

Received 3 July 2024 Accepted 26 August 2024

Edited by F. Di Salvo, University of Buenos Aires, Argentina

Keywords: crystal structure; carbamoylmethylphosphine oxide; intramolecular hydrogen bond; intermolecular hydrogen bond.

CCDC reference: 2379899

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of a tris(2-aminoethyl)methane capped carbamoylmethylphosphine oxide compound

Brandon G. Wackerle,^a Eric J. Werner,^b Richard J. Staples^c and Shannon M. Biros^a*

^aDepartment of Chemistry, Grand Valley State University, Allendale, MI 49401, USA, ^bDepartment of Chemistry and Biochemistry, The University of Tampa, 401 W. Kennedy Blvd, Tampa, FL 33606, USA, and ^cCenter for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA. *Correspondence e-mail: biross@gvsu.edu

The molecular structure of the tripodal carbamoylmethylphosphine oxide compound diethyl {[(5-[2-(diethoxyphosphoryl)acetamido]-3-{2-[2-(diethoxyphosphoryl)acetamido]ethyl}pentyl)carbamoyl]methyl}phosphonate, C₂₅H₅₂N₃O₁₂P₃, features six intramolecular hydrogen-bonding interactions. The phosphonate groups have key bond lengths ranging from 1.4696 (12) to 1.4729 (12) Å (P=O), 1.5681 (11) to 1.5811 (12) Å (P=O) and 1.7881 (16) to 1.7936 (16) Å (P-C). Each amide group adopts a nearly perfect *trans* geometry, and the geometry around each phophorus atom resembles a slightly distorted tetrahedron.

1. Chemical context

The carbamoylmethylphosphine oxide (CMPO) group (Fig. 1) has been utilized by researchers in the area of *f*-element coordination chemistry to prepare compounds with an affinity for lanthanide and actinide metals. Perhaps the most well known use of this metal chelator is as part of the TRUEX (transuranium extraction) process for the remediation of spent nuclear fuel (Horwitz et al., 1985). Various research groups have studied the coordination complexes of CMPOcontaining compounds with f-elements and found that, depending on the identity of the metal, two to three CMPO groups are able to coordinate to the metal center simultaneously (Horwitz et al., 1987). Based on these results, research groups have used a variety of di-, tri- and tetrapodal scaffolds to tether multiple CMPO groups together with the aim of preparing chelators for *f*-elements that have stronger binding affinities and higher extraction selectivities than their monomeric counterparts (Dam et al., 2007; Leoncini et al., 2017; Werner & Biros, 2019). To this end, we have prepared a tripodal CMPO compound based on a tris(2-aminoethyl) methane scaffold and report here its characterization by X-ray diffraction and NMR spectroscopy.

Published under a CC BY 4.0 licence

Figure 1

The general structure of the CMPO motif, along with the structure of the CMPO compound used in the TRUEX process.

2. Structural commentary

The molecular structure of compound I is shown in Fig. 2 along with the atom-numbering scheme. The electron density corresponding to the capping carbon atoms C2, C3 and C4 was disordered and was modeled over two positions with a 0.676 (3):0.324 (3) occupancy ratio (see the Refinement section for more details). The three CMPO arms are oriented on the same side of the molecule, and each phopshonate group is engaged in intramolecular hydrogen bonds with a neighboring amide group (vide infra). For the phosphonate groups, the three P=O bond lengths have values of 1.4696 (12), 1.4722 (12) and 1.4729 (12) Å. The longer P–O bond lengths range from 1.5681 (11) to 1.5811 (12) Å with P-C bond lengths ranging from 1.7881 (16) to 1.7936 (16) Å. Each phosphorus atom has a τ_4 descriptor of fourfold coordination of 0.92 (where 0.00 = square planar, 0.85 = trigonal pyramidal, and 1.00 = tetrahedral; Yang et al., 2007), indicating that the geometry around these atoms resembles a slightly distorted tetrahedron. The C=O bond lengths of the amide groups are

Figure 2

The molecular structure of compound I, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level, and hydrogen atoms bonded to carbon atoms have been omitted for clarity. With regard to the disordered atoms, only the major component is shown.

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

, , ,				
$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N1-H1···O6	0.86 (2)	2.07 (2)	2.9138 (18)	168.8 (19)
$N2-H2\cdots O4$	0.79 (2)	2.06 (2)	2.8465 (18)	170 (2)
$N3-H3\cdots O5$	0.82 (2)	2.10(2)	2.8975 (19)	167 (2)
$C11 - H11A \cdots O6$	0.99	2.36	3.2433 (19)	148
$C11 - H11B \cdots O6^{i}$	0.99	2.48	3.3235 (19)	143
$C12 - H12A \cdots O4$	0.99	2.37	3.2476 (19)	148
$C12-H12B\cdots O2^{ii}$	0.99	2.35	3.321 (2)	168
C13−H13A···O5	0.99	2.37	3.259 (2)	149
$C14 - H14A \cdots O1$	0.99	2.56	3.326 (2)	135
$C17 - H17B \cdots O3^{iii}$	0.98	2.65	3.427 (3)	137
C18−H18A…O2	0.99	2.57	3.215 (2)	122
$C22 - H22B \cdots O1^{i}$	0.99	2.80	3.472 (2)	126
C23−H23C···O3	0.98	2.69	3.460 (2)	135
$C24 - H24A \cdots O1^{i}$	0.99	2.55	3.480 (2)	156
$C24 - H24B \cdots O8$	0.99	2.57	3.444 (2)	147
$C4A - H4AA \cdots O2^{iv}$	0.99	2.39	3.241 (5)	144

