ISSN 2056-9890

Received 4 June 2024
Accepted 13 June 2024

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; halogen bond; Hirshfeld surface analysis.

CCDC reference: 2362511

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS
Published under a CC BY 4.0 licence

Crystal structure and Hirshfeld surface analysis of a halogen bond between 2-(allylthio)pyridine and 1,2,4,5-tetrafluoro-3,6-diiodobenzene

Robin Risken, Tobias Schrimpf, Franziska Dorothea Klotz and Carsten Strohmann*

Inorganic Chemistry, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany. *Correspondence e-mail: carsten.strohmann@tu-dortmund.de

The crystal structure of the title 2:1 molecular complex between 2-(allylthio)pyridine and 1,2,4,5-tetrafluoro-3,6-diiodobenzene, $\mathrm{C}_{6} \mathrm{~F}_{4} \mathrm{I}_{2} \cdot 2 \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NS}$, at 100 K has been determined in the monoclinic space group $P 2_{1} / c$. The most noteworthy characteristic of the complex is the halogen bond between iodine and the pyridine ring with a short $\mathrm{N} \cdots$. I contact $[2.8628$ (12) \AA]. The Hirshfeld surface analysis shows that the hydrogen \cdots hydrogen contacts dominate the crystal packing with a contribution of 32.1%.

1. Chemical context

Earlier research investigated the deprotonation of allylic silicon compounds with organolithium reagents (Strohmann et al., 2006). In this work, 2-(allylthio)pyridine was synthesized to compare the chemical behavior to similar systems. The chosen synthetic route was adapted from the literature (Baudin et al., 1993) and could lead to two similar products (Fig. 1) that would be hard to distinguish based on ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR alone. Since the 2-(allylthio)pyridine did not crystallize and was quite impure, 1,2,4,5,-tetrafluoro-3,6-diiodobenzene was added, which led to a two-component co-crystal referred to as complex 5. Halogen bonds between an aromatic iodine compound and a nitrogen compound can vary in their bond strength, length and angle (Otte et al., 2023). Since only the desired compound formed a halogen bond, the product could be separated from the impurities by simply isolating the cocrystals. Afterwards the 2-(allylthio)pyridine was reobtained by column chromatography.

2. Structural commentary

Complex 5 crystallized from heptane at 193.15 K as colorless plates in the monoclinic space group $P 2_{1} / c$. The asymmetric unit consists of one molecule of $\mathbf{3}$ and half a molecule of 1,2,4,5,-tetrafluoro-3,6-diiodobenzene. The second half is generated by inversion symmetry (Fig. 2; symmetry operation $-x,-y, 1-z)$. The formula unit of the title compound consists of two molecules 2-(allylthio)pyridine and one molecule 1,2,4,5,-tetrafluoro-3,6-diiodobenzene, which lies on an inversion center.

Figure 1
Synthesis of 2-(allylthio)pyridine $\mathbf{3}$ or 1-allylpyridine-2(1H)-thione 4.

The complex consists of multiple functional groups: an allyl group, a thioether, a pyridine and a perfluorinated diiodobenzene. The $\mathrm{C} 1-\mathrm{C} 2$ bond length $[1.492$ (2) \AA] is longer than the $\mathrm{C} 2-\mathrm{C} 3$ bond length $[1.316$ (3) \AA], which is explained by the double bond between C2 and C3. These lengths coincide with the $\mathrm{C}-\mathrm{C}$ single bond length of $1.54 \AA$ in ethane and the $\mathrm{C}=\mathrm{C}$ double bond length of $1.33 \AA$ in ethene (Lide, 2005). The $\mathrm{C} 4-\mathrm{S} 1-\mathrm{C} 1$ bond angle $\left[102.91(7)^{\circ}\right]$ is a little bit larger than the $\mathrm{C}-\mathrm{S}-\mathrm{C}$ angle in dimethylsulfide [99.2 (1) ${ }^{\circ}$; Mitzel \& Losehand, 2004]. The difference in bond angles might be explained by the larger pyridine substituent, of which C 4 is a part. The bond lengths in the pyridine ring [C4-C5: 1.3976 (18) Å, C5-C6: 1.391 (2) Å, C6-C7: 1.387 (2) Å, C7-C8: 1.384 (2) Å, C8-N1: 1.3454 (18) \AA and N1-C4: 1.3422 (17) A] are not significantly longer compared to the bond lengths in pyridine (Lide, 2005). The bond angles of the pyridine moiety vary around 118°, which is typical for pyridine. The largest deviations from planarity of the pyridine (r.m.s. deviation $0.010 \AA$) are observed for $\mathrm{C} 7[-0.0124$ (12) \AA] and C4 $[-0.0140(9) \AA]$. The angle between the normal of the pyridine plane ($\mathrm{N} 1, \mathrm{C} 4-\mathrm{C} 8$) and the double bond between C 2 and C 3 is $115.35(13)^{\circ}$.

