

Received 23 April 2024 Accepted 14 June 2024

Edited by V. Jancik, Universidad Nacional Autónoma de México, México

Keywords: crystal structure; chromium; acetate; NHC; paddle-wheel.

CCDC references: 2362906; 2362905

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN OPEN ACCESS

Two chromium(II) acetate complexes with N-heterocyclic carbene (NHC) coligands

Christian Heiser and Kurt Merzweiler*

Martin-Luther-Universität Halle, Naturwissenschaftliche Fakultät II, Institut für Chemie, Germany. *Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

Tetrakis(μ -acetato- $\kappa^2 O:O'$)bis{[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene- κC^2]chromium(II)} tetrahydrofuran disolvate, [Cr₂(C₂H₃O₂)₄(C₂₇H₃₆N₄)₂]-2C₄H₈O or [Cr₂(OAc)₄(IDipp)₂]·2C₄H₈O (1), and tetrakis(μ -acetato- $\kappa^2 O:O'$)bis{[1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene- κC^2]chromium(II)}, {Cr₂(C₂H₃O₂)₄(C₂₁H₂₄N₂)₂] or [Cr₂(OAc)₄(IMes)₂] (2), were synthesized from anhydrous chromium(II) acetate [Cr₂(OAc)₄] and the corresponding NHC (NHC = N-heterocyclic carbene) in toluene as solvent. Both complexes crystallize in the triclinic system, space group $P\overline{1}$. The molecular structures consist of Cr₂(OAc)₄ paddle-wheels that carry two terminal NHC ligands. This leads to a square-pyramidal coordination of the chromium atoms.

1. Chemical context

Since its discovery in 1844 by Peligot (Peligot *et al.*, 1844), chromium(II) acetate has frequently been used as the starting material for a large variety of chromium(II) compounds (Cotton *et al.*, 2005). Treatment of chromium(II) acetate with donor ligands *L* gives dinuclear complexes $[Cr_2(OAc)_4L_2]$ that adopt paddle-wheel structures with the ligands *L* at axial positions. This structure pattern was first observed for the dihydrate $[Cr_2(OAc)_4(H_2O)_2]$ (van Niekerk *et al.*, 1953; Cotton *et al.*, 1971) and later on for a large number of ligands comprising oxygen and, particularly, nitrogen donor atoms (Cotton *et al.*, 2005).

Recently, we reported on chromium(II) silylamide complexes that were generated from chromium(II) acetate as starting material. In the course of these investigations, the application of NHC coligands proved very successful. Typically, a suspension of chromium(II) acetate in THF was first treated with the NHC ligand to give deeply violet-coloured solutions. Treatment of the *in situ* generated chromium(II) acetate NHC complex with $\text{Li}_2\text{Me}_2\text{Si}(\text{NPh})_2$ led to $[\text{Cr}\{\text{Me}_2\text{Si}(\text{NPh})_2(\text{NHC})_2\}]$ (Heiser & Merzweiler, 2022). We were now interested in the isolation and structural characterization of chromium(II) acetate NHC complexes.

Several X-ray crystal structures of chromium(II) NHC complexes are reported in the literature. The first references date back to the late 1990s when the crystal structures of $[Mes_2Cr(IPr)_2]$ [IPr = 1,3-bis(diisopropyl)imidazol-2-ylidene; Danopoulos *et al.*, 1997], [CpPhCr(IMes)] (Voges *et al.*, 1999) and [Cp₂Cr(IMes)] (IMes = 1,3-bis(2,4,6-trimethylphenyl) limidazol-2-ylidene; Abernethy *et al.*, 1999) were published. Apart from organo chromium(II) compounds, some CrCl₂ NHC complexes have been studied. Typical examples are [Cr₂Cl₄((IPrMe₂))₂(THF)₂], [CrCl₂(IPrMe₂)₂] (IPrMe₂ = 1,3-diisopropyl-4,5-dimethyl-imidazol-2-ylidene; Wang *et al.*, 2010) and [CrCl₂(IDipp)₂] [IDipp = 1,3-bis(2,6-diisopropyl-

research communications

phenyl)imidazol-2-ylidene; Jones *et al.*, 2012]. Moreover, chelating bis(NHC) ligands and NHC ligands with additional donor functionality have been applied in chromium(II) chemistry, *e.g.* CSD refcodes DERNUK (Kreisel *et al.*, 2006), QIBKUI (Kreisel *et al.* 2007), BEKGAB (Conde-Guadano *et al.*, 2012*a*), QUGFAB (Simler *et al.*, 2015), SAVNOW (Ashida *et al.*, 2022), SEDMEU (Pugh *et al.*, 2006) and ZEKCEZ (Conde-Guadano *et al.*, 2012*b*).

R = Dipp (1), Mes (2)

2. Structural commentary

The title compounds (Figs. 1 and 2) were obtained by reacting anyhdrous chromium(II) acetate with the corresponding NHC in toluene. After filtration, the solutions were cooled to obtain $[Cr_2(OAc)_4(IDipp)_2]$ ·2THF (1) and $[Cr_2(OAc)_4(IMes)_2]$ (2) in the form of violet crystals. Single crystals suitable for X-ray diffraction were obtained by recrystallization from THF (compound 1) and toluene (compound 2).

 $[Cr_2(OAc)_4(IDipp)_2]$ ·2THF (1) and $[Cr_2(OAc)_4(IMes)_2]$ (2) crystallize in the triclinic system, space group $P\overline{1}$ with Z = 1. The crystal structure of 1 consists of discrete $[Cr_2(OAc)_4(IDipp)_2]$ units and two molecules of tetrahydrofuran per formula unit. Compound 2 crystallizes without

Figure 1

Molecular structure of **1** in the crystal. Displacement ellipsoids are at the 50% probability level. There is a disorder over two orientations concerning the THF molecule and three of the ⁱPr groups. In each case, only the major orientation is displayed. H atoms not involved in $C-H\cdots O$ hydrogen bonds are omitted for clarity. Intermolecular $C-H\cdots O$ hydrogen bonds shown as dashed lines. [Symmetry code: (i) -x + 1; -y + 1; -z + 1.

Table 1

Selected	geometric	parameters	(A, °) for 1
----------	-----------	------------	-------	----------------

Cr-Cr ⁱ	2.5308 (6)	Cr-O3	2.0202 (13)
Cr-O1	2.0178 (14)	Cr-O4 ⁱ	2.0248 (13)
$Cr-O2^{i}$	2.0118 (14)	Cr-C5	2.3812 (16)
O1-Cr-O3	89.35 (6)	$O2^i - Cr - O4^i$	89.33 (6)
$O1-Cr-O4^{i}$	90.32 (6)	$O2^{i}-Cr-C5$	94.10 (6)
O1-Cr-C5	94.62 (6)	$O3-Cr-O4^{i}$	171.54 (5)
$O2^{i}-Cr-O1$	171.29 (5)	O3-Cr-C5	95.67 (5)
$O2^{i}-Cr-O3$	89.72 (6)	$O4^{i}-Cr-C5$	92.78 (5)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 2		
Selected	geometric parameters (Å, $^{\circ}$) for 2 .	

Cr-Cr ⁱ	2.5284 (9)	Cr-O3	2.0269 (18)
Cr-O1	2.0274 (18)	Cr-O4 ⁱ	2.0270 (18)
$Cr-O2^{i}$	2.0238 (17)	Cr-C5	2.365 (3)
O1-Cr-C5	93.88 (8)	O3-Cr-O1	90.66 (8)
$O2^{i}-Cr-O1$	171.65 (8)	O3-Cr-C5	93.90 (8)
$O2^{i}-Cr-O3$	88.82 (7)	$O4^{i}-Cr-O1$	88.28 (7)
$O2^i - Cr - O4^i$	91.03 (7)	$O4^{i}$ -Cr-O3	171.63 (8)
$O2^{i}-Cr-C5$	94.46 (8)	$O4^{i}-Cr-C5$	94.45 (8)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

solvate molecules. In both complexes, the $Cr_2(OAc)_4$ units exhibit classical paddle-wheel structures with crystallographically imposed $\overline{1}$ symmetry. The coordination sphere of the chromium atoms consists of four acetate oxygen atoms at the base of a square pyramid and the NHC carbon atom at the apex.

The Cr–O distances in **1** range from 2.012 (2) to 2.025 (1) Å and in **2** from 2.024 (2) to 2.027 (2) Å (Tables 1 and 2). Similar distances have been reported for 15 chromium(II) acetate derivatives that are currently deposited in the CSD database (Groom *et al.*, 2016). The shortest

Figure 2

Molecular structure of **2** in the crystal. Displacement ellipsoids are at the 50% probability level. H atoms are omitted for clarity. [Symmetry code: (i) -x + 1; -y + 1; -z + 1.

Table 3Hydrogen-bond geometry (Å, $^{\circ}$) for 1.					
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$	
C6-H6···O5	0.95	2.47	3.411 (6)	171	

Cr-O(acetate) distance [1.988 (5) Å] was observed in $[Cr_2(OAc)_4]$ and the largest one [2.034 (1) Å] was found in [Cr₂(OAc)₄(*trans*-bie)₂] [*trans*-bie = 2,2'-ethene-1,2-divlbis(1methyl-1H-imidazole); Fritsch et al., 2014].

The Cr-C(NHC) distances in 1 and 2 are 2.381 (2) and 2.365 (3) Å, respectively. These values are roughly comparable to the Cr-O and Cr-N distances in chromium(II) acetate complexes with axial O and N donor ligands. In the case of O donor ligands, the Cr–O distances vary from 2.257 to 2.306 Å. For N donor ligands, the range is 2.274–2.415 Å. In square-planar $[CrR_2(NHC)_2]$ complexes (R = organyl,halogen) the Cr-C bonds are markedly shorter compared to those in compounds 1 and 2, e.g. $[CrCl_2(IDipp)_2]$ [Cr-C:2.148 (2)–2.162 (2) Å; Jones *et al.*, 2012] and [CrCl₂(IPrMe)₂] [Cr-C: 2.159 (3)-2.163 (2) Å; Jones et al., 2012]. The shortest Cr-C distance (2.0930 Å) was observed for a NHC pincer ligand (CSD code QUGFAB; Simler et al., 2015) and the largest (2.180 Å) for [CrPh₂(IPrMe)₂] (Wang *et al.*, 2011).

The Cr-Cr distances in compounds 1 [2.5308 (6) Å] and 2 [2.5284 (9) Å] are significantly larger than in comparable $[Cr_2(OAc)_4L_2]$ complexes with N and O donor ligands. According to the CSD database, the Cr-Cr distances vary from 2.270 to 2.452 Å with a median of 2.348 Å. The larger Cr-Cr distances in 1 and 2 also become apparent in a slight pyramidalization of the CrO₄ units. The distances of the chromium atoms from the mean plane through the four O atoms are 0.1516 (3) Å for compound 1 and 0.1476 (4) Å in the case of compound 2. Moreover, the C-Cr-O angles significantly exceed 90° [1: 92.78 (5)-95.67 (5)°, 2: 93.88 (8)-94.46 (8)°].

Figure 3 Crystal structure of 2, intermolecular C-H···O hydrogen bonds are shown as dashed lines.

Hydrogen-bond geometry (Å, $^{\circ}$) for 2.

Cg is the centroid of the C17–C22 ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2 - H2B \cdots O2^{ii}$	0.98	2.61	3.527 (4)	155
$C15-H15A\cdots Cg$	0.98	2.62	3.340 (3)	125

Symmetry codes: (ii) -x, -y + 1, -z + 1; (iii) x - 1, y + 1, z.