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y + 2, -z + 1; (iii) x - 1, y, z; (iv) -x + 2, -y + 2, -z + 1.

nearly identical with values of 1.231 (2), 1.231 (2) and 1.230 (2) Å. The C(O)–N bond lengths range from 1.335 (2) to 1.344 (2) Å, and each amide group adopts a nearly perfect *trans* geometry with H–N–C–O torsion angles of 176.9 (19), 177.9 (18) and 179.0 (16)°.

Intramolecular N-H···O and C-H···O hydrogen bonds are present in the crystal of compound I between each of the P=O oxygen atoms and a neighboring amide group (Fig. 3 and Table 1). These interactions have an average $D \cdot \cdot \cdot A$ distance of 2.886 Å and an average $D-H \cdot \cdot \cdot A$ angle of 169° for the N-H···O interactions, and an average $D \cdot \cdot \cdot A$ distance of 3.250 Å and an average $D-H \cdot \cdot \cdot A$ angle of 148° for the C-H···O interactions.

3. Supramolecular features

In the crystal, molecules of the title compound form supramolecular sheets that bisect the *y*- and *z*-axes. These sheets are held together by $C-H\cdots O$ hydrogen bonds (Table 1). Additional $C-H\cdots O$ hydrogen bonds are found between the supramolecular sheets.

Depictions of the intramolecular C-H···O and N-H···O hydrogen bonds (green, dashed lines) present in the crystal of compound I using a ball-and-stick model with standard CPK colors. With regard to the disordered atoms, only the major component is shown.

Table 2	
Experimental	details.

Crystal data	
Chemical formula	C ₂₅ H ₅₂ N ₃ O ₁₂ P ₃
Mr	679.60
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.02487 (11), 11.92992 (15), 16.6237 (2)
$lpha,eta,\gamma~(^\circ)$	10.0257 (2) 100.4792 (11), 100.124 (1), 111.1313 (11)
$V(Å^3)$	1759.25 (4)
Z	2
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	2.06
Crystal size (mm)	$0.16\times0.09\times0.04$
Data collection	
Diffractometer	XtaLAB Synergy-S, Dualflex, HyPix-6000HE
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2006)
T_{\min}, T_{\max}	0.700, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	27502, 7504, 6481
R _{int}	0.043
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.639
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.099, 1.07
No. of reflections	7504
No. of parameters	438
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.61, -0.35

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXT (Sheldrick, 2015a), SHELXL2019/2 (Sheldrick, 2015b), CrystalMaker (Palmer, 2007) and OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015).

4. Database survey

A search of the Cambridge Structure Database (CSD version 5.44 with updates through June 2024; Groom *et al.*, 2016) for structures containing the general CMPO motif returned 104 hits, 63 of which were exclusively organic compounds. Of these 63 compounds, 14 structures contained the CMPO moiety tethered to a di-, tri- or tetrapodal scaffold. Structures CIWFAR (Ouizem *et al.*, 2014) and GOGZAG (VanderWeide *et al.*, 2019) contain aromatic rings decorated with two CMPO groups. Structures containing three CMPO groups tethered together can be found in entries IMIDEP (Coburn *et al.*, 2016), XILJOR (Peters *et al.*, 2002), JIVSUD and JIVTAK (Matloka *et al.*, 2007). Lastly, a calix[4]arene scaffold was used to link four CMPO groups together in structures OLUWEX (Schmidt *et al.*, 2003), CUVNEN and CUVNIR (Rudzevich *et al.*, 2010).

5. Synthesis and crystallization

A 25 mL round-bottom flask was charged with 1.15 g (7.90 mmol) of freshly distilled 1,1,1-tris(2-aminoethyl) methane (Archer *et al.*, 2004) and 1.0 mL of methanol. Under an atmosphere of nitrogen, the solution was cooled to *ca*. 230 K with a liquid N₂/EtOAc bath. Triethylphosphonoacetate