The bond lengths and angles of 1,2,4,5,-tetrafluoro-3,6-diiodobenzene are consistent with those present in the Cambridge Structural Database. The benzene ring makes a dihedral angle of $12.88(5)^{\circ}$ with the pyridine ring.

Figure 2
The molecular structure of the title compound 5, showing the atom labeling and displacement ellipsoids drawn at the 50% probability level.

Figure 3
A view of the packing of 5 .

3. Supramolecular features

Fig. 3 shows the packing of the complex. The most important supramolecular feature is the close contact between N1 and I1 with a coordination distance of 2.8628 (12) \AA, which is shorter than the sum of the van der Waals radii of $3.73 \AA$ (Nyburg \& Faerman, 1985). The strength of a halogen bond is determined by the bond length and the bond angle. Strong halogen bonds are expected to have a bond length in the region of 2.781 (2) \AA (Otte et al., 2023), which is shorter than the distance observed for 5. The $\mathrm{N} 1-\mathrm{I} 1-\mathrm{C} 9$ bond angle is $173.90(4)^{\circ}$, which is slightly less than a theoretical ideal angle of 180°. In conclusion, the here presented structure shows a medium-strength halogen bond between N1 and I1. Further evidence for this is the small difference in ${ }^{1} \mathrm{H}-\mathrm{NMR}$ chemical shifts between compounds $\mathbf{3}$ and 5 (Fig. 4). Theoretically, the sulfur present here could also form a halogen bond with the iodine, but this behavior is not observed.

Figure 2
${ }^{1} \mathrm{H}$-NMR of compund 3 and 5
Figure 4
${ }^{1} \mathrm{H}$-NMR spectra (400 MHz) of compounds $\mathbf{3}$ and $\mathbf{5}$ in CDCl_{3}.

Figure 5
Three-dimensional Hirshfeld surface of $\mathbf{5}$ mapped over $d_{\text {norm }}$.

To better understand the van der Waals interactions, a Hirshfeld surface analysis was performed. In Fig. 5, the Hirshfeld surface generated by CrystalExplorer21 (Spackman et al., 2021) is mapped over $d_{\text {norm }}$ (Spackman \& Jayatilaka, 2009) and red dots are used to represent close contacts.

Figure 6
Two-dimensional fingerprint plots for 5 showing (a) all interactions, and (b) $-(h)$ delineated into contributions from other contacts (blue areas) $\left[d_{e}\right.$ and d_{i} represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively].

For further exploration of the intermolecular interactions, two-dimensional fingerprint plots (McKinnon et al., 2007) were generated as shown in Fig. 6. The H \cdots H interaction with a contribution of 32.1% has the biggest impact on the packing in the solid state. The C $\cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ bonds with 20.0%, $\mathrm{F} \cdots \mathrm{H}$ with $16.8 \%, \mathrm{~S} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S}$ with $14.1 \%, \mathrm{~N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$ with $3.3 \%, \mathrm{~N} \cdots \mathrm{I} / \mathrm{I} \cdots \mathrm{N}$ with $3.2 \% \mathrm{C} \cdots \mathrm{I} / \mathrm{I} \cdots \mathrm{C}$ with 2.2% or $\mathrm{N} \cdots \mathrm{C} /$ $\mathrm{C} \cdots \mathrm{N}$ with 1.5% are less impactful in comparison.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.45, last update June 2024; Groom et al., 2016) for 1,2,4,5-tetrafluoro-3,6-diiodobenzene yielded 802 hits. In 261 structures, the iodo atom interacts with a pyridine nitrogen atom with $\mathrm{N} \cdots$. I distances ranging from 2.662 to $3.511 \AA$ and averaging $2.911 \AA$. The mean $\mathrm{C}-\mathrm{I} \cdots \mathrm{N}$ angle is 171.9°.