Overall, the geometric parameters of both compounds are very similar. However, it is worth mentioning that complexes 1 and 2 differ in the mutual orientation of the NHC ligands and the paddle-wheel core. In the case of compound 1, the imidazolidine ring adopts an eclipsed orientation with respect to the O1-Cr-O2 unit as indicated by the torsion angles N2-C5-Cr-O1 $[1.2 (2)^{\circ}]$ and $N1 - C5 - Cr - O2^{i}$ $[-7.5 (2)^{\circ}]$. By contrast, a staggered conformation is found in compound 2 with torsion angles of 48.3 (3)° (N1-C5-Cr-O1) and $45.7 (3)^{\circ} (N2-C5-Cr-O2^{i})$. It is obvious to assume that the steric repulsion between the isopropyl groups of the NHC ligand and acetate methyl groups prevents a staggered orientation of the imidazoline ring in compound 1.

3. Supramolecular features

Compound 1 displays a weak $C-H \cdots O$ hydrogen bridge $[D \cdot \cdot A: 3.411 \text{ (6) } \text{Å}; \text{ Table 3] between the C6-H6 group of}$ the imidazolidine ring and the tetrahydrofuran oxygen atom O5. In the case of compound 2, there is a weak $C-H \cdots O$ hydrogen bridge $[D \cdots A: 3.527 (4) \text{ Å}; \text{ Table 4, Fig. 3] between}$ the acetate carbon atom C2 and the acetate oxygen atom O2ⁱⁱ of a neighbouring complex unit. Furthermore, there is a complementary hydrogen bridge between C2ⁱⁱ and O2. As a result, the chromium acetate complexes are catenated by $R_2^2(8)$ hydrogen-bond motifs along the direction of the crystallographic a axis. Moreover, the supramolecular structure is supported by weak C-H··· π hydrogen bonds (Fig. 4), which are formed between neighbouring mesityl groups. The distance between the methyl carbon atom C15 and the centroid of the aromatic ring C17ⁱⁱⁱ-C22ⁱⁱⁱ is 3.340 (4) Å.

Figure 4 Crystal structure of 2, intermolecular $C-H \cdot \cdot \pi$ hydrogen bonds shown as dashed lines.

Table 5

Experimental details.

	1	2
Crystal data		
Chemical formula	$[Cr_2(C_2H_3O_2)_4(C_{27}H_{36}N_4)_2] \cdot 2C_4H_8O$	$\{Cr_2(C_2H_3O_2)_4(C_{21}H_{24}N_2)_2\}$
$M_{\rm r}$	1261.53	949.02
Crystal system, space group	Triclinic, P1	Triclinic, P1
Temperature (K)	170	170
a, b, c (Å)	10.6402 (7), 11.7730 (8), 15.1884 (9)	8.3679 (5), 11.6127 (8), 13.8355 (9)
α, β, γ (°)	82.353 (5), 86.526 (5), 69.248 (5)	68.949 (5), 83.891 (5), 71.508 (5)
$V(\text{\AA}^3)$	1763.2 (2)	1189.90 (14)
Ζ	1	1
Radiation type	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	0.37	0.51
Crystal size (mm)	$0.61 \times 0.35 \times 0.15$	$0.40 \times 0.24 \times 0.07$
Data collection		
Diffractometer	Stoe IPDS 2T	Stoe IPDS 2T
Absorption correction	Integration (X-RED32; Stoe & Cie, 2015)	Numerical (X-RED32; Stoe & Cie, 2015)
T_{\min}, T_{\max}	0.812, 0.947	0.844, 0.963
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	18724, 9444, 5824	8474, 4174, 2894
R _{int}	0.070	0.071
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.687	0.595
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.133, 0.94	0.042, 0.112, 0.91
No. of reflections	9444	4174
No. of parameters	534	297
No. of restraints	545	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.47, -0.57	0.50, -0.51

Computer programs: X-AREA (Stoe & Cie, 2015), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 2019).

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.45, 2024; Groom et al., 2016) revealed 21 crystal structures of chromium(II) acetate complexes, CSD refcodes: ACETCR (Cotton & Rice, 1978), ACPCRA (Cotton & Felthouse, 1980), ACPCRB (Cotton & Felthouse, 1980), ACPCRB01 (Huang et al., 2018), CRAQAC (van Niekerk et al., 1953), CRAQAC03 (Benard et al., 1980), CRAQAC11 (Cotton et al., 1971), CRAQAC12 (Benard et al., 1980), CRAQAC13 (Herich et al., 2018), CUCSEA (Fritsch et al., 2014), CUYSEU (Cotton & Wang, 1984), CUYSIY (Cotton & Wang, 1984), KETXOZ (Huang et al., 2018), KETXOZ01 (Huang et al., 2018), KETYAM (Huang et al., 2018), KETYAM01 (Huang et al., 2018), KETYEQ (Huang et al., 2018), KETYEQ01 (Huang et al., 2018), LIRTAH (Cotton et al., 2000), PIPACR (Cotton & Rice, 1978, XIYCER (Heiser & Merzweiler, 2023). Most of them contain N- and O-donor ligands. No NHC adducts of chromium(II) acetate have been reported so far.

5. Synthesis and crystallization

All manipulations were carried out under an argon atmosphere using standard Schlenk techniques. Toluene and THF were dried over sodium/benzophenone and freshly distilled prior to use. Chromium(II) acetate (Brauer, 1981), 1,3-bis(2,6diisopropylphenyl)imidazolidine-2-ylidene (IDipp) and 1,3bis(1,3,5-trimethylphenyl)imidazolidine-2-ylidene (IMes) (Medici *et al.*, 2018) were prepared according to literature methods.

Synthesis of [Cr₂(OAc)₄(IDipp)₂] (1)

To a suspension of chromium(II) acetate (470 mg, 1.39 mmol) in toluene (12 ml) was added a solution of IDipp (1180 mg, 2.78 mmol) in toluene (8 ml). The solution was stirred at 300 K overnight. The chromium(II) acetate dissolved and a change of colour from dark red to violet was observed. Insoluble material was filtered off and the solution was concentrated slightly *in vacuo*. Upon standing at 248 K for two days, the product crystallized in the form of violet crystals, which were filtered off and dried *in vacuo*. Single crystals of the product were obtained upon cooling down a THF solution of **1** to 248 K. Yield: 660 mg (40%).

 $C_{70}H_{100}Cr_2N_4O_{10}$ (1261.53 g mol⁻¹). C 66.8 (calc. 66.6); H 7.9 (calc. 7.6); N 5.0 (calc. 5.0) %.

IR (ATR): v = 3135 w, 3075 w, 3021 w, 2963 m, 2929 m, 2870 m, 1608 s, 1574 s, 1537 s, 1496 m, 1435 s, 1389 s, 1330 m, 1304 m, 1259 m, 1209 m, 1182 m, 1150 m, 1103 m, 1060 m, 1042 m, 1030 m, 951 m, 937 m, 908 m, 868 m, 808 s, 801 s, 754 s, 735 m, 674 s, 621 s, 594 m, 540 s, 519 m, 466 s, 441 s, 416 s cm⁻¹.

Synthesis of [Cr₂(OAc)₄(IMes)₂] (2)

To a suspension of chromium(II) acetate (580 mg, 1.71 mmol) in toluene (10 ml) was added a solution of IMes (1050 mg, 3.41 mmol) in toluene (10 ml). The solution was stirred at room temperature for 30 minutes, and after that it was heated to 313 K for one h, during which time the chromium(II) acetate dissolved and the solution turned violet. The solution was filtered while hot and washed with hot toluene

 $(2 \times 5 \text{ ml})$. After reducing the volume to half the amount, the solution was heated to dissolve the precipitated product. Upon standing at 267 K for two days, the product crystallized in a form of violet single crystals, which were filtered off and dried *in vacuo*. Yield: 650 mg (40%).

 $C_{50}H_{60}Cr_2N_4O_8$ (949.02 g mol⁻¹). C 63.3 (calc. 63.3); H 6.0 (6.4); N 5.9 (5.9) %.

IR (ATR): v = 3128 w, 3005 w, 2976 w, 2915 m, 2858 w, 1606 s, 1539 m, 1485 m, 1424 s, 1390 m, 1337 m, 1287 m, 1254 m, 1230 m, 1210 m, 1157 m, 1085 m, 1065 m, 1036 m, 1022 m, 961 m, 926 m, 870 w, 841 m, 742 w, 733 m, 720 m, 673 s, 641 m, 619 m, 591 m, 574 m, 509 m, 497 m, 467 m, 448 w, 381 vs, 331 m, 307 m, 276 s, 253 m, 227 s, $209 s cm^{-1}$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. All hydrogen atoms were positioned geometrically and refined using a riding model with $U_{iso}(H) = 1.2(CH \text{ and } CH_2) \text{ or } 1.5(CH_3) \text{ times } U_{eq}(C).$

The THF molecule in compound **1** is disordered over two positions with an occupation ratio of 0.795 (12)/0.205 (12)/. The isopropyl groups C17–C19, C26–C28 and C29–C31 are disordered over two positions with occupation ratios of 0.62 (4)/0.38 (4), 0.60 (4)/0.40 (4) and 0.81 (3)/0.19 (3), respectively.

Acknowledgements

We acknowledge the financial support of the Open Access Publication Fund of the Martin-Luther-University Halle-Wittenberg.

References

- Abernethy, C. D., Clyburne, J. A. C., Cowley, A. H. & Jones, R. A. (1999). J. Am. Chem. Soc. 121, 2329–2330.
- Ashida, Y., Egi, A., Arashiba, K., Tanaka, H., Mitsumoto, T., Kuriyama, S., Yoshizawa, K. & Nishibayashi, Y. (2022). *Chem. Eur. J.* **28**, e202200557.
- Benard, M., Coppens, P., DeLucia, M. L. & Stevens, E. D. (1980). *Inorg. Chem.* 19, 1924–1930.
- Brandenburg, K. (2019). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Brauer, G. (1981). In *Handbuch der Präparativen und Anorganischen Chemie*. Stuttgart: Ferdinand Enke.
- Conde-Guadano, S., Danopoulos, A. A., Pattacini, R., Hanton, M. & Tooze, R. P. (2012a). Organometallics, **31**, 1643–1652.

- Conde-Guadano, S., Hanton, M. R. P., Tooze, R. P. A. A., Danopoulos, A. A. & Braunstein, P. (2012b). *Dalton Trans.* 41, 12558– 12567.
- Cotton, F. A., DeBoer, B. G., LaPrade, M. D., Pipal, J. R. & Ucko, D. A. (1971). Acta Cryst. B27, 1664–1671.
- Cotton, F. A. & Felthouse, T. R. (1980). Inorg. Chem. 19, 328-331.
- Cotton, F. A., Hillard, E. A., Murillo, C. A. & Zhou, H.-C. (2000). J. Am. Chem. Soc. 122, 416–417.
- Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). *Multiple Bonds between Metal Atoms*, 3rd ed. New York: Springer Science and Business Media Inc.
- Cotton, F. A. & Rice, G. W. (1978). Inorg. Chem. 17, 2004-2009.
- Cotton, F. A. & Wang, W. (1984). New J. Chem. 8, 331-340.
- Danopoulos, A. A., Hankin, D. M., Wilkinson, G., Cafferkey, S. M., Sweet, T. K. M. & Hursthouse, M. B. (1997). *Polyhedron*, 16, 3879– 3892.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fritsch, N., Wick, C. R., Waidmann, T., Dral, P. O., Tucher, J., Heinemann, F. W., Shubina, T. E., Clark, T. & Burzlaff, N. (2014). *Inorg. Chem.* 53, 12305–12314.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Heiser, C. & Merzweiler, K. (2022). Z. Anorg. Allg. Chem. 648, e202200257.
- Heiser, C. & Merzweiler, K. (2023). IUCrData, 8, x230801.
- Herich, P., Bučinský, L., Breza, M., Gall, M., Fronc, M., Petřiček, V. & Kožíšek, J. (2018). Acta Cryst. B74, 681–692.
- Huang, P.-J., Natori, Y., Kitagawa, Y., Sekine, Y., Kosaka, W. & Miyasaka, H. (2018). *Inorg. Chem.* **57**, 5371–5379.
- Jones, C., Dange, D. & Stasch, A. (2012). J. Chem. Crystallogr. 42, 494–497.
- Kreisel, K. A., Yap, G. P. A. & Theopold, K. H. (2006). Organometallics, 25, 4670–4679.
- Kreisel, K. A., Yap, G. P. A. & Theopold, K. H. (2007). Chem. Commun. pp. 1510–1511.
- Medici, F., Gontard, G., Derat, E., Lemière, G. & Fensterbank, L. (2018). *Organometallics*, **37**, 517–520.
- Niekerk, J. N. van, Schoening, F. R. L. & de Wet, J. F. (1953). Acta Cryst. 6, 501–504.
- Peligot, M. E. (1844). C. R. Acad. Sci. pp. 609-615.
- Pugh, D., Wright, J. A., Freeman, S. & Danopoulos, A. A. (2006). Dalton Trans. pp. 775–782.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Simler, T., Danopoulos, A. A. & Braunstein, P. (2015). *Chem. Commun.* **51**, 10699–10702.
- Stoe & Cie (2015). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.
- Voges, M. H., Rømming, C. & Tilset, M. (1999). Organometallics, 18, 529–533.
- Wang, J., An, D. & Zhu, H. (2010). Jiegou Huaxue, 29, 933-939.
- Wang, J., Tan, G., An, D., Zhu, H. & Yang, Y. (2011). Z. Anorg. Allg. Chem. 637, 1597–1601.

