

Received 12 August 2024 Accepted 16 August 2024

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences

Keywords: crystal structure; hydrogen bonds; the Povarov method; tetrahydroquinoline; Hirshfeld surface analysis.

CCDC reference: 2378018

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromophenyl)-1,2,3,4tetrahydroquinolin-4-yl]pyrrolidin-2-one

Anastasia A. Pronina,^a Alexandra G. Kutasevich,^a Mikhail S. Grigoriev,^b Khudayar I. Hasanov,^{c,d} Nurlana D. Sadikhova,^e Tahir A. Javadzade,^f Mehmet Akkurt^g and Ajaya Bhattarai^h*

^aRUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation, ^bFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy prospect 31-4, Moscow 119071, Russian Federation, ^cWestern Caspian University, Istiqlaliyyat Street 31, AZ1001, Baku, Azerbaijan, ^dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14. AZ 1022, Baku, Azerbaijan, ^eDepartment of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, ^fDepartment of Chemistry and Chemical Engineering, Khazar University, Mahsati St. 41, AZ 1096, Baku, Azerbaijan, ^gDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and ^hDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal. *Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

This study presents the synthesis, characterization and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromophenyl)-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one, $C_{19}H_{18}Br_2N_2O$. In the title compound, the pyrrolidine ring adopts a distorted envelope configuration. In the crystal, molecules are linked by intermolecular N-H···O, C-H···O and C-H···Br hydrogen bonds, forming a three-dimensional network. In addition, pairs of molecules along the *c* axis are connected by C-H··· π interactions. According to a Hirshfeld surface study, H···H (36.9%), Br···H/H···Br (28.2%) and C···H/H···C (24.3%) interactions are the most significant contributors to the crystal packing.

1. Chemical context

Currently, a large number of derivatives of known tetrahydroquinolines are promising candidates for testing against various types of biological activity. This class of *N*-heterocyclic compounds has attracted attention of biochemists for the past 50 years, as derivatives of the tetrahydroquinoline frame possess antibacterial, antitumor, and antiallergic properties. Some are already used as medicinal agents (Ghashghaei *et al.*, 2018).

In this regard, the synthesis and modification of the tetrahydroquinoline system to search for new drugs is an important task in organic chemistry. Over the years, several synthetic routes have been developed to obtain variously substituted tetrahydroquinolines (Sridharan et al., 2011). However, the advantage remains with the Povarov reaction, due to the flexibility of this method, allowing the one-step synthesis of variously substituted 1,2,3,4-tetrahydroquinolines (Zubkov et al., 2007, 2010; Kouznetsov, 2009; Varma et al., 2010; Zaytsev et al., 2013). Furthermore, the Povarov reaction is characterized by good yields and mild reaction conditions. Usually the reaction proceeds in two stages. The first stage is an aza-Diels-Alder reaction between N-arylimine and an electron-rich olefin in the presence of catalytic amounts of Lewis acid, which leads to the formation of a cycloadduct. The second stage involves a 1,3-H shift in the cycloadduct and results in the formation of the tetrahydroquinoline moiety.

In this work, the synthesis of the corresponding azomethine **3** was carried out using a condensation reaction between 4-bromoaniline (**1**) and 3-bromobenzaldehyde (**2**) to form product **3**, which was then introduced into the Povarov reaction. *N*-Vinylpyrrolidin-2-one was used as the alkene, and boron trifluoride etherate served as the Lewis acid (Fig. 1).

Thus, the Povarov method provides a convenient approach for the one-pot synthesis of substituted, partially hydrogenated quinolines and medicinal preparations based on the tetrahydroquinoline frame. Some stereochemical features of the resulting adduct 4 are discussed in this work. This work also discusses some stereochemical features of the resulting adduct 4.

2. Structural commentary

In the title compound (Fig. 2), the 1,2,3,4-tetrahydropyridine ring (N1/C2–C4/C4A/C8A) of the 1,2,3,4-tetrahydroquinoline ring system (N1/C2–C4/C4A/C5–C8/C8A) adopts an envelope conformation [the puckering parameters (Cremer & Pople, 1975) are $Q_{\rm T} = 0.523$ (2) Å, $\theta = 131.7$ (2)°, $\varphi = 300.9$ (3)°], while the benzene ring (C4A/C5–C8/C8A) is essentially planar (r.m.s. deviation = 0.002 Å). The plane (r.m.s deviation = 0.002 Å) of the 1,2,3,4-tetrahydroquinoline ring system forms angles of 56.85 (9) and 83.05 (10)°, respectively, with the bromobenzene ring (C21–C26) and the pyrrolidine ring (N11/ C12–C15; r.m.s deviation = 0.002 Å), which has a distorted envelope conformation [the puckering parameters are Q(2) =0.225 (2) Å, $\varphi(2) = 117.2$ (6)°]. The angle between the pyrro-

Figure 1

Synthesis of 1-[6-bromo-2-(3-bromophenyl)-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one (4).