A search for the keywords halogen bond, thioether and pyridine leads to a structure of 1,2,4,5-tetrafluoro-3,6-diiodo-benzene-4-(pyridin-4-ylsulfanyl)pyridine (1/1) (Arman et al., 2010). The variety of publications containing halogen bonds is quite large and includes the previously discussed strong halogen bond with quinuclidine (Otte et al., 2023) or halogen bonds with carbonyl hypoiodites as bond donors (Yu et al., 2021). The structural motif of thioethers is also well known, especially in the context of ligand chemistry with silicon-based thioethers for palladium (Schneider et al., 2023; Bastero et al., 2002) or silver (Nomiya et al., 1996; Gaudillat et al., 2023). Sulfonium-based ionic liquids (Zhao et al., 2007) and other systems like (Z)-3-allyl-5-(4-nitrobenzylidene)-2-sulfanyl-idene-1,3-thiazolidin-4-one (Moreno et al., 2024) are good examples of compounds with allyl groups.

5. Synthesis and crystallization

Complex 5 was synthesized by adding 1,2,4,5-tetrafluoro-3,6diiodobenzene ($293.96 \mathrm{~g} \mathrm{~mol}^{-1}, 0.33 \mathrm{mmol}, 0.5$ eq., 97.19 mg) to a solution of 2-(allylthio)pyridine $\left(151.23 \mathrm{~g} \mathrm{~mol}^{-1}\right.$, $0.66 \mathrm{mmol}, 1.0$ eq., $100,00 \mathrm{mg}$) and pentane at room temperature. The solution was stirred for one h and crystallized at 193.15 K .
${ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- d_{6}, ppm): $8.24(d t, J=4.9,1.4$, $\left.2 \mathrm{H}, \mathrm{C}_{5} H_{4} \mathrm{~N}\right), 6.80\left(d d t, J=27.0,6.3,1.6,4 \mathrm{H}, \mathrm{C}_{5} H_{4} \mathrm{~N}\right), 6.41-6.34$ $\left(m, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right), 5.95\left(d d d, J=16.9,10.1,1.5,2 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}\right)$, $5.15\left(d q, J=16.9,1.5,2 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}\right), 4.93(d t, J=10.0,1.3$, $\left.2 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}\right), 3.85\left(d q, J=6.9,1.3,4 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR (101 MHz , benzene- d_{6}, ppm): $159.10\left(C_{5} \mathrm{H}_{4} \mathrm{~N}\right)$, $149.60\left(C_{5} \mathrm{H}_{4} \mathrm{~N}\right), 135.66\left(C_{6} \mathrm{~F}_{4} \mathrm{I}_{2}\right), 134.68\left(C_{6} \mathrm{~F}_{4} \mathrm{I}_{2}\right), 122.28$ $\left(C_{5} \mathrm{H}_{4} \mathrm{~N}\right), 119.23\left(C \mathrm{H}-\mathrm{CH}_{2}\right), 117.15\left(C_{5} \mathrm{H}_{4} \mathrm{~N}\right), 65.93\left(C_{5} \mathrm{H}_{4} \mathrm{~N}\right)$, $32.88\left(\mathrm{CH}-\mathrm{CH}_{2}\right), 15.60\left(\mathrm{C}_{6} \mathrm{~F}_{4} \mathrm{I}_{2}\right), 1.42\left(\mathrm{~S}-\mathrm{CH}_{2}\right)$.
${ }^{19} \mathrm{~F}$ NMR (377 MHz , benzene- d_{6}, ppm): $-118.86\left(\mathrm{C}_{6} F_{4} \mathrm{I}_{2}\right)$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Hydrogen atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.95-1.00 \AA)$ and were refined using a
riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for CH_{2} and CH hydrogen atoms.