Acta Cryst. (2024). E80, 811-815 [https://doi.org/10.1107/S2056989024005796]

Two chromium(II) acetate complexes with N-heterocyclic carbene (NHC) coligands

Christian Heiser and Kurt Merzweiler

Computing details

Tetrakis(μ -acetato- $\kappa^2 O:O'$)bis{[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene- κC^2]chromium(II)} tetrahydrofuran disolvate (1)

Crystal data

$[Cr_{2}(C_{2}H_{3}O_{2})_{4}(C_{27}H_{36}N_{4})_{2}]\cdot 2C_{4}H_{8}O$ $M_{r} = 1261.53$ Triclinic, $P\overline{1}$ $a = 10.6402 (7) \text{ Å}$ $b = 11.7730 (8) \text{ Å}$ $c = 15.1884 (9) \text{ Å}$ $a = 82.353 (5)^{\circ}$ $\beta = 86.526 (5)^{\circ}$ $\gamma = 69.248 (5)^{\circ}$ $V = 1763.2 (2) \text{ Å}^{3}$	Z = 1 F(000) = 676 $D_x = 1.188 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathcal{A} Cell parameters from 10431 reflections $\theta = 1.9-29.5^{\circ}$ $\mu = 0.37 \text{ mm}^{-1}$ T = 170 K Plate, clear violet $0.61 \times 0.35 \times 0.15 \text{ mm}$
Data collection	
Stoe IPDS 2T diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus rotation method, ω scans Absorption correction: integration (X-RED32; Stoe & Cie, 2015) $T_{\min} = 0.812, T_{\max} = 0.947$	18724 measured reflections 9444 independent reflections 5824 reflections with $I > 2\sigma(I)$ $R_{int} = 0.070$ $\theta_{max} = 29.2^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -14 \rightarrow 12$ $k = -16 \rightarrow 16$ $l = -19 \rightarrow 20$
Refinement	

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.133$ S = 0.949444 reflections 534 parameters 545 restraints Primary atom site location: iterative Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.071P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.47$ e Å⁻³ $\Delta\rho_{min} = -0.57$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cr	0.51563 (3)	0.44550 (3)	0.57837 (2)	0.03006 (9)	
01	0.39582 (14)	0.60752 (13)	0.61610 (8)	0.0403 (3)	
O2	0.36797 (14)	0.70259 (12)	0.47808 (8)	0.0403 (3)	
03	0.67559 (14)	0.49924 (13)	0.58164 (8)	0.0406 (3)	
O4	0.64785 (14)	0.59629 (13)	0.44363 (8)	0.0399 (3)	
N1	0.60181 (15)	0.21883 (14)	0.75056 (9)	0.0325 (3)	
N2	0.48688 (15)	0.38398 (15)	0.80273 (9)	0.0329 (3)	
C1	0.70675 (19)	0.56408 (18)	0.51710 (12)	0.0354 (4)	
C2	0.8213 (2)	0.6063 (2)	0.52997 (15)	0.0506 (5)	
H2A	0.791711	0.671987	0.568287	0.076*	
H2B	0.850789	0.636891	0.472198	0.076*	
H2C	0.896176	0.537674	0.557824	0.076*	
C3	0.34728 (19)	0.70022 (18)	0.56080 (12)	0.0358 (4)	
C4	0.2567 (3)	0.8160 (2)	0.59504 (15)	0.0542 (6)	
H4A	0.294515	0.827236	0.649105	0.081*	
H4B	0.167515	0.810767	0.608564	0.081*	
H4C	0.248798	0.885719	0.549794	0.081*	
C5	0.54178 (17)	0.34020 (17)	0.72500 (10)	0.0278 (4)	
C6	0.5840 (2)	0.1883 (2)	0.84051 (13)	0.0505 (6)	
H6	0.616773	0.108775	0.872523	0.061*	
C7	0.5127 (2)	0.2907 (2)	0.87331 (13)	0.0499 (6)	
H7	0.484593	0.299120	0.933398	0.060*	
C8	0.67707 (19)	0.12560 (17)	0.69619 (12)	0.0344 (4)	
C9	0.8118 (2)	0.1107 (2)	0.67531 (13)	0.0414 (5)	
C17	0.8724 (12)	0.2037 (11)	0.6948 (7)	0.053 (2)	0.62 (4)
H17	0.796845	0.283453	0.697251	0.063*	0.62 (4)
C18	0.9722 (17)	0.2254 (17)	0.6252 (10)	0.087 (4)	0.62 (4)
H18A	0.998011	0.293219	0.638655	0.130*	0.62 (4)
H18B	0.930993	0.245723	0.566541	0.130*	0.62 (4)
H18C	1.052242	0.151178	0.625449	0.130*	0.62 (4)
C19	0.9351 (19)	0.1647 (16)	0.7874 (8)	0.086 (3)	0.62 (4)
H19A	1.007677	0.085133	0.787992	0.130*	0.62 (4)
H19B	0.866184	0.158430	0.831626	0.130*	0.62 (4)
H19C	0.971431	0.225750	0.801602	0.130*	0.62 (4)
C17A	0.8780 (19)	0.1943 (18)	0.7040 (11)	0.052 (4)	0.38 (4)
H17A	0.807541	0.266510	0.726863	0.063*	0.38 (4)
C18A	0.9500 (19)	0.2389 (19)	0.6223 (11)	0.049 (3)	0.38 (4)
H18D	1.015024	0.168102	0.597399	0.074*	0.38 (4)
H18E	0.996975	0.289880	0.640528	0.074*	0.38 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H18F	0.883495	0.286990	0.577257	0.074*	0.38 (4)
C19A	0.984 (3)	0.130 (3)	0.7761 (13)	0.090 (5)	0.38 (4)
H19D	0.942427	0.097741	0.828075	0.135*	0.38 (4)
H19E	1.022201	0.187942	0.793422	0.135*	0.38 (4)
H19F	1.056381	0.061689	0.752591	0.135*	0.38 (4)
C10	0.8862(2)	0.0104 (2)	0.63229 (16)	0.0546 (6)	()
H10	0.978136	-0.003250	0.618022	0.065*	
C11	0.8284(3)	-0.0701(2)	0.60989 (16)	0.0592 (6)	
H11	0.881398	-0.139428	0 581869	0.071*	
C12	0.6939 (3)	-0.0501(2)	0.62810(16)	0.0542 (6)	
H12	0.654747	-0.104574	0.610834	0.065*	
C13	0.6155(2)	0.04846 (19)	0.67118 (13)	0.003	
C14	0.0155(2) 0.4661(2)	0.0731(2)	0.68671(17)	0.0553 (6)	
H14	0.4001(2) 0.427102	0.150232	0.715257	0.0555 (0)	
C15	0.427192 0.3047 (3)	0.130232 0.0025(3)	0.715257 0.50020 (10)	0.0604 (8)	
U15 A	0.3947(3) 0.427215	0.0925 (3)	0.53320 (13)	0.0094 (8)	
	0.427515	0.010436	0.571309	0.104*	
	0.413040	0.137390	0.559585	0.104*	
HISC CIC	0.297612	0.115/95	0.01032/	0.104°	
	0.4421 (5)	-0.0301(3)	0.74994 (18)	0.0730 (8)	
HI6A	0.4/89/1	-0.106/92	0.723250	0.110*	
HI0B	0.345402	-0.010425	0.760669	0.110*	
HI6C	0.486/28	-0.039199	0.806386	0.110*	
C20	0.41683 (19)	0.50940 (18)	0.81624 (11)	0.0337 (4)	
C21	0.4917 (2)	0.5764 (2)	0.83985 (12)	0.0396 (4)	
C29	0.6447 (4)	0.5264 (7)	0.8436 (5)	0.0494 (14)	0.81 (3)
H29	0.676101	0.441254	0.826911	0.059*	0.81 (3)
C30	0.6974 (6)	0.5195 (11)	0.9357 (3)	0.0653 (17)	0.81 (3)
H30A	0.657407	0.471795	0.978742	0.098*	0.81 (3)
H30B	0.673263	0.602289	0.952331	0.098*	0.81 (3)
H30C	0.795382	0.479886	0.935514	0.098*	0.81 (3)
C31	0.7034 (9)	0.6025 (12)	0.7751 (6)	0.077 (3)	0.81 (3)
H31A	0.801758	0.568940	0.777457	0.115*	0.81 (3)
H31B	0.671341	0.687438	0.788361	0.115*	0.81 (3)
H31C	0.674649	0.599894	0.715505	0.115*	0.81 (3)
C29A	0.6444 (16)	0.521 (3)	0.8323 (18)	0.050 (5)	0.19 (3)
H29A	0.668222	0.454919	0.792796	0.060*	0.19 (3)
C30A	0.702 (2)	0.465 (4)	0.9241 (18)	0.065 (6)	0.19 (3)
H30D	0.681521	0.529102	0.963094	0.098*	0.19 (3)
H30E	0.799164	0.424276	0.919044	0.098*	0.19 (3)
H30F	0.660800	0.404589	0.949035	0.098*	0.19 (3)
C31A	0.702 (3)	0.618 (4)	0.791 (3)	0.059 (6)	0.19 (3)
H31D	0.798735	0.589120	0.802004	0.089*	0.19 (3)
H31E	0.657419	0.694141	0.817389	0.089*	0.19(3)
H31F	0.686969	0.633217	0.726704	0.089*	0.19 (3)
C22	0.4213 (2)	0.6941 (2)	0.86010 (14)	0.0492 (5)	
H22	0.469330	0.742251	0.876560	0.059*	
C23	0.2827 (3)	0.7426 (2)	0.85676 (15)	0.0535 (6)	
H23	0.235827	0.822664	0.872055	0.064*	