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg3 is the centroid of the C4A/C5-C8/C8A benzene ring.

$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
0.99	2.46	3.431 (3)	169
0.99	3.06	3.740 (3)	127
0.99	3.12	3.664 (3)	116
0.99	3.02	3.786 (2)	135
0.99	3.00	3.748 (2)	133
0.99	3.09	3.768 (2)	127
0.95	2.94	3.820 (2)	155
0.95	3.04	3.932 (2)	158
0.86 (3)	2.30 (3)	3.115 (3)	159 (2)
1.00	2.66	3.655 (3)	173
	<i>D</i> -H 0.99 0.99 0.99 0.99 0.99 0.99 0.95 0.95	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.99 & 2.46 \\ 0.99 & 3.06 \\ 0.99 & 3.12 \\ 0.99 & 3.02 \\ 0.99 & 3.00 \\ 0.99 & 3.00 \\ 0.99 & 3.09 \\ 0.95 & 2.94 \\ 0.95 & 3.04 \\ 0.86 (3) & 2.30 (3) \\ 1.00 & 2.66 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) x, y + 1, z; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (vi) -x + 1, -y + 1, -z + 1.

lidine and bromobenzene rings is 84.92 $(12)^{\circ}$. The geometric parameters in the molecule are normal and in good agreement with those in the compounds discussed in the *Database survey* (section 4).

3. Supramolecular features and Hirshfeld surface analysis

In the crystal, molecules are linked by intermolecular $N-H\cdots O$, $C-H\cdots O$ and $C-H\cdots Br$ hydrogen bonds, forming a three-dimensional network (Table 1; Figs. 3, 4 and 5). In addition, pairs of molecules along the *c* axis are connected by $C-H\cdots \pi$ interactions (Table 1; Figs. 6, 7 and 8). To quantify the intermolecular interactions in the crystal, the Hirshfeld surfaces of the title molecule and the two-dimensional fingerprints were generated with *CrystalExplorer17.5* (Spackman *et al.*, 2021). On the d_{norm} surfaces, bright-red spots show the locations of the $N-H\cdots O$, $C-H\cdots O$ and $C-H\cdots Br$ interactions (Table 1; Fig. 9*a*,*b*). The overall two-dimensional fingerprint plot for the title compound and those

are shown in Fig. 10. $O \cdots H/H \cdots O$ (7.1%), $Br \cdots O/O \cdots Br$ (1.8%), $Br \cdots C/C \cdots Br$ (0.9%), $N \cdots H/H \cdots N$ (0.4%) and $Br \cdots N/N \cdots Br$ (0.3%) contacts have little directional influence on the molecular packing.

Figure 4

A view of the molecular packing along the b axis of the title compound.

Figure 6 A view of the molecular packing along the *a* axis of the title compound, showing the $C-H\cdots\pi$ interactions.

research communications

A view of the molecular packing along the b axis of the title compound.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom *et al.*, 2016) for similar structures with the 1,2,3,4-tetrahydroquinoline unit showed that the seven most closely related to the title compound are refcodes POSWAZ (Pronina *et al.*, 2024), EZOMIR (Çelik *et al.*, 2016), SUFDEE (Jeyaseelan, *et al.*, 2015*c*), NOVGAI (Jeyaseelan *et al.*, 2015*a*), WUFBEG (Jeyaseelan *et al.*, 2015*b*), WACWOO (Çelik *et al.*, 2010*a*) and CEDNUW (Çelik *et al.*, 2010*b*).

Figure 9

(a) Front and (b) back views of the three-dimensional Hirshfeld surface for the title compound. Some $N-H\cdots O$, $C-H\cdots O$ and $C-H\cdots Br$ interactions are shown as dashed lines.

In the crystal of POSWAZ, molecules are linked by intermolecular N-H···O, C-H···O, C-H···F and C-H···Br hydrogen bonds, forming a three-dimensional network. In addition, C-H··· π interactions connect molecules into ribbons along the *b*-axis direction, consolidating the molecular packing. In the crystal of EZOMIR, inversion dimers linked by pairs of N-H···N hydrogen bonds generate $R_2^2(12)$ loops. In the crystal of SUFDEE, molecules are linked by weak C-H···O hydrogen bonds, generating C(8) and C(4) chains propagating along [100] and [010], respectively, which together

Figure 8

A view of the molecular packing along the c axis of the title compound.