(6.50 mL, 32.8 mmol) was added slowly to the flask via syringe, and the reaction was allowed to warm to room temperature. The reaction was stirred under an inert atmosphere for 3 days, and the volatiles were removed under reduced pressure. The crude product was purified via silica gel column chromatography (5-10% MeOH/CH₂Cl₂ gradient) to give compound I as a slightly yellow, waxy solid (typical yield = 50–60%, $R_{\rm f}$ in 10% MeOH/CH₂Cl₂ = 0.4). Crystals suitable for analysis by X-ray diffraction were grown serendipitously from a concentrated solution of compound I in methanol upon standing in the refrigerator for many months. NMR data was acquired with a JEOL ECZS 400 NMR spectrometer: ¹H NMR (400 MHz, CDCl₃) δ 8.24 (broad, 3H), 4.10 (*m*, 12 H), 3.22 (*m*, 6H), 2.95 (d, J_{P-H} = 21.6 Hz, 6H), 1.68 (septet, J = 6.8 Hz, 3H), 1.40 (dt, J = 6.3, 13.7 Hz, 6H), 1.29 (t, J = 7.1 Hz, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8 (d, J_{C-P} = 5.2 Hz), 62.5 (d, J_{C-P} $_{\rm P}$ = 6.4 Hz), 36.3 (s), 35.0 (d, $J_{\rm C-P}$ = 132 Hz), 31.8 (s), 25.2 (s), 16.4 (*d*, $J_{C-P} = 6.3$ Hz); ³¹P NMR (161 MHz, CDCl₃) δ 24.4.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: C-H = 0.95-1.00 Å with $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene and methine groups, and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl groups. Hydrogen atoms bonded to nitrogen atoms were located using electron-density difference maps. The disordered electron density corresponding to C2/C2A, C3/ C3A and C4/C4A was modeled over two positions and refined against a free variable to give a relative occupancy ratio of 0.676 (3):0.324 (3). This disorder reverberated to the nearby carbon atoms C5, C6 and C7 to give two orientations of the attached hydrogen atoms.

Acknowledgements

We are grateful to GVSU (Chemistry department Weldon Fund, CSCE) for financial support of this research, as well as Dr Randy Winchester (GVSU) for helpful conversations. We also thank GVSU's Office of Undergraduate Research for a Student Supplies Grant to B. Wackerle.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant Nos. CHE-2102576, CHE-2102381, CHE-1919565 and CHE-1559886).

References

Archer, C. M., Wadsworth, H. J. & Engell, T. (2004). US Patent Application US 2004/0258619 A1.

Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.

research communications

- Coburn, K. M., Hardy, D. A., Patterson, M. G., McGraw, S. N., Peruzzi, M. T., Boucher, F., Beelen, B., Sartain, H. T., Neils, T., Lawrence, C. L., Staples, R. J., Werner, E. J. & Biros, S. M. (2016). *Inorg. Chim. Acta*, **449**, 96–106.
- Dam, H. H., Reinhoudt, D. N. & Verboom, W. (2007). Chem. Soc. Rev. 36, 367–377.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Horwitz, E. P., Diamond, H., Martin, K. A. & Chiarizia, R. (1987). Solvent Extr. Ion Exch. 5, 419–446.
- Horwitz, E. P., Kalina, D. G., Diamond, H., Vandegrift, G. F. & Schulz, W. W. (1985). Solvent Extr. Ion Exch. 3, 75–109.
- Leoncini, A., Huskens, J. & Verboom, W. (2017). Chem. Soc. Rev. 46, 7229–7273.
- Matloka, K., Sah, A. K., Peters, M. W., Srinivasan, P., Gelis, A. V., Regalbuto, M. & Scott, M. J. (2007). *Inorg. Chem.* 46, 10549–10563.
- Ouizem, S., Rosario-Amorin, D., Dickie, D. A., Paine, R. T., de Bettencourt-Dias, A., Hay, B. P., Podair, J. & Delmau, L. H. (2014). *Dalton Trans.* 43, 8368–8386.

- Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
- Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.
- Peters, M. W., Werner, E. J. & Scott, M. J. (2002). Inorg. Chem. 41, 1707–1716.
- Rudzevich, V., Kasyan, O., Drapailo, A., Bolte, M., Schollmeyer, D. & Böhmer, V. (2010). *Chem. Asian J.* **5**, 1347–1355.
- Schmidt, C., Saadioui, M., Böhmer, V., Host, V., Spirlet, M.-R., Desreux, J. F., Brisach, F., Arnaud-Neu, F. & Dozol, J.-F. (2003). Org. Biomol. Chem. 1, 4089–4096.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- VanderWeide, A. I., Staples, R. J. & Biros, S. M. (2019). Acta Cryst. E75, 991–996.
- Werner, E. J. & Biros, S. M. (2019). Org. Chem. Front. 6, 2067–2094.
- Yang, L., Powell, D. R. & Houser, R. P. (2007). *Dalton Trans.* pp. 955–964.

Acta Cryst. (2024). E80, 993-996 [https://doi.org/10.1107/S2056989024008478]

Crystal structure of a tris(2-aminoethyl)methane capped carbamoylmethylphosphine oxide compound

Brandon G. Wackerle, Eric J. Werner, Richard J. Staples and Shannon M. Biros

Computing details

Diethyl

{[(5-[2-(diethoxyphosphoryl)acetamido]-3-{2-[2-(diethoxyphosphoryl)acetamido]ethyl}pentyl)carbamoyl]methyl }phosphonate

Crystal data

 $C_{25}H_{52}N_{3}O_{12}P_{3}$ $M_{r} = 679.60$ Triclinic, *P*1 *a* = 10.02487 (11) Å *b* = 11.92992 (15) Å *c* = 16.6237 (2) Å *a* = 100.4792 (11)° *β* = 100.124 (1)° *γ* = 111.1313 (11)° *V* = 1759.25 (4) Å³

Data collection

XtaLAB Synergy-S, Dualflex, HyPix-6000HE diffractometer Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: gaussian (CrysAlisPro; Oxford Diffraction, 2006) $T_{\min} = 0.700, T_{\max} = 1.000$ 27502 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.099$ S = 1.077504 reflections 438 parameters 0 restraints Primary atom site location: dual Z = 2 F(000) = 728 $D_x = 1.283 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 13811 reflections $\theta = 4.1-79.9^{\circ}$ $\mu = 2.06 \text{ mm}^{-1}$ T = 100 KIrregular, colourless $0.16 \times 0.09 \times 0.04 \text{ mm}$