C24	0.2127 (2)	0.6741 (2)	0.83113 (15)	0.0525 (6)	
H24	0.117536	0.708661	0.827874	0.063*	
C25	0.2774 (2)	0.5564 (2)	0.81002 (13)	0.0415 (5)	
C26	0.2014 (13)	0.4846 (12)	0.7750 (10)	0.047 (2)	0.60 (4)
H26	0.266183	0.414906	0.746052	0.056*	0.60 (4)
C27	0.134 (2)	0.4341 (18)	0.8561 (11)	0.075 (4)	0.60 (4)
H27A	0.078191	0.501764	0.888165	0.112*	0.60 (4)
H27B	0.204055	0.376262	0.895663	0.112*	0.60 (4)
H27C	0.078602	0.392077	0.836074	0.112*	0.60 (4)
C28	0.0943 (17)	0.5648 (19)	0.7081 (10)	0.058 (3)	0.60 (4)
H28A	0.046268	0.515840	0.688085	0.087*	0.60 (4)
H28B	0.137570	0.596961	0.656950	0.087*	0.60 (4)
H28C	0.030568	0.633000	0.736433	0.087*	0.60 (4)
C26A	0.1949 (17)	0.4790 (18)	0.7944 (15)	0.052 (3)	0.40 (4)
H26A	0.260668	0.397623	0.781853	0.063*	0.40 (4)
C27A	0.106 (2)	0.453 (2)	0.8714 (16)	0.068 (4)	0.40 (4)
H27D	0.161822	0.409929	0.922812	0.103*	0.40 (4)
H27E	0.057904	0.402910	0.853662	0.103*	0.40 (4)
H27F	0.040754	0.530928	0.887135	0.103*	0.40 (4)
C28A	0.110 (3)	0.533 (3)	0.7104 (15)	0.059(4)	0.40 (4)
H28D	0.067387	0.476743	0.696607	0.088*	0.40 (4)
H28E	0.168554	0.546182	0.660451	0.088*	0.40 (4)
H28F	0.041091	0.611738	0.720449	0.088*	0.40 (4)
05	0.6804 (4)	-0.1070(5)	0.9384 (3)	0.0790 (11)	0.795 (12)
C32	0.6950 (7)	-0.0781(10)	1.0249 (6)	0.0881 (18)	0.795 (12)
H32A	0.708247	-0.149901	1.070183	0.106*	0.795 (12)
H32B	0.615284	-0.009512	1.041729	0.106*	0.795 (12)
C33	0.8176 (5)	-0.0426(5)	1.0150 (3)	0.0768 (14)	0.795 (12)
H33A	0.856158	-0.045779	1.073360	0.092*	0.795 (12)
H33B	0.798160	0.040072	0.982139	0.092*	0.795 (12)
C34	0.9097(5)	-0.1411(6)	0.9618 (4)	0.0849 (18)	0.795 (12)
H34A	0.977508	-0.113312	0.927105	0.102*	0.795 (12)
H34B	0.956073	-0.217464	1.000710	0.102*	0.795 (12)
C35	0.8117 (5)	-0.1581(5)	0.9022 (3)	0.0747(14)	0.795 (12)
H35A	0.817227	-0.116739	0.841648	0.090*	0.795 (12)
H35B	0.833126	-0.246289	0.898199	0.090*	0.795 (12)
05A	0.6961 (19)	-0.152(2)	0.9615 (14)	0.091 (4)	0.205 (12)
C32A	0.686(2)	-0.067(4)	1.022 (3)	0.088(5)	0.205 (12)
H32C	0.638742	-0.083928	1.077817	0.106*	0.205 (12)
H32D	0.638579	0.018375	0 995494	0.106*	0.205(12)
C33A	0.832(2)	-0.091(2)	1 0371 (13)	0.092(4)	0.205(12)
H33C	0.872091	-0.166299	1.078330	0.110*	0.205(12)
H33D	0.844468	-0.021169	1.060362	0.110*	0.205(12)
C34A	0 889 (2)	-0.105(2)	0.9437(15)	0.087(4)	0.205(12)
H34C	0.857479	-0.027788	0.903504	0 104*	0.205(12)
H34D	0.988378	-0.139980	0.942702	0.104*	0.205(12) 0.205(12)
C35A	0.827 (2)	-0 195 (2)	0 9727 (17)	0.086 (4)	0.205(12) 0.205(12)
H35C	0.027 (2)	-0 105002	0.9227 (17)	0.000(+)	0.205(12)
11550	0.022700	0.173094	0.05//90	0.105	0.200(12)

H35D	0.878724	-0.279	9412	0.949626	0.103*	0.205 (12)
Atomic a	lisplacement para	meters $(Å^2)$				
	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
Cr	0.02749 (16)	0.03361 (17)	0.02747 (15)) -0.00935 (12)	-0.00114 (10)	-0.00153 (11)
01	0.0433 (8)	0.0381 (8)	0.0316(7)	-0.0049 (6)	0.0010 (5)	-0.0038 (5)
02	0.0421 (8)	0.0373 (8)	0.0327 (7)	-0.0040 (6)	0.0002 (5)	-0.0019 (5)
03	0.0367 (8)	0.0499 (9)	0.0379 (7)	-0.0203 (7)	-0.0063 (5)	0.0026 (6)
04	0.0379 (8)	0.0501 (9)	0.0350(7)	-0.0217 (7)	-0.0040 (5)	0.0029 (6)
N1	0.0304 (8)	0.0357 (9)	0.0281 (7)	-0.0085 (7)	0.0002 (6)	-0.0004 (6)
N2	0.0320 (8)	0.0387 (9)	0.0260 (7)	-0.0101 (7)	-0.0016 (6)	-0.0026 (6)
C1	0.0285 (10)	0.0376 (11)	0.0395 (10)	-0.0107 (8)	0.0001 (7)	-0.0052 (8)
C2	0.0390 (12)	0.0618 (15)	0.0565 (12)	-0.0261(12)	-0.0054 (9)	-0.0007 (11)
C3	0.0308 (10)	0.0381 (11)	0.0380 (10)	-0.0111 (9)	0.0014 (7)	-0.0069 (8)
C4	0.0583 (15)	0.0422 (13)	0.0497 (12)	-0.0016 (11)	0.0042 (10)	-0.0104 (10)
C5	0.0236 (9)	0.0323 (9)	0.0270 (8)	-0.0088(7)	-0.0006 (6)	-0.0050(7)
C6	0.0554 (14)	0.0460 (13)	0.0348 (10)	-0.0033(11)	0.0009 (9)	0.0069 (9)
C7	0.0609 (15)	0.0517 (14)	0.0251 (9)	-0.0086(12)	0.0021 (9)	0.0045 (8)
C8	0.0320 (10)	0.0308 (10)	0.0349 (9)	-0.0057(8)	-0.0016 (7)	0.0006 (7)
C9	0.0344 (11)	0.0406 (11)	0.0422 (10)	-0.0067(9)	-0.0029(8)	0.0015 (8)
C17	0.039 (4)	0.055 (4)	0.064 (4)	-0.014(3)	-0.008(3)	-0.011(3)
C18	0.051 (6)	0.101 (9)	0.114 (7)	-0.038(6)	0.019 (5)	-0.009(6)
C19	0.089 (8)	0.105 (7)	0.087 (5)	-0.061(7)	-0.032(5)	0.002 (4)
C17A	0.035 (6)	0.065 (7)	0.058 (6)	-0.024(5)	0.010 (4)	0.005 (5)
C18A	0.026 (4)	0.054 (6)	0.065 (6)	-0.017 (4)	-0.002(3)	0.010 (5)
C19A	0.086 (10)	0.138 (13)	0.060 (6)	-0.063(9)	-0.025(6)	0.017 (6)
C10	0.0359 (12)	0.0528 (14)	0.0653 (14)	-0.0040(11)	0.0051 (10)	-0.0086(11)
C11	0.0550 (15)	0.0468 (14)	0.0626 (14)	0.0005 (12)	0.0055 (11)	-0.0154(11)
C12	0.0535(14)	0.0424 (13)	0.0657 (14)	-0.0129(11)	-0.0036(11)	-0.0126(11)
C13	0.0384(11)	0.0363(11)	0.0471 (11)	-0.0100(9)	-0.0015(8)	-0.0001(9)
C14	0.0412(13)	0.0545 (15)	0.0772 (15)	-0.0217(11)	0.0028 (11)	-0.0194(12)
C15	0.0515(15)	0.0661 (18)	0.092(2)	-0.0258(14)	-0.0218(14)	0.0107(15)
C16	0.0687(19)	0.097(2)	0.0678(16)	-0.0495(18)	0.0039(13)	-0.0028(15)
C20	0.0357(10)	0.0404(11)	0.0230 (8)	-0.0111(9)	0.0029 (7)	-0.0047(7)
C21	0.0404 (11)	0.0484(12)	0.0333(9)	-0.0190(10)	0.0068(7)	-0.0098(8)
C29	0.037(2)	0.066(3)	0.0525(3)	-0.022(2)	0.00000(18)	-0.023(2)
C30	0.049(2)	0.100(5)	0.049(2)	-0.031(3)	-0.0036(15)	-0.003(2)
C31	0.061(3)	0.144 (6)	0.048(3)	-0.063(4)	0.014 (2)	-0.017(3)
C29A	0.042 (9)	0.077 (10)	0.042 (7)	-0.025(7)	-0.014(6)	-0.023(7)
C30A	0.045(8)	0.091 (15)	0.061(9)	-0.026(10)	-0.005(6)	-0.003(10)
C31A	0.043 (10)	0.088(11)	0.050(12)	-0.026(9)	0.002 (8)	-0.014(9)
C22	0.0551(14)	0.0531 (14)	0.0475(11)	-0.0267(12)	0.0113(10)	-0.0175(10)
C23	0.0563(15)	0.0455(13)	0.0552 (13)	-0.0111(12)	0.0115 (11)	-0.0186(10)
C24	0.0381(12)	0.0549(14)	0.0552(13)	-0.0048(11)	0.0026 (10)	-0.0135(11)
C25	0.0340(11)	0.0577(17) 0.0506(13)	0.0300(13)		0 0002 (8)	-0.0112 (0)
C26	0.0370(11)	0.0500(15)	0.0371(10) 0.045(4)	-0.019(3)	-0.007(3)	-0.012(3)
C27	0.079 (8)	0.001(7)	0.070(7)	-0.057(7)	-0.025(5)	0.012(3)
041	0.072 (0)	0.07 + (7)	0.070(0)	0.057 (7)	0.025 (5)	0.007 (3)

C28	0.037 (4)	0.082 (8)	0.053 (4)	-0.018 (4)	-0.011 (3)	-0.003 (4)
C26A	0.027 (4)	0.065 (6)	0.059 (7)	-0.002 (4)	-0.001 (4)	-0.026 (5)
C27A	0.057 (6)	0.081 (7)	0.069 (7)	-0.032 (6)	0.003 (5)	0.003 (6)
C28A	0.039 (7)	0.082 (11)	0.057 (6)	-0.020 (7)	0.004 (4)	-0.018 (6)
05	0.0649 (19)	0.076 (3)	0.094 (2)	-0.0215 (19)	-0.0176 (16)	-0.0061 (19)
C32	0.080 (3)	0.101 (4)	0.062 (3)	-0.011 (3)	0.015 (2)	0.002 (3)
C33	0.080 (3)	0.076 (3)	0.067 (3)	-0.012 (2)	-0.026 (2)	-0.013 (2)
C34	0.057 (3)	0.087 (4)	0.107 (4)	-0.018 (3)	0.002 (2)	-0.021 (3)
C35	0.082 (3)	0.063 (3)	0.072 (3)	-0.013 (2)	-0.004 (2)	-0.017 (2)
O5A	0.070 (6)	0.095 (8)	0.103 (8)	-0.025 (6)	-0.006 (5)	-0.006 (6)
C32A	0.076 (7)	0.092 (8)	0.078 (8)	-0.008 (7)	-0.009 (7)	-0.002 (7)
C33A	0.083 (7)	0.087 (8)	0.091 (7)	-0.006 (7)	-0.024 (6)	-0.021 (7)
C34A	0.071 (7)	0.073 (8)	0.110 (7)	-0.017 (6)	-0.001 (7)	-0.011 (7)
C35A	0.081 (7)	0.073 (8)	0.096 (8)	-0.017 (6)	0.000 (6)	-0.017 (7)

Geometric parameters (Å, °)

