

ISSN 2056-9890

Received 19 July 2024 Accepted 7 August 2024

Edited by T. Akitsu, Tokyo University of Science, Japan

Keywords: crystal structure; cyclic decapeptide; gramicidin s; pyrrolidine ring; cis/trans-isomers; β -sheet.

CCDC references: 2376129; 2376128

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Puckering effects of 4-hydroxy-L-proline isomers on the conformation of ornithine-free Gramicidin S

Akiko Asano, Kanako Nakayama, Sakura Okada, Takuma Kato and Mitsunobu Doi*

Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 590-1094, Japan. *Correspondence e-mail: mitsunobu.doi@ompu.ac.jp

The cyclic peptide cyclo(Val-Leu-D-Phe-Pro)₂ (peptide 1) was specifically designed for structural chemistry investigations, drawing inspiration from Gramicidin S (GS). Previous studies have shown that Pro residues within 1 adopt a down-puckering conformation of the pyrrolidine ring. By incorporating fluoride-Pro with 4-trans/cis-isomers into 1, an up-puckering conformation was successfully induced. In the current investigation, introducing hydroxyprolines with 4-*trans/cis*-isomer configurations (tHyp/cHyp) into 1 gave cyclo(Val-Leu-Leu-D-Phe-tHyp)₂ methanol disolvate monohydrate, C₆₂H₉₄N₁₀O₁₂·2CH₄O·H₂O (4), and cyclo(Val-Leu-Leu-D-Phe-cHyp)₂ monohydrate, $C_{62}H_{94}N_{10}O_{12}H_{2}O$ (5), respectively. However, the puckering of 4 and 5 remained in the down conformation, regardless of the geometric position of the hydroxyl group. Although the backbone structure of 4 with *trans*-substitution was asymmetric, the asymmetric backbone of 5 with cis-substitution was unexpected. It is speculated that the anticipated influence of stress from the geometric positioning, which was expected to affect the puckering, may have been mitigated by interactions between the hydroxyl groups of hydroxyproline, the solvent molecules, and peptides.

1. Chemical context

Gramicidin S (GS) is a cyclic decapeptide (Gause & Brazhnikova, 1944), forming intramolecular sheet and turn structures (Hodgkin & Oughton, 1957; Schmidt et al., 1957). Its chemical structure exhibits C2 symmetry, featuring a repeated sequence of Val-Orn-Leu-D-Phe-Pro (Balasubramanian, 1967). Our focus has been on investigating cyclo(Val-Leu-Leu-D-Phe-Pro)₂ (peptide 1), which mimics the structural characteristics of GS and facilitates structural analysis (Asano et al., 2019, 2021). This is achieved by substituting the Orn residue with Leu to reduce interactions with solvent molecules. In previous crystal structures of GS derivatives, the pyrrolidine ring of Pro consistently exhibited a down-puckering conformation (Doi et al., 2001; Llamas-Saiz et al. 2007; Asano & Doi, 2019). To explore this further, we introduced a geometric isomer of 4-fluoride Pro into peptide 1, examining its impact on Pro puckering and structure (Asano et al., 2023). Notably, derivative 2 containing 4-trans-fluoro-Pro (tFPro) displayed an up-puckering for the first time, while derivative 3 with 4-cis-fluoro-Pro (cFPro) retained the conventional downpuckering. In this study, we introduced 4-trans-hydroxyproline (tHyp) and 4-cis-hydroxyproline (cHyp) into peptide 1, resulting in derivatives 4 and 5, respectively. We compared their structures with fluoride-Pro derivatives.

2. Structural commentary

Fig. 1 illustrates the structures of **4** and **5**, which have three intramolecular hydrogen bonds (Table 1, Fig. 2) [**4**: N31···O62 = 2.838 (5), N61···O32 = 3.048 (5) and N81···O12 = 2.905 (4) Å, **5**: N11···O82 = 3.012 (2), N31···O62 = 2.985 (2) and N81···O12 = 2.831 (2) Å], forming a sheet structure. Additionally, two bends are observed (D-Phe-Pro moieties), one forming a β -turn of type II', while the other is not classed

Table 1	
Hydrogen-bonding geometry (Å, °)	

$D - H \cdot \cdot \cdot A$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
4			
β -sheet			
N31-H31···O62	2.01	2.838 (5)	162
N61-H61···O32	2.22	3.048 (5)	160
N81-H81···O12	2.19	2.905 (4)	140
Intermolecular			
$N21 - H21 \cdot \cdot \cdot O52^{i}$	2.25	3.090 (4)	165
$N41 - H41 \cdots O72^{i}$	2.13	2.966 (5)	165
$N71 - H71 \cdot \cdot \cdot O22^{ii}$	1.97	2.818 (4)	168
$O104 - H10E \cdots O102^{iii}$	2.06	2.869 (5)	168
Solvents relating			
$O54-H54\cdots O2M$	1.99	2.725 (9)	149
$O1W - H2W \cdot \cdot \cdot O54$	2.01	2.847 (7)	163
$O1W - H1W \cdot \cdot \cdot O102^{ii}$	2.03	2.927 (6)	178
$O1M - H1M \cdot \cdot \cdot O42$	2.03	2.831 (5)	166
$O2M - H2MA \cdots O82^{iv}$	1.99	2.727 (8)	144
5			
β-sheet			
N11-H11···O82	2.19	3.012 (2)	159
N31-H31···O62	2.19	2.985 (2)	155
N81-H81···O12	1.98	2.831 (2)	173
Intermolecular			
$N21-H21\cdots O72^{v}$	2.03	2.870 (2)	164
$O54-H54A\cdots O42^{vi}$	1.94	2.759 (2)	177
$N71 - H71 \cdot \cdot \cdot O102^{vii}$	2.16	3.000 (2)	166
$N91 - H91 \cdots O22^{vii}$	2.13	2.949 (2)	159
$O104 - H10C \cdot \cdot \cdot O32^{viii}$	2.01	2.823 (3)	170
Solvent relating			
$O1W-H1\cdots O54$	2.03	2.870 (3)	163
$O1W-H2\cdots O52^{vi}$	2.12	2.950 (3)	148

Symmetry codes: (i) -x + 1; $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) $x + \frac{1}{2}$, $-y + \frac{3}{2}$, -z + 1; (iv) $-x + \frac{3}{2}$, -y + 1, $z - \frac{1}{2}$; (v) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (vi) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1; (vii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (viii) $-x + \frac{3}{2}$, -y + 1, $z + \frac{1}{2}$.

into any β -turn (Table 2). Such asymmetrical structures arise from outward-facing carbonyl groups [O82 (4) and O32 (5)],

Figure 1

Molecular structures of **4** and **5**. Hydrogen atoms are omitted for clarity. Oxygen atoms of solvent molecules are labeled.

Figure 2 Backbone structures of 4 and 5. Dotted lines show intramolecular hydrogen bonds.

research communications

Table 2

Selected torsion angles ($^{\circ}$).

Residue	4		5	
	φ	ψ	φ	ψ
Val1	-120.8(4)	142.0 (3)	-128.7(2)	118.2 (2)
Leu2	-129.5(4)	115.4 (4)	-99.6(2)	117.0 (2)
Leu3	-120.3(4)	97.3 (4)	-95.4(2)	-30.0(3)
D-Phe4	$56.3(5)^{a}$	$-124.7(4)^{a}$	-96.0(2)	-71.0(2)
t/cHyp5	$-82.9(5)^{a}$	9.2 $(6)^a$	-79.5(2)	-2.3(3)
Val6	-119.4(4)	120.1 (4)	-153.2(2)	146.4 (2)
Leu7	-98.0(4)	107.2 (4)	-122.5(2)	121.6 (2)
Leu8	-80.4(5)	-32.5(5)	-122.3(2)	91.1 (2)
D-Phe9	146.8 (4)	-92.4(4)	54.1 $(3)^a$	$-124.2(2)^{a}$
t/cHyp10	-77.2 (5)	-12.4(5)	$-82.0(3)^{a}$	$17.8(3)^{a}$

Note: (a) The angles are classed to Type II' β -turn, defined as $(\varphi, \psi) = (60, -120)_{i+1}$ and $(-80, 0)_{i+2}$.

Figure 3

Superimposition of backbone structures. The circled area highlights a region with noticeable drift in the backbone structures Molecular fittings were performed using *ProFit* (Martin, 2022) and gave the r.m.s. values of 0.099 and 0.498 Å for the **2/4** and **3/5** pairs, respectively.

preventing intramolecular hydrogen-bond formation (Fig. 2). Comparing the peptide backbones, peptides **2** and **4**, with a 4-*trans*-substitution of Pro, exhibit similar structures with the asymmetric peptide backbone (Fig. 3). Conversely, peptides **3** and **5**, with *cis*-substitution, display differences in backbone structure attributed to the asymmetric structure of **5**.

Table 3			
Puckering	parameters	(Å.	°)

Table 4

The puckering of the pyrrolidine ring and symmetry of the peptide backbone.

Compound	Puckering	Structure ^a	Compound	Puckering	Structure ^a
1	down	s+a			
2	up	а	4	down	а
3	down	s	5	down	а

Note: (a) The letters 'a' and 's' indicate the asymmetric and symmetric peptide rings, respectively.

Figure 4

Plot of chemical shift perturbation ($\Delta \delta$) of H α atoms. The data of **1** are referenced from the previous report (Asano *et al.*, 2019).

The puckering parameters (Table 3) reveal that both peptides 4 and 5 exhibit Hyp in the down-puckering ($C\beta$ -exo), which was somewhat unexpected. Table 4 outlines the puckering type and symmetry of the backbone structure. Peptides 1 and 3, with the pyrrolidine ring in the down-puckering mode, exhibit symmetric backbone structures (peptide 1 contains three independent molecules with coexisting structures), suggesting a preference for a symmetric backbone when the pyrrolidine ring is down-puckering. In contrast, peptide 2, with tFPro-induced up-puckering, displays an asymmetric backbone structure. Interestingly, in peptide 4 tHyp remains in the down-puckering form, indicating that the 4-trans-hydroxy group does not induce an up-puckering. Peptide 5, also downpuckered, shows an asymmetric backbone. No clear relationship between Hyp puckering and backbone structure was observed in 4 and 5.

Chemical shift perturbation analysis (Tamaki *et al.*, 2010) shows significant differences of $\Delta\delta$ in H α of peptides **2** and **3** with fluoride-Pro (Asano *et al.*, 2019). In constrast, peptides **4** and **5**, containing Hyp, exhibit similar $\Delta\delta$ values to **1** (Fig. 4),

i uckering pa	detering parameters (A,).							
Residue	$Q_2{}^a$	$\varphi_2^{\ a}$	χ1	χ ₂	χ ₃	χ4	θ	Туре
4								
tHyp5	0.398 (7)	81.8 (8)	35.8 (5)	-40.3(5)	28.8 (5)	-6.4(5)	-18.2(5)	down
tHyp10	0.335 (5)	81.1 (7)	30.5 (4)	-34.0(4)	24.1 (4)	-5.1(4)	-16.0(4)	down
5								
cHyp5	0.369(2)	84.1 (3)	32.5 (2)	-38.0(2)	28.1 (2)	-7.7(2)	-15.5(2)	down
cHyp10	0.379 (3)	85.7 (3)	33.0 (2)	-39.4 (2)	29.7 (2)	-9.0 (2)	-15.0 (2)	down

Note: (a) Defined by Cremer & Pople (1975). Puckering parameters were calculated using PLATON (Spek, 2020).

 Table 5

 Experimental details.

	4	5
Crystal data		
Chemical formula	$C_{62}H_{94}N_{10}O_{12}\cdot 2CH_4O\cdot H_2O$	$C_{62}H_{94}N_{10}O_{12}\cdot H_2O$
$M_{ m r}$	1253.57	1189.48
Crystal system, space group	Orthorhombic, $P2_12_12_1$	Orthorhombic, $P2_12_12_1$
Temperature (K)	100	100
a, b, c (Å)	11.8909 (1), 18.8562 (2), 30.3163 (3)	12.0818 (1), 19.0030 (2), 28.9218 (2)
$V(Å^3)$	6797.4 (1)	6640.17 (10)
Z	4	4
Radiation type	Cu Ka	Cu Ka
$\mu \text{ (mm}^{-1})$	0.71	0.68
Crystal size (mm)	$0.45 \times 0.16 \times 0.10$	$0.40 \times 0.10 \times 0.05$
Data collection		
Diffractometer	RIGAKU XtaLAB P200K	RIGAKU Xtalab P200K
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD, 2015)	Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T_{\min}, T_{\max}	0.618, 1.0	0.830, 1.000
No. of measured, independent and observed $[I >]$	42425, 12349, 11935	31704, 9942, 9728
$2\sigma(I)$] reflections		
R _{int}	0.026	0.023
θ_{\max} (°)	68.3	60.7
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.602	0.566
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.067, 0.203, 1.09	0.030, 0.082, 1.04
No. of reflections	12349	9942
No. of parameters	835	768
No. of restraints	29	3
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.98, -1.30	0.84, -0.21
Absolute structure	Flack x determined using 5149 quotients	Flack x determined using 4245 quotients
	$[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)	$[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)
Absolute structure parameter	0.08 (4)	0.00 (3)

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a) and SHELXL2017/1 (Sheldrick, 2015b).

suggesting minimal influence on the peptide backbone. This could be attributed to the 4-position substitution of Hyp, where hydroxy groups (O54 and O104) form hydrogen bonds. While peptides 4 and 5 form hydrogen bonds with solvent and neighboring molecules (Table 1), no notable differences

Petides 4 and 5 were synthesized using the conventional liquid-phase method (Izumiya et al., 1997). Crystals were grown from aqueous methanol solution. The NMR spectrum was measured in DMSO- d_6 on a Varian Unity Inova 500 MHz. ¹H NMR (p.p.m.): **4** δ 0.76 (*d*, *J* = 6.6 Hz,3*H*, Leu3- δ 1CH₃3), 0.78 (d, J = 6.6 Hz, Val1-γ1CH₃), 0.78 (d, J = 6.6 Hz,3H, Leu3- $\delta 2$ CH₃3), 0.79 (*d*, *J* = 6.6 Hz, Val1- $\gamma 2$ CH₃), 0.82 (*d*, *J* = 6.6 Hz, 3H, Leu2- δ 1CH₃), 0.82 (*d*, *J* = 6.6 Hz, 3H, Leu2- δ 2CH₃), 1.28 $(m, J = 1.28 \text{ Hz}, 1\text{H}, \text{Leu2-}\beta\text{CH}), 1.28 (m, 1\text{H}, \text{Leu3-}\beta\text{CH}),$ 1.41 (*m*, 1H, Leu3-β'CH), 1.41 (*m*, 1H, Leu3-γCH), 1.59 (non., J = 6.6 Hz, 1H, Leu2- γ CH), 1.66 (*m*, 1H, tHyp5- β CH), 1.71 $(m, J = 1.71 \text{ Hz}, 1\text{H}, \text{Leu2-}\beta'\text{CH}), 2.03 \ (m, 2\text{H}, \text{Val1-}\beta\text{CH}),$ 2.04 (*m*, 1H, tHyp5- β 'CH), 2.71 (*dd*, *J* = 9.9 Hz, 6.0 Hz, 1H, tHyp5-δCH), 2.83 (*dd*, *J* = 13.5 Hz, 7.2 Hz, 1H, D-Phe4-βCH), 2.90 (dd, J = 13.5 Hz, 7.2 Hz, 1H, D-Phe4- β 'CH), 3.71 (dd, J =9.9 Hz, 6.0 Hz, 1H, tHyp5-δ'CH), 4.13 (*m*, 1H, tHyp5-γCH), 4.30 (*dd*, J = 9.0 Hz, 6.6 Hz, 1H, Val1- α CH), 4.35 (*dd*, J =8.4 Hz, 3.6 Hz, 1H, tHyp5- α CH), 4.44 (q, J = 8.4 Hz, 1H, Leu3-

Figure 5

Hydrogen-bond networks relating to Hyp residues. (a) tHyp5 and tHyp10 of 4. (b) cHyp5 and (c) cHyp10 of 5.

 α CH), 4.45 (*q*, *J* = 7.2 Hz, 1H, D-Phe4- α CH), 4.58 (*q*, *J* = 7.8 Hz, 1H, Leu2- α CH), 5.12 (*d*, *J* = 3.6 Hz, 1H, tHyp5- γ OH), 7.15 (*br*, 1H, Val1-CONH), 7.22 (*m*, 3H, D-Phe4-ArH), 7.28 (*m*, 2H, D-Phe4-ArH), 8.27 (*d*, *J* = 8.4 Hz, 1H, Leu3-CONH), 8.30 (*d*, *J* = 7.2 Hz, 1H, D-Phe4-CONH), 8.36 (*d*, *J* = 7.8 Hz, 1H, Leu2-CONH).