7504 independent reflections 6481 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 80.2^\circ, \ \theta_{min} = 2.8^\circ$ $h = -12 \rightarrow 12$ $k = -15 \rightarrow 14$ $l = -20 \rightarrow 21$

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0443P)^2 + 0.5632P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.61$ e Å⁻³ $\Delta\rho_{min} = -0.34$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
P1	0.35890 (4)	0.68848 (4)	0.12527 (2)	0.02154 (10)	
P2	0.53282 (4)	0.38100 (4)	0.20227 (2)	0.02071 (9)	
P3	0.47290 (4)	0.71266 (4)	0.45959 (2)	0.02314 (10)	
O1	0.62953 (12)	0.82490 (11)	0.04850 (8)	0.0286 (2)	
O2	0.69588 (13)	0.99779 (11)	0.49775 (7)	0.0314 (3)	
O3	0.86359 (13)	0.48663 (12)	0.29651 (8)	0.0336 (3)	
O4	0.45143 (13)	0.75898 (12)	0.21164 (7)	0.0310 (3)	
O5	0.58783 (13)	0.66867 (11)	0.44337 (8)	0.0304 (3)	
O6	0.59114 (12)	0.46394 (10)	0.14955 (7)	0.0261 (2)	
O7	0.28427 (12)	0.76460 (10)	0.07967 (8)	0.0283 (2)	
O8	0.22248 (12)	0.56567 (11)	0.11756 (8)	0.0276 (2)	
O9	0.48562 (12)	0.75646 (11)	0.55729 (7)	0.0274 (2)	
O10	0.30802 (13)	0.61449 (11)	0.42340 (8)	0.0299 (3)	
O11	0.53576 (12)	0.24858 (10)	0.17424 (7)	0.0249 (2)	
O12	0.36511 (12)	0.34604 (11)	0.20133 (7)	0.0267 (2)	
N1	0.71852 (14)	0.70410 (14)	0.11270 (9)	0.0242 (3)	
H1	0.693 (2)	0.636 (2)	0.1277 (13)	0.025 (5)*	
N2	0.66717 (15)	0.94335 (13)	0.35606 (9)	0.0248 (3)	
H2	0.614 (2)	0.896 (2)	0.3124 (15)	0.030 (5)*	
N3	0.82763 (15)	0.64181 (13)	0.37830 (9)	0.0250 (3)	
Н3	0.766 (2)	0.661 (2)	0.3961 (14)	0.029 (5)*	
C1	0.89282 (17)	0.85561 (16)	0.29672 (10)	0.0270 (3)	
H1A	0.791 (2)	0.7973 (18)	0.2865 (13)	0.025 (5)*	
C5	0.87290 (17)	0.79247 (17)	0.13561 (11)	0.0296 (3)	
H5AA	0.893030	0.827828	0.087376	0.036*	0.676 (3)
H5AB	0.937439	0.747536	0.145957	0.036*	0.676 (3)
H5BC	0.878553	0.876708	0.134409	0.036*	0.324 (3)
H5BD	0.924175	0.767149	0.094618	0.036*	0.324 (3)
C6	0.81521 (18)	1.02970 (15)	0.35924 (11)	0.0282 (3)	
H6AA	0.846342	1.105489	0.406285	0.034*	0.676 (3)
H6AB	0.812996	1.055031	0.305686	0.034*	0.676 (3)
H6BC	0.882153	1.049504	0.416062	0.034*	0.324 (3)
H6BD	0.811939	1.108309	0.349705	0.034*	0.324 (3)
C7	0.97830 (17)	0.73567 (16)	0.39527 (11)	0.0287 (3)	
H7AA	1.049062	0.696112	0.404807	0.034*	0.676 (3)
H7AB	0.999863	0.800928	0.447785	0.034*	0.676 (3)
H7BC	1.030570	0.707191	0.356172	0.034*	0.324 (3)
H7BD	1.034145	0.749897	0.454197	0.034*	0.324 (3)
C8	0.60896 (16)	0.72964 (15)	0.07237 (9)	0.0223 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