References

Arman, H. D., Kaulgud, T. \& Tiekink, E. R. T. (2010). Acta Cryst. E66, o2683.
Bastero, A., Claver, C. \& Ruiz, A. (2002). Catal. Lett. 82, 85-88.
Baudin, J. B., Hareau, G., Julia, S. A. \& Ruel, O. (1993). Bull. Soc. Chim. Fr. 130, 78-856.
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Gaudillat, Q., Krupp, A., Zwingelstein, T., Humblot, V., Strohmann, C., Jourdain, I., Knorr, M. \& Viau, L. (2023). Dalton Trans. 52, 5859-5864.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Lide (2005). Editor. CRC Handbook of Chemistry and Physics, Internet Version. Boca Raton, FL: CRC Press.
McKinnon, J. J., Jayatilaka, D. \& Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.
Mitzel, N. W. \& Losehand, U. (2004). Z. Naturforsch. B, 59, 635.
Moreno, B., Jourdain, I., Knorr, M., Boudriga, S., Strohmann, C. \& Schrimpf, T. (2024). Molbank, M1783.
Nomiya, K., Onoue, K. I., Kondoh, Y., Kasuga, N. C., Nagano, H., Oda, M. \& Sakuma, S. (1996). Polyhedron, 15, 2303.
Nyburg, S. C. \& Faerman, C. H. (1985). Acta Cryst. B41, 274-279.
Otte, F., Kleinheider, J., Grabe, B., Hiller, W., Busse, F., Wang, R., Kreienborg, N. M., Merten, C., Englert, U. \& Strohmann, C. (2023). ACS Omega, 8, 21531-21539.
Schneider, P. E., Wattenberg, J., Wappelhorst, J. F., Knorr, M. \& Strohmann, C. (2023). Z. Anorg. Allge Chem. 649, e202300185.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spackman, M. A. \& Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.

Table 1
Experimental details.
Crystal data Chemical formula M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. \& Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.
Strohmann, C., Lehmen, K. \& Dilsky, S. (2006). J. Am. Chem. Soc. 128, 8102-8103.
Yu, S., Ward, J. S., Truong, K. N. \& Rissanen, K. (2021). Angew. Chem. Int. Ed. 60, 20739-20743.
Zhao, D., Fei, Z., Ang, W. H. \& Dyson, P. J. (2007). Int. J. Mol. Sci. 8, 304-315.

supporting information

Crystal structure and Hirshfeld surface analysis of a halogen bond between 2-(allylthio)pyridine and 1,2,4,5-tetrafluoro-3,6-diiodobenzene

Robin Risken, Tobias Schrimpf, Franziska Dorothea Klotz and Carsten Strohmann

Computing details

Bis[2-(prop-2-en-1-ylsulfanyl)pyridine] 1,2,4,5-tetrafluoro-3,6-diiodobenzene

Crystal data

$2 \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NS} \cdot \mathrm{C}_{6} \mathrm{~F}_{4} \mathrm{I}_{2}$
$M_{r}=704.30$
Monoclinic, $P 2_{1} / c$
$a=11.184$ (2) \AA
$b=5.2951$ (6) \AA
$c=20.544$ (3) \AA
$\beta=96.137$ (6) ${ }^{\circ}$
$V=1209.7(3) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: microfocus sealed X-ray tube, Incoatec $\mathrm{I} \mu \mathrm{s}$
Mirror optics monochromator
Detector resolution: 7.9 pixels mm^{-1}
ω and φ scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.047$
$S=1.12$
5719 reflections
181 parameters
0 restraints

$$
F(000)=676
$$

$D_{\mathrm{x}}=1.934 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9219 reflections
$\theta=4.0-28.0^{\circ}$
$\mu=2.82 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, colourless
$0.25 \times 0.23 \times 0.07 \mathrm{~mm}$
$T_{\text {min }}=0.468, T_{\text {max }}=0.567$
91740 measured reflections
5719 independent reflections
5342 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=36.0^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=-17 \rightarrow 18$
$k=-8 \rightarrow 8$
$l=-33 \rightarrow 33$