5 δ 0.77 (*d*, *J* = 6.6 Hz, 3H, Leu3- δ 1CH₃), 0.78 (*d*, *J* = 6.6 Hz, 3H, Val1- γ 1CH₃), 0.79 (*d*, *J* = 6.6 Hz, 3H, Val1- γ 2CH₃), 0.80 $(d, J = 6.6 \text{ Hz}, 3\text{H}, \text{Leu}3-\delta 2\text{CH}_3), 0.85 (d, J = 6.6 \text{ Hz}, 3\text{H}, \text{Leu}2 \delta 1$ CH₃), 0.86 (*d*, J = 6.6 Hz, 3H, Leu2- $\delta 2$ CH₃), 1.28 (*m*, 1H, Leu2-BCH), 1.36 (m, 1H, Leu3-BCH), 1.48 (m, 1H, Leu3- β' CH), 1.48 (*m*, 1H, Leu3- γ CH), 1.60 (*m*, 1H, Leu2- γ CH), 1.80 (m, 1H, Leu2-β'CH), 1.86 (m, 1H, cHyp5-βCH), 1.94 (m, 1H, cHyp5- β 'CH), 1.97 (*m*, 1H, Val1- β CH), 2.79 (*dd*, J = 12.9 Hz, 6.0 Hz, 1H, D-Phe4- β CH), 2.89 (*dd*, J = 12.9 Hz, 8.4 Hz, 1H, D-Phe4-β'CH), 3.01 (m, 1H, cHyp5-δCH), 3.34 (m, 1H, cHyp5- δ 'CH), 3.92 (*br*, 1H, cHyp5- γ CH), 4.28 (*dd*, *J* = 9.6 Hz, 1.8 Hz, 1H, cHyp5-αCH), 4.37 (*dd*, *J* = 9.0 Hz, 6.6 Hz, 1H, Val1- α CH), 4.44 (*td*, J = 9.0 Hz, 6.6 Hz, 1H, Leu3- α CH), 4.50 (td, J = 8.4 Hz, 6.0 Hz, 1H, D-Phe4- α CH), 4.62 (q, J =8.4 Hz, 1H, Leu2- α CH), 4.96 (*d*, *J* = 2.4 Hz, 1H, cHyp5- γ OH), 6.98 (d, J = 9.0 Hz, 1H, Val1-CONH), 7.22 (m, 3H, D-Phe4-ArH), 7.23 (*m*, 2H, D-Phe4-ArH), 7.95 (*d*, J = 6.0 Hz, 1H, D-Phe4-CONH), 8.36 (d, J = 9.0 Hz, 1H, Leu3-CONH), 8.50 (d, J = 8.4 Hz, 1H, Leu2-CONH).

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. All H atoms were located in difference maps and then treated as riding in geometrically idealized positions with constrained distances set to 0.93 Å (Csp^2 -H), 0.98 Å (R_3 -CH), 0.97 Å (R_2 -CH₂), 0.96 Å (R-CH₃), 082 Å (R-OH) and 0.86 Å (Nsp^2 -H). U_{iso} (H) parameters were set to values of either 1.2 or 1.5 (methyl and hydroxy groups) times U_{eq} of the attached atom. The H atoms attached to water (5) and the hydroxyl groups of Hyp (4 and 5) were located in the Fourier map considering donoracceptor pairs in the hydrogen-bond network, and included in the calculation of structure factors with fixed position. The H atoms attached to methanol and water molecules of (4) were located in the Fourier map and included in the refinement with restraints for the bond lengths and angles.

References

- Asano, A. & Doi, M. (2019). X-ray Struct. Anal. Online, 35, 1-2.
- Asano, A., Matsuoka, S., Minami, C., Kato, T. & Doi, M. (2019). Acta Cryst. C75, 1336–1343.
- Asano, A., Minami, C., Matsuoka, S., Kato, T. & Doi, M. (2021). Chem. Pharm. Bull. 69, 1097–1103.
- Asano, A., Sakata, M., Kato, T. & Doi, M. (2023). Chem. Lett. 52, 246–248.
- Balasubramanian, D. (1967). J. Am. Chem. Soc. 89, 5445-5449.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Doi, M., Fujita, S., Katsuya, Y., Sasaki, M., Taniguchi, T. & Hasegawa, H. (2001). Arch. Biochem. Biophys. 395, 85–93.
- Gause, G. F. & Brazhnikova, M. G. (1944). Nature, 154, 703.
- Hodgkin, D. C. & Oughton, B. M. (1957). Biochem. J. 65, 752-756.
- Izumiya, N., Kato, T., Aoyagi, H. & Waki, M. (1997). Peptide synthesis: Basics and Experiments, ed. 6. Tokyo: Maruzen Co., Ltd.
- Llamas-Saiz, A. L., Grotenbreg, G. M., Overhand, M. & van Raaij, M. J. (2007). Acta Cryst. D63, 401–407.
- Martin, A. C. R. (2022). *ProFit V3.2.* http://www.bioinf.org.uk/ software/profit/.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Schmidt, G. M. J., Hodgkin, D. C. & Oughton, B. M. (1957). Biochem. J. 65, 744–750.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Tamaki, M., Sasaki, I., Kokuno, M., Shindo, M., Kimura, M. & Uchida, Y. (2010). Org. Biomol. Chem. 8, 1791–1797.

Acta Cryst. (2024). E80, 942-946 [https://doi.org/10.1107/S2056989024007771]

Puckering effects of 4-hydroxy-L-proline isomers on the conformation of ornithine-free Gramicidin S

Akiko Asano, Kanako Nakayama, Sakura Okada, Takuma Kato and Mitsunobu Doi

Computing details

cyclo(Val-Leu-Leu-D-Phe-tHyp)2 methanol disolvate monohydrate (4)

Crystal data

 $C_{62}H_{94}N_{10}O_{12} \cdot 2CH_4O \cdot H_2O$ $M_r = 1253.57$ Orthorhombic, $P2_12_12_1$ a = 11.8909 (1) Å b = 18.8562 (2) Å c = 30.3163 (3) Å V = 6797.4 (1) Å³ Z = 4F(000) = 2712

Data collection

RIGAKU XtaLAB P200K diffractometer Radiation source: rotating anode Detector resolution: 5.8140 pixels mm⁻¹ ω -scan Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) $T_{\min} = 0.618, T_{\max} = 1.0$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.203$ S = 1.0912349 reflections 835 parameters 29 restraints Hydrogen site location: mixed $D_x = 1.225 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 27488 reflections $\theta = 2.8-70.2^{\circ}$ $\mu = 0.71 \text{ mm}^{-1}$ T = 100 KNeedle, colourless $0.45 \times 0.16 \times 0.10 \text{ mm}$

42425 measured reflections 12349 independent reflections 11935 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 68.3^\circ, \theta_{min} = 2.9^\circ$ $h = -14 \rightarrow 14$ $k = -17 \rightarrow 22$ $l = -35 \rightarrow 36$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1438P)^2 + 2.8253P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.011$ $\Delta\rho_{max} = 0.98 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -1.30 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 5149 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013) Absolute structure parameter: 0.08 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N11	0.7511 (3)	0.74028 (18)	0.43846 (10)	0.0302 (7)	
H11	0.770195	0.696322	0.439474	0.036*	
C11	0.7533 (3)	0.7758 (2)	0.39577 (12)	0.0304 (8)	
H11A	0.727017	0.824775	0.399246	0.037*	
C12	0.6729 (3)	0.7356 (2)	0.36512 (12)	0.0277 (7)	
012	0.6704 (3)	0.67041 (15)	0.36572 (10)	0.0356 (6)	
C13	0.8739 (4)	0.7762 (2)	0.37671 (13)	0.0347 (8)	
H13	0.895444	0.727050	0.370346	0.042*	
C14	0.9574 (5)	0.8064 (4)	0.40964 (18)	0.0581 (14)	
H14A	0.953849	0.779726	0.436570	0.087*	
H14B	1.031958	0.803513	0.397628	0.087*	
H14C	0.939160	0.855093	0.415515	0.087*	
C15	0.8788 (4)	0.8180 (4)	0.33395 (16)	0.0528 (13)	
H15A	0.825827	0.798624	0.313307	0.079*	
H15B	0.860409	0.866711	0.339699	0.079*	
H15C	0.953207	0.815132	0.321812	0.079*	
N21	0.6130 (3)	0.77560 (17)	0.33758 (11)	0.0291 (7)	
H21	0.620698	0.820899	0.338867	0.035*	
C21	0.5345 (3)	0.7459 (2)	0.30511 (12)	0.0311 (8)	
H21A	0.544977	0.694467	0.303064	0.037*	
C22	0.5655 (4)	0.7805 (2)	0.26146 (13)	0.0319 (8)	
O22	0.5585 (3)	0.84551 (15)	0.25738 (9)	0.0392 (7)	
C23	0.4142 (4)	0.7625 (2)	0.31965 (14)	0.0347 (8)	
H23A	0.405677	0.747000	0.349983	0.042*	
H23B	0.404608	0.813550	0.319307	0.042*	
C24	0.3186 (4)	0.7296 (3)	0.29258 (18)	0.0519 (12)	
H24	0.327963	0.678135	0.295158	0.062*	
C25	0.3136 (6)	0.7446 (4)	0.2449 (2)	0.0689 (17)	
H25A	0.384700	0.733302	0.231625	0.103*	
H25B	0.255624	0.716374	0.231613	0.103*	
H25C	0.297362	0.793960	0.240403	0.103*	
C26	0.2075 (4)	0.7467 (4)	0.3152 (2)	0.0567 (13)	
H26A	0.213421	0.736402	0.346154	0.085*	
H26B	0.190369	0.796084	0.311307	0.085*	
H26C	0.148631	0.718498	0.302517	0.085*	
N31	0.6051 (3)	0.73732 (18)	0.22955 (11)	0.0326 (7)	
H31	0.608008	0.692423	0.234401	0.039*	
C31	0.6433 (4)	0.7647 (2)	0.18698 (13)	0.0336 (8)	
H31A	0.633395	0.816270	0.186285	0.040*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C32	0.5716(4)	0.7308(2)	0.15055(12)	0.0325 (8)
032	0.5943(3)	0.7500(2) 0.67093(15)	0.13636(9)	0.0323(6)
C33	0.3343(3) 0.7670(4)	0.07075(15)	0.17898(15)	0.0302(0)
Н33Л	0.77/011	0.7407 (3)	0.178268	0.052*
H33B	0.774911	0.095502	0.178208	0.052*
C24	0.788401	0.704018 0.7765 (2)	0.130193 0.21244(17)	0.032
U34	0.8490 (4)	0.7703 (3)	0.21344(17) 0.241927	0.0487 (11)
П34 С25	0.830009	0.754519	0.241037	0.038°
	0.8572(0)	0.8500 (5)	0.2189(2)	0.0003 (13)
Нээд	0.700030	0.80/333	0.220147	0.091*
НЗЭВ	0.885/10	0.8/1854	0.242249	0.091*
H35C	0.85/6/2	0.879200	0.191929	0.091*
C36	0.9683 (6)	0.7559 (4)	0.2020 (3)	0.0719(18)
H36A	0.973086	0.705394	0.198788	0.108*
H36B	0.989868	0.778367	0.174902	0.108*
H36C	1.017906	0.771021	0.225222	0.108*
N41	0.4847 (3)	0.76819 (18)	0.13525 (11)	0.0358 (7)
H41	0.469741	0.809393	0.145909	0.043*
C41	0.4153 (4)	0.7382 (2)	0.10018 (13)	0.0349 (9)
H41A	0.461268	0.731981	0.073628	0.042*
C42	0.3692 (4)	0.6662 (2)	0.11459 (14)	0.0347 (9)
O42	0.3136 (3)	0.66123 (17)	0.14827 (10)	0.0418 (7)
C43	0.3166 (5)	0.7876 (2)	0.08969 (16)	0.0437 (10)
H43A	0.267756	0.791326	0.115191	0.052*
H43B	0.344667	0.834569	0.082723	0.052*
C44	0.2511 (4)	0.7585 (2)	0.05083 (15)	0.0373 (9)
C45	0.1610 (5)	0.7130 (3)	0.0566 (2)	0.0599 (15)
H45	0.136209	0.702328	0.084932	0.072*
C46	0.1072 (6)	0.6832 (3)	0.0204 (3)	0.074 (2)
H46	0.047616	0.651954	0.024686	0.089*
C47	0.1409 (6)	0.6992 (3)	-0.0216(2)	0.0677 (18)
H47	0.104542	0.679259	-0.045772	0.081*
C48	0.2280 (5)	0.7446 (4)	-0.0275(2)	0.0676 (17)
H48	0.250581	0.756320	-0.055994	0.081*
C49	0.2840 (4)	0.7740 (3)	0.00839 (18)	0.0515 (12)
H49	0.344388	0.804442	0.003661	0.062*
N51	0.3898 (3)	0.61001 (19)	0.08838 (12)	0.0376 (8)
C51	0.3384(5)	0.5413 (2)	0.09743(17)	0.0466(12)
H51	0.260115	0.548211	0.106586	0.056*
C52	0 4006 (4)	0.510211 0.4963(2)	0.13229(15)	0.030
052	0.3694(3)	0.43453(16)	0.13225(10) 0.13855(11)	0.0372(7)
C53	0.3413 (6)	0.45455(10)	0.15055(11)	0.0455(19)
H53A	0.277608	0.521094	0.0317(2)	0.0000 (17)
1153A 1153B	0.277008	0.321034	0.053840	0.070*
C54	0.371020 0.4513 (7)	0.5328 (3)	0.03184 (17)	0.073
U54A	0.+515(7)	0.5520 (5)	0.03104 (17)	0.0033 (10)
1134A C55	0.314034	0.500975	0.0440/1	0.070°
UJJ 1155 A	0.4559 (5)	0.0103(3)	0.04070 (14)	0.04/1(11)
пээд	0.330341	0.020440	0.0014/0	0.05/*
нээв	0.418431	0.041031	0.025023	0.05/*

O54	0.4519 (6)	0.5242 (3)	-0.01478 (13)	0.0907 (19)
H54	0.447565	0.563198	-0.026631	0.136*
N61	0.4835 (3)	0.52818 (18)	0.15465 (11)	0.0343 (7)
H61	0.497931	0.572021	0.149251	0.041*
C61	0.5502 (4)	0.4912 (2)	0.18787 (13)	0.0328 (8)
H61A	0.523587	0.442168	0.190241	0.039*
C62	0.5362 (4)	0.5279 (2)	0.23276 (13)	0.0325 (8)
O62	0.5664 (3)	0.58954 (16)	0.23884 (10)	0.0428 (7)
C63	0.6751 (4)	0.4907 (2)	0.17533 (13)	0.0352 (9)
H63	0.700105	0.539978	0.172186	0.042*
C64	0.6915 (4)	0.4534 (2)	0.13108 (14)	0.0408 (10)
H64A	0.646433	0.476384	0.109026	0.061*
H64B	0.769302	0.455817	0.122730	0.061*
H64C	0.669128	0.404709	0.133670	0.061*
C65	0.7458 (4)	0.4557 (3)	0.21156 (15)	0.0430 (10)
H65A	0.733900	0.480106	0.238964	0.064*
H65B	0.723724	0.406982	0.214685	0.064*
H65C	0.823898	0.458091	0.203744	0.064*
N71	0.4937 (3)	0.48684 (17)	0.26479 (11)	0.0325 (7)
H71	0.467375	0.445760	0.258034	0.039*
C71	0.4906 (4)	0.5099 (2)	0.31112 (13)	0.0341 (9)
H71A	0.496598	0.561724	0.312559	0.041*
C72	0.5925 (4)	0.4763 (2)	0.33371 (13)	0.0345 (9)
072	0.5959 (3)	0.41255 (15)	0.34212 (11)	0.0410 (7)
C73	0.3817 (4)	0.4860 (2)	0.33336 (14)	0.0370 (9)
H73A	0.373229	0.435367	0.329003	0.044*
H73B	0.319000	0.509217	0.318853	0.044*
C74	0.3753 (5)	0.5018 (2)	0.38287 (14)	0.0419 (10)
H74	0.442177	0.480912	0.396632	0.050*
C75	0.3773 (5)	0.5818 (3)	0.39270 (16)	0.0505 (12)
H75A	0.442731	0.602718	0.379480	0.076*
H75B	0.310938	0.603580	0.380723	0.076*
H75C	0.379298	0.589191	0.424024	0.076*
C76	0.2738 (6)	0.4663 (3)	0.40298 (18)	0.0594 (14)
H76A	0.270933	0.476616	0.433963	0.089*
H76B	0.206822	0.483728	0.388996	0.089*
H76C	0.278949	0.415929	0.398759	0.089*
N81	0.6768 (3)	0.52060 (18)	0.34352 (12)	0.0350 (7)
H81	0.671795	0.564481	0.336048	0.042*
C81	0.7769 (4)	0.4959 (2)	0.36664 (15)	0.0385 (9)
H81A	0.796621	0.448728	0.355463	0.046*
C82	0.7559 (5)	0.4904 (2)	0.41640 (16)	0.0439 (10)
082	0.8070 (5)	0.4471 (2)	0.43878 (13)	0.0692 (13)
C83	0.8767 (4)	0.5462 (2)	0.35831 (16)	0.0439 (10)
H83A	0.939835	0.530673	0.376124	0.053*
H83B	0.855992	0.593370	0.368221	0.053*
C84	0.9147 (5)	0.5508 (3)	0.31051 (18)	0.0526 (12)
H84	0.847292	0.563022	0.293501	0.063*