С9	0.62078 (18)	0.93312 (14)	0.42602 (10)	0.0243 (3)
C10	0.78257 (17)	0.52657 (15)	0.32878 (10)	0.0249 (3)
C11	0.45376 (16)	0.63076 (14)	0.05793 (10)	0.0223 (3)
H11A	0.459884	0.554470	0.070441	0.027*
H11B	0.398214	0.608946	-0.002128	0.027*
C12	0.46608 (17)	0.83407 (15)	0.41182 (10)	0.0249(3)
H12A	0.419042	0.798180	0.350200	0.030*
H12B	0.404881	0.872627	0.436542	0.030*
C13	0 61943 (17)	0.44487(15)	0.31384(10)	0.0258(3)
H13A	0 569838	0 494936	0 339364	0.031*
H13B	0.609095	0.376363	0.341386	0.031*
C14	0.36017 (19)	0.89977 (15)	0.09918(12)	0.031
H14A	0.447502	0.922709	0.075691	0.037*
H14R	0.394467	0.926769	0.161344	0.037*
C15	0.554407 0.2526 (2)	0.930304 0.94742(10)	0.101344	0.037
H15A	0.2320 (2)	0.94742 (19)	-0.001106	0.0450 (5)
HIJA HIJA	0.217905	1 038212	0.001100	0.065*
	0.301497	0.026141	0.071238	0.005*
П15C	0.107933	0.920141 0.56052 (10)	0.083007 0.16770(12)	0.003°
	0.1174(2) 0.126218	0.50955 (19)	0.10770(12)	0.0339 (4)
HI0A	0.130218	0.03/100	0.193009	0.043
	0.129442	0.528808	0.213/31	0.043
	-0.0359(2)	0.5030(2)	0.11089 (15)	0.0528 (6)
HI/A	-0.046/62	0.543631	0.065403	0.079*
HI/B	-0.10/391	0.505/56	0.143687	0.079*
HI7C	-0.054202	0.416041	0.086221	0.079*
C18	0.62943 (17)	0.81483 (17)	0.61951 (10)	0.0287 (3)
H18A	0.708701	0.850973	0.591946	0.034*
H18B	0.650082	0.752204	0.645208	0.034*
C19	0.6248 (2)	0.91549 (17)	0.68647 (12)	0.0343 (4)
H19A	0.612075	0.980235	0.661174	0.051*
H19B	0.717792	0.952208	0.731421	0.051*
H19C	0.541637	0.879707	0.710529	0.051*
C20	0.2548 (2)	0.5026 (2)	0.45184 (15)	0.0457 (5)
H20A	0.209606	0.517026	0.498961	0.055*
H20B	0.338692	0.481182	0.472970	0.055*
C21	0.1447 (3)	0.3995 (2)	0.38158 (18)	0.0587 (7)
H21A	0.191132	0.382672	0.336272	0.088*
H21B	0.063215	0.422058	0.359740	0.088*
H21C	0.105937	0.324849	0.401657	0.088*
C22	0.64205 (19)	0.22577 (17)	0.13194 (11)	0.0291 (3)
H22A	0.708598	0.304258	0.122922	0.035*
H22B	0.589477	0.164576	0.075948	0.035*
C23	0.7309 (2)	0.17610 (18)	0.18627 (13)	0.0364 (4)
H23A	0.797129	0.153545	0.156173	0.055*
H23B	0.663732	0.102142	0.198646	0.055*
H23C	0.789814	0.240173	0.239481	0.055*
C24	0.25179 (18)	0.28757 (16)	0.12104 (11)	0.0298 (3)
H24A	0.282073	0.234942	0.081284	0.036*

H24B	0.237004	0.352005	0.095038	0.036*	
C25	0.1120 (2)	0.2097 (3)	0.13888 (17)	0.0668 (8)	
H25A	0.032790	0.170273	0.085977	0.100*	
H25B	0.084140	0.262460	0.179047	0.100*	
H25C	0.127335	0.145065	0.163357	0.100*	
C2	0.9138 (3)	0.9024 (2)	0.21687 (16)	0.0273 (5)	0.676 (3)
H2A	1.018299	0.961080	0.227461	0.033*	0.676 (3)
H2B	0.850660	0.948454	0.206276	0.033*	0.676 (3)
C3	0.9259 (3)	0.9732 (2)	0.37186 (16)	0.0286 (6)	0.676 (3)
H3A	0.927444	0.947845	0.425396	0.034*	0.676 (3)
H3B	1.025648	1.037297	0.377840	0.034*	0.676 (3)
C4	1.0018 (2)	0.7972 (2)	0.32176 (16)	0.0276 (6)	0.676 (3)
H4A	1.103868	0.862754	0.338242	0.033*	0.676 (3)
H4B	0.993196	0.733465	0.271490	0.033*	0.676 (3)
C2A	0.9477 (5)	0.7944 (5)	0.2254 (3)	0.0269 (11)	0.324 (3)
H2AA	1.056167	0.840578	0.236832	0.032*	0.324 (3)
H2AB	0.928389	0.707658	0.227536	0.032*	0.324 (3)
C3A	0.8789 (5)	0.9696 (5)	0.2877 (3)	0.0263 (11)	0.324 (3)
H3AA	0.812478	0.952468	0.231216	0.032*	0.324 (3)
H3AB	0.977608	1.031831	0.289758	0.032*	0.324 (3)
C4A	0.9682 (6)	0.8531 (5)	0.3825 (3)	0.0292 (12)	0.324 (3)
H4AA	1.070549	0.918112	0.398768	0.035*	0.324 (3)
H4AB	0.916861	0.878735	0.423347	0.035*	0.324 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.01846 (17)	0.02538 (19)	0.01788 (19)	0.00752 (15)	0.00438 (14)	0.00221 (14)
P2	0.01955 (18)	0.02467 (19)	0.01902 (18)	0.00989 (14)	0.00611 (13)	0.00554 (14)
Р3	0.02313 (19)	0.02747 (19)	0.01929 (19)	0.01144 (15)	0.00539 (14)	0.00510 (14)
01	0.0275 (6)	0.0315 (6)	0.0313 (6)	0.0127 (5)	0.0109 (5)	0.0142 (5)
O2	0.0338 (6)	0.0328 (6)	0.0204 (6)	0.0105 (5)	0.0035 (5)	-0.0005 (5)
O3	0.0279 (6)	0.0382 (7)	0.0339 (7)	0.0157 (5)	0.0088 (5)	0.0023 (5)
04	0.0263 (5)	0.0411 (7)	0.0188 (6)	0.0095 (5)	0.0052 (4)	0.0013 (5)
05	0.0339 (6)	0.0344 (6)	0.0303 (6)	0.0201 (5)	0.0119 (5)	0.0095 (5)
O6	0.0278 (5)	0.0287 (6)	0.0236 (6)	0.0116 (4)	0.0083 (4)	0.0098 (4)
O7	0.0268 (5)	0.0222 (5)	0.0293 (6)	0.0099 (4)	0.0001 (4)	-0.0014 (4)
08	0.0227 (5)	0.0292 (6)	0.0307 (6)	0.0088 (4)	0.0128 (5)	0.0056 (5)
09	0.0212 (5)	0.0406 (6)	0.0191 (5)	0.0114 (5)	0.0051 (4)	0.0074 (5)
O10	0.0274 (6)	0.0306 (6)	0.0272 (6)	0.0084 (5)	0.0021 (5)	0.0092 (5)
O11	0.0248 (5)	0.0267 (5)	0.0265 (6)	0.0124 (4)	0.0106 (4)	0.0072 (4)
O12	0.0210 (5)	0.0334 (6)	0.0258 (6)	0.0122 (4)	0.0069 (4)	0.0046 (5)
N1	0.0208 (6)	0.0309 (7)	0.0218 (6)	0.0101 (5)	0.0067 (5)	0.0090 (5)
N2	0.0257 (6)	0.0264 (7)	0.0185 (6)	0.0089 (5)	0.0036 (5)	0.0026 (5)
N3	0.0223 (6)	0.0299 (7)	0.0205 (6)	0.0094 (5)	0.0056 (5)	0.0043 (5)
C1	0.0221 (7)	0.0363 (9)	0.0229 (8)	0.0120 (7)	0.0064 (6)	0.0082 (6)
C5	0.0193 (7)	0.0441 (9)	0.0247 (8)	0.0098 (7)	0.0094 (6)	0.0102 (7)
C6	0.0287 (8)	0.0259 (8)	0.0253 (8)	0.0074 (6)	0.0054 (6)	0.0050 (6)