Primary atom site location: dual Hydrogen site location: difference Fourier map All H -atom parameters refined $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0187 P)^{2}+0.9301 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.91 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.73$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
I1	$0.13965(2)$	$0.45457(2)$	$0.60714(2)$	$0.01556(2)$
S1	$0.40259(3)$	$0.94040(6)$	$0.63185(2)$	$0.02017(6)$
F1	$-0.07102(9)$	$0.05135(19)$	$0.62168(4)$	$0.02486(17)$
F2	$0.17962(9)$	$0.28759(19)$	$0.45993(5)$	$0.02646(18)$
N1	$0.22969(11)$	$0.8241(2)$	$0.70166(6)$	$0.01990(19)$
C10	$-0.03525(12)$	$0.0315(2)$	$0.56133(6)$	$0.01663(19)$
C5	$0.34960(12)$	$1.1694(3)$	$0.74802(7)$	$0.0211(2)$
C7	$0.17783(15)$	$1.0299(3)$	$0.79911(7)$	$0.0245(3)$
C11	$0.09192(11)$	$0.1455(2)$	$0.48116(6)$	$0.01691(19)$
C9	$0.05773(11)$	$0.1819(2)$	$0.54352(6)$	$0.01517(18)$
C6	$0.27543(14)$	$1.1910(3)$	$0.79795(7)$	$0.0248(3)$
C4	$0.32194(11)$	$0.9853(2)$	$0.70003(6)$	$0.01659(19)$
C8	$0.15980(14)$	$0.8479(3)$	$0.75070(7)$	$0.0236(2)$
C1	$0.49191(14)$	$1.2265(3)$	$0.63106(8)$	$0.0259(3)$
C2	$0.53357(17)$	$1.2510(4)$	$0.56476(9)$	$0.0324(3)$
C3	$0.64683(17)$	$1.2469(5)$	$0.55287(9)$	$0.0376(4)$
H3A	$0.666(3)$	$1.271(6)$	$0.5084(14)$	$0.057(8)^{*}$
H8	$0.091(2)$	$0.735(5)$	$0.7506(12)$	$0.037(6)^{*}$
H5	$0.418(2)$	$1.273(5)$	$0.7475(11)$	$0.035(6)^{*}$
H7	$0.126(2)$	$1.040(5)$	$0.8317(14)$	$0.042(7)^{*}$
H1A	$0.441(2)$	$1.372(6)$	$0.6366(13)$	$0.042(7)^{*}$
H2	$0.463(2)$	$1.259(6)$	$0.5245(13)$	$0.050(8)^{*}$
H6	$0.291(2)$	$1.313(5)$	$0.8299(11)$	$0.033(6)^{*}$
H1B	$0.564(2)$	$1.215(5)$	$0.6661(11)$	$0.032(6)^{*}$
H3B	$0.714(2)$	$1.232(5)$	$0.5891(12)$	$0.039(7)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.01687(4)$	$0.01338(3)$	$0.01582(3)$	$0.00101(2)$	$-0.00106(2)$	$-0.00098(2)$
S1	$0.02284(14)$	$0.01741(13)$	$0.02085(13)$	$0.00025(11)$	$0.00504(11)$	$-0.00131(11)$
F1	$0.0313(4)$	$0.0287(5)$	$0.0160(3)$	$-0.0073(4)$	$0.0087(3)$	$-0.0051(3)$
F2	$0.0292(4)$	$0.0281(4)$	$0.0235(4)$	$-0.0131(4)$	$0.0095(3)$	$-0.0036(3)$
N1	$0.0244(5)$	$0.0172(5)$	$0.0182(4)$	$-0.0040(4)$	$0.0027(4)$	$-0.0015(4)$
C10	$0.0192(5)$	$0.0171(5)$	$0.0139(4)$	$-0.0002(4)$	$0.0031(4)$	$-0.0016(4)$
C5	$0.0220(5)$	$0.0191(5)$	$0.0217(5)$	$-0.0024(4)$	$-0.0004(4)$	$-0.0039(4)$
C7	$0.0285(6)$	$0.0265(6)$	$0.0192(5)$	$-0.0014(5)$	$0.0056(5)$	$-0.0027(5)$
C11	$0.0185(5)$	$0.0162(5)$	$0.0163(5)$	$-0.0021(4)$	$0.0028(4)$	$-0.0003(4)$
C9	$0.0166(4)$	$0.0137(4)$	$0.0148(4)$	$0.0009(4)$	$-0.0001(3)$	$-0.0005(4)$
C6	$0.0298(6)$	$0.0234(6)$	$0.0210(6)$	$-0.0018(5)$	$0.0019(5)$	$-0.0066(5)$
C4	$0.0180(5)$	$0.0148(5)$	$0.0165(5)$	$0.0008(4)$	$-0.0001(4)$	$0.0002(4)$
C8	$0.0269(6)$	$0.0240(6)$	$0.0202(5)$	$-0.0068(5)$	$0.0047(4)$	$-0.0017(5)$
C1	$0.0276(6)$	$0.0232(6)$	$0.0281(7)$	$-0.0057(5)$	$0.0082(5)$	$-0.0014(5)$
C2	$0.0346(8)$	$0.0356(9)$	$0.0274(7)$	$-0.0067(7)$	$0.0047(6)$	$0.0066(6)$
C3	$0.0336(8)$	$0.0541(12)$	$0.0263(7)$	$-0.0108(8)$	$0.0090(6)$	$-0.0044(8)$