C85	0.9526 (7)	0.4796 (4)	0.2934 (3)	0.047 (2)	0.645 (14)
H85A	0.895937	0.444747	0.299512	0.070*	0.645 (14)
H85B	0.964521	0.482527	0.262120	0.070*	0.645 (14)
H85C	1.021559	0.466328	0.307639	0.070*	0.645 (14)
C86	0.9937 (9)	0.6087 (6)	0.3032 (4)	0.065 (3)	0.645 (14)
H86A	0.963114	0.651767	0.315064	0.098*	0.645 (14)
H86B	1.063520	0.598053	0.317685	0.098*	0.645 (14)
H86C	1.006483	0.614253	0.272166	0.098*	0.645 (14)
C85'	0.8673 (13)	0.6032 (7)	0.2834 (4)	0.055 (4)	0.355 (14)
H85D	0.898976	0.599805	0.254358	0.082*	0.355 (14)
H85E	0 787422	0 596470	0 281839	0.082*	0.355(14)
H85F	0.883246	0.649177	0.295503	0.082*	0.355(14)
C86'	1.0482(11)	0.5716(13)	0.3153 (6)	0.002	0.355(14)
H86D	1.0462 (11)	0.537293	0.333707	0.094(0)	0.355(14)
H86E	1.082614	0.571927	0.286707	0.141*	0.355(14)
H86E	1.054842	0.617770	0.328448	0.141	0.355(14)
N01	0.6846(4)	0.017770 0.53721(10)	0.320++0 0.43302(12)	0.141 0.0302 (8)	0.555 (14)
1101	0.0840 (4)	0.55721 (19)	0.43392 (12)	0.0392 (8)	
П91 С01	0.032930	0.308002	0.41/152	0.047	
	0.0593 (4)	0.5371 (2)	0.48114 (14)	0.0392 (9)	
H9IA	0.725601	0.519874	0.49/08/	0.04/*	
C92	0.6395 (4)	0.6144 (2)	0.493/0(13)	0.0345 (9)	
092	0.5478 (3)	0.64221 (18)	0.48768 (12)	0.0445 (7)	
C93	0.5593 (5)	0.4893 (3)	0.49263 (16)	0.0487 (12)	
H93A	0.489674	0.513451	0.485393	0.058*	
H93B	0.562995	0.446141	0.475239	0.058*	
C94	0.5600 (4)	0.4707 (2)	0.54107 (16)	0.0438 (11)	
C95	0.6451 (5)	0.4265 (3)	0.55792 (16)	0.0469 (11)	
H95	0.702407	0.410892	0.539459	0.056*	
C96	0.6441 (5)	0.4061 (3)	0.60210 (17)	0.0532 (13)	
H96	0.700168	0.376530	0.613024	0.064*	
C97	0.5605 (5)	0.4296 (3)	0.62927 (17)	0.0535 (13)	
H97	0.558991	0.415040	0.658574	0.064*	
C98	0.4784 (5)	0.4746 (3)	0.61374 (19)	0.0574 (13)	
H98	0.423205	0.491461	0.632779	0.069*	
C99	0.4778 (5)	0.4950 (3)	0.56943 (18)	0.0507 (12)	
H99	0.421841	0.525040	0.559008	0.061*	
N101	0.7299 (3)	0.65021 (18)	0.50826 (11)	0.0305 (7)	
C101	0.7206 (4)	0.7262 (2)	0.51769 (13)	0.0313 (8)	
H101	0.651237	0.735061	0.534236	0.038*	
C102	0.7212 (3)	0.7720 (2)	0.47610(13)	0.0305 (8)	
0102	0.6959 (3)	0.83529 (16)	0.47898 (10)	0.0434 (7)	
C103	0.8221 (4)	0.7408 (2)	0.54753 (14)	0.0394 (9)	
H10A	0.848867	0 789052	0 543741	0.047*	
H10B	0.802988	0.733490	0.578295	0.047*	
C104	0.9107(4)	0.6873 (2)	0.53232(14)	0.0366 (9)	
H104	0.951983	0 705914	0 506848	0.044*	
C105	0.8473(4)	0.6221(2)	0 51895 (15)	0.0376 (0)	
H10C	0.875455	0.508060	0.203510	0.045*	
11100	0.075455	0.596900	0.793310	0.0-0	

H10D	0.838119	0.588309	0.543027	0.045*
O104	0.9860 (3)	0.6724 (2)	0.56743 (11)	0.0477 (8)
H10E	1.049697	0.667366	0.557602	0.072*
O1M	0.1547 (3)	0.5876 (2)	0.20060 (12)	0.0569 (9)
H1M	0.191779	0.609604	0.182352	0.085*
C1M	0.2259 (7)	0.5417 (5)	0.2245 (3)	0.086 (3)
H1M1	0.273266	0.569033	0.243693	0.130*
H1M2	0.271732	0.515138	0.204323	0.130*
H1M3	0.181168	0.509626	0.241746	0.130*
O1W	0.4313 (5)	0.3882 (2)	-0.05479 (14)	0.0692 (12)
H1W	0.392 (7)	0.371 (4)	-0.032 (2)	0.104*
H2W	0.450 (8)	0.430 (3)	-0.046 (3)	0.104*
O2M	0.5246 (6)	0.6493 (3)	-0.0496 (3)	0.228 (7)
H2MA	0.578 (5)	0.622 (4)	-0.041 (3)	0.342*
C2M	0.4742 (16)	0.6599 (11)	-0.0908 (5)	0.180 (7)
H2M1	0.459625	0.709557	-0.094945	0.269*
H2M2	0.404764	0.634091	-0.092165	0.269*
H2M3	0.523832	0.643424	-0.113595	0.269*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N11	0.0426 (17)	0.0241 (16)	0.0240 (15)	0.0027 (13)	-0.0018 (13)	0.0007 (12)
C11	0.042 (2)	0.0244 (19)	0.0246 (18)	0.0025 (15)	-0.0047 (15)	0.0004 (14)
C12	0.0375 (18)	0.0214 (18)	0.0244 (17)	0.0016 (14)	0.0009 (14)	-0.0013 (13)
O12	0.0504 (16)	0.0219 (14)	0.0346 (14)	0.0025 (12)	-0.0073 (12)	0.0015 (11)
C13	0.042 (2)	0.032 (2)	0.0302 (19)	0.0000 (17)	-0.0027 (16)	0.0014 (15)
C14	0.052 (3)	0.082 (4)	0.040 (3)	-0.020 (3)	-0.008(2)	0.009 (3)
C15	0.044 (2)	0.081 (4)	0.034 (2)	-0.006(2)	-0.0015 (19)	0.012 (2)
N21	0.0426 (17)	0.0180 (14)	0.0268 (15)	-0.0015 (13)	-0.0038 (13)	-0.0011 (12)
C21	0.043 (2)	0.0232 (18)	0.0270 (18)	-0.0008 (15)	-0.0060 (15)	-0.0040 (15)
C22	0.045 (2)	0.024 (2)	0.0268 (18)	0.0035 (16)	-0.0063 (16)	-0.0014 (15)
O22	0.069 (2)	0.0182 (14)	0.0309 (14)	0.0048 (13)	-0.0030 (13)	-0.0009 (11)
C23	0.043 (2)	0.030 (2)	0.0319 (19)	-0.0010 (16)	-0.0040 (16)	-0.0032 (15)
C24	0.045 (2)	0.065 (3)	0.046 (3)	-0.009(2)	-0.006(2)	-0.014 (2)
C25	0.068 (4)	0.078 (5)	0.062 (4)	-0.001 (3)	-0.009 (3)	-0.015 (3)
C26	0.046 (3)	0.071 (4)	0.053 (3)	-0.012 (2)	-0.003 (2)	-0.008 (3)
N31	0.0506 (19)	0.0207 (15)	0.0266 (16)	0.0034 (13)	-0.0054 (14)	-0.0007 (12)
C31	0.051 (2)	0.0238 (19)	0.0258 (18)	-0.0001 (16)	-0.0056 (17)	-0.0012 (14)
C32	0.052 (2)	0.0229 (18)	0.0227 (17)	0.0001 (16)	-0.0022 (16)	-0.0006 (14)
O32	0.0505 (16)	0.0271 (14)	0.0311 (13)	0.0053 (12)	-0.0046 (12)	-0.0060 (11)
C33	0.057 (3)	0.040 (2)	0.032 (2)	0.000 (2)	-0.0020 (19)	-0.0063 (18)
C34	0.055 (3)	0.047 (3)	0.044 (2)	0.002 (2)	-0.013 (2)	-0.005 (2)
C35	0.070 (3)	0.050 (3)	0.061 (3)	-0.004 (3)	-0.025 (3)	-0.010 (2)
C36	0.068 (4)	0.068 (4)	0.080 (4)	0.002 (3)	-0.023 (3)	-0.014 (3)
N41	0.054 (2)	0.0233 (16)	0.0300 (16)	0.0039 (15)	-0.0064 (15)	-0.0065 (13)
C41	0.050(2)	0.026 (2)	0.0287 (19)	0.0030 (17)	-0.0061 (16)	0.0012 (15)
C42	0.046 (2)	0.026 (2)	0.033 (2)	0.0050 (16)	-0.0100 (17)	-0.0034 (15)

O42	0.0553 (18)	0.0344 (16)	0.0358 (16)	-0.0016 (14)	0.0008 (14)	-0.0010 (12)
C43	0.060 (3)	0.028 (2)	0.043 (2)	0.0069 (19)	-0.011 (2)	-0.0025 (17)
C44	0.046 (2)	0.0238 (19)	0.042 (2)	0.0040 (16)	-0.0092 (18)	0.0040 (16)
C45	0.058 (3)	0.053 (3)	0.069 (3)	-0.015 (2)	-0.013 (3)	0.030 (3)
C46	0.078 (4)	0.040 (3)	0.103 (5)	-0.020(3)	-0.048 (4)	0.025 (3)
C47	0.081 (4)	0.046 (3)	0.077 (4)	0.011 (3)	-0.047 (4)	-0.014 (3)
C48	0.063 (3)	0.098 (5)	0.042 (3)	0.012 (3)	-0.013 (2)	-0.007(3)
C49	0.051 (3)	0.061 (3)	0.043 (3)	-0.008(2)	-0.011(2)	0.015 (2)
N51	0.056 (2)	0.0243 (17)	0.0323 (17)	0.0045 (15)	-0.0109(15)	-0.0048 (14)
C51	0.063 (3)	0.027 (2)	0.050 (3)	0.002 (2)	-0.025 (2)	-0.0061 (19)
C52	0.050(2)	0.024(2)	0.037(2)	0.0029(17)	-0.0067(18)	-0.0066(16)
052	0.0610 (19)	0.0221(15)	0.0485 (17)	-0.0033(13)	-0.0129(15)	-0.0027(12)
C53	0.109 (5)	0.031(2)	0.057 (3)	0.013 (3)	-0.049(3)	-0.015(2)
C54	0.116 (5)	0.038(3)	0.036(2)	0.030(3)	-0.029(3)	-0.020(2)
C55	0.073(3)	0.039(3)	0.030(2)	0.014(2)	-0.006(2)	-0.0089(18)
054	0.075(5)	0.057(3)	0.038(2)	0.039(3)	-0.034(3)	-0.0287(19)
N61	0.167(2)	0.0212(16)	0.030(2) 0.0314(17)	-0.0011(14)	-0.0078(15)	-0.0018(13)
C61	0.050(2)	0.0212(10) 0.0215(18)	0.0265(18)	-0.0017(16)	-0.0055(17)	0.0010(13)
C62	0.030(2) 0.045(2)	0.0219(10) 0.0219(19)	0.0205(10) 0.0307(19)	-0.0004(15)	-0.0020(16)	-0.0002(14)
062	0.043(2) 0.072(2)	0.0219(19) 0.0244(15)	0.0307(15)	-0.0064(14)	0.0020(10)	-0.0036(11)
C63	0.072(2)	0.0244(19) 0.0250(19)	0.0324(19)	-0.0003(17)	-0.0016(17)	-0.0025(11)
C64	0.051(2)	0.0220(1))	0.0292(19)	-0.0028(19)	0.0010(17) 0.0043(18)	-0.0029(13)
C65	0.050(3)	0.032(2) 0.037(2)	0.032(2)	0.0020(17)	-0.007(2)	-0.0070(17)
N71	0.054(3)	0.037(2)	0.033(2)	-0.0014(13)	-0.0014(14)	-0.0021(13)
C71	0.0511(17)	0.0100(13) 0.0192(18)	0.0277(10)	0.0014(13)	-0.0039(17)	-0.0014(12)
C72	0.050(2)	0.0192(18) 0.0245(19)	0.0270(13)	-0.0012(10)	-0.0003(17)	-0.0023(14)
072	0.054(2)	0.0243(17) 0.0170(14)	0.0230(17)	-0.0013(17)	-0.0110(14)	0.0030(14)
C73	0.0010(1))	0.0170(14) 0.029(2)	0.031(2)	-0.0003(17)	0.0000(17)	-0.0037(11)
C74	0.051(2)	0.029(2) 0.033(2)	0.031(2) 0.029(2)	0.0003(17)	0.0000(17) 0.0019(19)	-0.0017(10)
C75	0.003(3)	0.035(2) 0.038(3)	0.027(2)	0.009(2)	0.0017(17)	-0.0078(19)
C76	0.077(3)	0.056(3)	0.037(2)	-0.002(3)	0.000(2)	0.0078(19)
N81	0.002(4)	0.020(5)	0.040(3)	0.002(3)	-0.0022(15)	-0.002(2)
C81	0.0492(19)	0.0203(10) 0.0214(19)	0.0334(17) 0.041(2)	0.0009(17)	-0.0022(13)	-0.0034(16)
C82	0.055(2)	0.0214(1))	0.041(2) 0.042(2)	-0.0007(19)	-0.010(2)	-0.0004(18)
082	0.004(3) 0.126(4)	0.025(2) 0.0357(19)	0.042(2) 0.046(2)	0.0007(17)	-0.010(2)	0.0000(10)
C83	0.120(4)	0.0337(17)	0.040(2)	0.027(2)	0.014(2)	-0.0070(10)
C84	0.051(2)	0.031(2) 0.036(2)	0.050(3)	0.0001(19)	0.000(2)	-0.006(2)
C85	0.009(3)	0.030(2)	0.052(3)	0.003(2)	-0.007(3)	-0.010(3)
C85	0.043(4)	0.040(4)	0.030(4)	-0.014(3)	0.003(3)	-0.010(3)
C85'	0.002(0)	0.034(0)	0.079(7)	0.010(3)	0.035(3)	0.019(3)
C86'	0.034(11) 0.13(2)	0.059(8)	0.041(7)	0.000(7)	0.000(7)	0.002(0)
N01	0.15(2)	0.009(14) 0.0304(18)	0.030(14) 0.0287(17)	-0.0014(16)	-0.0072(14)	-0.0023(11)
C01	0.057(2)	0.0304(10)	0.0207(17)	-0.0077(19)	-0.0072(10)	0.0002(14)
C91 C92	0.033(2)	0.035(2) 0.039(2)	0.030(2)	-0.0077(17)	-0.0020(15)	0.0020(10) 0.0027(16)
092	0.0416(17)	0.037(2)	0.0271(17)	-0.0013(13)	-0.0074(14)	-0.0027(10)
C93	0.0410(17)	0.040(3)	0.039(2)	-0.015(13)	-0.011(2)	0.0003(14)
C94	0.007(3)	0.032(2)	0.037(2)	-0.012(2)	-0.012(2)	0.004(2)
C95	0.064(3)	0.032(2)	0.038(2)	-0.007(2)	-0.007(2)	0.0049(10)
$\overline{0}$	0.00T (J)	0.050 (2)	0.000 (2)	0.007 (2)	0.007 (2)	0.0070 (17)

C96	0.072 (3)	0.044 (3)	0.044 (3)	-0.012 (2)	-0.013 (2)	0.011 (2)
C97	0.073 (3)	0.048 (3)	0.039 (2)	-0.015 (3)	-0.004 (2)	0.009 (2)
C98	0.068 (3)	0.055 (3)	0.050 (3)	-0.014 (3)	0.005 (3)	0.000 (2)
C99	0.061 (3)	0.038 (3)	0.053 (3)	-0.007 (2)	-0.005 (2)	0.008 (2)
N101	0.0384 (17)	0.0260 (17)	0.0270 (15)	0.0007 (13)	-0.0027 (13)	0.0006 (12)
C101	0.043 (2)	0.0246 (19)	0.0265 (18)	0.0016 (15)	0.0006 (15)	0.0010 (14)
C102	0.041 (2)	0.0241 (19)	0.0259 (18)	0.0001 (15)	0.0002 (15)	0.0001 (14)
O102	0.070 (2)	0.0264 (15)	0.0336 (15)	0.0071 (14)	0.0053 (14)	-0.0031 (12)
C103	0.056 (3)	0.036 (2)	0.0258 (19)	-0.0042 (19)	-0.0039 (17)	-0.0008 (16)
C104	0.046 (2)	0.036 (2)	0.0281 (18)	-0.0054 (17)	-0.0072 (17)	0.0022 (16)
C105	0.046 (2)	0.031 (2)	0.036 (2)	0.0007 (17)	-0.0071 (18)	0.0025 (16)
O104	0.0499 (18)	0.050 (2)	0.0432 (17)	-0.0073 (15)	-0.0152 (15)	0.0111 (15)
O1M	0.061 (2)	0.067 (3)	0.0432 (19)	-0.0003 (19)	-0.0035 (16)	0.0120 (17)
C1M	0.077 (4)	0.115 (6)	0.067 (4)	0.032 (4)	0.024 (3)	0.041 (4)
O1W	0.117 (4)	0.042 (2)	0.049 (2)	-0.008 (2)	0.006 (2)	0.0042 (17)
O2M	0.156 (9)	0.38 (2)	0.144 (9)	0.047 (12)	0.009 (7)	0.065 (11)
C2M	0.178 (13)	0.209 (16)	0.152 (12)	0.029 (12)	-0.047 (10)	0.069 (12)