Cr—Cr ⁱ	2.5308 (6)	С29—Н29	1.0000
Cr01	2.0178 (14)	C29—C30	1.520 (6)
Cr—O2 ⁱ	2.0118 (14)	C29—C31	1.532 (6)
Cr—O3	2.0202 (13)	C30—H30A	0.9800
Cr—O4 ⁱ	2.0248 (13)	C30—H30B	0.9800
Cr—C5	2.3812 (16)	C30—H30C	0.9800
O1—C3	1.254 (2)	C31—H31A	0.9800
O2—C3	1.261 (2)	C31—H31B	0.9800
O3—C1	1.263 (2)	C31—H31C	0.9800
O4—C1	1.259 (2)	C29A—H29A	1.0000
N1-C5	1.355 (2)	C29A—C30A	1.525 (15)
N1—C6	1.385 (2)	C29A—C31A	1.526 (15)
N1—C8	1.437 (2)	C30A—H30D	0.9800
N2C5	1.366 (2)	C30A—H30E	0.9800
N2—C7	1.393 (2)	C30A—H30F	0.9800
N2-C20	1.435 (2)	C31A—H31D	0.9800
C1—C2	1.502 (3)	C31A—H31E	0.9800
C2—H2A	0.9800	C31A—H31F	0.9800
C2—H2B	0.9800	C22—H22	0.9500
C2—H2C	0.9800	C22—C23	1.382 (3)
C3—C4	1.502 (3)	С23—Н23	0.9500
C4—H4A	0.9800	C23—C24	1.379 (3)
C4—H4B	0.9800	C24—H24	0.9500
C4—H4C	0.9800	C24—C25	1.383 (3)
С6—Н6	0.9500	C25—C26	1.519 (8)
C6—C7	1.320 (3)	C25—C26A	1.519 (12)
С7—Н7	0.9500	C26—H26	1.0000
C8—C9	1.403 (3)	C26—C27	1.542 (8)
C8—C13	1.394 (3)	C26—C28	1.531 (9)
C9—C17	1.521 (8)	C27—H27A	0.9800
C9—C17A	1.516 (12)	C27—H27B	0.9800

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10	1.389 (3)	C27—H27C	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17—H17	1.0000	C28—H28A	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17—C18	1.514 (9)	C28—H28B	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17—C19	1.535 (8)	C28—H28C	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18—H18A	0.9800	C26A—H26A	1.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18—H18B	0.9800	C26A—C27A	1.527 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18—H18C	0.9800	C26A—C28A	1.536 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С19—Н19А	0.9800	C27A—H27D	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С19—Н19В	0.9800	С27А—Н27Е	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С19—Н19С	0.9800	C27A—H27F	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17A—H17A	1.0000	C28A—H28D	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17A—C18A	1.549 (11)	C28A—H28E	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17A - C19A	1 543 (12)	C28A—H28F	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18A - H18D	0.9800	05-032	1430(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18A—H18E	0.9800	05-035	1420(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18A—H18F	0.9800	C32—H32A	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19A - H19D	0.9800	C32_H32R	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19A—H19E	0.9800	C_{32} C_{33}	1 499 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19A—H19E	0.9800	C33—H33A	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-H10	0.9500	C33_H33B	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11	1 384 (4)	C_{33} C_{34}	1.518(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—H11	0.9500	C34—H34A	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{11} C_{12}	1 382 (4)	C34—H34B	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12_H12	0.9500	C_{34} C 25	1 503 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12 - C13	1 386 (3)	C35—H35A	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12 - C13	1.500 (3)	C35—H35R	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—H14	1 0000	05A - C32A	1 421 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C15	1 522 (3)	05A - C35A	1.121(13) 1 423 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14-C16	1.522(3) 1.531(4)	$C_{32}A - H_{32}C$	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—H15A	0.9800	$C_{32}A = H_{32}D$	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—H15B	0.9800	C_{32A} C_{33A}	1 504 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—H15C	0.9800	C33A - H33C	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—H16A	0.9800	C33A—H33D	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—H16B	0.9800	$C_{33}A - C_{34}A$	1 517 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16 - H16C	0.9800	C_{34A} H34C	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{20} C_{21}	1 394 (3)	$C_{34}A = H_{34}D$	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{20} = C_{25}$	1 392 (3)	C34A - C35A	1 505 (8)
C21 C29 $1.524 (5)$ $C35A = H35C$ 0.9900 C21 = C29A $1.525 (17)$ $C35A = H35D$ 0.9900 C21 = C22 $1.387 (3)$ $01 = Cr = Cr^i$ $85.85 (4)$ $C21 = C29 = C31$ $110.1 (5)$ O1 = Cr = O3 $89.35 (6)$ $C30 = C29 = C21$ $113.0 (4)$ O1 = Cr = O4^i $90.32 (6)$ $C30 = C29 = H29$ 107.6 O1 = Cr = C5 $94.62 (6)$ $C30 = C29 = C31$ $110.7 (5)$ O2^i = Cr = Cr^i $85.44 (4)$ $C31 = C29 = H29$ 107.6 O2^i = Cr = O1 $171.29 (5)$ $C29 = C30 = H30A$ 109.5	C_{21} C_{29}	1.592(5) 1.524(5)	C35A - H35C	0.9900
$C21-C22$ $1.525 (11)$ $C3511 - 11555$ 0.5565 $C21-C22$ $1.387 (3)$ $01-Cr-Cr^i$ $85.85 (4)$ $C21-C29-C31$ $110.1 (5)$ $O1-Cr-O3$ $89.35 (6)$ $C30-C29-C21$ $113.0 (4)$ $O1-Cr-O4^i$ $90.32 (6)$ $C30-C29-H29$ 107.6 $O1-Cr-C5$ $94.62 (6)$ $C30-C29-C31$ $110.7 (5)$ $O2^i-Cr-Cr^i$ $85.44 (4)$ $C31-C29-H29$ 107.6 $O2^i-Cr-O1$ $171.29 (5)$ $C29-C30-H30A$ 109.5	C_{21} C_{29A}	1.521(3) 1.525(17)	C35A - H35D	0.9900
$O1-Cr-Cr^i$ $85.85 (4)$ $C21-C29-C31$ $110.1 (5)$ $O1-Cr-O3$ $89.35 (6)$ $C30-C29-C21$ $113.0 (4)$ $O1-Cr-O4^i$ $90.32 (6)$ $C30-C29-H29$ 107.6 $O1-Cr-C5$ $94.62 (6)$ $C30-C29-C31$ $110.7 (5)$ $O2^i-Cr-Cr^i$ $85.44 (4)$ $C31-C29-H29$ 107.6 $O2^i-Cr-O1$ $171.29 (5)$ $C29-C30-H30A$ 109.5	$C_{21} - C_{22}$	1 387 (3)		0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	021 022	1.507 (5)		
$O1 - Cr - O3$ $89.35 (6)$ $C30 - C29 - C21$ $113.0 (4)$ $O1 - Cr - O4^i$ $90.32 (6)$ $C30 - C29 - H29$ 107.6 $O1 - Cr - C5$ $94.62 (6)$ $C30 - C29 - C31$ $110.7 (5)$ $O2^i - Cr - Cr^i$ $85.44 (4)$ $C31 - C29 - H29$ 107.6 $O2^i - Cr - O1$ $171.29 (5)$ $C29 - C30 - H30A$ 109.5	O1—Cr—Cr ⁱ	85.85 (4)	C21—C29—C31	110.1 (5)
$O1 - Cr - O4^{i}$ $90.32 (6)$ $C30 - C29 - H29$ 107.6 $O1 - Cr - C5$ $94.62 (6)$ $C30 - C29 - C31$ $110.7 (5)$ $O2^{i} - Cr - Cr^{i}$ $85.44 (4)$ $C31 - C29 - H29$ 107.6 $O2^{i} - Cr - O1$ $171.29 (5)$ $C29 - C30 - H30A$ 109.5	01—Cr—O3	89 35 (6)	C_{30} C_{29} C_{21}	113.0(4)
$O1-Cr-C5$ $94.62 (6)$ $C30-C29-C31$ $110.7 (5)$ $O2^{i}-Cr-Cr^{i}$ $85.44 (4)$ $C31-C29-H29$ 107.6 $O2^{i}-Cr-O1$ $171.29 (5)$ $C29-C30-H30A$ 109.5	$O1$ — Cr — $O4^{i}$	90.32 (6)	C30—C29—H29	107.6
$O2^{i}$ — Cr — Cr^{i} 85.44 (4) $C31$ — $C29$ —H29 107.6 $O2^{i}$ — Cr — $O1$ 171.29 (5) $C29$ — $C30$ —H30A 109.5	01—Cr—C5	94.62 (6)	C30—C29—C31	110.7 (5)
O2 ⁱ —Cr—O1 171.29 (5) C29—C30—H30A 109.5	O2 ⁱ —Cr—Cr ⁱ	85.44 (4)	C31—C29—H29	107.6
	O2 ⁱ —Cr—O1	171.29 (5)	С29—С30—Н30А	109.5
O2 ¹ —Cr—O3 89.72 (6) C29—C30—H30B 109.5	O2 ⁱ —Cr—O3	89.72 (6)	С29—С30—Н30В	109.5

$O2^{i}$ —Cr—O4 ⁱ	89.33 (6)	С29—С30—Н30С	109.5
O2 ⁱ —Cr—C5	94.10 (6)	H30A—C30—H30B	109.5
O3—Cr—Cr ⁱ	85.65 (4)	H30A—C30—H30C	109.5
O3—Cr—O4 ⁱ	171.54 (5)	H30B—C30—H30C	109.5
O3—Cr—C5	95.67 (5)	С29—С31—Н31А	109.5
O4 ⁱ —Cr—Cr ⁱ	85.90 (4)	C29—C31—H31B	109.5
O4 ⁱ —Cr—C5	92.78 (5)	С29—С31—Н31С	109.5
C5—Cr—Cr ⁱ	178.60 (5)	H31A—C31—H31B	109.5
C3-01-Cr	121.81 (12)	H31A—C31—H31C	109.5
$C3-O2-Cr^{i}$	122.43 (13)	H31B—C31—H31C	109.5
C1	122.10 (12)	С21—С29А—Н29А	108.5
$C1-O4-Cr^{i}$	121.67 (12)	C21—C29A—C30A	109.1 (16)
C5—N1—C6	112.15 (16)	C_{21} C_{29A} C_{31A}	110 (2)
C5—N1—C8	127.76 (14)	C30A—C29A—H29A	108.5
C6—N1—C8	120.09(16)	C30A - C29A - C31A	112 (2)
$C_5 - N_2 - C_7$	111 56 (16)	C_{31A} C_{29A} H_{29A}	108 5
C_{5} N2 C_{20}	127 10 (14)	C_{29A} C_{30A} H_{30D}	109.5
$C_{2} = N_{2} = C_{2}$	121.26 (15)	C_{29A} C_{30A} H_{30E}	109.5
03-01-02	121.20(13) 117.20(17)	C_{29A} C_{30A} H_{30E}	109.5
04-C1-03	124 59 (17)	H_{30D} C_{30A} H_{30E}	109.5
04-C1-C2	124.39(17) 118 21 (17)	H_{30D} C_{30A} H_{30E}	109.5
C1 - C2 - H2A	109.5	$H_{30E} = C_{30A} = H_{30E}$	109.5
C1 - C2 - H2B	109.5	C_{29A} C_{31A} H_{31D}	109.5
C1 - C2 - H2C	109.5	C_{29A} C_{31A} H_{31E}	109.5
$H_2 A = C_2 = H_2 B$	109.5	$C_{29A} = C_{31A} = H_{31E}$	109.5
$H_{2A} = C_2 = H_{2C}$	109.5	$H_{31D} = C_{31A} = H_{31F}$	109.5
H2R C2 H2C	109.5	H31D C31A H31E	109.5
112B - C2 - 112C 01 - C3 - 02	109.5	H_{31E} C_{31A} H_{31E}	109.5
01 - 03 - 02	117.95(17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110 /
0^{2} 0^{3} 0^{4}	117.55 (17)	$C_{21} = C_{22} = C_{21}$	119.4 121.2(2)
$C_2 = C_3 = C_4$	100 5	$C_{23} = C_{22} = C_{21}$	121.2 (2)
$C_3 = C_4 = H_4 R$	109.5	$C_{23} = C_{22} = H_{22}$	119.4
$C_3 = C_4 = H_4C_5$	109.5	$C_{22} = C_{23} = C_{23}$	120.2
	109.5	$C_{24} = C_{23} = C_{22}$	119.0 (2)
$H_{A} C_{A} H_{A} C_{A}$	109.5	$C_{24} = C_{23} = H_{23}$	120.2
	109.5	$C_{23} = C_{24} = H_{24}$	117.1
$\mathbf{M} = \mathbf{M} = \mathbf{M} + $	109.5	$C_{23} = C_{24} = C_{23}$	121.8 (2)
N1 = C5 = C1	128.23(12) 102.64(14)	$C_{23} = C_{24} = H_{24}$	117.1
$N_1 = C_2 = N_2$	102.04(14) 128.71(12)	$C_{20} = C_{23} = C_{26}$	121.1(0) 122.0(8)
N1 C6 H6	126.71 (15)	$C_{20} = C_{23} = C_{20}$	122.9(8)
N1 - C0 - H0	120.3	$C_{24} = C_{25} = C_{20}$	117.0(2)
C/-CO-NI	106.90 (18)	$C_{24} = C_{25} = C_{26}$	121.7(0)
C = C = H	126.3	$C_{24} = C_{25} = C_{20A}$	119.3 (8)
$N_2 = C / = H / C C C T N_2$	120.7	$C_{25} = C_{20} = H_{20}$	109.4
$C_0 - C_1 - N_2$	100.09 (17)	(2) - (2) - (2)	100.7(8)
CO C N	120./	$C_{23} = C_{26} = C_{28}$	111.9 (9)
$C_{12} = C_{12} = C$	118.88 (18)	$C_2/-C_2O-H_2O$	109.4
C13-C8-N1	118.39 (17)	C_{28} C_{26} H_{26}	109.4
C13—C8—C9	122.60 (19)	C28—C26—C27	110.0 (10)

