CRYSTALLOGRAPHIC COMMUNICATIONS

Received 24 May 2024
Accepted 14 June 2024

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; redetermination; bismuth (V) fluoride.

CCDC reference: 2362790

Supporting information: this article has supporting information at journals.iucr.org/e

open $\begin{aligned} & \text { access }\end{aligned}$
Published under a CC BY 4.0 licence

Rerefinement of the crystal structure of BiF_{5}

Tobias Burghardt Wassermann and Florian Kraus*

Philipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Str. 4, 35032 Marburg, Germany. *Correspondence e-mail: f.kraus@uni-marburg.de

The crystal structure of bismuth pentafluoride, BiF_{5}, was rerefined from singlecrystal data. BiF_{5} crystallizes in the $\alpha-\mathrm{UF}_{5}$ structure type in the form of colorless needles. In comparison with the previously reported crystal-structure model [Hebecker (1971). Z. Anorg. Allg. Chem. 384, 111-114], the lattice parameters and fractional atomic coordinates were determined to much higher precision and all atoms were refined anisotropically, leading to a significantly improved structure model. The Bi atom (site symmetry $4 / m .$.) is surrounded by six F atoms in a distorted octahedral coordination environment. The $\left[\mathrm{BiF}_{6}\right]$ octahedra are corner-linked to form infinite straight chains extending parallel to [001]. Density functional theory (DFT) calculations at the PBE0/TZVP level of theory were performed on the crystal structure of BiF_{5} to calculate its IR and Raman spectra. These are compared with experimental data.

1. Chemical context

Bismuth(V) fluoride was first synthesized in the year 1940 (von Wartenberg et al., 1940). Hebecker first determined its crystal structure in 1971 (Hebecker, 1971). During our studies of the chemistry of BiF_{5}, we rerefined its crystal structure on basis of single-crystal data and recorded its IR and Raman spectra.

2. Structural commentary

Bismuth(V) fluoride crystallizes in the tetragonal space group $I 4 / m$, Pearson symbol $t I 12$ and Wyckoff sequence $87 . h b a$. BiF_{5} adopts the $\alpha-\mathrm{UF}_{5}$ structure type and exhibits $\mathrm{Bi}-\mathrm{F}$ bond lengths of $1.941(4)(4 \times)$ and $2.1130(5) \AA(2 \times)$. The structure consists of chains of trans-corner-sharing $\left[\mathrm{BiF}_{6}\right]$ octahedra (point group symmetry $4 / m . . ;$ Fig. 1) running parallel to the c axis. The chains can be described by the Niggli formula ${ }_{\infty}^{1}\left[\mathrm{BiF}_{4 / 1} \mathrm{~F}_{2 / 2}\right]$. The F 1 atom bridges adjacent Bi atoms in the straight chain. As expected, the axial $\mathrm{Bi}-\mathrm{F} 1$ bond lengths are longer than the four equatorial $\mathrm{Bi}-\mathrm{F} 2$ bond lengths to the terminal ligands. Sections of the crystal structure showing the chains are shown in Fig. 2.
van der Waals contacts exist between neighbouring chains with interatomic distances of $2.944(5) \AA\left(\mathrm{F} 2 \cdots \mathrm{~F} 2^{\mathrm{v}}\right)$ and 2.952 (5) $\AA\left(\mathrm{F} 1 \cdots \mathrm{~F}^{\mathrm{V}}\right)$ [symmetry code: (v) $\frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}+z$). Compared with the distances reported previously (Hebecker, 1971), these are $0.12 \AA$ shorter for $d(\mathrm{~F} 2 \cdots \mathrm{~F} 2)$ and $0.05 \AA$ longer for $d(\mathrm{~F} 1 \cdots \mathrm{~F} 2)$.