The two-dimensional fingerprint plots for the title compound showing (a) all interactions, and delineated into (b) $H \cdots H$, (c) $Br \cdots H/H \cdots Br$ and (d) $C \cdots H/H \cdots C$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.

generate (001) sheets. In the crystal of NOVGAI, inversion dimers linked by pairs of C-H···O hydrogen bonds generate $R_2^2(8)$ loops. In the crystal of WUFBEG, inversion dimers linked by pairs of C-H···O hydrogen bonds generate $R_2^2(10)$ loops. Additional intermolecular C-H···O hydrogen bonds generate C(7) chains along [100]. The crystal structure of WACWOO is stabilized by weak aromatic π - π interactions [centroid-centroid distance = 3.802 (4) Å] between the pyridine and benzene rings of the quinoline ring systems of adjacent molecules. In the crystal of CEDNUW, π - π stacking interactions are present between the pyridine and benzene rings of adjacent molecules [centroid-centroid distances = 3.634 (4) Å], and short Br···Br contacts [3.4443 (13) Å] occur.

5. Synthesis and crystallization

N-[(*E***)-(3-Bromophenyl)methylidene]-4-bromoaniline (3):** A mixture of 4-bromoaniline (1) (2.00 g, 0.012 mol), 3-bromobenzaldehyde (2) (2.22 g, 0.012 mol) and anhydrous MgSO₄ (2.89 g, 0.024 mol) was stirred in CH₂Cl₂ (40 mL) for 24 h at room temperature. Then, the reaction mixture was passed through a silica gel layer (2 × 3 cm) (eluent CH₂Cl₂) and the solvent was evaporated under reduced pressure. Compound **3** was isolated as a yellow powder in 87% yield (3.54 g).

1-(6-Bromo-2-(3-bromophenyl)-1,2,3,4-tetrahydroquinolin-4-yl)pyrrolidin-2-one (4): Boron trifluoride ether (0.25 mL, 0.002 mol) and N-vinylpyrrolidin-2-one (1.18 mL, 0.011 mol) were added sequentially to a solution of the azomethine (3)(3.5 g, 0.010 mol) in freshly distilled CH₂Cl₂ (30 mL), under cooling (275-277 K) and constant stirring. The reaction was monitored by TLC (EtOAc/hexane, 1:2). After the reaction was complete (\sim 24 h), the reaction mixture was treated with a small amount of water (0.2-0.3 mL) to decompose the catalyst. Then the resulting mixture was passed through a layer of silica gel (2 \times 3 cm) and washed with dry CH₂Cl₂ (2 \times 25 mL). The solvent was evaporated under reduced pressure. The obtained precipitate was recrystallized from a mixture of hexane/ EtOAc. The desired product, 4, was isolated as a white microcrystalline precipitate in 39% yield (1.76 g), m.p. 470.3-471.8 K. IR (KBr), ν (cm⁻¹): 3344 (NH), 2951 (Ph), 2889 (Ph), 1667 (N-C=O). ¹H NMR (700.2 MHz, CDCl₃, 298 K) (J, Hz): δ 2.01–2.10 (*m*, 4H, H-3 + H-4-pyrrole), 2.43–2.48 (*m*, 1H, H-3-pyrrole-A), 2.52–2.57 (m, 1H, H-3-pyrrole-B), 3.19–3.26 (*m*, 2H, H-5-pyrrole), 4.07 (*s*, 1H, NH), 4.54 (*dd*, *J* = 11.2, *J* = 2.9, 1H, H-2), 5.66 (*dd*, *J* = 11.7, *J* = 6.0 Hz, 1H, H-4), 6.49 (*d*, *J* = 8.6, 1H, H-8), 6.95 (*s*, 1H, H-5), 7.15 (*dd*, *J* = 8.6, *J* = 2.2, 1H, H-7), 7.24 $(t, J = 7.9, 1H, H-5-C_6H_4-Br)$, 7.31 (d, J = 7.6, 1H, H- $6-C_6H_4-Br$), 7.45 (*d*, *J* = 7.9, 1H, H-4-C_6H_4-Br), 7.61 (*s*, 1H, H-2-C₆H₄-Br) ppm. ¹³C{¹H} NMR (176 MHz, CDCl₃, 298 K): δ 18.00, 31.00, 34.58, 42.03, 47.79, 55.60, 109.93, 116.48, 120.73, 122.71, 125.08, 128.93, 129.17, 130.20, 130.95, 131.00, 144.33, 144.69, 175.66 ppm.