C8—C9—C17	121.5 (5)	С26—С27—Н27А	109.5
C8—C9—C17A	122.0 (8)	С26—С27—Н27В	109.5
C10—C9—C8	117.3 (2)	С26—С27—Н27С	109.5
C10—C9—C17	121.2 (5)	H27A—C27—H27B	109.5
C10—C9—C17A	120.6 (8)	H27A—C27—H27C	109.5
С9—С17—Н17	107.3	H27B—C27—H27C	109.5
C9—C17—C19	108.8 (8)	C26—C28—H28A	109.5
C18—C17—C9	114.5 (9)	C26—C28—H28B	109.5
C18—C17—H17	107.3	C26—C28—H28C	109.5
C18—C17—C19	111.4 (9)	H28A—C28—H28B	109.5
C19—C17—H17	107.3	H28A—C28—H28C	109.5
C17—C18—H18A	109.5	H28B—C28—H28C	109.5
C17—C18—H18B	109.5	С25—С26А—Н26А	106.4
C17—C18—H18C	109.5	C25—C26A—C27A	116.8 (14)
H18A—C18—H18B	109.5	C25—C26A—C28A	110.5 (13)
H18A—C18—H18C	109.5	С27А—С26А—Н26А	106.4
H18B—C18—H18C	109.5	C27A—C26A—C28A	109.7 (14)
C17—C19—H19A	109.5	C28A—C26A—H26A	106.4
C17—C19—H19B	109.5	C26A—C27A—H27D	109.5
C17—C19—H19C	109.5	С26А—С27А—Н27Е	109.5
H19A—C19—H19B	109.5	C26A—C27A—H27F	109.5
H19A—C19—H19C	109.5	H27D—C27A—H27E	109.5
H19B—C19—H19C	109.5	H27D—C27A—H27F	109.5
С9—С17А—Н17А	109.3	H27E—C27A—H27F	109.5
C9—C17A—C18A	108.6 (12)	C26A—C28A—H28D	109.5
C9—C17A—C19A	112.7 (13)	C26A—C28A—H28E	109.5
C18A—C17A—H17A	109.3	C26A—C28A—H28F	109.5
C19A—C17A—H17A	109.3	H28D—C28A—H28E	109.5
C19A—C17A—C18A	107.5 (12)	H28D—C28A—H28F	109.5
C17A—C18A—H18D	109.5	H28E—C28A—H28F	109.5
C17A—C18A—H18E	109.5	C35—O5—C32	107.2 (4)
C17A—C18A—H18F	109.5	O5—C32—H32A	111.1
H18D—C18A—H18E	109.5	O5—C32—H32B	111.1
H18D—C18A—H18F	109.5	O5—C32—C33	103.4 (5)
H18E—C18A—H18F	109.5	H32A—C32—H32B	109.1
C17A—C19A—H19D	109.5	С33—С32—Н32А	111.1
C17A—C19A—H19E	109.5	С33—С32—Н32В	111.1
C17A—C19A—H19F	109.5	С32—С33—Н33А	111.6
H19D—C19A—H19E	109.5	С32—С33—Н33В	111.6
H19D—C19A—H19F	109.5	C32—C33—C34	100.9 (5)
H19E—C19A—H19F	109.5	H33A—C33—H33B	109.4
С9—С10—Н10	119.5	С34—С33—Н33А	111.6
С11—С10—С9	121.0 (2)	С34—С33—Н33В	111.6
С11—С10—Н10	119.5	С33—С34—Н34А	111.4
C10—C11—H11	119.9	C33—C34—H34B	111.4
C12—C11—C10	120.3 (2)	H34A—C34—H34B	109.3
C12—C11—H11	119.9	C35—C34—C33	101.6 (4)
C11—C12—H12	119.5	С35—С34—Н34А	111.4

C11—C12—C13	120.9 (2)	C35—C34—H34B	111.4
C13—C12—H12	119.5	O5—C35—C34	108.3 (3)
C8—C13—C14	121.80 (19)	O5—C35—H35A	110.0
C12—C13—C8	117.8 (2)	O5—C35—H35B	110.0
C12—C13—C14	120.4 (2)	C34—C35—H35A	110.0
C13—C14—H14	107.9	C34—C35—H35B	110.0
C13—C14—C15	110.9 (2)	H35A—C35—H35B	108.4
C13—C14—C16	111.1 (2)	C32A—O5A—C35A	111.9 (14)
C15—C14—H14	107.9	O5A—C32A—H32C	111.6
C15—C14—C16	110.9 (2)	O5A—C32A—H32D	111.6
C16—C14—H14	107.9	O5A—C32A—C33A	100.7 (14)
C14—C15—H15A	109.5	H32C—C32A—H32D	109.4
C14—C15—H15B	109.5	C33A—C32A—H32C	111.6
C14—C15—H15C	109.5	C33A—C32A—H32D	111.6
H15A—C15—H15B	109.5	C32A—C33A—H33C	111.5
H15A—C15—H15C	109.5	C32A—C33A—H33D	111.5
H15B—C15—H15C	109.5	C32A—C33A—C34A	101.1 (15)
C14—C16—H16A	109.5	H33C - C33A - H33D	109.4
C14—C16—H16B	109.5	C34A - C33A - H33C	111.5
C14-C16-H16C	109.5	C34A - C33A - H33D	111.5
H16A—C16—H16B	109.5	C33A - C34A - H34C	112.3
H16A - C16 - H16C	109.5	C33A - C34A - H34D	112.3
H16B—C16—H16C	109.5	H34C—C34A—H34D	109.9
C_{21} C_{20} N_{2}	118.01 (17)	C35A - C34A - C33A	97.4 (13)
C_{25} — C_{20} — N_{2}	118.83 (18)	C35A—C34A—H34C	112.3
C_{25} C_{20} C_{21}	123.06 (19)	C35A—C34A—H34D	112.3
C20—C21—C29	123.0 (4)	O5A—C35A—C34A	103.3 (13)
C20—C21—C29A	118.0 (14)	O5A—C35A—H35C	111.1
C22—C21—C20	117.27 (19)	O5A—C35A—H35D	111.1
C22—C21—C29	119.7 (4)	C34A—C35A—H35C	111.1
C22—C21—C29A	124.4 (14)	C34A—C35A—H35D	111.1
С21—С29—Н29	107.6	H35C—C35A—H35D	109.1
Cr—O1—C3—O2	-0.4(3)	C10—C9—C17A—C19A	-65.1 (17)
Cr—O1—C3—C4	178.64 (15)	C10-C11-C12-C13	-1.8 (4)
Cr ⁱ —O2—C3—O1	0.1 (3)	C11—C12—C13—C8	-0.6(3)
Cr ⁱ —O2—C3—C4	-179.01 (14)	C11—C12—C13—C14	176.9 (2)
Cr—O3—C1—O4	-3.9 (3)	C12—C13—C14—C15	-58.8 (3)
Cr—O3—C1—C2	175.42 (14)	C12—C13—C14—C16	65.2 (3)
Cr ⁱ O4C1O3	3.5 (3)	C13—C8—C9—C17	173.5 (5)
Cr^{i} —O4—C1—C2	-175.80 (14)	C13-C8-C9-C17A	-179.2 (8)
N1—C6—C7—N2	0.1 (3)	C13-C8-C9-C10	-3.6(3)
N1—C8—C9—C17	-10.8 (6)	C20—N2—C5—Cr	-10.6 (3)
N1—C8—C9—C17A	-3.5 (8)	C20—N2—C5—N1	176.26 (16)
N1-C8-C9-C10	172.11 (18)	C20—N2—C7—C6	-176.71 (19)
N1—C8—C13—C12	-172.31 (18)	C20—C21—C29—C30	-118.9 (6)
N1-C8-C13-C14	10.2 (3)	C20—C21—C29—C31	116.7 (6)
N2-C20-C21-C29	5.7 (4)	C20—C21—C29A—C30A	-100 (3)

N2-C20-C21-C29A	11.7 (11)	C20—C21—C29A—C31A	137 (2)
N2-C20-C21-C22	-174.60 (16)	C20—C21—C22—C23	-0.1 (3)
N2-C20-C25-C24	174.45 (17)	C20—C25—C26—C27	105.0 (10)
N2-C20-C25-C26	-10.0 (7)	C20—C25—C26—C28	-134.6 (11)
N2-C20-C25-C26A	3.4 (10)	C20—C25—C26A—C27A	111.0 (15)
C5—N1—C6—C7	-0.4 (3)	C20—C25—C26A—C28A	-122.7 (14)
C5—N1—C8—C9	80.8 (2)	C21—C20—C25—C24	-1.9 (3)
C5—N1—C8—C13	-103.4 (2)	C21—C20—C25—C26	173.7 (7)
C5—N2—C7—C6	0.1 (2)	C21—C20—C25—C26A	-173.0 (10)
C5—N2—C20—C21	-90.0 (2)	C21—C22—C23—C24	-1.4 (3)
C5—N2—C20—C25	93.4 (2)	C29—C21—C22—C23	179.6 (3)
C6—N1—C5—Cr	-172.69 (14)	C29A—C21—C22—C23	173.1 (12)
C6—N1—C5—N2	0.5 (2)	C22—C21—C29—C30	61.5 (7)
C6—N1—C8—C9	-99.3 (2)	C22—C21—C29—C31	-62.9 (8)
C6—N1—C8—C13	76.6 (2)	C22—C21—C29A—C30A	87 (3)
C7—N2—C5—Cr	172.74 (14)	C22—C21—C29A—C31A	-37 (3)
C7—N2—C5—N1	-0.4 (2)	C22—C23—C24—C25	1.2 (3)
C7—N2—C20—C21	86.3 (2)	C23—C24—C25—C20	0.4 (3)
C7—N2—C20—C25	-90.2 (2)	C23—C24—C25—C26	-175.2 (7)
C8—N1—C5—Cr	7.3 (3)	C23—C24—C25—C26A	171.8 (10)
C8—N1—C5—N2	-179.56 (16)	C24—C25—C26—C27	-79.6 (12)
C8—N1—C6—C7	179.62 (19)	C24—C25—C26—C28	40.8 (15)
C8—C9—C17—C18	-143.1 (10)	C24—C25—C26A—C27A	-59.9 (18)
C8—C9—C17—C19	91.6 (11)	C24—C25—C26A—C28A	66.4 (19)
C8—C9—C17A—C18A	-130.6 (11)	C25—C20—C21—C29	-177.9 (3)
C8—C9—C17A—C19A	110.4 (15)	C25—C20—C21—C29A	-171.9 (11)
C8—C9—C10—C11	1.0 (3)	C25—C20—C21—C22	1.8 (3)
C8—C13—C14—C15	118.7 (2)	O5—C32—C33—C34	-43.2 (11)
C8—C13—C14—C16	-117.4 (2)	C32—O5—C35—C34	-9.6 (7)
C9—C8—C13—C12	3.4 (3)	C32—C33—C34—C35	36.1 (10)
C9—C8—C13—C14	-174.10 (19)	C33—C34—C35—O5	-17.4 (8)
C9—C10—C11—C12	1.6 (4)	C35—O5—C32—C33	33.3 (9)
C17—C9—C10—C11	-176.1 (6)	O5A—C32A—C33A—C34A	41 (4)
C17A—C9—C10—C11	176.7 (8)	C32A—O5A—C35A—C34A	-15 (3)
C10—C9—C17—C18	33.9 (13)	C32A—C33A—C34A—C35A	-50 (3)
C10—C9—C17—C19	-91.4 (12)	C33A—C34A—C35A—O5A	39 (2)
C10—C9—C17A—C18A	54.0 (17)	C35A—O5A—C32A—C33A	-16 (4)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
С6—Н6…О5	0.95	2.47	3.411 (6)	171