Geometric parameters (Å, °)

N11—C102	1.336 (5)	С63—Н63	0.9800
N11—C11	1.458 (5)	C64—H64A	0.9600
N11—H11	0.8600	C64—H64B	0.9600
C11—C12	1.533 (5)	C64—H64C	0.9600
C11—C13	1.546 (6)	С65—Н65А	0.9600
C11—H11A	0.9800	С65—Н65В	0.9600
C12—O12	1.231 (5)	С65—Н65С	0.9600
C12—N21	1.331 (5)	N71—C71	1.471 (5)
C13—C15	1.519 (6)	N71—H71	0.8600
C13—C14	1.519 (7)	C71—C72	1.529 (6)
С13—Н13	0.9800	C71—C73	1.528 (6)
C14—H14A	0.9600	C71—H71A	0.9800
C14—H14B	0.9600	C72—O72	1.230 (5)
C14—H14C	0.9600	C72—N81	1.338 (6)
C15—H15A	0.9600	C73—C74	1.532 (6)
C15—H15B	0.9600	С73—Н73А	0.9700
C15—H15C	0.9600	С73—Н73В	0.9700
N21—C21	1.468 (5)	C74—C76	1.509 (8)
N21—H21	0.8600	C74—C75	1.539 (7)
C21—C22	1.521 (5)	С74—Н74	0.9800
C21—C23	1.530 (6)	С75—Н75А	0.9600
C21—H21A	0.9800	С75—Н75В	0.9600
C22—O22	1.234 (5)	С75—Н75С	0.9600
C22—N31	1.350 (5)	С76—Н76А	0.9600
C23—C24	1.533 (6)	С76—Н76В	0.9600
С23—Н23А	0.9700	С76—Н76С	0.9600
С23—Н23В	0.9700	N81—C81	1.458 (6)
C24—C25	1.474 (9)	N81—H81	0.8600

C24—C26	1.523 (8)	C81—C82	1.532 (7)
C24—H24	0.9800	C81—C83	1.540 (7)
C25—H25A	0.9600	C81—H81A	0.9800
C25—H25B	0.9600	C82—O82	1.225 (6)
С25—Н25С	0.9600	C82—N91	1.333 (7)
C26—H26A	0.9600	C83—C84	1.520 (7)
C26—H26B	0.9600	С83—Н83А	0.9700
C26—H26C	0.9600	C83—H83B	0.9700
N31—C31	1.462 (5)	C84—C85′	1.402 (12)
N31—H31	0.8600	C84—C86	1.456 (11)
C31—C32	1.534 (5)	C84—C85	1.508 (9)
C31—C33	1.529 (7)	C84—C86′	1.642 (15)
C31—H31A	0.9800	C84—H84	0.9800
C32—O32	1.237 (5)	С85—Н85А	0.9600
C32—N41	1.335 (6)	С85—Н85В	0.9600
C33—C34	1.536 (6)	С85—Н85С	0.9600
С33—Н33А	0.9700	C86—H86A	0.9600
C33—H33B	0.9700	C86—H86B	0.9600
C34—C36	1.512 (9)	C86—H86C	0.9600
C_{34} C_{35}	1 515 (8)	C85'—H85D	0.9600
C34—H34	0.9800	C85'—H85E	0.9600
C35—H35A	0.9600	C85'—H85F	0.9600
C35—H35B	0.9600	C86'—H86D	0.9600
C35—H35C	0.9600	C86'—H86E	0.9600
C36—H36A	0.9600	C86'—H86F	0.9600
C36—H36B	0.9600	N91—C91	1 463 (6)
C36—H36C	0.9600	N91—H91	0.8600
N41—C41	1.460 (5)	C91—C92	1.526 (6)
N41—H41	0.8600	C91—C93	1.533 (7)
C41—C42	1.528 (6)	C91—H91A	0.9800
C41—C43	1.531 (6)	C92—O92	1.223 (6)
C41—H41A	0.9800	C92—N101	1.344 (6)
C42 - O42	1.220 (6)	C93—C94	1.510(7)
C42—N51	1.346 (5)	C93—H93A	0.9700
C43—C44	1.515 (6)	C93—H93B	0.9700
C43—H43A	0.9700	C94—C95	1.406 (8)
C43—H43B	0.9700	C94—C99	1.380 (8)
C44—C45	1.384 (7)	C95—C96	1.394 (7)
C44—C49	1.376 (7)	C95—H95	0.9300
C45—C46	1.391 (9)	C96—C97	1.365 (9)
C45—H45	0.9300	C96—H96	0.9300
C46—C47	1.368 (11)	C97—C98	1.376 (9)
C46—H46	0.9300	C97—H97	0.9300
C47—C48	1.356 (11)	C98—C99	1.397 (8)
С47—Н47	0.9300	С98—Н98	0.9300
C48—C49	1.392 (8)	С99—Н99	0.9300
C48—H48	0.9300	N101—C101	1.465 (5)
C49—H49	0.9300	N101—C105	1.474 (6)

N51—C51	1.459 (6)	C101—C102	1.528 (5)
N51—C55	1.476 (6)	C101—C103	1.533 (6)
C51—C53	1.543 (7)	C101—H101	0.9800
C51—C52	1.544 (6)	C102—O102	1.235 (5)
C51—H51	0.9800	C103—C104	1.530(7)
C52—O52	1.237 (6)	C103—H10A	0.9700
C52—N61	1.339 (6)	C103—H10B	0.9700
C53—C54	1.521 (11)	C104—O104	1.419 (5)
С53—Н53А	0.9700	C104—C105	1.529 (6)
С53—Н53В	0.9700	C104—H104	0.9800
C54—O54	1.422 (6)	C105—H10C	0.9700
C54—C55	1.534 (7)	C105—H10D	0.9700
C54—H54A	0.9800	O104—H10E	0.8200
С55—Н55А	0.9700	O1M—C1M	1.412 (8)
С55—Н55В	0.9700	O1M—H1M	0.8200
O54—H54	0.8200	C1M—H1M1	0.9600
N61—C61	1.460 (5)	C1M—H1M2	0.9600
N61—H61	0.8600	C1M—H1M3	0.9600
C61—C62	1.536 (5)	O1W—H1W	0.89(2)
C61—C63	1.533 (6)	O1W—H2W	0.86 (3)
C61—H61A	0.9800	O2M—C2M	1.401 (11)
C62—O62	1.229 (5)	O2M—H2MA	0.87 (3)
C62—N71	1.342 (5)	C2M—H2M1	0.9600
C63—C64	1.527 (6)	C2M—H2M2	0.9600
C63—C65	1.532 (6)	C2M—H2M3	0.9600
C102—N11—C11	123.9 (3)	C64—C63—H63	108.2
C102—N11—H11	118.1	С65—С63—Н63	108.2
C11—N11—H11	118.1	С61—С63—Н63	108.2
N11—C11—C12	107.4 (3)	C63—C64—H64A	109.5
N11—C11—C13	110.5 (3)	C63—C64—H64B	109.5
C12—C11—C13	110.7 (3)	H64A—C64—H64B	109.5
N11—C11—H11A	109.4	C63—C64—H64C	109.5
C12—C11—H11A	109.4	H64A—C64—H64C	109.5
C13—C11—H11A	109.4	H64B—C64—H64C	109.5
O12—C12—N21	124.2 (4)	C63—C65—H65A	109.5
O12—C12—C11	120.0 (3)	C63—C65—H65B	109.5
N21—C12—C11	115.7 (3)	H65A—C65—H65B	109.5
C15—C13—C14	109.9 (4)	С63—С65—Н65С	109.5
C15—C13—C11	110.9 (4)	H65A—C65—H65C	109.5
C14—C13—C11	111.2 (4)	H65B—C65—H65C	109.5
C15—C13—H13	108.2	C62—N71—C71	121.9 (3)
C14—C13—H13	108.2	C62—N71—H71	119.0
С11—С13—Н13	108.2	C71—N71—H71	119.0
C13—C14—H14A	109.5	N71—C71—C72	106.6 (3)
C13—C14—H14B	109.5	N71—C71—C73	110.8 (3)
H14A—C14—H14B	109.5	C72—C71—C73	110.6 (3)
C13—C14—H14C	109.5	N71—C71—H71A	109.6
-			

H14A—C14—H14C	109.5	С72—С71—Н71А	109.6
H14B—C14—H14C	109.5	С73—С71—Н71А	109.6
C13—C15—H15A	109.5	O72—C72—N81	122.6 (4)
C13—C15—H15B	109.5	O72—C72—C71	121.6 (4)
H15A—C15—H15B	109.5	N81—C72—C71	115.7 (4)
C13—C15—H15C	109.5	C71—C73—C74	114.7 (4)
H15A—C15—H15C	109.5	С71—С73—Н73А	108.6
H15B—C15—H15C	109.5	С74—С73—Н73А	108.6
C12—N21—C21	123.0 (3)	С71—С73—Н73В	108.6
C12—N21—H21	118.5	С74—С73—Н73В	108.6
C21—N21—H21	118.5	H73A—C73—H73B	107.6
N21—C21—C22	105.4 (3)	C76—C74—C73	110.5 (4)
N21—C21—C23	108.9 (3)	C76—C74—C75	111.6 (4)
C22—C21—C23	112.9 (3)	C73—C74—C75	112.3 (4)
N21—C21—H21A	109.8	C76—C74—H74	107.4
C22—C21—H21A	109.8	С73—С74—Н74	107.4
C23—C21—H21A	109.8	С75—С74—Н74	107.4
O22—C22—N31	123.4 (4)	С74—С75—Н75А	109.5
O22—C22—C21	119.8 (4)	С74—С75—Н75В	109.5
N31—C22—C21	116.7 (3)	H75A—C75—H75B	109.5
C24—C23—C21	117.2 (4)	С74—С75—Н75С	109.5
С24—С23—Н23А	108.0	Н75А—С75—Н75С	109.5
C21—C23—H23A	108.0	H75B—C75—H75C	109.5
C24—C23—H23B	108.0	С74—С76—Н76А	109.5
C21—C23—H23B	108.0	С74—С76—Н76В	109.5
H23A—C23—H23B	107.2	H76A—C76—H76B	109.5
C25—C24—C26	111.5 (5)	С74—С76—Н76С	109.5
C25—C24—C23	118.5 (5)	H76A—C76—H76C	109.5
C26—C24—C23	108.4 (4)	H76B—C76—H76C	109.5
C25—C24—H24	105.8	C72—N81—C81	121.3 (4)
C26—C24—H24	105.8	C72—N81—H81	119.4
C23—C24—H24	105.8	C81—N81—H81	119.4
C24—C25—H25A	109.5	N81—C81—C82	111.2 (4)
C24—C25—H25B	109.5	N81—C81—C83	110.7 (4)
H25A—C25—H25B	109.5	C82—C81—C83	109.2 (4)
С24—С25—Н25С	109.5	N81—C81—H81A	108.6
H25A—C25—H25C	109.5	C82—C81—H81A	108.6
H25B—C25—H25C	109.5	C83—C81—H81A	108.6
C24—C26—H26A	109.5	O82—C82—N91	122.5 (5)
C24—C26—H26B	109.5	O82—C82—C81	120.6 (5)
H26A—C26—H26B	109.5	N91—C82—C81	116.9 (4)
C24—C26—H26C	109.5	C81—C83—C84	114.8 (4)
H26A—C26—H26C	109.5	C81—C83—H83A	108.6
H26B—C26—H26C	109.5	C84—C83—H83A	108.6
C22—N31—C31	121.9 (3)	C81—C83—H83B	108.6
C22—N31—H31	119.1	C84—C83—H83B	108.6
C31—N31—H31	119.1	H83A—C83—H83B	107.5
N31—C31—C32	108.4 (3)	C86—C84—C85	114.9 (6)

N31—C31—C33	111.1 (3)	C85′—C84—C83	118.7 (7)
C32—C31—C33	109.1 (3)	C86—C84—C83	112.2 (6)
N31—C31—H31A	109.4	C85—C84—C83	111.5 (5)
С32—С31—Н31А	109.4	C85'—C84—C86'	105.8 (9)
C33—C31—H31A	109.4	C83—C84—C86′	102.4 (8)
O32—C32—N41	122.0 (4)	C86—C84—H84	105.8
O32—C32—C31	120.6 (4)	С85—С84—Н84	105.8
N41—C32—C31	117.4 (3)	C83—C84—H84	105.8
C34—C33—C31	114.9 (4)	C84—C85—H85A	109.5
С34—С33—Н33А	108.5	C84—C85—H85B	109.5
С31—С33—Н33А	108.5	H85A—C85—H85B	109.5
С34—С33—Н33В	108.5	C84—C85—H85C	109.5
С31—С33—Н33В	108.5	H85A—C85—H85C	109.5
H33A—C33—H33B	107.5	H85B—C85—H85C	109.5
C36—C34—C35	111.5 (5)	C84—C86—H86A	109.5
C36—C34—C33	110.3 (5)	C84—C86—H86B	109.5
C35—C34—C33	112.2 (4)	H86A—C86—H86B	109.5
С36—С34—Н34	107.5	C84—C86—H86C	109.5
С35—С34—Н34	107.5	H86A—C86—H86C	109.5
С33—С34—Н34	107.5	H86B—C86—H86C	109.5
С34—С35—Н35А	109.5	C84—C85′—H85D	109.5
C34—C35—H35B	109.5	С84—С85′—Н85Е	109.5
H35A—C35—H35B	109.5	H85D—C85′—H85E	109.5
С34—С35—Н35С	109.5	C84—C85′—H85F	109.5
H35A—C35—H35C	109.5	H85D—C85′—H85F	109.5
H35B—C35—H35C	109.5	H85E—C85′—H85F	109.5
С34—С36—Н36А	109.5	C84—C86′—H86D	109.5
С34—С36—Н36В	109.5	С84—С86′—Н86Е	109.5
H36A—C36—H36B	109.5	H86D—C86′—H86E	109.5
С34—С36—Н36С	109.5	C84—C86′—H86F	109.5
H36A—C36—H36C	109.5	H86D—C86′—H86F	109.5
H36B—C36—H36C	109.5	H86E—C86′—H86F	109.5
C32—N41—C41	119.1 (3)	C82—N91—C91	121.3 (4)
C32—N41—H41	120.5	C82—N91—H91	119.3
C41—N41—H41	120.5	C91—N91—H91	119.3
N41—C41—C42	109.8 (3)	N91—C91—C92	105.9 (3)
N41—C41—C43	110.4 (3)	N91—C91—C93	112.5 (4)
C42—C41—C43	109.0 (4)	C92—C91—C93	112.7 (4)
N41—C41—H41A	109.2	N91—C91—H91A	108.5
C42—C41—H41A	109.2	С92—С91—Н91А	108.5
C43—C41—H41A	109.2	С93—С91—Н91А	108.5
O42—C42—N51	122.2 (4)	O92—C92—N101	123.1 (4)
O42—C42—C41	120.1 (4)	O92—C92—C91	120.7 (4)
N51—C42—C41	117.7 (4)	N101—C92—C91	116.0 (4)
C44—C43—C41	109.6 (4)	C94—C93—C91	110.7 (4)
C44—C43—H43A	109.7	С94—С93—Н93А	109.5
C41—C43—H43A	109.7	С91—С93—Н93А	109.5
C44—C43—H43B	109.7	С94—С93—Н93В	109.5

C41—C43—H43B	109.7	С91—С93—Н93В	109.5
H43A—C43—H43B	108.2	Н93А—С93—Н93В	108.1
C45—C44—C49	118.0 (5)	C95—C94—C99	118.7 (5)
C45—C44—C43	121.6 (5)	C95—C94—C93	119.7 (5)
C49—C44—C43	120.3 (4)	C99—C94—C93	121.7 (5)
C44—C45—C46	120.5 (6)	C96—C95—C94	120.4 (5)
C44—C45—H45	119.8	С96—С95—Н95	119.8
C46—C45—H45	119.8	С94—С95—Н95	119.8
C47—C46—C45	120.7 (6)	C95—C96—C97	119.7 (6)
C47—C46—H46	119.7	С95—С96—Н96	120.1
C45—C46—H46	119.7	С97—С96—Н96	120.1
C46—C47—C48	119.1 (5)	C96—C97—C98	120.7 (5)
C46—C47—H47	120.4	С96—С97—Н97	119.7
C48—C47—H47	120.4	С98—С97—Н97	119.7
C47—C48—C49	120.9 (6)	C99—C98—C97	120.1 (6)
C47—C48—H48	119.6	С99—С98—Н98	119.9
C49—C48—H48	119.6	С97—С98—Н98	119.9
C44—C49—C48	120.7 (5)	С98—С99—С94	120.3 (5)
C44—C49—H49	119.6	С98—С99—Н99	119.8
C48—C49—H49	119.6	С94—С99—Н99	119.8
C42—N51—C51	120.7 (4)	C92—N101—C101	119.7 (3)
C42—N51—C55	126.5 (4)	C92—N101—C105	128.1 (4)
C51—N51—C55	112.5 (4)	C101—N101—C105	112.2 (3)
N51—C51—C53	101.6 (4)	N101—C101—C102	113.0 (3)
N51—C51—C52	114.6 (4)	N101—C101—C103	103.4 (3)
C53—C51—C52	111.8 (4)	C102—C101—C103	112.4 (3)
N51—C51—H51	109.5	N101—C101—H101	109.3
С53—С51—Н51	109.5	C102—C101—H101	109.3
С52—С51—Н51	109.5	C103—C101—H101	109.3
O52—C52—N61	124.4 (4)	O102—C102—N11	123.9 (4)
O52—C52—C51	118.6 (4)	O102—C102—C101	119.1 (3)
N61—C52—C51	116.9 (4)	N11—C102—C101	117.0 (3)
C51—C53—C54	103.4 (4)	C104—C103—C101	104.2 (3)
С51—С53—Н53А	111.1	C104—C103—H10A	110.9
С54—С53—Н53А	111.1	C101—C103—H10A	110.9
С51—С53—Н53В	111.1	C104—C103—H10B	110.9
С54—С53—Н53В	111.1	C101—C103—H10B	110.9
H53A—C53—H53B	109.0	H10A—C103—H10B	108.9
O54—C54—C55	113.6 (5)	O104—C104—C103	109.8 (4)
O54—C54—C53	110.8 (6)	O104—C104—C105	112.1 (4)
C55—C54—C53	102.5 (5)	C103—C104—C105	104.1 (4)
O54—C54—H54A	109.9	O104—C104—H104	110.2
С55—С54—Н54А	109.9	C103—C104—H104	110.2
С53—С54—Н54А	109.9	C105—C104—H104	110.2
N51—C55—C54	103.6 (5)	N101—C105—C104	104.6 (3)
N51—C55—H55A	111.0	N101—C105—H10C	110.8
С54—С55—Н55А	111.0	C104—C105—H10C	110.8
N51—C55—H55B	111.0	N101—C105—H10D	110.8