Regarding the crystal packing, a Bi atom is surrounded by 14 other Bi atoms in the shape of a distorted rhombic dodecahedron, which would correspond to the arrangement of the atoms in the W structure type. However, the rhombic dodecahedron is compressed due to the shorter intrachain and the longer interchain $\mathrm{Bi} \cdots \mathrm{Bi}$ distances. The F 1 atoms reside in

Figure 1
The coordination sphere of the Bi atom in the crystal structure of BiF_{5}. Displacement ellipsoids are drawn at the 70% probability level. [Symmetry codes: (i) $x, y, z-1$; (ii) $y,-x, z$; (iii) $-y, x, z$; (iv) $-x,-y, z$.]
the octahedral voids of the (idealized) body-centered cubic packing, while the F2 atoms are strongly displaced from these as the octahedra are rotated around the c axis (Fig. 2).

3. Vibrational spectra

IR and Raman spectra were recorded on a polycrystalline sample of BiF_{5} at 293 K . Quantum-chemical calculations at the DFT-PBE0/TZVP level of theory (Dovesi et al., 2018; Zicovich-Wilson et al., 2004; Pascale et al., 2004; Maschio et al., 2013) were performed on basis of the crystal structure of BiF_{5} to obtain the theoretical IR and Raman spectra. The recorded and calculated spectra are in good agreement, as shown in Figs. 3 and 4. A comparison of the observed and calculated bands is given in Table 1.

Figure 2
Crystal structure of BiF_{5} viewed along the b axis (left) and the c axis (right). The $\left[\mathrm{BiF}_{6}\right]$ octahedra are shown in grey.

Table 1
Band positions (cm^{-1}) and band assignment of the IR and Raman spectra of solid BiF_{5} based on the calculated spectrum.
$\nu=$ stretching vibration, $\delta=$ bending vibration, $s=$ symmetric, $a s=$ asymmetric, - = not observed.

IR	Raman			
$v_{\text {calc }}$	$v_{\text {obs }}$	$v_{\text {calc }}$	$v_{\text {obs }}$	Assignment
630	618	-	-	
-	-	607	596,593	$v_{\text {as }}(\mathrm{Bi}-\mathrm{F} 2)+\delta(\mathrm{Bi}-\mathrm{F} 1-\mathrm{Bi})$
-	-	578	571,567	$v_{\text {as }}(\mathrm{Bi}-\mathrm{F} 2)$
453	441	-	-	$v_{\text {as }}\left(\mathrm{Bi}-\mathrm{F}_{\mu}\right)$
-	-	256	254	$\delta(\mathrm{~F} 2-\mathrm{Bi}-\mathrm{F} 2)$
202	-	-	-	$\delta(\mathrm{F}-\mathrm{Bi}-\mathrm{F})$
168	-	-	-	$\delta(\mathrm{F}-\mathrm{Bi}-\mathrm{F})$
-	-	177	164	$\delta(\mathrm{~F} 2-\mathrm{Bi}-\mathrm{F} 1)$
125	-	-	-	$\delta(\mathrm{F} 2-\mathrm{Bi}-\mathrm{F} 1)+v_{a s}(\mathrm{Bi}-\mathrm{F} 1)$

4. Synthesis and crystallization

Bismuth(III) fluoride ($1.05 \mathrm{~g}, 3.95 \mathrm{mmol}$) was loaded in a corundum boat and placed inside a tube furnace. By passing diluted fluorine ($\mathrm{F}_{2} / \mathrm{Ar}, 10: 90 \mathrm{v} / \mathrm{v}$, Solvay) over the submitted

Figure 3
Recorded IR spectrum of crystalline BiF_{5} in black and calculated IR absorbance spectrum of solid BiF_{5} at the DFT-PBE0/TZVP level of theory in red. No bands were observed in the region from 1000 to $4000 \mathrm{~cm}^{-1}$.

Figure 4
Recorded Raman spectrum (532 nm laser) of crystalline BiF_{5} in black, calculated Raman spectrum of solid BiF_{5} at the DFT-PBE0/TZVP level of theory in red. No bands were observed in the region from 1000 to $4000 \mathrm{~cm}^{-1}$.
material, bismuth (V) fluoride was synthesized at 723 K , using a heating rate of $4 \mathrm{~K} \mathrm{~min}^{-1}$ from room temperature to 723 K and a holding time of 10 h while diluted fluorine was passed with a flow rate of 5 standard cubic centimeters per minute. After cooling down to room temperature, colorless needles of bismuth(V) fluoride ($601 \mathrm{mg}, 1.98 \mathrm{mmol}, 57 \%$) were isolated.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

We thank the X-ray facilities of Dr Sergei I. Ivlev for their great service. We thank Solvay for the kind donation of fluorine. We thank Dr Tambornino for drawing our attention to BiF_{5}.