Tetrakis(μ -acetato- $\kappa^2 O:O'$)bis{[1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene- κC^2]chromium(II)}, (2)

Crystal data

 $\{Cr_2(C_2H_3O_2)_4(C_{21}H_{24}N_2)_2\}$ $M_r = 949.02$ Triclinic, $P\overline{1}$ a = 8.3679 (5) Å*b* = 11.6127 (8) Å c = 13.8355 (9) Å $\alpha = 68.949 (5)^{\circ}$ $\beta = 83.891 (5)^{\circ}$ $\gamma = 71.508 (5)^{\circ}$ $V = 1189.90 (14) Å^3$

Data collection

Stoe IPDS 2T
diffractometer
Radiation source: sealed X-ray tube, 12 x 0.4
mm long-fine focus
Plane graphite monochromator
Detector resolution: 6.67 pixels mm ⁻¹
rotation method, ω scans
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2015)

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.042$ H-atom parameters constrained $wR(F^2) = 0.112$ $w = 1/[\sigma^2(F_o^2) + (0.0639P)^2]$ S = 0.91where $P = (F_0^2 + 2F_c^2)/3$ 4174 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$ 297 parameters $\Delta \rho_{\rm min} = -0.51 \text{ e} \text{ Å}^{-3}$ 0 restraints Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cr	0.54824 (5)	0.51154 (4)	0.40816 (3)	0.02630 (15)	
01	0.3003 (2)	0.59224 (19)	0.36961 (14)	0.0351 (5)	
N1	0.5905 (3)	0.6422 (2)	0.14863 (17)	0.0343 (6)	
C1	0.1879 (3)	0.6037 (3)	0.4367 (2)	0.0316 (6)	
O2	0.2154 (2)	0.57212 (18)	0.53188 (15)	0.0340 (4)	
N2	0.7496 (3)	0.4481 (2)	0.19833 (17)	0.0330 (5)	
C2	0.0074 (3)	0.6573 (3)	0.4002 (3)	0.0445 (8)	
H2A	-0.061866	0.700386	0.446329	0.067*	

Z = 1F(000) = 500 $D_{\rm x} = 1.324 {\rm Mg m^{-3}}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 4925 reflections $\theta = 2.0-29.2^{\circ}$ $\mu = 0.51 \text{ mm}^{-1}$ T = 170 KPlate, clear violet $0.40 \times 0.24 \times 0.07 \text{ mm}$

 $T_{\rm min} = 0.844, \ T_{\rm max} = 0.963$ 8474 measured reflections 4174 independent reflections 2894 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.071$ $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$ $h = -8 \rightarrow 9$ $k = -13 \rightarrow 13$ $l = -16 \rightarrow 16$

H2B	-0.033270	0.586646	0.400891	0.067*
H2C	-0.000188	0.719885	0.329572	0.067*
O3	0.5662 (2)	0.68514 (17)	0.39901 (14)	0.0338 (4)
C3	0.5333 (3)	0.7243 (3)	0.4751 (2)	0.0309 (6)
O4	0.4828 (2)	0.66423 (18)	0.56159 (14)	0.0335 (4)
C4	0.5595 (4)	0.8516 (3)	0.4611 (3)	0.0454 (8)
H4A	0.482967	0.891917	0.506614	0.068*
H4B	0.536228	0.908816	0.388898	0.068*
H4C	0.676311	0.837131	0.478780	0.068*
C5	0.6360(3)	0.5358 (3)	0.2356 (2)	0.0285 (6)
C6	0.6703 (4)	0.6201 (3)	0.0613 (2)	0.0478 (8)
H6	0.656021	0.679986	-0.007647	0.057*
C7	0.7702 (4)	0.4995 (3)	0.0922 (2)	0.0474 (8)
H7	0.842308	0.456314	0.049825	0.057*
C8	0.4637 (3)	0.7630 (3)	0.1422 (2)	0.0314 (6)
C9	0.5118 (3)	0.8645 (3)	0.1481 (2)	0.0327 (6)
C10	0.3881 (4)	0.9817 (3)	0.1331 (2)	0.0371 (7)
H10	0.418452	1.052446	0.136277	0.044*
C11	0.2212 (4)	0.9993 (3)	0.1135 (2)	0.0370 (7)
C12	0.1785 (4)	0.8955 (3)	0.1109 (2)	0.0382 (7)
H12	0.064049	0.906087	0.099248	0.046*
C13	0.2971 (3)	0.7752 (3)	0.1248 (2)	0.0354 (7)
C14	0.6915 (4)	0.8479 (3)	0.1710 (2)	0.0441 (8)
H14A	0.707584	0.820080	0.246043	0.066*
H14B	0.715899	0.930470	0.137280	0.066*
H14C	0.767964	0.782500	0.144690	0.066*
C15	0.0910 (4)	1.1303 (3)	0.0923 (2)	0.0505 (8)
H15A	0.110195	1.171200	0.138957	0.076*
H15B	-0.021906	1.119692	0.103718	0.076*
H15C	0.100211	1.184860	0.020298	0.076*
C16	0.2480 (4)	0.6630 (3)	0.1227 (2)	0.0479 (8)
H16A	0.272811	0.593565	0.190257	0.072*
H16B	0.311952	0.631495	0.068962	0.072*
H16C	0.127199	0.690516	0.107617	0.072*
C17	0.8384 (3)	0.3160 (3)	0.2571 (2)	0.0317 (6)
C18	0.7640 (3)	0.2203 (3)	0.2707 (2)	0.0348 (7)
C19	0.8564 (4)	0.0938 (3)	0.3208 (2)	0.0391 (7)
H19	0.806511	0.027229	0.331513	0.047*
C20	1.0202 (4)	0.0600 (3)	0.3562 (2)	0.0387 (7)
C21	1.0873 (3)	0.1596 (3)	0.3422 (2)	0.0374 (7)
H21	1.198156	0.138463	0.367078	0.045*
C22	1.0007 (3)	0.2876 (3)	0.2938 (2)	0.0334 (6)
C23	0.5886 (4)	0.2541 (3)	0.2299 (3)	0.0494 (8)
H23A	0.511481	0.320742	0.254719	0.074*
H23B	0.550978	0.176680	0.254475	0.074*
H23C	0.589497	0.286814	0.153996	0.074*
C24	1.1213 (4)	-0.0789 (3)	0.4055 (3)	0.0538 (9)
H24A	1.186112	-0.111074	0.352228	0.081*

H24B	1.045268	-0.130492	0.439253	0.081*
H24C	1.198730	-0.085845	0.457128	0.081*
C25	1.0787 (4)	0.3930 (3)	0.2774 (3)	0.0509 (8)
H25A	0.995447	0.465874	0.291890	0.076*
H25B	1.115855	0.422015	0.205433	0.076*
H25C	1.175804	0.359940	0.324063	0.076*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr	0.0215 (2)	0.0263 (2)	0.0304 (3)	-0.00359 (17)	-0.00045 (17)	-0.01198 (19)
01	0.0261 (10)	0.0418 (12)	0.0357 (11)	-0.0044 (9)	-0.0027 (8)	-0.0156 (9)
N1	0.0347 (13)	0.0312 (14)	0.0326 (13)	-0.0035 (10)	-0.0001 (10)	-0.0116 (11)
C1	0.0226 (14)	0.0258 (15)	0.0459 (18)	-0.0048 (11)	-0.0048 (13)	-0.0124 (13)
O2	0.0230 (9)	0.0395 (12)	0.0385 (12)	-0.0036 (8)	0.0003 (8)	-0.0173 (9)
N2	0.0336 (13)	0.0306 (13)	0.0316 (13)	-0.0026 (10)	0.0019 (10)	-0.0135 (11)
C2	0.0255 (14)	0.049 (2)	0.057 (2)	-0.0019 (13)	-0.0101 (14)	-0.0212 (16)
O3	0.0381 (11)	0.0285 (11)	0.0374 (11)	-0.0104 (9)	0.0028 (9)	-0.0149 (9)
C3	0.0202 (13)	0.0268 (15)	0.0461 (18)	-0.0042 (11)	-0.0021 (12)	-0.0150 (14)
O4	0.0372 (11)	0.0300 (11)	0.0368 (11)	-0.0108 (9)	0.0037 (9)	-0.0160 (9)
C4	0.0453 (18)	0.0352 (18)	0.062 (2)	-0.0136 (14)	0.0060 (15)	-0.0245 (16)
C5	0.0257 (13)	0.0298 (16)	0.0298 (15)	-0.0061 (12)	-0.0016 (11)	-0.0115 (12)
C6	0.061 (2)	0.047 (2)	0.0252 (16)	-0.0061 (17)	0.0065 (14)	-0.0101 (15)
C7	0.0556 (19)	0.044 (2)	0.0323 (17)	-0.0005 (16)	0.0110 (14)	-0.0175 (15)
C8	0.0355 (15)	0.0264 (15)	0.0260 (14)	-0.0044 (12)	-0.0025 (12)	-0.0053 (12)
C9	0.0337 (15)	0.0355 (17)	0.0251 (14)	-0.0095 (13)	0.0007 (12)	-0.0071 (12)
C10	0.0459 (17)	0.0294 (16)	0.0347 (16)	-0.0094 (13)	-0.0022 (13)	-0.0106 (13)
C11	0.0405 (17)	0.0349 (17)	0.0275 (15)	-0.0019 (13)	0.0014 (13)	-0.0097 (13)
C12	0.0304 (15)	0.0437 (19)	0.0332 (16)	-0.0049 (13)	-0.0049 (12)	-0.0089 (14)
C13	0.0371 (15)	0.0378 (17)	0.0269 (15)	-0.0094 (13)	-0.0049 (12)	-0.0065 (13)
C14	0.0355 (16)	0.051 (2)	0.0490 (19)	-0.0162 (15)	0.0007 (14)	-0.0178 (16)
C15	0.0502 (19)	0.043 (2)	0.0460 (19)	0.0061 (15)	-0.0021 (15)	-0.0173 (16)
C16	0.0486 (18)	0.045 (2)	0.053 (2)	-0.0170 (16)	-0.0117 (16)	-0.0142 (16)
C17	0.0313 (14)	0.0310 (16)	0.0325 (15)	-0.0045 (12)	0.0061 (12)	-0.0163 (13)
C18	0.0317 (15)	0.0391 (18)	0.0376 (16)	-0.0087 (13)	0.0040 (12)	-0.0207 (14)
C19	0.0404 (16)	0.0386 (18)	0.0460 (18)	-0.0155 (14)	0.0052 (14)	-0.0216 (15)
C20	0.0408 (16)	0.0324 (17)	0.0394 (17)	-0.0059 (13)	0.0003 (13)	-0.0125 (14)
C21	0.0284 (15)	0.0413 (18)	0.0440 (17)	-0.0042 (13)	-0.0017 (13)	-0.0214 (14)
C22	0.0305 (14)	0.0348 (17)	0.0395 (16)	-0.0083 (13)	0.0048 (12)	-0.0208 (13)
C23	0.0357 (16)	0.061 (2)	0.060 (2)	-0.0147 (16)	-0.0014 (15)	-0.0297 (18)
C24	0.055 (2)	0.0368 (19)	0.061 (2)	-0.0012 (16)	-0.0054 (17)	-0.0173 (17)
C25	0.0439 (18)	0.049 (2)	0.071 (2)	-0.0189 (16)	0.0035 (16)	-0.0300 (18)