Elemental analysis calculated (%) for $C_{19}H_{18}Br_2N_2O$: C, 50.69; H, 4.03; N, 6.22; found: C, 50.61; H, 3.94; N, 6.42.

Single crystals (splices of prisms) of compound 4 were grown from a mixture of hexane and ethyl acetate (\sim 3:1).

Crystal data	
Chemical formula	$C_{19}H_{18}Br_2N_2O$
M _r	450.17
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	10.8691 (8), 9.4578 (7),
	17.7217 (14)
β (°)	104.364 (3)
$V(Å^3)$	1764.8 (2)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	4.60
Crystal size (mm)	$0.36 \times 0.32 \times 0.26$
•	
Data collection	
Diffractometer	Bruker Kappa APEXII area-
	detector
Absorption correction	Multi-scan (SADABS; Krause et
*	al., 2015)
T_{\min}, T_{\max}	0.714, 1.000
No. of measured, independent and	25906, 4041, 3231
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.054
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.650
(), (),	
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.029, 0.057, 1.02
No. of reflections	4041
No. of parameters	220
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
	refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.47, -0.47

Computer programs: *APEX3* and *SAINT* (Bruker, 2018), *SHELXT2014/5* (Sheldrick, 2015*a*), *SHELXL2018/3* (Sheldrick, 2015*b*), *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2020).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were placed in calculated positions (0.95–1.00 Å) and refined as riding with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$. The N-bound H atom was located in a difference map and freely refined.

Acknowledgements

The authors' contributions are as follows. Conceptualization, MA and AB; synthesis, AAP and AGK; X-ray analysis, MSG, KIH and NDS; writing (review and editing of the manuscript) AAP, KIH and NDS; funding acquisition, AB and MA; supervision, MA and AB.

Funding information

This work was supported by the Western Caspian University (Azerbaijan), Azerbaijan Medical University and Baku State University. This publication has been also supported by the RUDN University Scientific Projects Grant System, project No. 021408–2-000. EDY and ERS thank the Common Use Center "Physical and Chemical Research of New Materials, Substances and Catalytic Systems".

References

- Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA.
- Çelik, İ., Akkurt, M., Çakmak, O., Ökten, S. & García-Granda, S. (2010b). Acta Cryst. E66, o2997–o2998.
- Çelik, Í., Akkurt, M., Ökten, S., Çakmak, O. & García-Granda, S. (2010a). Acta Cryst. E66, 03133.
- Çelik, İ., Ökten, S., Ersanlı, C. C., Akkurt, M. & Çakmak, O. (2016). *IUCrData*, 1, x161854.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Ghashghaei, O., Masdeu, C., Alonso, C., Palacios, F. & Lavilla, R. (2018). Drug. Discov. Today: Technol. 29, 71-79.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Jeyaseelan, S., Nagendra Babu, S. L., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015*a*). *Acta Cryst.* E**71**, o20.
- Jeyaseelan, S., Rajegowda, H. R., Britto Dominic Rayan, R., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015b). Acta Cryst. E71, 660–662.
- Jeyaseelan, S., Sowmya, B. R., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015c). Acta Cryst. E71, o249– o250.

- Kouznetsov, V. V. (2009). Tetrahedron, 65, 2721-2750.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Pronina, A. A., Podrezova, A. G., Grigoriev, M. S., Hasanov, K. I., Sadikhova, N. D., Akkurt, M. & Bhattarai, A. (2024). *Acta Cryst.* E80, 777–782.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Sridharan, V., Suryavanshi, P. A. & Menéndez, J. C. (2011). Chem. Rev. 111, 7157–7259.
- Varma, P. P., Sherigara, B. S., Mahadevan, K. M. & Hulikal, V. (2010). Synth. Commun. 40, 2220–2231.
- Zaytsev, V. P., Zubkov, F. I., Toze, F. A., Orlova, D. N., Eliseeva, M. N., Grudinin, D. G., Nikitina, E. V. & Varlamov, A. V. (2013). *J. Heterocycl. Chem.* **50**, e18.
- Zubkov, F. I., Zaitsev, V. P., Peregudov, A. S., Mikhailova, N. M. & Varlamov, A. V. (2007). *Russ. Chem. Bull.* **56**, 1063–1079.
- Zubkov, F. I., Zaitsev, V. P., Piskareva, A. M., Eliseeva, M. N., Nikitina, E. V., Mikhailova, N. M. & Varlamov, A. V. (2010). *Russ. J. Org. Chem.* 46, 1192–1206.