C54—C55—H55B	111.0	C104—C105—H10D	110.8
H55A—C55—H55B	109.0	H10C - C105 - H10D	108.9
$C_{54} - 0_{54} - H_{54}$	109.5	C104—O104—H10F	109.5
C_{52} N61 $-C_{61}$	109.5 122 4 (3)	C1M - O1M - H1M	109.5
C_{52} No1 Co1	118.8	O1M $-C1M$ $-H1M1$	109.5
C61 N61 H61	118.8	O1M C1M H1M2	109.5
N61 C61 C62	100.7(3)	H1M1 C1M H1M2	109.5
N61 C61 C62	107.7(3)	01M C1M H1M2	109.5
C_{62} C_{61} C_{63}	111.0(3) 100 1 (3)	H1M1 C1M H1M3	109.5
N61 C61 H61A	109.1 (5)	H1M2 C1M H1M3	109.5
C_{62} C_{61} U_{61A}	109.0		109.5
C_{02} C_{01} H_{01A}	109.0	$H_1 W = 01 W = H_2 W$	103(3) 122(7)
C03 = C01 = H01A	109.0	$C_{2M} = O_{2M} = H_{2MA}$	132 (7)
062 - C62 - N/1	123.2 (4)	$O_2M = C_2M = H_2M_1$	109.5
062 - 062 - 061	121.8 (4)	$O_2M = C_2M = H_2M_2$	109.5
N/1—C62—C61	114.9 (3)	H2M1 - C2M - H2M2	109.5
C64—C63—C65	111.2 (4)	O2M—C2M—H2M3	109.5
C64—C63—C61	110.1 (4)	H2M1—C2M—H2M3	109.5
C65—C63—C61	110.8 (4)	H2M2—C2M—H2M3	109.5
C102—N11—C11—C12	-120.8 (4)	C52—N61—C61—C63	119.9 (4)
C102—N11—C11—C13	118.3 (4)	N61—C61—C62—O62	-62.7 (5)
N11—C11—C12—O12	-41.0 (5)	C63—C61—C62—O62	59.1 (5)
C13—C11—C12—O12	79.7 (4)	N61—C61—C62—N71	120.1 (4)
N11—C11—C12—N21	142.0 (3)	C63—C61—C62—N71	-118.1 (4)
C13—C11—C12—N21	-97.2 (4)	N61—C61—C63—C64	-59.8 (4)
N11—C11—C13—C15	-175.6 (4)	C62—C61—C63—C64	179.2 (3)
C12—C11—C13—C15	65.5 (5)	N61—C61—C63—C65	176.7 (3)
N11—C11—C13—C14	-53.0 (5)	C62—C61—C63—C65	55.7 (4)
C12—C11—C13—C14	-171.9(4)	O62—C62—N71—C71	-6.6(7)
O12—C12—N21—C21	1.4 (6)	C61—C62—N71—C71	170.6 (4)
C11—C12—N21—C21	178.2 (3)	C62—N71—C71—C72	-98.0 (4)
C12—N21—C21—C22	-129.5 (4)	C62—N71—C71—C73	141.6 (4)
C12—N21—C21—C23	109.0 (4)	N71—C71—C72—O72	-72.7(5)
N21—C21—C22—O22	-61.4(5)	C73—C71—C72—O72	47.7 (5)
C23—C21—C22—O22	57.4 (5)	N71—C71—C72—N81	107.2 (4)
N21—C21—C22—N31	115.4 (4)	C73—C71—C72—N81	-132.4 (4)
C23—C21—C22—N31	-125.8(4)	N71—C71—C73—C74	174.7 (3)
N21-C21-C23-C24	-174.0(4)	C72—C71—C73—C74	56.8 (5)
C22—C21—C23—C24	69.2 (5)	C71—C73—C74—C76	-171.1 (4)
C_{21} $-C_{23}$ $-C_{24}$ $-C_{25}$	-57.2(7)	C71—C73—C74—C75	63.5 (6)
$C_{21} - C_{23} - C_{24} - C_{26}$	1745(4)	072 - C72 - N81 - C81	-2.5(6)
022-C22-N31-C31	-0.1(6)	C71 - C72 - N81 - C81	177.6 (4)
C_{21} C_{22} N_{31} C_{31}	-1767(3)	C72 = N81 = C81 = C82	-804(5)
C_{22} N31 $-C_{31}$ C32	-1203(4)	C72 - N81 - C81 - C83	1581(3)
C_{22} N31 $-C_{31}$ C32	119 8 (4)	N81-C81-C82-O82	150.9 (5)
N31-C31-C32-O32	-82.4(5)	C83 - C81 - C82 - O82	-86.7(6)
C_{33} C_{31} C_{32} C_{32} C_{33}	38 7 (5)	N81-C81-C82-N91	-325(5)
N31 - C31 - C32 - N41	97.2(A)	C83 C81 C82 N01	80 0 (5)
INJ 1-031-032-IN41	<i>71.3</i> (4)	003-001-002-1991	07.7 (3)

C33—C31—C32—N41	-141.5 (4)	N81—C81—C83—C84	-63.2 (5)
N31—C31—C33—C34	-59.7 (5)	C82—C81—C83—C84	174.1 (4)
C32—C31—C33—C34	-179.2 (4)	C81—C83—C84—C85′	91.4 (9)
C31—C33—C34—C36	-179.6 (5)	C81—C83—C84—C86	168.9 (7)
C31—C33—C34—C35	-54.6 (6)	C81—C83—C84—C85	-60.5 (7)
O32—C32—N41—C41	-1.1 (6)	C81—C83—C84—C86′	-152.6 (9)
C31—C32—N41—C41	179.2 (4)	O82—C82—N91—C91	-3.0 (8)
C32—N41—C41—C42	56.3 (5)	C81—C82—N91—C91	-179.5 (4)
C32—N41—C41—C43	176.5 (4)	C82—N91—C91—C92	146.8 (4)
N41—C41—C42—O42	57.0 (5)	C82—N91—C91—C93	-89.7 (6)
C43—C41—C42—O42	-64.0 (5)	N91—C91—C92—O92	82.8 (5)
N41—C41—C42—N51	-124.7 (4)	C93—C91—C92—O92	-40.6(5)
C43—C41—C42—N51	114.3 (4)	N91—C91—C92—N101	-92.4(4)
N41—C41—C43—C44	175.5 (4)	C93—C91—C92—N101	144.2 (4)
C42-C41-C43-C44	-63.8(5)	N91—C91—C93—C94	160.7 (4)
C41—C43—C44—C45	91.0 (6)	C92—C91—C93—C94	-79.6(5)
C41-C43-C44-C49	-85.5(6)	C91-C93-C94-C95	-68.2(6)
C49 - C44 - C45 - C46	1 1 (8)	C91 - C93 - C94 - C99	113.0(5)
C_{43} — C_{44} — C_{45} — C_{46}	-1755(5)	C99-C94-C95-C96	20(7)
C_{44} C_{45} C_{46} C_{47}	-1.2(10)	C93 - C94 - C95 - C96	-1769(5)
C_{45} C_{46} C_{47} C_{48}	0.2(10)	C94-C95-C96-C97	-0.6(8)
$C_{46} - C_{47} - C_{48} - C_{49}$	1.0(10)	C95 - C96 - C97 - C98	-14(8)
$C_{45} - C_{44} - C_{49} - C_{48}$	0.0(8)	C96-C97-C98-C99	20(8)
C_{43} C_{44} C_{49} C_{48}	176.6 (5)	C97 - C98 - C99 - C94	-0.6(8)
C47 - C48 - C49 - C44	-1.1(10)	C95 - C94 - C99 - C98	-1.4(7)
042 - 042 - 051 - 051	50(6)	C93 - C94 - C99 - C98	1.7(7)
C_{41} C_{42} N51 C51	-173.3(4)	O^{02} C^{02} N101 C101	177.5(3)
042 C42 N51 C55	173.3(4) 178 7 (4)	$C_{92} = C_{92} = N_{101} = C_{101}$	175 1 (3)
$C_{42} - C_{42} - N_{51} - C_{55}$	1/6.7(4)	$C_{91} = C_{92} = N_{101} = C_{101}$	175.1(3) 176.5(4)
C41 - C42 - N51 - C53	0.5(0)	$C_{92} - C_{92} - N_{101} - C_{103}$	-85(6)
C42 - N51 - C51 - C53	130.4(4) -18.2(5)	C91 - C92 - N101 - C103	-8.3(0) -77.2(5)
C_{33} N_{51} C_{51} C_{53}	-18.2(3)	C_{92} N101 $-C_{101}$ $-C_{102}$	-77.2(3)
C42 - N51 - C51 - C52	-82.9(3)	C103 N101 $-C101$ $-C102$	103.9(4)
C_{33} N51 C51 C52 O52	102.0(3)	C_{22} N101 $-C_{101}$ $-C_{103}$	101.0(3)
$N_{31} = C_{31} = C_{32} = 0_{32}$	-1/2.3(4)	C103 - N101 - C101 - C103	-10.0(4)
$C_{33} = C_{31} = C_{32} = 0_{32}$	-37.0(7)	C11 = N11 = C102 = C101	-2.3(7)
$N_{51} = C_{51} = C_{52} = N_{61}$	9.2 (0)	C11 = N11 = C102 = C101	1/8.4(3)
C53-C51-C52-N61	124.2 (5)	N101 - C101 - C102 - O102	168.4 (4)
N51 - C51 - C53 - C54	35.8 (5)	C103 - C101 - C102 - 0102	-75.0(5)
$C_{52} = C_{51} = C_{53} = C_{54}$	-86.8 (5)	N101—C101—C102—N11	-12.4(5)
C51—C53—C54—O54	-161.8 (4)	C103—C101—C102—N11	104.2 (4)
C51—C53—C54—C55	-40.3 (5)	N101—C101—C103—C104	30.5 (4)
C42—N51—C55—C54	179.3 (4)	C102—C101—C103—C104	-91.7 (4)
C51—N51—C55—C54	-6.4 (5)	C101—C103—C104—O104	-154.1 (3)
054—C54—C55—N51	148.4 (6)	C101—C103—C104—C105	-34.0 (4)
C53—C54—C55—N51	28.8 (5)	C92—N101—C105—C104	178.3 (4)
O52—C52—N61—C61	3.1 (7)	C101—N101—C105—C104	-5.1 (4)
C51—C52—N61—C61	-178.8 (4)	O104—C104—C105—N101	142.7 (4)
C52—N61—C61—C62	-119.4 (4)	C103—C104—C105—N101	24.1 (4)

D—H···A	H···A	$D \cdots A$	D—H···A
N31—H31…O62	2.01	2.838 (5)	162
N61—H61···O32	2.22	3.048 (5)	160
N81—H81…O12	2.19	2.905 (4)	140
N21—H21···O52 ⁱ	2.25	3.090 (4)	165
N41—H41…O72 ⁱ	2.13	2.966 (5)	165
N71—H71····O22 ⁱⁱ	1.97	2.818 (4)	168
O104—H10E…O102 ⁱⁱⁱ	2.06	2.869 (5)	168
O54—H54···O2 <i>M</i>	1.99	2.725 (9)	149
O1 <i>W</i> —H2 <i>W</i> ···O54	2.01	2.847 (7)	163
O1 <i>W</i> —H1 <i>W</i> ···O102 ⁱⁱ	2.03	2.927 (6)	178
O1 <i>M</i> —H1 <i>M</i> ···O42	2.03	2.831 (5)	166
O2 <i>M</i> —H2 <i>MA</i> ···O82 ^{iv}	1.99	2.727 (8)	144

 $D_{\rm x} = 1.190 {\rm Mg} {\rm m}^{-3}$

 $\theta = 4.3 - 60.5^{\circ}$

 $\mu = 0.68 \text{ mm}^{-1}$ T = 100 K

Needle, colourless

 $0.40 \times 0.10 \times 0.05 \text{ mm}$

Cu *K* α radiation, $\lambda = 1.54184$ Å

Cell parameters from 24836 reflections

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x+1, y-1/2, -z+1/2; (iii) x+1/2, -y+3/2, -z+1; (iv) -x+3/2, -y+1, z-1/2.

cyclo(Val-Leu-Leu-D-Phe-cHyp)₂ monohydrate (5)

Crystal data

 $C_{62}H_{94}N_{10}O_{12} \cdot H_{2}O$ $M_{r} = 1189.48$ Orthorhombic, $P2_{1}2_{1}2_{1}$ a = 12.0818 (1) Å b = 19.0030 (2) Å c = 28.9218 (2) Å $V = 6640.17 (10) \text{ Å}^{3}$ Z = 4 F(000) = 2568