Geometric parameters (Å, °)

Cr-Cr ⁱ	2.5284 (9)	C11—C15	1.511 (4)
Cr—O1	2.0274 (18)	C12—H12	0.9500
Cr—O2 ⁱ	2.0238 (17)	C12—C13	1.393 (4)

Cr—O3	2.0269 (18)	C13—C16	1.495 (4)
Cr—O4 ⁱ	2.0270 (18)	C14—H14A	0.9800
Cr—C5	2.365 (3)	C14—H14B	0.9800
01—C1	1.260 (3)	C14—H14C	0.9800
N1—C5	1.360 (3)	C15—H15A	0.9800
N1—C6	1.384 (4)	C15—H15B	0.9800
N1—C8	1.445 (3)	C15—H15C	0.9800
C1—O2	1.260 (3)	C16—H16A	0.9800
C1—C2	1.504 (3)	C16—H16B	0.9800
N2—C5	1.366 (3)	C16—H16C	0.9800
N2—C7	1.388 (4)	C17—C18	1.385 (4)
N2—C17	1.441 (3)	C17—C22	1.398 (4)
C2—H2A	0.9800	C18—C19	1.378 (4)
C2—H2B	0.9800	C18—C23	1.510 (4)
C2—H2C	0.9800	С19—Н19	0.9500
O3—C3	1.263 (3)	C19—C20	1.392 (4)
C3—O4	1.255 (3)	C20—C21	1.384 (4)
C3—C4	1.504 (4)	C20—C24	1.500 (4)
C4—H4A	0.9800	C21—H21	0.9500
C4—H4B	0.9800	C21—C22	1.374 (4)
C4—H4C	0.9800	C22—C25	1.500 (4)
С6—Н6	0.9500	С23—Н23А	0.9800
C6—C7	1.321 (4)	С23—Н23В	0.9800
С7—Н7	0.9500	С23—Н23С	0.9800
C8—C9	1.391 (4)	C24—H24A	0.9800
C8—C13	1.394 (4)	C24—H24B	0.9800
C9—C10	1.384 (4)	C24—H24C	0.9800
C9—C14	1.508 (4)	С25—Н25А	0.9800
С10—Н10	0.9500	С25—Н25В	0.9800
C10—C11	1.387 (4)	С25—Н25С	0.9800
C11—C12	1.375 (4)		
O1—Cr—Cr ⁱ	85.57 (6)	C12—C11—C10	118.3 (3)
O1—Cr—C5	93.88 (8)	C12—C11—C15	120.9 (3)
O2 ⁱ —Cr—Cr ⁱ	86.09 (6)	C11—C12—H12	118.8
O2 ⁱ —Cr—O1	171.65 (8)	C11—C12—C13	122.4 (3)
O2 ⁱ —Cr—O3	88.82 (7)	C13—C12—H12	118.8
$O2^{i}$ —Cr— $O4^{i}$	91.03 (7)	C8—C13—C16	121.2 (3)
O2 ⁱ —Cr—C5	94.46 (8)	C12—C13—C8	117.2 (3)
O3—Cr—Cr ⁱ	85.62 (6)	C12—C13—C16	121.6 (3)
O3—Cr—O1	90.66 (8)	C9—C14—H14A	109.5
O3—Cr—C5	93.90 (8)	C9—C14—H14B	109.5
O4 ⁱ —Cr—Cr ⁱ	86.03 (6)	C9—C14—H14C	109.5
O4 ⁱ —Cr—O1	88.28 (7)	H14A—C14—H14B	109.5
O4 ⁱ —Cr—O3	171.63 (8)	H14A—C14—H14C	109.5
O4 ⁱ —Cr—C5	94.45 (8)	H14B—C14—H14C	109.5
C5—Cr—Cr ⁱ	179.26 (7)	C11—C15—H15A	109.5
C1—O1—Cr	121.90 (16)	C11—C15—H15B	109.5

C5—N1—C6	112.2 (2)	C11—C15—H15C	109.5
C5—N1—C8	125.9 (2)	H15A—C15—H15B	109.5
C6—N1—C8	121.7 (2)	H15A—C15—H15C	109.5
O1—C1—C2	117.3 (2)	H15B—C15—H15C	109.5
02—C1—O1	124.9 (2)	C13—C16—H16A	109.5
O2—C1—C2	117.8 (2)	C13—C16—H16B	109.5
$C1-O2-Cr^{i}$	121.50 (16)	C13—C16—H16C	109.5
C5—N2—C7	111.9 (2)	H16A—C16—H16B	109.5
$C_{5}-N_{2}-C_{17}$	1267(2)	H16A - C16 - H16C	109.5
C7-N2-C17	120.7(2) 1214(2)	H_{16B} C_{16} H_{16C}	109.5
C1 - C2 - H2A	109 5	C18 - C17 - N2	109.5 119.0(2)
C1 - C2 - H2B	109.5	C18 - C17 - C22	117.0(2) 1221(3)
C1 - C2 - H2C	109.5	C_{22} C_{17} C_{22} C_{22} C_{17} N_{2}	122.1(3) 118.8(2)
$H_2 \Lambda C_2 H_2 B$	109.5	C17 - C18 - C23	110.0(2) 120.8(3)
$H_{2A} = C_2 = H_{2C}$	100.5	$C_{17} = C_{18} = C_{23}$	120.0(3) 117.0(2)
H2R C2 H2C	109.5	$C_{19} = C_{18} = C_{17}$	117.9(2) 121.2(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5 121.92 (19)	C19 - C10 - C23	121.5 (5)
$C_3 = C_1$	121.03(10) 117.2(2)	C18 - C19 - H19	110.0
03 - 03 - 04	117.2(3)	C18 - C19 - C20	122.3 (3)
04 - 03 - 03	124.9 (2)	C20—C19—H19	118.8
04 - 03 - 04	117.8 (2)	C19 - C20 - C24	121.3(3)
$C_3 = C_4 = C_1^{\prime}$	121.56 (16)	$C_{21} = C_{20} = C_{19}$	11/.4 (3)
C3—C4—H4A	109.5	C21—C20—C24	121.4 (3)
C3—C4—H4B	109.5	С20—С21—Н21	118.5
C3—C4—H4C	109.5	C22—C21—C20	123.0 (2)
H4A—C4—H4B	109.5	C22—C21—H21	118.5
H4A—C4—H4C	109.5	C17—C22—C25	121.0 (3)
H4B—C4—H4C	109.5	C21—C22—C17	117.4 (3)
N1—C5—Cr	128.80 (18)	C21—C22—C25	121.6 (3)
N1—C5—N2	102.3 (2)	C18—C23—H23A	109.5
N2—C5—Cr	128.90 (19)	C18—C23—H23B	109.5
N1—C6—H6	126.6	C18—C23—H23C	109.5
C7—C6—N1	106.8 (3)	H23A—C23—H23B	109.5
С7—С6—Н6	126.6	H23A—C23—H23C	109.5
N2—C7—H7	126.6	H23B—C23—H23C	109.5
C6—C7—N2	106.8 (3)	C20—C24—H24A	109.5
С6—С7—Н7	126.6	C20—C24—H24B	109.5
C9—C8—N1	119.5 (2)	C20—C24—H24C	109.5
C9—C8—C13	122.3 (3)	H24A—C24—H24B	109.5
C13—C8—N1	118.0 (2)	H24A—C24—H24C	109.5
C8—C9—C14	121.6 (3)	H24B—C24—H24C	109.5
C10—C9—C8	117.6 (2)	С22—С25—Н25А	109.5
C10—C9—C14	120.9 (3)	С22—С25—Н25В	109.5
C9—C10—H10	118.9	C22—C25—H25C	109.5
C9—C10—C11	122.2 (3)	H25A—C25—H25B	109.5
C11—C10—H10	118.9	H25A—C25—H25C	109.5
C10-C11-C15	120.8 (3)	H25B-C25-H25C	109.5
	-= 5.0 (0)		
Cr—O1—C1—O2	2.9 (4)	C8—N1—C5—Cr	-6.1 (4)
	X /		· · /

Cr—O1—C1—C2	-176.25 (18)	C8—N1—C5—N2	176.0 (2)
Cr—O3—C3—O4	-2.0 (3)	C8—N1—C6—C7	-176.2 (3)
Cr—O3—C3—C4	176.97 (17)	C8—C9—C10—C11	0.5 (4)
O1-C1-O2-Cr ⁱ	-3.0 (4)	C9—C8—C13—C12	1.4 (4)
N1—C6—C7—N2	0.6 (4)	C9—C8—C13—C16	-177.7 (3)
N1-C8-C9-C10	174.8 (2)	C9—C10—C11—C12	1.1 (4)
N1-C8-C9-C14	-5.8 (4)	C9—C10—C11—C15	-177.0 (3)
N1-C8-C13-C12	-175.2 (2)	C10-C11-C12-C13	-1.5 (4)
N1-C8-C13-C16	5.7 (4)	C11—C12—C13—C8	0.3 (4)
N2-C17-C18-C19	175.5 (2)	C11—C12—C13—C16	179.4 (3)
N2-C17-C18-C23	-3.4 (4)	C13—C8—C9—C10	-1.8 (4)
N2-C17-C22-C21	-174.8 (2)	C13—C8—C9—C14	177.7 (3)
N2—C17—C22—C25	3.1 (4)	C14—C9—C10—C11	-179.0 (3)
C2-C1-O2-Cr ⁱ	176.10 (18)	C15—C11—C12—C13	176.5 (3)
O3-C3-O4-Cr ⁱ	1.5 (3)	C17—N2—C5—Cr	2.8 (4)
C4—C3—O4—Cr ⁱ	-177.53 (17)	C17—N2—C5—N1	-179.3 (2)
C5—N1—C6—C7	-1.2 (4)	C17—N2—C7—C6	178.7 (3)
C5—N1—C8—C9	96.3 (3)	C17—C18—C19—C20	-0.9 (4)
C5—N1—C8—C13	-87.0 (3)	C18—C17—C22—C21	1.6 (4)
C5—N2—C7—C6	0.1 (4)	C18—C17—C22—C25	179.5 (3)
C5—N2—C17—C18	87.9 (3)	C18-C19-C20-C21	2.0 (4)
C5—N2—C17—C22	-95.5 (3)	C18-C19-C20-C24	-176.7 (3)
C6—N1—C5—Cr	179.1 (2)	C19—C20—C21—C22	-1.2 (4)
C6—N1—C5—N2	1.2 (3)	C20-C21-C22-C17	-0.5 (4)
C6—N1—C8—C9	-89.3 (3)	C20-C21-C22-C25	-178.4 (3)
C6—N1—C8—C13	87.3 (3)	C22-C17-C18-C19	-1.0 (4)
C7—N2—C5—Cr	-178.7 (2)	C22-C17-C18-C23	-179.9 (3)
C7—N2—C5—N1	-0.8 (3)	C23-C18-C19-C20	178.0 (3)
C7—N2—C17—C18	-90.5 (3)	C24—C20—C21—C22	177.4 (3)
C7—N2—C17—C22	86.1 (3)		

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C17–C22 ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C2—H2 <i>B</i> ···O2 ⁱⁱ	0.98	2.61	3.527 (4)	155
C15—H15 <i>A</i> ··· <i>Cg</i> ⁱⁱⁱ	0.98	2.62	3.340 (3)	125

Symmetry codes: (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*-1, *y*+1, *z*.