Acta Cryst. (2024). E80, 967-972 [https://doi.org/10.1107/S2056989024008144]

Crystal structure and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromo-phenyl)-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one

Anastasia A. Pronina, Alexandra G. Kutasevich, Mikhail S. Grigoriev, Khudayar I. Hasanov, Nurlana D. Sadikhova, Tahir A. Javadzade, Mehmet Akkurt and Ajaya Bhattarai

Computing details

1-[6-Bromo-2-(3-bromophenyl)-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one

Crystal data

C₁₉H₁₈Br₂N₂O $M_r = 450.17$ Monoclinic, $P2_1/c$ a = 10.8691 (8) Å b = 9.4578 (7) Å c = 17.7217 (14) Å $\beta = 104.364$ (3)° V = 1764.8 (2) Å³ Z = 4

Data collection

Bruker Kappa APEXII area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.714$, $T_{\max} = 1.000$ 25906 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.057$ S = 1.014041 reflections 220 parameters 0 restraints F(000) = 896 $D_x = 1.694 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 5029 reflections $\theta = 2.9-26.4^{\circ}$ $\mu = 4.60 \text{ mm}^{-1}$ T = 100 KBulk, colourless $0.36 \times 0.32 \times 0.26 \text{ mm}$

4041 independent reflections 3231 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 4.2^{\circ}$ $h = -13 \rightarrow 14$ $k = -11 \rightarrow 12$ $l = -23 \rightarrow 23$

Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0176P)^2 + 1.5651P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.47 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.47 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C2	0.3972 (2)	0.7031 (2)	0.42197 (14)	0.0095 (5)	
H2	0.417106	0.695439	0.480026	0.011*	
C3	0.5184 (2)	0.7407 (2)	0.39791 (14)	0.0103 (5)	
H3A	0.551079	0.833284	0.420260	0.012*	
H3B	0.500982	0.746994	0.340468	0.012*	
C4	0.6161 (2)	0.6251 (2)	0.42821 (14)	0.0090 (5)	
H4A	0.623691	0.617392	0.485461	0.011*	
C4A	0.5649 (2)	0.4840 (2)	0.39280 (14)	0.0103 (5)	
C5	0.6438 (2)	0.3756 (2)	0.37979 (14)	0.0116 (5)	
H5A	0.732382	0.391768	0.387756	0.014*	
C6	0.5933 (2)	0.2444 (2)	0.35526 (14)	0.0141 (5)	
C7	0.4649 (2)	0.2184 (2)	0.34323 (14)	0.0153 (5)	
H7A	0.431556	0.127113	0.327685	0.018*	
C8	0.3852 (2)	0.3264 (2)	0.35403 (14)	0.0141 (5)	
H8A	0.296550	0.309470	0.344583	0.017*	
C8A	0.4337 (2)	0.4609 (2)	0.37876 (14)	0.0099 (5)	
C12	0.8464 (2)	0.6433 (2)	0.47857 (15)	0.0108 (5)	
C13	0.9605 (2)	0.6920 (2)	0.45130 (16)	0.0164 (6)	
H13A	1.014249	0.610573	0.444761	0.020*	
H13B	1.012448	0.759132	0.488933	0.020*	
C14	0.9045 (2)	0.7642 (2)	0.37321 (16)	0.0183 (6)	
H14A	0.954217	0.740510	0.335083	0.022*	
H14B	0.903707	0.868151	0.379516	0.022*	
C15	0.7689 (2)	0.7064 (2)	0.34649 (15)	0.0140 (5)	
H15A	0.708860	0.781053	0.321194	0.017*	
H15B	0.764491	0.626563	0.309794	0.017*	
C21	0.2979 (2)	0.8177 (2)	0.39562 (14)	0.0098 (5)	
C22	0.2170 (2)	0.8162 (2)	0.32186 (14)	0.0108 (5)	
H22	0.219100	0.739884	0.287317	0.013*	
C23	0.1327 (2)	0.9274 (2)	0.29887 (14)	0.0113 (5)	
C24	0.1280 (2)	1.0400 (2)	0.34733 (16)	0.0176 (6)	
H24	0.070147	1.115604	0.330570	0.021*	
C25	0.2095 (3)	1.0404 (3)	0.42109 (17)	0.0207 (6)	
H25	0.207518	1.117252	0.455296	0.025*	
C26	0.2935 (2)	0.9304 (2)	0.44550 (15)	0.0157 (5)	
H26	0.348384	0.931566	0.496389	0.019*	
N1	0.35049 (19)	0.5666 (2)	0.38807 (12)	0.0121 (4)	
H1	0.283 (3)	0.538 (3)	0.3999 (15)	0.014*	
N11	0.74188 (18)	0.65967 (19)	0.41920 (12)	0.0105 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