Data collection

<i>!</i>)
·
3

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.082$ S = 1.049942 reflections 768 parameters 3 restraints Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0557P)^{2} + 1.1936P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.84 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.21 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 4245 quotients $[(I^{+})-(I^{-})]/[(I^{+})+(I^{-})]$ (Parsons et al., 2013) Absolute structure parameter: 0.00 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O1W	1.11656 (19)	0.39526 (14)	0.56999 (8)	0.0637 (7)	
H1	1.065590	0.371799	0.556029	0.095*	
H2	1.163177	0.399193	0.544564	0.095*	
N11	0.49693 (15)	0.46552 (9)	0.84981 (6)	0.0172 (4)	
H11	0.500365	0.420578	0.852989	0.021*	
C11	0.56657 (18)	0.49995 (11)	0.81524 (7)	0.0168 (4)	
H11A	0.542514	0.548992	0.812259	0.020*	
C12	0.55215 (17)	0.46381 (11)	0.76838 (7)	0.0161 (4)	
012	0.57959 (13)	0.40185 (8)	0.76198 (5)	0.0213 (3)	
C13	0.68963 (19)	0.49944 (12)	0.82868 (7)	0.0214 (5)	
H13	0.712888	0.450504	0.833162	0.026*	
C14	0.7063 (2)	0.53910 (13)	0.87403 (8)	0.0262 (5)	
H14A	0.661653	0.518032	0.897732	0.039*	
H14B	0.782870	0.536817	0.882846	0.039*	
H14C	0.685030	0.587383	0.870050	0.039*	
C15	0.7594 (2)	0.53143 (14)	0.79019 (8)	0.0297 (6)	
H15A	0.747532	0.505670	0.762063	0.045*	
H15B	0.738374	0.579668	0.785716	0.045*	
H15C	0.836214	0.529103	0.798513	0.045*	
N21	0.51141 (15)	0.50507 (9)	0.73457 (6)	0.0169 (4)	
H21	0.486367	0.545979	0.741801	0.020*	
C21	0.50792 (18)	0.48343 (11)	0.68628 (7)	0.0162 (4)	
H21A	0.513364	0.432077	0.684214	0.019*	
C22	0.60621 (18)	0.51718 (11)	0.66167 (7)	0.0159 (4)	
O22	0.61337 (13)	0.58172 (8)	0.65797 (6)	0.0235 (3)	
C23	0.40097 (18)	0.50821 (11)	0.66347 (7)	0.0183 (5)	
H23A	0.392852	0.558294	0.668978	0.022*	
H23B	0.339232	0.484715	0.678350	0.022*	
C24	0.39375 (19)	0.49492 (12)	0.61123 (7)	0.0211 (5)	
H24	0.459697	0.515415	0.596804	0.025*	
C25	0.3918 (2)	0.41647 (13)	0.59970 (8)	0.0260 (5)	
H25A	0.455957	0.394149	0.612664	0.039*	
H25B	0.326221	0.395539	0.612442	0.039*	
H25C	0.391952	0.410429	0.566743	0.039*	
C26	0.2926 (2)	0.53148 (13)	0.59097 (9)	0.0304 (6)	
H26A	0.294915	0.580667	0.598479	0.046*	
H26B	0.292371	0.525852	0.557984	0.046*	
H26C	0.226641	0.510962	0.603683	0.046*	
N31	0.68209 (15)	0.47322 (9)	0.64386 (6)	0.0188 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H31	0.675201	0.428636	0.648097	0.023*
C31	0.77551 (18)	0.49975 (12)	0.61758 (8)	0.0209 (5)
H31A	0.786616	0.548872	0.626786	0.025*
C32	0.75633 (19)	0.49926 (11)	0.56563 (8)	0.0211 (5)
O32	0.80457 (15)	0.54166 (9)	0.54075 (6)	0.0320 (4)
C33	0.8826 (2)	0.45997 (13)	0.62899 (9)	0.0276 (5)
H33A	0.872183	0.410497	0.621980	0.033*
H33B	0.941432	0.477426	0.609240	0.033*
C34	0.9188(2)	0.46708(14)	0.67944(9)	0.0313 (6)
H34	0.861431	0 445911	0.698934	0.038*
C35	1.0262(2)	0.42664(19)	0.68717(11)	0.0488 (8)
H35A	1.016180	0.378471	0.678073	0.073*
H35B	1.084135	0.447380	0.670073	0.073*
H35C	1.045871	0.428589	0.719302	0.073*
C36	0.0314(2)	0.5/300 (16)	0.60351 (10)	0.075
U36A	0.9314(2) 0.862870	0.54339 (10)	0.688334	0.0410(7)
1130A 1126D	0.802870	0.506250	0.0003334	0.062*
H30D	0.930325	0.340033	0.723083	0.062*
H30C	0.988/8/	0.303443	0.0/3383	0.062°
N41	0.68870(16)	0.44902 (10)	0.54849 (6)	0.0220 (4)
H41	0.662016	0.41/54/	0.566/1/	0.026*
C41	0.66014 (19)	0.44741 (12)	0.49921 (8)	0.0210(5)
H4IA	0.718002	0.472428	0.482072	0.025*
C42	0.66122 (18)	0.37014 (12)	0.48399 (7)	0.0191 (5)
042	0.57421 (13)	0.33785 (8)	0.47746 (6)	0.0257 (4)
C43	0.5491 (2)	0.48405 (13)	0.48979 (8)	0.0258 (5)
H43A	0.489907	0.450059	0.493519	0.031*
H43B	0.538336	0.520757	0.512653	0.031*
C44	0.54101 (19)	0.51617 (12)	0.44214 (8)	0.0223 (5)
C45	0.6101 (2)	0.57210 (12)	0.42997 (8)	0.0255 (5)
H45	0.662560	0.588141	0.450992	0.031*
C46	0.6016 (2)	0.60394 (13)	0.38725 (9)	0.0300 (6)
H46	0.647813	0.641399	0.379782	0.036*
C47	0.5248 (2)	0.58031 (14)	0.35561 (9)	0.0338 (6)
H47	0.519164	0.601836	0.326822	0.041*
C48	0.4562 (2)	0.52472 (15)	0.36664 (9)	0.0343 (6)
H48	0.404521	0.508567	0.345281	0.041*
C49	0.4645 (2)	0.49285 (13)	0.40994 (9)	0.0290 (5)
H49	0.418128	0.455431	0.417288	0.035*
N51	0.76144 (15)	0.33929 (9)	0.48141 (6)	0.0169 (4)
C51	0.77331 (19)	0.26394 (11)	0.47106 (7)	0.0189 (5)
H51	0.722867	0.250970	0.445933	0.023*
C52	0.75260 (17)	0.21626 (11)	0.51290(7)	0.0165 (5)
052	0.75486 (13)	0.15226 (8)	0.50807 (5)	0.0225 (3)
C53	0.89348 (19)	0.25888(12)	0.45410(7)	0.0217(5)
H53A	0.924203	0.212690	0.460343	0.026*
H53B	0.898342	0.268284	0.421202	0.026*
C54	0.95295 (18)	0.31523(12)	0.48180(7)	0 0199 (5)
H54	1 021136	0 330168	0 466289	0.024*
110 1	1.021150	0.000100	0.100207	0.047

O54	0.97469 (13)	0.29255 (8)	0.52782 (5)	0.0224(3)
H54A	1.005417	0.254084	0.527207	0.034*
C55	0.86995 (18)	0.37504 (12)	0.48432 (8)	0.0201 (5)
H55A	0.877089	0.400638	0.513182	0.024*
H55B	0.879863	0.407506	0.458775	0.024*
N61	0.73065 (15)	0.24835 (9)	0.55318 (6)	0.0170 (4)
H61	0.726006	0.293502	0.553610	0.020*
C61	0.71437(18)	0.21002 (11)	0.59613(7)	0.0164(4)
H61A	0.676135	0.165747	0 589279	0.020*
C62	0.64029 (17)	0.25485(11)	0.62684(7)	0.020
062	0.64590(17)	0.32020 (8)	0.62601(7)	0.0206(3)
C63	0.82721(19)	0.32020(0) 0.19290(12)	0.62013(3)	0.0200(5)
Н63	0.873429	0.170281	0.595917	0.026*
C64	0.87542)	0.170231 0.14023(14)	0.555717 0.65875(8)	0.020
Ц64 Л	0.0141(2) 0.774565	0.14023 (14)	0.647811	0.045*
H64R	0.885854	0.126138	0.647811	0.045*
1104D	0.885854	0.120138	0.603611	0.045*
П04С С65	0.773027	0.101031	0.003011	0.043°
	0.8898 (2)	0.23790 (14)	0.05592 (8)	0.0295 (3)
	0.89/33/	0.290312	0.010/00	0.044*
HOSB	0.849087	0.279811	0.000081	0.044*
HOOU	0.901914	0.244518	0.0400/0	0.044*
N/I 1171	0.5/1//(15)	0.21863 (9)	0.65399 (6)	0.0163 (4)
H/I	0.566887	0.1/3950	0.649749	0.020*
C/I	0.50404 (18)	0.25023 (11)	0.69074(7)	0.0165 (4)
H71A	0.520956	0.300501	0.693403	0.020*
C72	0.53582 (17)	0.21271 (11)	0.73508 (7)	0.0155 (4)
072	0.52627 (13)	0.14809 (8)	0.73774 (5)	0.0216 (3)
C73	0.38058 (19)	0.24023 (12)	0.68044 (8)	0.0215 (5)
H73A	0.362406	0.267173	0.652984	0.026*
H73B	0.367945	0.191009	0.673304	0.026*
C74	0.3007 (2)	0.26180 (14)	0.71914 (8)	0.0285 (5)
H74	0.318378	0.234341	0.746859	0.034*
C75	0.1829 (2)	0.24395 (16)	0.70409 (13)	0.0475 (8)
H75A	0.178364	0.194813	0.696622	0.071*
H75B	0.132461	0.254447	0.728794	0.071*
H75C	0.163759	0.271375	0.677380	0.071*
C76	0.3089 (2)	0.33960 (13)	0.73107 (9)	0.0292 (5)
H76A	0.383192	0.350419	0.740498	0.044*
H76B	0.290034	0.367204	0.704415	0.044*
H76C	0.258736	0.350276	0.755829	0.044*
N81	0.57450 (15)	0.25333 (9)	0.76917 (6)	0.0173 (4)
H81	0.578985	0.297996	0.764751	0.021*
C81	0.60941 (19)	0.22454 (12)	0.81365 (7)	0.0185 (5)
H81A	0.594862	0.173811	0.814238	0.022*
C82	0.53993 (18)	0.26082 (11)	0.85108 (7)	0.0165 (4)
O82	0.57012 (13)	0.31670 (8)	0.86852 (5)	0.0197 (3)
C83	0.7324 (2)	0.23763 (13)	0.82220 (8)	0.0261 (5)
H83A	0.744789	0.288035	0.823312	0.031*

H83B	0.751505	0.218678	0.852304	0.031*
C84	0.8107 (2)	0.20600 (13)	0.78637 (9)	0.0280 (5)
H84	0.792749	0.226641	0.756232	0.034*
C85	0.7986 (2)	0.12670 (13)	0.78243 (8)	0.0265 (5)
H85A	0.723296	0.115225	0.774981	0.040*
H85B	0.846581	0.109536	0.758498	0.040*
H85C	0.818275	0.105202	0.811320	0.040*
C86	0.9297 (2)	0.22571 (17)	0.79820 (13)	0.0511 (8)
H86A	0.935830	0.275951	0.800550	0.077*
H86B	0.949910	0.204633	0.827152	0.077*
H86C	0.978217	0.208967	0.774330	0.077*
N91	0.44509 (16)	0.22898 (9)	0.86294 (6)	0.0203 (4)
H91	0.425515	0.190375	0.849749	0.024*
C91	0.37527 (18)	0.26076 (11)	0.89865 (7)	0.0198 (5)
H91A	0.415204	0.260104	0.928140	0.024*
C92	0.35026 (18)	0.33736 (11)	0.88548 (7)	0.0184 (5)
092	0.30707 (14)	0.35086 (8)	0.84808 (5)	0.0251 (4)
C93	0.2664 (2)	0.22003 (12)	0.90416 (8)	0.0248 (5)
H93A	0.218694	0.229021	0.877849	0.030*
H93B	0.281414	0.169916	0.905414	0.030*
C94	0.20953 (18)	0.24314 (12)	0.94815 (8)	0.0216 (5)
C95	0.2366 (2)	0.21121 (13)	0.98984 (9)	0.0299 (6)
Н95	0.284873	0.173110	0.989887	0.036*
C96	0.1934 (2)	0.23478 (14)	1.03120 (8)	0.0313 (6)
H96	0.211903	0.212280	1.058685	0.038*
C97	0.1226 (2)	0.29173 (13)	1.03172 (9)	0.0284(5)
H97	0.094492	0.308560	1.059535	0.034*
C98	0.0941 (2)	0.32349 (14)	0.99045 (9)	0.0335 (6)
H98	0.045609	0.361525	0.990541	0.040*
C99	0.1368 (2)	0.29931 (14)	0.94891 (9)	0.0297 (6)
H99	0.116401	0.321003	0.921376	0.036*
N101	0 37693 (15)	0 38768 (9)	0.91646 (6)	0.0175(4)
C101	0 34819 (19)	0 46171 (11)	0.90807 (8)	0.0203(5)
H101	0 273900	0.463679	0.894531	0.024*
C102	0.278300 0.42811(18)	0 50244 (11)	0.87656 (7)	0.021
0102	0.42011(14)	0.56717 (8)	0.87509 (5)	0.0100(0)
C102	0.3431(2)	0.30717(0) 0.49189(13)	0.95715 (8)	0.0271(1) 0.0281(5)
H10A	0.360341	0 541741	0.957243	0.034*
H10R	0.270457	0.484943	0.970693	0.034*
C104	0.270437 0.4303(2)	0.45028 (12)	0.98296 (8)	0.034
U104	0.418123	0.451855	1.016445	0.0200(3)
0104	0.410123 0.53551 (16)	0.431833	0.07080(6)	0.032
U104	0.55551 (10)	0.47813 (9)	0.97080 (0)	0.0344(4)
C105	0.301010 0.4174(2)	0.40/310 0.37607 (12)	0.990391	0.032
	0.41/4 (2)	0.37007 (12)	0.90414(7)	0.0208 (3)
	0.40//00	0.331379	0.904094	0.025*
LIVE	0.304330	0.349383	0.982173	0.023*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
O1W	0.0419 (12)	0.0856 (18)	0.0635 (14)	-0.0218 (12)	0.0141 (11)	-0.0452 (13)
N11	0.0227 (9)	0.0110 (8)	0.0179 (9)	0.0013 (7)	0.0039 (7)	0.0019 (7)
C11	0.0218 (11)	0.0122 (10)	0.0164 (10)	0.0010 (9)	0.0011 (9)	0.0021 (8)
C12	0.0150 (10)	0.0137 (11)	0.0196 (11)	-0.0013 (9)	0.0018 (8)	0.0012 (8)
012	0.0302 (9)	0.0124 (8)	0.0212 (8)	0.0028 (7)	-0.0015 (7)	-0.0002 (6)
C13	0.0218 (12)	0.0214 (11)	0.0210 (11)	0.0011 (9)	-0.0005 (9)	-0.0011 (9)
C14	0.0276 (12)	0.0269 (13)	0.0240 (12)	0.0016 (10)	-0.0052 (10)	-0.0021 (10)
C15	0.0237 (12)	0.0367 (14)	0.0288 (13)	-0.0072 (11)	0.0023 (10)	-0.0034 (11)
N21	0.0221 (10)	0.0120 (9)	0.0165 (9)	0.0030 (7)	0.0017 (7)	-0.0019 (7)
C21	0.0218 (11)	0.0119 (10)	0.0150 (10)	0.0001 (9)	0.0015 (9)	-0.0005 (8)
C22	0.0201 (11)	0.0134 (11)	0.0143 (10)	0.0007 (9)	-0.0028 (9)	-0.0018 (8)
O22	0.0260 (8)	0.0136 (8)	0.0309 (9)	0.0006 (7)	0.0049 (7)	0.0018 (6)
C23	0.0205 (11)	0.0159 (11)	0.0186 (11)	0.0006 (9)	0.0022 (9)	-0.0010 (9)
C24	0.0234 (12)	0.0218 (12)	0.0182 (11)	-0.0015 (9)	-0.0013 (9)	0.0011 (9)
C25	0.0322 (13)	0.0260 (13)	0.0198 (12)	0.0027 (10)	-0.0041 (10)	-0.0041 (9)
C26	0.0378 (14)	0.0267 (13)	0.0267 (13)	0.0023 (11)	-0.0083 (11)	0.0030 (10)
N31	0.0208 (9)	0.0126 (9)	0.0231 (9)	0.0008 (8)	0.0025 (8)	-0.0006 (7)
C31	0.0200 (11)	0.0160 (11)	0.0267 (12)	-0.0014 (9)	0.0054 (9)	-0.0029 (9)
C32	0.0188 (11)	0.0161 (11)	0.0284 (12)	0.0019 (9)	0.0068 (9)	-0.0008 (10)
O32	0.0390 (10)	0.0260 (9)	0.0309 (9)	-0.0088 (8)	0.0072 (8)	0.0024 (7)
C33	0.0209 (11)	0.0290 (13)	0.0330 (13)	0.0010 (10)	0.0026 (10)	-0.0037 (10)
C34	0.0223 (12)	0.0407 (15)	0.0310 (13)	-0.0033 (11)	0.0022 (10)	-0.0023 (11)
C35	0.0313 (15)	0.072 (2)	0.0430 (17)	0.0083 (15)	-0.0082 (13)	-0.0014 (15)
C36	0.0399 (15)	0.0505 (17)	0.0344 (14)	-0.0174 (14)	-0.0004 (12)	-0.0072 (13)
N41	0.0262 (10)	0.0186 (9)	0.0213 (10)	-0.0028 (8)	0.0060 (8)	0.0025 (7)
C41	0.0243 (11)	0.0197 (11)	0.0191 (11)	0.0020 (9)	0.0050 (9)	0.0021 (9)
C42	0.0205 (12)	0.0212 (11)	0.0157 (10)	-0.0011 (10)	0.0010 (9)	0.0053 (9)
O42	0.0203 (8)	0.0251 (8)	0.0316 (9)	-0.0022 (7)	-0.0004 (7)	0.0038 (7)
C43	0.0249 (12)	0.0235 (12)	0.0288 (13)	0.0052 (10)	0.0060 (10)	0.0032 (10)
C44	0.0221 (12)	0.0187 (11)	0.0262 (12)	0.0064 (9)	0.0064 (9)	0.0009 (9)
C45	0.0290 (12)	0.0210 (12)	0.0266 (12)	-0.0017 (10)	0.0017 (10)	-0.0040 (10)
C46	0.0356 (14)	0.0241 (13)	0.0304 (13)	-0.0028 (11)	0.0067 (11)	0.0035 (10)
C47	0.0426 (15)	0.0325 (14)	0.0263 (13)	0.0053 (12)	0.0010 (11)	0.0061 (11)
C48	0.0306 (13)	0.0394 (15)	0.0329 (14)	0.0001 (11)	-0.0047 (11)	-0.0003 (11)
C49	0.0232 (12)	0.0281 (13)	0.0358 (13)	-0.0011 (10)	0.0023 (11)	0.0012 (10)
N51	0.0194 (9)	0.0131 (9)	0.0182 (9)	-0.0016 (7)	0.0008 (7)	0.0008 (7)
C51	0.0226 (11)	0.0177 (11)	0.0164 (10)	-0.0018 (9)	0.0004 (9)	-0.0007 (9)
C52	0.0128 (10)	0.0189 (12)	0.0177 (11)	-0.0029 (8)	-0.0006 (8)	-0.0002(9)
052	0.0316 (9)	0.0147 (8)	0.0214 (8)	-0.0001 (6)	0.0022 (7)	-0.0008(6)
C53	0.0266 (12)	0.0216 (12)	0.0169 (11)	-0.0003 (10)	0.0056 (9)	-0.0015 (9)
C54	0.0184 (11)	0.0223 (12)	0.0189 (11)	-0.0007 (9)	0.0054 (9)	0.0010 (9)
054	0.0212 (8)	0.0214 (8)	0.0245 (8)	0.0022 (6)	-0.0002 (6)	0.0025 (6)
C55	0.0191 (11)	0.0178 (11)	0.0233 (11)	-0.0040 (9)	0.0028 (9)	0.0020 (9)
N61	0.0211 (9)	0.0129 (9)	0.0169 (9)	-0.0013 (7)	0.0021 (7)	0.0018 (7)
C61	0.0190 (10)	0.0154 (10)	0.0148 (10)	-0.0008(9)	0.0012 (9)	0.0010 (8)