C7	0.0219 (7)	0.0327 (8)	0.0254 (8)	0.0080 (6)	-0.0002 (6)	0.0063 (6)
C8	0.0217 (7)	0.0294 (7)	0.0168 (7)	0.0107 (6)	0.0076 (5)	0.0058 (6)
C9	0.0284 (7)	0.0246 (7)	0.0214 (7)	0.0140 (6)	0.0057 (6)	0.0040 (6)
C10	0.0250 (7)	0.0307 (8)	0.0188 (7)	0.0116 (6)	0.0046 (6)	0.0068 (6)
C11	0.0208 (7)	0.0262 (7)	0.0198 (7)	0.0097 (6)	0.0056 (5)	0.0050 (6)
C12	0.0273 (7)	0.0291 (8)	0.0202 (7)	0.0143 (6)	0.0066 (6)	0.0047 (6)
C13	0.0269 (7)	0.0293 (8)	0.0196 (7)	0.0090 (6)	0.0083 (6)	0.0058 (6)
C14	0.0298 (8)	0.0217 (7)	0.0369 (9)	0.0092 (6)	0.0091 (7)	0.0008 (6)
C15	0.0374 (10)	0.0335 (9)	0.0681 (14)	0.0189 (8)	0.0184 (9)	0.0191 (9)
C16	0.0316 (9)	0.0430 (10)	0.0327 (9)	0.0110 (8)	0.0190 (7)	0.0078 (8)
C17	0.0273 (9)	0.0609 (13)	0.0509 (13)	0.0022 (9)	0.0211 (9)	-0.0080 (10)
C18	0.0213 (7)	0.0405 (9)	0.0211 (8)	0.0107 (7)	0.0019 (6)	0.0082 (7)
C19	0.0344 (9)	0.0334 (9)	0.0278 (9)	0.0085 (7)	0.0051 (7)	0.0051 (7)
C20	0.0384 (10)	0.0418 (11)	0.0491 (12)	0.0078 (8)	-0.0002 (9)	0.0229 (9)
C21	0.0462 (12)	0.0369 (11)	0.0729 (17)	0.0088 (9)	-0.0149 (11)	0.0139 (11)
C22	0.0301 (8)	0.0363 (9)	0.0292 (8)	0.0201 (7)	0.0137 (7)	0.0086 (7)
C23	0.0276 (8)	0.0367 (9)	0.0468 (11)	0.0175 (7)	0.0056 (7)	0.0101 (8)
C24	0.0239 (7)	0.0346 (8)	0.0293 (8)	0.0143 (7)	0.0017 (6)	0.0047 (7)
C25	0.0233 (9)	0.094 (2)	0.0500 (14)	-0.0012 (11)	0.0086 (9)	-0.0044 (13)
C2	0.0212 (11)	0.0321 (12)	0.0270 (12)	0.0070 (9)	0.0073 (9)	0.0113 (10)
C3	0.0223 (11)	0.0332 (12)	0.0235 (12)	0.0072 (9)	0.0019 (9)	0.0038 (10)
C4	0.0183 (10)	0.0355 (13)	0.0273 (12)	0.0089 (9)	0.0056 (9)	0.0091 (10)
C2A	0.019 (2)	0.030 (2)	0.027 (3)	0.0078 (19)	0.0054 (18)	0.0021 (19)
C3A	0.025 (2)	0.025 (2)	0.025 (2)	0.0073 (19)	0.0072 (19)	0.0052 (19)
C4A	0.026 (2)	0.029 (2)	0.024 (3)	0.007 (2)	0.0009 (19)	0.0017 (19)