References

Brandenburg, K. \& Putz, H. (2022). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Dovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C. M., Civalleri, B., Maschio, L., Rérat, M., Casassa, S., Baima, J., Salustro, S. \& Kirtman, B. (2018). WIREs Comput. Mol. Sci. 8, e1360.
Hebecker, C. (1971). Z. Anorg. Allg. Chem. 384, 111-114.
Hübschle, C. B., Sheldrick, G. M. \& Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.
Koziskova, J., Hahn, F., Richter, J. \& Kozisek, J. (2016). Acta Chim. Slov. 9, 136-140.
Maschio, L., Kirtman, B., Rérat, M., Orlando, R. \& Dovesi, R. (2013). J. Chem. Phys. 139, 164102.

Pascale, F., Zicovich-Wilson, C. M., López Gejo, F., Civalleri, B., Orlando, R. \& Dovesi, R. (2004). J. Comput. Chem. 25, 888-897.

Table 2
Experimental details.
Crystal data

Chemical formula	BiF_{5}
$M_{\text {r }}$	303.98
Crystal system, space group	Tetragonal, $14 / \mathrm{m}$
Temperature (K)	100
$a, c(\AA)$	6.4439 (9), 4.2260 (9)
$V\left(\AA^{3}\right)$	175.48 (6)
Z	2
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	49.84
Crystal size (mm)	$0.31 \times 0.13 \times 0.11$
Data collection	
Diffractometer	Stoe IPDS 2 T
Absorption correction	Multi-scan (LANA; Koziskova et al., 2016)
$T_{\text {min }}, T_{\text {max }}$	0.006, 0.078
No. of measured, independent and observed $[I>2 \sigma(I)$] reflections	1134, 174, 174
$R_{\text {int }}$	0.027
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.742
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.016, $0.042,1.12$
No. of reflections	174
No. of parameters	12
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.90, -1.38

Computer programs: X-AREA (Stoe, 2020), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), DIAMOND (Brandenburg \& Putz, 2022), publCIF (Westrip, 2010) and ShelXle (Hübschle et al., 2011).

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Stoe (2020). X-AREA. Stoe \& Cie, Darmstadt, Germany.
Wartenberg, H. von (1940). Z. Anorg. Allg. Chem. 244, 337-347.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zicovich-Wilson, C. M., Pascale, F., Roetti, C., Saunders, V. R., Orlando, R. \& Dovesi, R. (2004). J. Comput. Chem. 25, 1873-1881.

supporting information

Acta Cryst. (2024). E80 [https://doi.org/10.1107/S2056989024005759]

Rerefinement of the crystal structure of BiF_{5}

Tobias Burghardt Wassermann and Florian Kraus

Computing details

Bismuth pentafluoride

Crystal data

BiF_{5}
$M_{r}=303.98$
Tetragonal, $14 / m$
$a=6.4439$ (9) Å
$c=4.2260(9) \AA$
$V=175.48(6) \AA^{3}$
$Z=2$
$F(000)=256$

Data collection

Stoe IPDS 2T diffractometer
Radiation source: sealed X-ray tube, 12×0.4 mm long-fine focus
Detector resolution: 6.67 pixels mm^{-1}
rotation method, ω scans
Absorption correction: multi-scan
(LANA; Koziskova et al., 2016)
$T_{\min }=0.006, T_{\text {max }}=0.078$
$D_{\mathrm{x}}=5.753 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5333 reflections
$\theta=8.8-60.0^{\circ}$
$\mu=49.84 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, colorless
$0.31 \times 0.13 \times 0.11 \mathrm{~mm}$

1134 measured reflections
174 independent reflections
174 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=31.8^{\circ}, \theta_{\text {min }}=4.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-9 \rightarrow 9$
$l=-5 \rightarrow 6$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.042$
$S=1.12$
174 reflections
12 parameters
0 restraints
Primary atom site location: dual