C62	0.0166 (10)	0.0175 (12)	0.0141 (10)	0.0002 (8)	-0.0029 (8)	0.0009 (8)
O62	0.0255 (8)	0.0126 (8)	0.0237 (8)	-0.0017 (6)	0.0032 (6)	0.0007 (6)
C63	0.0202 (11)	0.0249 (12)	0.0202 (11)	0.0036 (10)	0.0006 (9)	0.0003 (9)
C64	0.0280 (13)	0.0352 (14)	0.0269 (12)	0.0097 (11)	-0.0028 (11)	0.0072 (11)
C65	0.0240 (12)	0.0366 (14)	0.0272 (12)	-0.0012 (11)	-0.0067 (10)	-0.0032 (11)
N71	0.0213 (9)	0.0110 (8)	0.0168 (8)	-0.0003 (7)	0.0037 (7)	-0.0017 (7)
C71	0.0189 (11)	0.0142 (10)	0.0165 (10)	-0.0002 (9)	0.0025 (8)	-0.0017 (8)
C72	0.0160 (10)	0.0138 (11)	0.0167 (10)	0.0004 (8)	0.0050 (8)	-0.0012 (8)
O72	0.0310 (9)	0.0130 (8)	0.0208 (8)	-0.0027 (6)	-0.0023 (7)	0.0005 (6)
C73	0.0217 (11)	0.0185 (11)	0.0245 (12)	0.0013 (9)	-0.0015 (9)	-0.0007 (9)
C74	0.0217 (12)	0.0331 (14)	0.0308 (13)	0.0052 (11)	0.0073 (10)	0.0108 (11)
C75	0.0218 (14)	0.0382 (16)	0.082 (2)	-0.0025 (12)	0.0059 (14)	0.0021 (15)
C76	0.0244 (12)	0.0361 (14)	0.0271 (12)	0.0054 (11)	0.0045 (10)	-0.0015 (11)
N81	0.0259 (10)	0.0102 (9)	0.0159 (9)	0.0014 (8)	0.0009 (8)	-0.0003 (7)
C81	0.0263 (12)	0.0158 (11)	0.0135 (10)	0.0024 (9)	-0.0004 (9)	0.0001 (8)
C82	0.0212 (11)	0.0147 (11)	0.0137 (10)	0.0032 (9)	-0.0025 (8)	0.0022 (8)
O82	0.0250 (8)	0.0149 (8)	0.0193 (7)	0.0000 (6)	0.0007 (6)	-0.0034 (6)
C83	0.0267 (12)	0.0257 (13)	0.0259 (12)	0.0023 (10)	-0.0007 (10)	-0.0051 (10)
C84	0.0275 (13)	0.0255 (13)	0.0310 (13)	0.0028 (10)	0.0041 (11)	-0.0003 (10)
C85	0.0244 (12)	0.0253 (12)	0.0299 (12)	0.0062 (10)	0.0044 (10)	0.0014 (10)
C86	0.0300 (15)	0.0425 (17)	0.081 (2)	-0.0067 (13)	0.0139 (16)	-0.0185 (16)
N91	0.0264 (10)	0.0147 (9)	0.0197 (9)	-0.0018 (8)	0.0052 (8)	-0.0056 (7)
C91	0.0253 (12)	0.0166 (11)	0.0175 (11)	-0.0018 (9)	0.0056 (9)	-0.0020 (9)
C92	0.0204 (11)	0.0184 (11)	0.0165 (11)	-0.0029 (9)	0.0038 (9)	0.0004 (9)
O92	0.0299 (9)	0.0265 (9)	0.0187 (8)	-0.0011 (7)	-0.0017 (7)	0.0000 (6)
C93	0.0276 (12)	0.0211 (12)	0.0257 (12)	-0.0065 (10)	0.0065 (10)	-0.0029 (9)
C94	0.0219 (11)	0.0194 (12)	0.0235 (11)	-0.0063 (9)	0.0032 (9)	-0.0008 (9)
C95	0.0351 (14)	0.0241 (13)	0.0306 (13)	0.0070 (11)	0.0090 (11)	0.0060 (10)
C96	0.0342 (14)	0.0362 (14)	0.0234 (12)	0.0050 (11)	0.0036 (11)	0.0062 (11)
C97	0.0290 (13)	0.0297 (13)	0.0265 (13)	-0.0020 (11)	0.0093 (10)	-0.0046 (10)
C98	0.0293 (13)	0.0336 (14)	0.0376 (14)	0.0089 (11)	0.0070 (11)	0.0020 (11)
C99	0.0269 (13)	0.0351 (14)	0.0270 (13)	0.0032 (11)	0.0011 (10)	0.0073 (11)
N101	0.0234 (9)	0.0127 (9)	0.0165 (9)	0.0008 (8)	0.0025 (7)	0.0006 (7)
C101	0.0246 (11)	0.0143 (11)	0.0221 (11)	0.0028 (9)	0.0059 (9)	0.0016 (9)
C102	0.0228 (11)	0.0152 (12)	0.0177 (10)	0.0019 (9)	-0.0001 (9)	0.0011 (9)
O102	0.0368 (9)	0.0148 (8)	0.0296 (9)	0.0055 (7)	0.0109 (7)	0.0026 (7)
C103	0.0411 (14)	0.0197 (12)	0.0235 (12)	0.0032 (10)	0.0129 (11)	-0.0006 (9)
C104	0.0424 (14)	0.0200 (12)	0.0174 (11)	-0.0076 (11)	0.0039 (10)	-0.0022 (9)
O104	0.0434 (11)	0.0309 (10)	0.0290 (9)	-0.0158 (8)	-0.0058 (8)	0.0015 (7)
C105	0.0276 (12)	0.0184 (11)	0.0165 (10)	-0.0027 (9)	-0.0002 (9)	0.0005 (9)

Geometric parameters (Å, °)

O1W—H1	0.861 (2)	С55—Н55А	0.9700	
O1W—H2	0.929 (2)	C55—H55B	0.9700	
N11—C102	1.335 (3)	N61—C61	1.453 (3)	
N11—C11	1.461 (3)	N61—H61	0.8600	
N11—H11	0.8600	C61—C62	1.522 (3)	

C11—C12	1.529 (3)	C61—C63	1.556 (3)
C11—C13	1.537 (3)	C61—H61A	0.9800
C11—H11A	0.9800	C62—O62	1.244 (3)
C12—O12	1.237 (3)	C62—N71	1.333 (3)
C12—N21	1.347 (3)	C63—C64	1.523 (3)
C13—C14	1.526 (3)	C63—C65	1.525 (3)
C13—C15	1.523 (3)	С63—Н63	0.9800
C13—H13	0.9800	C64—H64A	0.9600
C14—H14A	0.9600	C64—H64B	0.9600
C14—H14B	0.9600	C64—H64C	0.9600
C14—H14C	0.9600	С65—Н65А	0.9600
C15—H15A	0.9600	С65—Н65В	0.9600
C15—H15B	0.9600	С65—Н65С	0.9600
C15—H15C	0.9600	N71—C71	1.470 (3)
N21—C21	1.456 (3)	N71—H71	0.8600
N21—H21	0.8600	C71—C72	1.517 (3)
C21—C22	1.526 (3)	C71—C73	1.533 (3)
C21—C23	1.525 (3)	C71—H71A	0.9800
C21—H21A	0.9800	C72—O72	1.236 (3)
C22—O22	1.234 (3)	C72—N81	1.337 (3)
C22—N31	1.343 (3)	C73—C74	1.534 (3)
C23—C24	1.534 (3)	С73—Н73А	0.9700
C23—H23A	0.9700	С73—Н73В	0.9700
С23—Н23В	0.9700	C74—C76	1.521 (4)
C24—C25	1.528 (3)	C74—C75	1.527 (4)
C24—C26	1.523 (3)	С74—Н74	0.9800
C24—H24	0.9800	С75—Н75А	0.9600
C25—H25A	0.9600	С75—Н75В	0.9600
C25—H25B	0.9600	С75—Н75С	0.9600
C25—H25C	0.9600	С76—Н76А	0.9600
C26—H26A	0.9600	С76—Н76В	0.9600
C26—H26B	0.9600	С76—Н76С	0.9600
C26—H26C	0.9600	N81—C81	1.460 (3)
N31—C31	1.451 (3)	N81—H81	0.8600
N31—H31	0.8600	C81—C83	1.527 (3)
C31—C32	1.520 (3)	C81—C82	1.534 (3)
C31—C33	1.535 (3)	C81—H81A	0.9800
C31—H31A	0.9800	C82—O82	1.231 (3)
C32—O32	1.227 (3)	C82—N91	1.341 (3)
C32—N41	1.351 (3)	C83—C84	1.526 (3)
C33—C34	1.529 (4)	С83—Н83А	0.9700
С33—Н33А	0.9700	С83—Н83В	0.9700
С33—Н33В	0.9700	C84—C85	1.518 (3)
C34—C36	1.525 (4)	C84—C86	1.525 (4)
C34—C35	1.524 (4)	C84—H84	0.9800
C34—H34	0.9800	C85—H85A	0.9600
С35—Н35А	0.9600	C85—H85B	0.9600
C35—H35B	0.9600	C85—H85C	0.9600

С35—Н35С	0.9600	C86—H86A	0.9600
С36—Н36А	0.9600	C86—H86B	0.9600
С36—Н36В	0.9600	C86—H86C	0.9600
С36—Н36С	0.9600	N91—C91	1.464 (3)
N41—C41	1.467 (3)	N91—H91	0.8600
N41—H41	0.8600	C91—C93	1.534 (3)
C41—C42	1.533 (3)	C91—C92	1.535 (3)
C41—C43	1.535 (3)	C91—H91A	0.9800
C41—H41A	0.9800	C92—O92	1.228 (3)
C42 - C42	1 232 (3)	C92 - N101	1.220(3)
C42 - N51	1.232(3) 1.347(3)	C93—C94	1.500(3) 1.511(3)
C43 - C44	1.510(3)	C93—H93A	0.9700
C_{43} H43A	0.9700	C03_H03R	0.9700
C43 - H43B	0.9700	C94 - C99	1.383(4)
C44 - C49	1.385(4)	C94 - C95	1 389 (3)
C44 - C45	1 396 (3)	C95 - C96	1.389(3)
C45 C46	1.390(3) 1.380(4)	C05 H05	0.0300
$C_{45} = C_{40}$	0.0300	C95—1195	1.370(4)
$C_{45} = 1145$	1,370(4)	C96 H96	1.379(4)
$C_{40} = C_{47}$	0.0300	C07 C08	1.381(4)
$C_{40} = 1140$	1.380(4)	C97 - C98	1.381(4)
$C_{47} = C_{48}$	0.0300	$C_{9}^{(-)} = C_{9}^{(-)}$	1.396(4)
$C_{4} = C_{4}$	1,305(4)	C08 H08	0.0300
$C_{40} = C_{49}$	0.0300	C90 H00	0.9300
C40 - H40	0.9300	N101 C101	0.9300
N51 C51	0.9300	N101—C101	1.409(3)
N51_C55	1.470(3)	101 - C103	1.460(3)
N31-C33	1.479 (3)	C101 - C103	1.332(3)
C51—C52	1.552(5)	C101 - C102	1.337(3)
C51-C53	1.536 (3)	C101—H101	0.9800
C51—H51	0.9800	C102 - 0102	1.235 (3)
C52	1.225 (3)	C103—C104	1.514 (4)
C52—N61	1.342 (3)	C103—HI0A	0.9700
C53—C54	1.518 (3)	C103—H10B	0.9700
С53—Н53А	0.9700	C104—O104	1.422 (3)
С53—Н53В	0.9700	C104—C105	1.519 (3)
C54—O54	1.423 (3)	C104—H104	0.9800
C54—C55	1.517 (3)	O104—H10C	0.8200
С54—Н54	0.9800	Clos—HloD	0.9700
O54—H54A	0.8200	C105—H10E	0.9700
H1—O1W—H2	96.0 (2)	C52—N61—C61	122.77 (17)
C102—N11—C11	121.32 (17)	C52—N61—H61	118.6
C102—N11—H11	119.3	C61—N61—H61	118.6
C11—N11—H11	119.3	N61—C61—C62	107.33 (17)
N11—C11—C12	109.86 (17)	N61—C61—C63	110.92 (17)
N11—C11—C13	112.41 (17)	C62—C61—C63	112.29 (17)
C12—C11—C13	109.36 (17)	N61—C61—H61A	108.7
N11—C11—H11A	108.4	C62—C61—H61A	108.7

C12—C11—H11A	108.4	С63—С61—Н61А	108.7
C13—C11—H11A	108.4	O62—C62—N71	124.00 (19)
O12—C12—N21	122.92 (19)	O62—C62—C61	121.14 (18)
O12—C12—C11	121.97 (19)	N71—C62—C61	114.86 (18)
N21—C12—C11	115.07 (17)	C64—C63—C65	110.6 (2)
C14—C13—C15	111.0 (2)	C64—C63—C61	111.72 (19)
C14—C13—C11	110.01 (18)	C65—C63—C61	113.64 (19)
C15—C13—C11	110.36 (18)	С64—С63—Н63	106.8
C14—C13—H13	108.5	С65—С63—Н63	106.8
C15—C13—H13	108.5	С61—С63—Н63	106.8
C11—C13—H13	108.5	C63—C64—H64A	109.5
C13—C14—H14A	109.5	C63—C64—H64B	109.5
C13—C14—H14B	109.5	H64A—C64—H64B	109.5
H14A—C14—H14B	109.5	C63—C64—H64C	109.5
C13—C14—H14C	109.5	H64A—C64—H64C	109.5
H14A—C14—H14C	109.5	H64B—C64—H64C	109.5
H14B—C14—H14C	109.5	С63—С65—Н65А	109.5
C13—C15—H15A	109.5	С63—С65—Н65В	109.5
C13—C15—H15B	109.5	H65A—C65—H65B	109.5
H15A—C15—H15B	109.5	С63—С65—Н65С	109.5
C13—C15—H15C	109.5	H65A—C65—H65C	109.5
H15A—C15—H15C	109.5	H65B—C65—H65C	109.5
H15B—C15—H15C	109.5	C62—N71—C71	124.14 (17)
C12—N21—C21	122.86 (17)	C62—N71—H71	117.9
C12—N21—H21	118.6	C71—N71—H71	117.9
C21—N21—H21	118.6	N71—C71—C72	106.17 (16)
N21—C21—C22	107.83 (17)	N71—C71—C73	110.53 (17)
N21—C21—C23	110.62 (17)	C72—C71—C73	110.64 (18)
C22—C21—C23	109.13 (17)	N71—C71—H71A	109.8
N21—C21—H21A	109.7	С72—С71—Н71А	109.8
C22—C21—H21A	109.7	С73—С71—Н71А	109.8
C23—C21—H21A	109.7	O72—C72—N81	124.11 (19)
O22—C22—N31	122.5 (2)	O72—C72—C71	119.74 (18)
O22—C22—C21	120.84 (19)	N81—C72—C71	116.15 (18)
N31—C22—C21	116.66 (18)	C74—C73—C71	115.93 (19)
C21—C23—C24	115.04 (18)	С74—С73—Н73А	108.3
С21—С23—Н23А	108.5	С71—С73—Н73А	108.3
С24—С23—Н23А	108.5	С74—С73—Н73В	108.3
С21—С23—Н23В	108.5	С71—С73—Н73В	108.3
С24—С23—Н23В	108.5	H73A—C73—H73B	107.4
H23A—C23—H23B	107.5	C76—C74—C75	110.0 (2)
C25—C24—C26	110.40 (19)	C76—C74—C73	112.6 (2)
C25—C24—C23	112.11 (18)	C75—C74—C73	108.6 (2)
C26—C24—C23	110.44 (19)	C76—C74—H74	108.5
C25—C24—H24	107.9	С75—С74—Н74	108.5
C26—C24—H24	107.9	С73—С74—Н74	108.5
C23—C24—H24	107.9	С74—С75—Н75А	109.5
C24—C25—H25A	109.5	C74—C75—H75B	109.5