Geometric parameters (Å, °)

P1—O4	1.4696 (12)	C9—C12	1.519 (2)
P1—O7	1.5811 (12)	C10—C13	1.519 (2)
P1—O8	1.5681 (11)	C11—H11A	0.9900
P1—C11	1.7881 (16)	C11—H11B	0.9900
P2—O6	1.4722 (12)	C12—H12A	0.9900
P2—O11	1.5761 (12)	C12—H12B	0.9900
P2—O12	1.5759 (11)	C13—H13A	0.9900
P2—C13	1.7936 (16)	C13—H13B	0.9900
Р3—О5	1.4729 (12)	C14—H14A	0.9900
Р3—О9	1.5803 (12)	C14—H14B	0.9900
P3—O10	1.5697 (12)	C14—C15	1.495 (3)
P3—C12	1.7899 (17)	C15—H15A	0.9800
O1—C8	1.231 (2)	C15—H15B	0.9800
O2—C9	1.231 (2)	C15—H15C	0.9800
O3—C10	1.230 (2)	C16—H16A	0.9900
O7—C14	1.457 (2)	C16—H16B	0.9900
O8—C16	1.4612 (19)	C16—C17	1.490 (3)
O9—C18	1.4571 (18)	C17—H17A	0.9800
O10—C20	1.448 (2)	C17—H17B	0.9800
O11—C22	1.4515 (19)	C17—H17C	0.9800

O12—C24	1.455 (2)	C18—H18A	0.9900
N1—H1	0.86 (2)	C18—H18B	0.9900
N1—C5	1.457 (2)	C18—C19	1.502 (3)
N1—C8	1.344 (2)	С19—Н19А	0.9800
N2—H2	0.79 (2)	С19—Н19В	0.9800
N2—C6	1.455 (2)	С19—Н19С	0.9800
N2—C9	1.336 (2)	С20—Н20А	0.9900
N3—H3	0.82 (2)	С20—Н20В	0.9900
N3—C7	1.460 (2)	C20—C21	1.463 (3)
N3—C10	1.335 (2)	C21—H21A	0.9800
C1—H1A	0.97 (2)	C21—H21B	0.9800
C1—C2	1.550 (3)	C21—H21C	0.9800
C1—C3	1.587 (3)	C22—H22A	0.9900
C1—C4	1.532 (3)	C22—H22B	0.9900
C1-C2A	1 564 (5)	C^{22} C^{23}	1 501 (2)
C1—C3A	1.447 (5)	C23—H23A	0.9800
C1—C4A	1 503 (5)	C23—H23B	0.9800
C5—H5AA	0.9900	C_{23} H23C	0.9800
C5—H5AB	0.9900	C24—H24A	0.9900
C5—H5BC	0.9900	C_{24} H24B	0.9900
C5—H5BD	0.9900	C_{24} C_{25}	1.491 (3)
C5-C2	1 577 (3)	C25—H25A	0.9800
C5-C2A	1 540 (5)	C25—H25B	0.9800
C6—H6AA	0.9900	C_{25} H25D	0.9800
C6—H6AB	0.9900	C_2 —H2A	0.9900
C6—H6BC	0.9900	C2—H2B	0.9900
C6—H6BD	0.9900	C3—H3A	0.9900
C6-C3	1 497 (3)	C3—H3B	0.9900
C6–C3A	1 619 (5)	C4—H4A	0.9900
C7—H7AA	0.9900	C4—H4B	0.9900
C7—H7AB	0.9900	C2A—H2AA	0.9900
C7—H7BC	0 9900	C2A—H2AB	0.9900
C7—H7BD	0.9900	C3A—H3AA	0.9900
C7—C4	1 546 (3)	C3A—H3AB	0.9900
C7—C4A	1 490 (6)	C4A—H4AA	0.9900
C8-C11	1 521 (2)	C4A—H4AB	0.9900
	1.521 (2)		0.9900
04—P1—07	112 90 (7)	Q7—C14—H14A	110.2
04-P1-08	112.90(7) 116.05(7)	07-C14-H14B	110.2
04-P1-C11	110.09(7)	07 - C14 - C15	107.68 (14)
07—P1—C11	108.90(7)	H_{14A} C_{14} H_{14B}	108.5
08-P1-07	102.52(6)	C15 - C14 - H14A	110.2
08 - P1 - C11	102.32(0) 101.26(7)	C15 - C14 - H14B	110.2
06-P2-011	113 64 (6)	C14 - C15 - H15A	109.5
$06 - P^2 - 01^2$	115.05 (7)	C14— $C15$ — $H15R$	109.5
$06 - P^2 - C^{13}$	113.55 (7)	C14 - C15 - H15C	109.5
011 - P2 - C13	108 50 (7)	H15A - C15 - H15B	109.5
O12 P2 O11	101.04 (6)	H15A C15 H15C	109.5
012-12-011	101.74 (0)	1113A-013-11130	107.5