01	0.84580 (15)	0.59639 (17)	0.54316 (10)	0.0153 (4)
Br1	0.70318 (3)	0.09579 (2)	0.34029 (2)	0.02171 (8)
Br2	0.01897 (2)	0.91972 (2)	0.19816 (2)	0.01641 (7)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
C2	0.0097 (12)	0.0106 (11)	0.0073 (13)	0.0004 (9)	0.0003 (9)	0.0003 (9)
C3	0.0121 (12)	0.0083 (10)	0.0106 (13)	0.0009 (9)	0.0031 (10)	0.0009 (9)
C4	0.0072 (11)	0.0102 (10)	0.0097 (13)	0.0008 (8)	0.0025 (9)	0.0018 (9)
C4A	0.0143 (13)	0.0078 (10)	0.0088 (13)	0.0014 (9)	0.0031 (10)	0.0028 (9)
C5	0.0144 (13)	0.0126 (11)	0.0092 (13)	0.0020 (9)	0.0052 (10)	0.0031 (9)
C6	0.0222 (14)	0.0103 (11)	0.0114 (13)	0.0063 (10)	0.0073 (11)	0.0023 (10)
C7	0.0257 (15)	0.0089 (11)	0.0098 (14)	-0.0016 (10)	0.0016 (11)	-0.0014 (9)
C8	0.0156 (13)	0.0135 (11)	0.0120 (14)	-0.0024 (10)	0.0011 (10)	0.0017 (10)
C8A	0.0132 (13)	0.0106 (10)	0.0059 (12)	0.0003 (9)	0.0021 (10)	0.0031 (9)
C12	0.0106 (12)	0.0065 (10)	0.0149 (14)	0.0024 (9)	0.0023 (10)	-0.0036 (9)
C13	0.0094 (13)	0.0146 (12)	0.0248 (16)	0.0010 (9)	0.0034 (11)	-0.0036 (10)
C14	0.0140 (13)	0.0136 (12)	0.0302 (17)	0.0008 (10)	0.0111 (12)	0.0043 (11)
C15	0.0152 (13)	0.0117 (11)	0.0170 (14)	0.0037 (9)	0.0074 (11)	0.0025 (10)
C21	0.0079 (12)	0.0109 (11)	0.0117 (13)	-0.0005 (9)	0.0047 (10)	0.0021 (9)
C22	0.0110 (12)	0.0115 (11)	0.0107 (13)	-0.0001 (9)	0.0044 (10)	-0.0009 (9)
C23	0.0081 (11)	0.0128 (11)	0.0117 (13)	-0.0021 (9)	0.0003 (9)	0.0032 (10)
C24	0.0131 (13)	0.0112 (11)	0.0283 (17)	0.0045 (9)	0.0047 (11)	0.0039 (10)
C25	0.0245 (15)	0.0128 (12)	0.0253 (16)	0.0015 (10)	0.0074 (12)	-0.0068 (11)
C26	0.0163 (13)	0.0188 (12)	0.0098 (13)	-0.0004 (10)	-0.0009 (10)	-0.0013 (10)
N1	0.0070 (10)	0.0101 (9)	0.0194 (12)	-0.0008 (8)	0.0036 (9)	-0.0001 (8)
N11	0.0100 (10)	0.0113 (9)	0.0106 (11)	0.0010 (8)	0.0030 (8)	0.0012 (8)
01	0.0141 (9)	0.0190 (9)	0.0112 (9)	0.0034 (7)	0.0001 (7)	-0.0003 (7)
Br1	0.03536 (17)	0.01082 (12)	0.02535 (16)	0.00804 (11)	0.01967 (13)	0.00283 (11)
Br2	0.01226 (13)	0.01562 (12)	0.01764 (15)	-0.00140 (10)	-0.00331 (10)	0.00727 (10)

Geometric parameters (Å, °)