С24—С25—Н25В	109.5	H75A—C75—H75B	109.5
H25A—C25—H25B	109.5	С74—С75—Н75С	109.5
C24—C25—H25C	109.5	Н75А—С75—Н75С	109.5
H25A—C25—H25C	109.5	H75B—C75—H75C	109.5
H25B—C25—H25C	109.5	С74—С76—Н76А	109.5
C24—C26—H26A	109.5	С74—С76—Н76В	109.5
C24—C26—H26B	109.5	Н76А—С76—Н76В	109.5
H26A—C26—H26B	109.5	С74—С76—Н76С	109.5
C24—C26—H26C	109.5	H76A—C76—H76C	109.5
$H_{26A} - C_{26} - H_{26C}$	109.5	H76B—C76—H76C	109.5
$H_{26B} = C_{26} = H_{26C}$	109.5	C72 - N81 - C81	122.30(17)
$C_{22} = N_{31} = C_{31}$	121.04 (18)	C72 - N81 - H81	118.8
$C_{22} = N_{31} = H_{31}$	119 5	C81—N81—H81	118.8
C_{31} N ₃₁ H ₃₁	119.5	N81-C81-C83	111.26 (19)
$N_{31} - C_{31} - C_{32}$	113 39 (19)	N81-C81-C82	107.17(17)
N31-C31-C33	111.85 (18)	C83 - C81 - C82	107.17(17) 110.20(18)
C_{32} C_{31} C_{33}	109 76 (18)	N81-C81-H81A	109.4
N31 C31 H31A	107.2	C_{83} C_{81} H_{81A}	109.4
C_{32} C_{31} H_{31A}	107.2	C82 C81 H81A	109.4
C_{32} C_{31} H_{31A}	107.2	C82 - C81 - II01A	109.4 122.54(10)
C_{33} C_{31} C_{31} C_{31} C_{31} C_{31} C_{32} C_{32} N_{41}	107.2 122.4 (2)	082 - 082 - 081	122.34(19) 121.00(10)
032 - 032 - 031	122.4(2) 120.2(2)	0.02 - 0.02 - 0.01	121.00(19)
0.52 - 0.52 - 0.51	120.2(2) 117.24(10)	N91 - C82 - C81	110.40(18)
N41 - C32 - C31	117.34(19) 112.7(2)	$C_{04} = C_{03} = C_{01}$	113.4 (2)
$C_{34} = C_{33} = C_{31}$	113.7 (2)	C84—C83—H83A	108.4
C34—C33—H33A	108.8	C81—C83—H83A	108.4
C31—C33—H33A	108.8	C84—C83—H83B	108.4
С34—С33—Н33В	108.8	C81—C83—H83B	108.4
С31—С33—Н33В	108.8	H83A—C83—H83B	107.5
Н33А—С33—Н33В	107.7	C85—C84—C86	110.6 (2)
C36—C34—C35	111.0 (2)	C85—C84—C83	112.5 (2)
C36—C34—C33	111.6 (2)	C86—C84—C83	109.6 (2)
C35—C34—C33	109.8 (2)	C85—C84—H84	108.0
С36—С34—Н34	108.1	C86—C84—H84	108.0
С35—С34—Н34	108.1	C83—C84—H84	108.0
С33—С34—Н34	108.1	С84—С85—Н85А	109.5
С34—С35—Н35А	109.5	C84—C85—H85B	109.5
С34—С35—Н35В	109.5	H85A—C85—H85B	109.5
H35A—C35—H35B	109.5	C84—C85—H85C	109.5
С34—С35—Н35С	109.5	H85A—C85—H85C	109.5
H35A—C35—H35C	109.5	H85B—C85—H85C	109.5
H35B—C35—H35C	109.5	C84—C86—H86A	109.5
С34—С36—Н36А	109.5	C84—C86—H86B	109.5
С34—С36—Н36В	109.5	H86A—C86—H86B	109.5
H36A—C36—H36B	109.5	C84—C86—H86C	109.5
С34—С36—Н36С	109.5	H86A—C86—H86C	109.5
H36A—C36—H36C	109.5	H86B—C86—H86C	109.5
H36B—C36—H36C	109.5	C82—N91—C91	119.13 (18)
C32—N41—C41	120.91 (19)	C82—N91—H91	120.4

C32—N41—H41	119.5	C91—N91—H91	120.4
C41—N41—H41	119.5	N91—C91—C93	111.04 (18)
N41—C41—C42	107.27 (17)	N91—C91—C92	109.25 (17)
N41—C41—C43	111.62 (18)	C93—C91—C92	109.61 (19)
C42—C41—C43	113.01 (19)	N91—C91—H91A	109.0
N41—C41—H41A	108.3	С93—С91—Н91А	109.0
C42—C41—H41A	108.3	С92—С91—Н91А	109.0
C43—C41—H41A	108.3	O92—C92—N101	122.6 (2)
O42—C42—N51	122.8 (2)	O92—C92—C91	120.03 (19)
O42—C42—C41	120.9 (2)	N101—C92—C91	117.40 (18)
N51—C42—C41	116.14 (19)	C94—C93—C91	109.31 (18)
C44—C43—C41	113.70 (19)	С94—С93—Н93А	109.8
C44—C43—H43A	108.8	C91—C93—H93A	109.8
C41—C43—H43A	108.8	C94—C93—H93B	109.8
C44—C43—H43B	108.8	C91—C93—H93B	109.8
C41—C43—H43B	108.8	H93A—C93—H93B	108.3
H43A - C43 - H43B	107.7	C99-C94-C95	118.2(2)
C49 - C44 - C45	118 2 (2)	C99-C94-C93	121.8(2)
C49 - C44 - C43	121.8(2)	C95 - C94 - C93	121.0(2) 119.8(2)
$C_{45} - C_{44} - C_{43}$	1199(2)	C96-C95-C94	121.5(2)
C_{46} C_{45} C_{44}	1210(2)	C96—C95—H95	1193
C_{46} C_{45} H_{45}	119 5	C94—C95—H95	119.3
C44 - C45 - H45	119.5	C97 - C96 - C95	119.9(2)
C47 - C46 - C45	120 1 (2)	C97 - C96 - H96	120.0
$C_{47} = C_{40} = C_{45}$	120.1 (2)	$C_{97} = C_{90} = H_{90}$	120.0
$C_{47} = C_{40} = 1140$	120.0	$C_{95} = C_{90} = 1190$	120.0 110.2(2)
$C_{45} = C_{40} = 1140$	120.0	$C_{90} = C_{97} = C_{98}$	119.2 (2)
$C_{40} = C_{47} = C_{48}$	120.0 (2)	$C_{90} = C_{97} = H_{97}$	120.4
$C_{40} = C_{47} = H_{47}$	120.0	$C_{98} = C_{97} = 1197$	120.4
C43 - C47 - H47	120.0	$C_{99} = C_{98} = C_{97}$	120.7(2)
C47 = C46 = C49	119.0 (2)	$C_{99} = C_{90} = H_{90}$	119.0
C40 - C48 - H48	120.1	С97—С98—П98	119.0
C49 - C48 - H48	120.1	C98 = C99 = C94	120.4 (2)
C44 - C49 - C48	120.9 (2)	C94 C99 H99	119.8
C44—C49—H49	119.6	C92 N101 C101	119.8
C42 = C49 = H49	119.6	C92 = N101 = C101	120.82 (18)
C42 = N51 = C51	121.53 (18)	C_{92} N101 $-C_{105}$	126.31 (18)
C42 - N51 - C55	126.41 (17)	C101—N101—C105	112.01 (17)
C51—N51—C55	111.8/(1/)	N101—C101—C103	102.41 (17)
N51-C51-C52	113.54 (17)	N101 - C101 - C102	115.58 (18)
N51—C51—C53	102.61 (17)	C103—C101—C102	112.72 (19)
C52—C51—C53	111.69 (18)	N101—C101—H101	108.6
N51—C51—H51	109.6	C103—C101—H101	108.6
С52—С51—Н51	109.6	C102—C101—H101	108.6
C53—C51—H51	109.6	O102—C102—N11	123.5 (2)
052—C52—N61	123.70 (19)	O102—C102—C101	118.23 (19)
O52—C52—C51	119.59 (19)	N11—C102—C101	118.06 (18)
N61—C52—C51	116.70 (18)	C104—C103—C101	103.49 (18)
C54—C53—C51	103.58 (17)	C104—C103—H10A	111.1

С54—С53—Н53А	111.0	C101—C103—H10A	111.1
С51—С53—Н53А	111.0	C104—C103—H10B	111.1
С54—С53—Н53В	111.0	C101—C103—H10B	111.1
С51—С53—Н53В	111.0	H10A—C103—H10B	109.0
H53A—C53—H53B	109.0	Q104—C104—C103	107.80 (19)
054-054-053	111.53 (18)	Q104—C104—C105	110.4 (2)
054-054-055	107.69 (17)	C103 - C104 - C105	103.72(19)
C53—C54—C55	103 94 (18)	O104—C104—H104	111 5
054-054-154	111 1	C103 - C104 - H104	111.5
C_{53} C_{54} H_{54}	111.1	$C_{105} - C_{104} - H_{104}$	111.5
$C_{55} - C_{54} - H_{54}$	111.1	C104 - 0104 - H10C	109.5
C54—O54—H54A	109 5	N101 - C105 - C104	103.25(17)
N51-C55-C54	103.83(17)	N101—C105—H10D	103.25 (17)
N51-C55-H55A	111.0	C104 - C105 - H10D	111.1
C54 C55 H55A	111.0	N101 C105 H10E	111.1
N51 C55 H55B	111.0	$C_{104} = C_{105} = H_{10E}$	111.1
C54 C55 H55B	111.0	H_{10} C_{105} H_{10} H_{10}	100.1
U55A C55 U55D	100.0	III0D—C103—III0E	109.1
пээд—Сээ—пээв	109.0		
C102 N11 C11 C12	-128.7(2)	C52 N61 C61 C62	-153 20 (10)
C102 - N11 - C11 - C12	120.7(2)	C_{52} No1— C_{01} Co1— C_{02}	133.20 (19) 83.8 (2)
N11 C11 C12 O12	-64.0(2)	$V_{52} = N_{01} = C_{01} = C_{05}$	-342(2)
11 - 11 - 12 - 012	-04.0(3)	101 - 001 - 002 - 002	-34.2(3)
C13 - C11 - C12 - O12	39.8 (3) 118.24 (10)	C03 - C01 - C02 - 002	88.0(2)
NII = CII = CI2 = N2I	118.24 (19)	N01 - C01 - C02 - N/1	146.40(17)
C13 - C11 - C12 - N21	-11/.9(2)	C_{03} — C_{01} — C_{02} — $N/1$	-91.5 (2)
$\mathbf{N11} = \mathbf{C11} = \mathbf{C13} = \mathbf{C14}$	-61.0(2)	N61—C61—C63—C64	-168.15 (18)
C12-C11-C13-C14	1/6./1 (1/)	C62 - C61 - C63 - C64	/1.8 (2)
	176.21 (18)	N61—C61—C63—C65	65.9 (2)
C12—C11—C13—C15	53.9 (2)	C62—C61—C63—C65	-54.2 (2)
012—C12—N21—C21	-7.4 (3)	O62—C62—N71—C71	-8.1 (3)
C11—C12—N21—C21	170.28 (19)	C61—C62—N71—C71	171.34 (18)
C12—N21—C21—C22	-99.6 (2)	C62—N71—C71—C72	-122.5(2)
C12—N21—C21—C23	141.16 (19)	C62—N71—C71—C73	117.4 (2)
N21—C21—C22—O22	-64.1 (2)	N71—C71—C72—O72	-57.6 (2)
C23—C21—C22—O22	56.1 (2)	C73—C71—C72—O72	62.4 (2)
N21—C21—C22—N31	117.00 (19)	N71—C71—C72—N81	121.62 (19)
C23—C21—C22—N31	-122.8 (2)	C73—C71—C72—N81	-118.4 (2)
N21—C21—C23—C24	173.98 (17)	N71—C71—C73—C74	172.01 (18)
C22—C21—C23—C24	55.5 (2)	C72—C71—C73—C74	54.7 (3)
C21—C23—C24—C25	65.1 (3)	C71—C73—C74—C76	61.5 (3)
C21—C23—C24—C26	-171.29 (19)	C71—C73—C74—C75	-176.5 (2)
O22—C22—N31—C31	-2.3 (3)	O72—C72—N81—C81	-0.2 (3)
C21—C22—N31—C31	176.57 (19)	C71—C72—N81—C81	-179.37 (18)
C22—N31—C31—C32	-95.4 (2)	C72—N81—C81—C83	117.2 (2)
C22—N31—C31—C33	139.8 (2)	C72—N81—C81—C82	-122.3 (2)
N31—C31—C32—O32	152.7 (2)	N81—C81—C82—O82	-88.0 (2)
C33—C31—C32—O32	-81.4 (3)	C83—C81—C82—O82	33.2 (3)
N31—C31—C32—N41	-30.0 (3)	N81—C81—C82—N91	91.1 (2)

C33—C31—C32—N41	95.9 (2)	C83—C81—C82—N91	-147.7 (2)
N31—C31—C33—C34	-62.2 (3)	N81—C81—C83—C84	-59.5 (3)
C32—C31—C33—C34	171.1 (2)	C82—C81—C83—C84	-178.24 (19)
C31—C33—C34—C36	-55.8 (3)	C81—C83—C84—C85	-58.9 (3)
C31—C33—C34—C35	-179.4 (2)	C81—C83—C84—C86	177.7 (2)
O32—C32—N41—C41	-6.6 (3)	O82—C82—N91—C91	-1.3 (3)
C31—C32—N41—C41	176.13 (19)	C81—C82—N91—C91	179.68 (18)
C32—N41—C41—C42	139.7 (2)	C82—N91—C91—C93	175.07 (19)
C32—N41—C41—C43	-96.0(2)	C82—N91—C91—C92	54.1 (3)
N41—C41—C42—O42	104.7 (2)	N91—C91—C92—O92	56.2 (3)
C43—C41—C42—O42	-18.8 (3)	C93—C91—C92—O92	-65.7 (3)
N41—C41—C42—N51	-71.0 (2)	N91—C91—C92—N101	-124.2 (2)
C43—C41—C42—N51	165.56 (18)	C93—C91—C92—N101	113.9 (2)
N41—C41—C43—C44	151.11 (19)	N91—C91—C93—C94	166.69 (18)
C42—C41—C43—C44	-87.9 (2)	C92—C91—C93—C94	-72.5 (2)
C41—C43—C44—C49	116.3 (3)	C91—C93—C94—C99	88.8 (3)
C41—C43—C44—C45	-65.2 (3)	C91—C93—C94—C95	-86.1 (3)
C49—C44—C45—C46	0.8 (3)	C99—C94—C95—C96	-0.6 (4)
C43—C44—C45—C46	-177.7 (2)	C93—C94—C95—C96	174.5 (2)
C44—C45—C46—C47	-0.5 (4)	C94—C95—C96—C97	-0.7 (4)
C45—C46—C47—C48	0.0 (4)	C95—C96—C97—C98	1.4 (4)
C46—C47—C48—C49	0.3 (4)	C96—C97—C98—C99	-0.9 (4)
C45—C44—C49—C48	-0.5 (4)	С97—С98—С99—С94	-0.5 (4)
C43—C44—C49—C48	178.0 (2)	C95—C94—C99—C98	1.1 (4)
C47—C48—C49—C44	-0.1 (4)	C93—C94—C99—C98	-173.8 (2)
O42—C42—N51—C51	-0.8 (3)	O92—C92—N101—C101	4.2 (3)
C41—C42—N51—C51	174.80 (17)	C91—C92—N101—C101	-175.37 (18)
O42—C42—N51—C55	173.8 (2)	O92—C92—N101—C105	172.8 (2)
C41—C42—N51—C55	-10.6 (3)	C91—C92—N101—C105	-6.8 (3)
C42—N51—C51—C52	-79.5 (2)	C92—N101—C101—C103	155.1 (2)
C55—N51—C51—C52	105.2 (2)	C105—N101—C101—C103	-15.0 (2)
C42—N51—C51—C53	159.77 (19)	C92—N101—C101—C102	-82.0 (3)
C55—N51—C51—C53	-15.5 (2)	C105—N101—C101—C102	108.0 (2)
N51—C51—C52—O52	176.52 (19)	C11—N11—C102—O102	-1.9 (3)
C53—C51—C52—O52	-68.0 (3)	C11—N11—C102—C101	173.09 (19)
N51—C51—C52—N61	-2.3 (3)	N101-C101-C102-O102	-166.9 (2)
C53—C51—C52—N61	113.2 (2)	C103—C101—C102—O102	-49.6 (3)
N51—C51—C53—C54	32.5 (2)	N101-C101-C102-N11	17.8 (3)
C52—C51—C53—C54	-89.4 (2)	C103—C101—C102—N11	135.1 (2)
C51—C53—C54—O54	77.8 (2)	N101—C101—C103—C104	33.0 (2)
C51—C53—C54—C55	-38.0 (2)	C102—C101—C103—C104	-91.8 (2)
C42—N51—C55—C54	177.27 (19)	C101—C103—C104—O104	77.7 (2)
C51—N51—C55—C54	-7.7 (2)	C101—C103—C104—C105	-39.4 (2)
O54—C54—C55—N51	-90.3 (2)	C92—N101—C105—C104	-178.4 (2)
C53—C54—C55—N51	28.1 (2)	C101-N101-C105-C104	-9.0 (2)
O52—C52—N61—C61	4.2 (3)	O104—C104—C105—N101	-85.6 (2)
C51—C52—N61—C61	-177.09 (18)	C103—C104—C105—N101	29.7 (2)

D—H···A	H···A	D···· A	D—H··· A	
N11—H11…O82	2.19	3.012 (2)	159	
N31—H31…O62	2.19	2.985 (2)	155	
N81—H81…O12	1.98	2.831 (2)	173	
$N21$ — $H21$ ···O 72^{i}	2.03	2.870(2)	164	
O54—H54 <i>A</i> ···O42 ⁱⁱ	1.94	2.759 (2)	177	
N71—H71…O102 ⁱⁱⁱ	2.16	3.000(2)	166	
N91—H91…O22 ⁱⁱⁱ	2.13	2.949 (2)	159	
O104—H10C····O32 ^{iv}	2.01	2.823 (3)	170	
O1 <i>W</i> —H1…O54	2.03	2.870 (3)	163	
O1 <i>W</i> —H2···O52 ⁱⁱ	2.12	2.950 (3)	148	

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) x+1/2, -y+1/2, -z+1; (iii) -x+1, y-1/2, -z+3/2; (iv) -x+3/2, -y+1, z+1/2.