0011(5)$
C1	$0.0285(7)$	$0.0236(6)$	$0.0293(6)$	$0.0023(5)$	$0.0075(5)$	$-0.0008(5)$
C4	$0.0304(7)$	$0.0315(7)$	$0.0321(7)$	$-0.0014(6)$	$-0.0011(6)$	$0.0027(6)$
C7	$0.0377(8)$	$0.0251(7)$	$0.0396(8)$	$-0.0021(6)$	$0.0152(6)$	$-0.0005(6)$
C6	$0.0553(10)$	$0.0250(7)$	$0.0300(7)$	$0.0032(6)$	$0.0165(7)$	$0.0035(6)$
C5	$0.0478(9)$	$0.0368(8)$	$0.0319(7)$	$0.0039(7)$	$-0.0027(7)$	$0.0077(6)$

Geometric parameters (\AA, ${ }^{o}$)

$\mathrm{P} 1-\mathrm{S} 1$	$1.9623(5)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9800
$\mathrm{P} 1-\mathrm{C} 3$	$1.8158(13)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9800
$\mathrm{P} 1-\mathrm{C} 2$	$1.7977(13)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9800
$\mathrm{P} 1-\mathrm{C} 1$	$1.8004(13)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9500
$\mathrm{C} 3-\mathrm{C} 8$	$1.3957(19)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.390(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.3893(18)$	$\mathrm{C} 7-\mathrm{H} 7$	0.9500
$\mathrm{C} 8-\mathrm{H} 8$	0.9500	$\mathrm{C} 7-\mathrm{C} 6$	$1.379(2)$

$\mathrm{C} 8-\mathrm{C} 7$	$1.388(2)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9800
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9800
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9800
$\mathrm{C} 3-\mathrm{P} 1-\mathrm{S} 1$	$112.26(4)$
$\mathrm{C} 2-\mathrm{P} 1-\mathrm{S} 1$	$113.55(5)$
$\mathrm{C} 2-\mathrm{P} 1-\mathrm{C} 3$	$106.91(6)$
$\mathrm{C} 2-\mathrm{P} 1-\mathrm{C} 1$	$105.68(6)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{S} 1$	$112.28(5)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 3$	$105.58(6)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{P} 1$	$121.21(10)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{P} 1$	$119.64(10)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8$	$119.08(12)$
$\mathrm{C} 3-\mathrm{C} 8-\mathrm{H} 8$	119.9
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3$	$120.25(13)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	119.9
$\mathrm{P} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{P} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{P} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{P} 1-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	
$\mathrm{P} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-176.66(10)$
$\mathrm{S} 1-\mathrm{P} 1-\mathrm{C} 3-\mathrm{C} 8$	$175.48(12)$
$\mathrm{S} 1-\mathrm{P} 1-\mathrm{C} 3-\mathrm{C} 4$	$-159.38(10)$
$\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$23.85(12)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.8(2)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$1.7(2)$
	$-1.4(2)$

C6-H6	0.9500
C6-C5	$1.383(2)$
C5-H5	0.9500

$\mathrm{P} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{P} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5

P1-C1—H1C 109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B} \quad 109.5$
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C} \quad 109.5$
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C} \quad 109.5$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \quad 119.9$
C3-C4-C5 120.24 (14)
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \quad 119.9$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7 \quad 119.9$
C6-C7-C8 120.26 (14)
C6-C7—H7 119.9
C7-C6-H6 120.1
C7-C6-C5 119.89 (13)
C5-C6-H6 120.1
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \quad 119.9$
C6-C5-C4 120.26 (14)
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \quad 119.9$

$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$-0.4(2)$
$\mathrm{C} 2-\mathrm{P} 1-\mathrm{C} 3-\mathrm{C} 8$	$-34.24(12)$
$\mathrm{C} 2-\mathrm{P} 1-\mathrm{C} 3-\mathrm{C} 4$	$148.99(11)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 3-\mathrm{C} 8$	$77.98(12)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 3-\mathrm{C} 4$	$-98.79(12)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$0.1(2)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$-0.8(2)$