Geometric parameters (A, ${ }^{\circ}$)

I1-N1	2.8628 (12)	C7-C6	1.387 (2)
I1-C9	2.0921 (12)	C7-C8	1.384 (2)
S1-C4	1.7613 (14)	C7-H7	0.94 (3)
S1-C1	1.8158 (16)	C11-C9	1.3891 (17)
F1-C10	1.3471 (15)	C6-H6	0.92 (2)
F2-C11	1.3452 (15)	C8-H8	0.97 (3)
N1-C4	1.3422 (17)	C1-C2	1.492 (2)
N1-C8	1.3454 (18)	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.97 (3)
C10-C11 ${ }^{\text {i }}$	1.3867 (18)	C1-H1B	1.03 (2)
C10-C9	1.3895 (18)	C2-C3	1.316 (3)
C5-C6	1.391 (2)	$\mathrm{C} 2-\mathrm{H} 2$	1.09 (3)
C5-C4	1.3976 (18)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.97 (3)
C5-H5	0.94 (3)	C3-H3B	1.01 (2)
C9-I1-N1	173.90 (4)	C7-C6- 55	119.64 (13)
C4-S1-C1	102.91 (7)	C7-C6-H6	120.4 (15)
C4-N1-I1	129.30 (9)	N1-C4-S1	113.22 (10)
C4-N1-C8	117.96 (12)	N1-C4-C5	122.60 (12)
C8-N1-I1	112.43 (9)	C5-C4-S1	124.17 (10)
F1-C10-C11 ${ }^{\text {i }}$	118.13 (11)	N1-C8-C7	123.47 (14)
F1-C10-C9	120.12 (11)	N1-C8-H8	117.6 (15)
C11-- $10-\mathrm{C} 9$	121.74 (11)	C7-C8-H8	118.9 (15)
C6-C5-C4	118.22 (13)	S1-C1-H1A	109.2 (16)
C6-C5-H5	120.7 (15)	S1-C1-H1B	109.7 (14)
C4-C5-H5	121.0 (15)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	107.84 (12)
C6-C7- 77	122.0 (17)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	106.4 (16)
C8-C7-C6	118.05 (14)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.3 (13)
C8-C7-H7	119.9 (17)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	113 (2)
$\mathrm{F} 2-\mathrm{C} 11-\mathrm{C} 10^{\text {i }}$	118.29 (11)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	115.2 (15)
F2-C11-C9	120.24 (11)	C3-C2-C1	124.68 (17)
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 9$	121.45 (11)	C3-C2-H2	120.0 (15)
C10-C9-I1	121.41 (9)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.0 (17)
C11-C9-I1	121.77 (9)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	121.7 (14)
C11-C9-C10	116.81 (11)	$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	119 (2)
C5-C6-H6	120.0 (15)		
$\mathrm{I} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{S} 1$	-4.91 (15)	C6-C5-C4-S1	177.45 (11)
$\mathrm{I} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	174.94 (10)	C6-C5-C4-N1	-2.4 (2)
$\mathrm{I} 1-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	-173.81 (13)	C6-C7-C8-N1	-2.1 (2)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-117.0 (2)	C4-S1-C1-C2	-162.02 (12)
F1-C10-C9-I1	-2.97 (17)	C4-N1-C8-C7	0.3 (2)
F1-C10-C9-C11	178.18 (12)	C4-C5-C6-C7	0.5 (2)
F2-C11-C9-I1	-0.19 (17)	C8-N1-C4-S1	-177.88 (11)
F2-C11-C9-C10	178.65 (12)	C8-N1-C4-C5	2.0 (2)
C10- ${ }^{\text {C }} 11-\mathrm{C} 9-\mathrm{I} 1$	-178.42 (10)	C8-C7-C6-C5	1.6 (2)
C10-C11-C9-C10	0.4 (2)	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 4-\mathrm{N} 1$	165.66 (10)

supporting information

$\mathrm{C} 11^{\mathrm{i}}-\mathrm{C} 10-\mathrm{C} 9-\mathrm{I} 1$	$178.43(10)$	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5$	$-14.19(14)$
$\mathrm{C} 11^{\mathrm{i}}-\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 11$	$-0.4(2)$		

C11--C10-C9-C11
-0.4 (2)
Symmetry code: (i) $-x,-y,-z+1$.