C2—N1	1.460 (3)	C12—C13	1.511 (3)
C2—C21	1.519 (3)	C13—C14	1.528 (4)
С2—С3	1.524 (3)	C13—H13A	0.9900
С2—Н2	1.0000	C13—H13B	0.9900
C3—C4	1.526 (3)	C14—C15	1.532 (3)
С3—НЗА	0.9900	C14—H14A	0.9900
С3—Н3В	0.9900	C14—H14B	0.9900
C4—N11	1.453 (3)	C15—N11	1.459 (3)
C4—C4A	1.520 (3)	C15—H15A	0.9900
C4—H4A	1.0000	C15—H15B	0.9900
C4A—C5	1.392 (3)	C21—C22	1.383 (3)
C4A—C8A	1.402 (3)	C21—C26	1.393 (3)
C5—C6	1.383 (3)	C22—C23	1.389 (3)
С5—Н5А	0.9500	C22—H22	0.9500

C6—C7	1.380 (4)	C23—C24	1.376 (3)
C6—Br1	1.905 (2)	C23—Br2	1.903 (2)
C7—C8	1.383 (3)	C24—C25	1.385 (4)
С7—Н7А	0.9500	C24—H24	0.9500
C_{8} C_{8}	1.404(3)	C_{25} C_{26}	1.381(3)
	1.404 (3)	$C_{23} = C_{20}$	1.381 (3)
C8—H8A	0.9500	C25—H25	0.9500
C8A—N1	1.386 (3)	C26—H26	0.9500
C12—O1	1.229 (3)	N1—H1	0.86 (3)
C12—N11	1.352 (3)		
N1 C2 C21	110.84 (10)	C14 C13 H13A	110.8
N1 - C2 - C21	110.04(19) 100.12(10)	C12 $C12$ $U12D$	110.0
NI	109.13 (19)	CI2—CI3—HI3B	110.8
C21—C2—C3	110.18 (18)	C14—C13—H13B	110.8
N1—C2—H2	108.9	H13A—C13—H13B	108.9
С21—С2—Н2	108.9	C13—C14—C15	104.92 (19)
С3—С2—Н2	108.9	C13—C14—H14A	110.8
C2—C3—C4	107.97 (18)	C15—C14—H14A	110.8
$C_2 C_3 H_3 \Lambda$	110.1	C_{12} C_{14} H_{14} H_{14}	110.8
$C_2 = C_2 = H_2 \Lambda$	110.1		110.0
C4—C5—H5A	110.1	CI5—CI4—HI4B	110.8
С2—С3—Н3В	110.1	H14A—C14—H14B	108.8
C4—C3—H3B	110.1	N11—C15—C14	102.9 (2)
НЗА—СЗ—НЗВ	108.4	N11—C15—H15A	111.2
N11—C4—C4A	114.22 (19)	C14—C15—H15A	111.2
N11-C4-C3	113 07 (18)	N11—C15—H15B	111.2
C_{AA} C_{A} C_{3}	100.42(10)	C14 C15 H15B	111.2
C_{+}	109.42 (19)	$U_{15} = U_{15} = U_{15} = U_{15}$	100.1
N11—С4—П4А	100.5		109.1
C4A—C4—H4A	106.5	C22—C21—C26	119.6 (2)
C3—C4—H4A	106.5	C22—C21—C2	121.3 (2)
C5—C4A—C8A	119.8 (2)	C26—C21—C2	119.0 (2)
C5—C4A—C4	122.5 (2)	C21—C22—C23	119.2 (2)
C8A—C4A—C4	117.5 (2)	C21—C22—H22	120.4
C6-C5-C4A	120.0(2)	С23—С22—Н22	120.4
	120.0 (2)	C_{23} C_{22} C_{23} C_{22}	120.4
	120.0	$C_2 = C_2 $	121.0(2)
C4A—C5—H5A	120.0	C24—C23—Br2	119.92 (18)
C' - C6 - C5	121.1 (2)	C22—C23—Br2	118.28 (18)
C7—C6—Br1	119.47 (17)	C23—C24—C25	118.5 (2)
C5—C6—Br1	119.45 (19)	C23—C24—H24	120.7
C6—C7—C8	119.4 (2)	C25—C24—H24	120.7
С6—С7—Н7А	120.3	C26—C25—C24	120.8 (2)
С8—С7—Н7А	120.3	C26—C25—H25	119.6
C_{7} C_{8} C_{8}	120.0 (2)	C_{20} C_{25} H_{25}	110.6
C/-Co-CoA	120.9 (2)	$C_{24} = C_{23} = H_{23}$	119.0
	119.6	025-026-021	120.1 (2)
C8A—C8—H8A	119.6	C25—C26—H26	119.9
N1—C8A—C4A	122.1 (2)	C21—C26—H26	119.9
N1—C8A—C8	119.0 (2)	C8A—N1—C2	121.08 (19)
C4A—C8A—C8	118.9 (2)	C8A—N1—H1	115.4 (17)
01—C12—N11	124.7 (2)	C2—N1—H1	114.1 (17)
01 - C12 - C13	1270(2)	$C12$ _N11_C4	1214(2)
$01 \ 012 \ 013$	1 2 / . 0 (2)		141.7(4)