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0237 P)^{2}+2.0256 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.90 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.38 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL2018/3 } \\
& \quad\left(\mathrm{Sheldrick}^{-3} 2015 \mathrm{~b}\right), \\
& \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4} \\
& \text { Extinction coefficient: } 0.0080(17)
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Bi	0.000000	0.000000	0.000000	$0.0199(2)$
F1	0.000000	0.000000	0.500000	$0.0255(15)$
F2	$0.2859(7)$	$0.0950(7)$	0.000000	$0.0275(8)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Bi	$0.0225(2)$	$0.0225(2)$	$0.0147(2)$	0.000	0.000	0.000
F1	$0.029(2)$	$0.029(2)$	$0.018(3)$	0.000	0.000	0.000
F2	$0.0232(17)$	$0.0320(19)$	$0.0274(19)$	$-0.0031(14)$	0.000	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Bi}-\mathrm{F} 2^{\text {i }}$	1.941 (4)	$\mathrm{Bi}-\mathrm{F} 2$	1.941 (4)
$\mathrm{Bi}-\mathrm{F} 2^{\text {ii }}$	1.941 (4)	$\mathrm{Bi}-\mathrm{F} 1$	2.1130 (5)
$\mathrm{Bi}-\mathrm{F} 2{ }^{\text {iii }}$	1.941 (4)	$\mathrm{Bi}-\mathrm{F} 1^{\text {iv }}$	2.1130 (5)
$\mathrm{F} 2^{\mathrm{i}}-\mathrm{Bi}-\mathrm{F} 2^{\text {ii }}$	90.0	$\mathrm{F} 2{ }^{\text {iii- }}$ - $\mathrm{Bi}-\mathrm{F} 1$	90.0
$\mathrm{F} 2 \mathrm{i}-\mathrm{Bi}-\mathrm{F} 2{ }^{\text {iii }}$	90.0	$\mathrm{F} 2-\mathrm{Bi}-\mathrm{F} 1$	90.0
$\mathrm{F} 2{ }^{\text {ii }}$ - $\mathrm{Bi}-\mathrm{F} 2^{\text {iii }}$	180.0 (3)	$\mathrm{F} 2 \mathrm{i}-\mathrm{Bi}-\mathrm{F} 1^{\text {iv }}$	90.0
$\mathrm{F} 2-\mathrm{Bi}-\mathrm{F} 2$	180.0	$\mathrm{F} 2{ }^{\text {ii }}-\mathrm{Bi}-\mathrm{F} 1^{\mathrm{iv}}$	90.0
$\mathrm{F} 2{ }^{\text {iii }}$ - $\mathrm{Bi}-\mathrm{F} 2$	90.0	$\mathrm{F} 2{ }^{\text {iii }}-\mathrm{Bi}-\mathrm{F} 1^{\text {iv }}$	90.0
$\mathrm{F} 2{ }^{\text {iii }}-\mathrm{Bi}-\mathrm{F} 2$	90.0	$\mathrm{F} 2-\mathrm{Bi}-\mathrm{F} 1^{\text {iv }}$	90.0
$\mathrm{F} 2-\mathrm{Bi}-\mathrm{F} 1$	90.0	$\mathrm{F} 1-\mathrm{Bi}-\mathrm{F}{ }^{\text {iv }}$	180.0
F2 ${ }^{\text {iii }}$ - $\mathrm{Bi}-\mathrm{F} 1$	90.0	$\mathrm{Bi}^{\mathrm{v}}-\mathrm{F} 1-\mathrm{Bi}$	180.0

Symmetry codes: (i) $-x,-y,-z$; (ii) $y,-x,-z$; (iii) $-y, x, z$; (iv) $x, y, z-1$; (v) $x, y, z+1$.

Fractional atomic coordinates and isotropic displacement parameters (\AA^{2}).

	x	y	z	$U_{\text {iso }}$
Bi	0	0	0	$0.0199(2)$
F 1	0	0	$1 / 2$	$0.0255(15)$
F 2	$0.2859(7)$	$0.0950(7)$	0	$0.0275(8)$