N11—C12—C13	108.3 (2)	C12—N11—C15	114.0 (2)
C12—C13—C14	104.5 (2)	C4—N11—C15	124.49 (19)
C12—C13—H13A	110.8		
N1—C2—C3—C4	-60.0 (2)	N1-C2-C21-C26	149.1 (2)
C21—C2—C3—C4	178.05 (19)	C3—C2—C21—C26	-90.0 (3)
C2-C3-C4-N11	-171.22 (19)	C26—C21—C22—C23	0.0 (3)
C2—C3—C4—C4A	60.2 (2)	C2—C21—C22—C23	-176.4 (2)
N11—C4—C4A—C5	22.9 (3)	C21—C22—C23—C24	0.5 (4)
C3—C4—C4A—C5	150.8 (2)	C21—C22—C23—Br2	-178.16 (17)
N11—C4—C4A—C8A	-162.0 (2)	C22—C23—C24—C25	-0.5 (4)
C3—C4—C4A—C8A	-34.1 (3)	Br2—C23—C24—C25	178.1 (2)
C8A—C4A—C5—C6	-1.9 (4)	C23—C24—C25—C26	0.0 (4)
C4—C4A—C5—C6	173.1 (2)	C24—C25—C26—C21	0.5 (4)
C4A—C5—C6—C7	0.0 (4)	C22—C21—C26—C25	-0.5 (4)
C4A—C5—C6—Br1	-178.40 (18)	C2-C21-C26-C25	176.0 (2)
C5—C6—C7—C8	1.6 (4)	C4A—C8A—N1—C2	-7.4 (4)
Br1—C6—C7—C8	-179.91 (18)	C8—C8A—N1—C2	173.0 (2)
C6—C7—C8—C8A	-1.5 (4)	C21—C2—N1—C8A	155.7 (2)
C5-C4A-C8A-N1	-177.6 (2)	C3—C2—N1—C8A	34.2 (3)
C4—C4A—C8A—N1	7.2 (3)	O1—C12—N11—C4	1.7 (3)
C5—C4A—C8A—C8	2.0 (3)	C13—C12—N11—C4	-178.46 (19)
C4—C4A—C8A—C8	-173.2 (2)	O1—C12—N11—C15	-175.2 (2)
C7—C8—C8A—N1	179.3 (2)	C13—C12—N11—C15	4.7 (3)
C7—C8—C8A—C4A	-0.3 (4)	C4A—C4—N11—C12	-101.7 (2)
O1—C12—C13—C14	-169.8 (2)	C3—C4—N11—C12	132.3 (2)
N11—C12—C13—C14	10.3 (2)	C4A—C4—N11—C15	74.8 (3)
C12—C13—C14—C15	-20.3 (2)	C3—C4—N11—C15	-51.2 (3)
C13—C14—C15—N11	22.5 (2)	C14—C15—N11—C12	-17.5 (2)
N1—C2—C21—C22	-34.5 (3)	C14—C15—N11—C4	165.80 (19)
C3—C2—C21—C22	86.4 (3)		

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C4A/C5–C8/C8A benzene ring.

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H···A
C13—H13A…O1 ⁱ	0.99	2.46	3.431 (3)	169
C13—H13A····Br2 ⁱⁱ	0.99	3.06	3.740 (3)	127
C14—H14A····Br2 ⁱⁱ	0.99	3.12	3.664 (3)	116
C14—H14B····Br1 ⁱⁱⁱ	0.99	3.02	3.786 (2)	135
C15—H15A···Br1 ⁱⁱⁱ	0.99	3.00	3.748 (2)	133
C15—H15 <i>B</i> ···Br2 ⁱⁱ	0.99	3.09	3.768 (2)	127
C22—H22···Br1 ^{iv}	0.95	2.94	3.820 (2)	155
C24— $H24$ ···Br2 ^v	0.95	3.04	3.932 (2)	158
N1— $H1$ ···O1 ^{vi}	0.86 (3)	2.30 (3)	3.115 (3)	159 (2)
C2—H2··· <i>Cg</i> 3 ^{vi}	1.00	2.66	3.655 (3)	173

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, y-1/2, -z+1/2; (iii) x, y+1, z; (iv) -x+1, y+1/2, -z+1/2; (v) -x, y+1/2, -z+1/2; (vi) -x+1, -y+1, -z+1.