$\begin{array}{llllllllllllllllllllllllllllllllllll$	O12—P2—C13	100.62 (7)	H15B—C15—H15C	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O5—P3—O9	112.76 (7)	O8—C16—H16A	110.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O5—P3—O10	116.32 (7)	O8—C16—H16B	110.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O5—P3—C12	114.34 (7)	O8—C16—C17	108.68 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O9—P3—C12	108.77 (7)	H16A—C16—H16B	108.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O10—P3—O9	102.72 (6)	C17—C16—H16A	110.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O10—P3—C12	100.66 (7)	C17—C16—H16B	110.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—O7—P1	119.89 (10)	C16—C17—H17A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—O8—P1	119.61 (11)	C16—C17—H17B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18—O9—P3	120.98 (10)	C16—C17—H17C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C20—O10—P3	121.18 (11)	H17A—C17—H17B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22—O11—P2	123.56 (10)	H17A—C17—H17C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C24—O12—P2	119.46 (10)	H17B—C17—H17C	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C5—N1—H1	121.2 (14)	O9—C18—H18A	110.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—N1—H1	117.1 (14)	O9—C18—H18B	110.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—N1—C5	121.51 (15)	O9—C18—C19	107.77 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—N2—H2	119.9 (16)	H18A—C18—H18B	108.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—N2—H2	117.7 (16)	C19—C18—H18A	110.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—N2—C6	122.08 (14)	C19—C18—H18B	110.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N3—H3	119.5 (15)	С18—С19—Н19А	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—N3—H3	117.9 (15)	C18—C19—H19B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—N3—C7	122.40 (15)	C18—C19—H19C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C1—H1A	109.5 (12)	H19A—C19—H19B	109.5
C3—C1—H1A108.6 (12)H19B—C19—H19C109.5C4—C1—H1A111.6 (12)O10—C20—H20A109.7C4—C1—C2109.7 (17)O10—C20—H20B109.7C4—C1—C3108.61 (16)O10—C20—C21109.73 (18)C2A—C1—H1A103.4 (12)H20A—C20—H20B108.2C3A—C1—H1A103.2 (12)C21—C20—H20B109.7C3A—C1—C2A114.5 (3)C21—C20—H20B109.7C3A—C1—C4A118.3 (3)C20—C21—H21A109.5C4A—C1—H1A104.2 (12)C20—C21—H21B109.5C4A—C1—C2A111.1 (3)C20—C21—H21B109.5N1—C5—H5AB109.0H21A—C21—H21B109.5N1—C5—H5AB109.0H21A—C21—H21C109.5N1—C5—H5AB109.0H21B—C21—H21C109.5N1—C5—H5BD110.0O11—C22—H22A109.9N1—C5—C2113.05 (14)O11—C22—H22B109.9N1—C5—C4A108.5 (2)O11—C22—H22B108.3H5BC—C5—H5AB109.0C23—C22—H22B108.74 (14)H5AA—C5—H5AB109.0C23—C23—H23B109.9C2—C5—H5AA109.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0 <td>C2—C1—C3</td> <td>107.39 (17)</td> <td>H19A—C19—H19C</td> <td>109.5</td>	C2—C1—C3	107.39 (17)	H19A—C19—H19C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C1—H1A	108.6 (12)	H19B—C19—H19C	109.5
C4—C1—C2110.97 (17)O10—C20—H20B109.7C4—C1—C3108.61 (16)O10—C20—C21109.73 (18)C2A—C1—H1A103.4 (12)H20A—C20—H20B108.2C3A—C1—H1A103.2 (12)C21—C20—H20A109.7C3A—C1—C2A114.5 (3)C21—C20—H20B109.7C3A—C1—C4A118.3 (3)C20—C21—H21A109.5C4A—C1—H1A104.2 (12)C20—C21—H21B109.5C4A—C1—C2A111.1 (3)C20—C21—H21B109.5N1—C5—H5AA109.0H21A—C21—H21C109.5N1—C5—H5AB109.0H21A—C21—H21C109.5N1—C5—H5BC110.0O11—C22—H22A109.9N1—C5—C2113.05 (14)O11—C22—H22B109.9N1—C5—C2A108.5 (2)O11—C22—H22B108.3H5BC—C5—H5AB107.8H22A—C22—H22B108.3H5BC—C5—H5AB109.0C23—C22—H22B109.9C2—C5—H5AB109.0C23—C22—H22B109.9C2—C5—H5AB109.0C22—C23—H23A109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23	C4—C1—H1A	111.6 (12)	O10—C20—H20A	109.7
C4—C1—C3108.61 (16)O10—C20—C21109.73 (18)C2A—C1—H1A103.4 (12)H20A—C20—H20B108.2C3A—C1—H1A103.2 (12)C21—C20—H20B109.7C3A—C1—C2A114.5 (3)C21—C20—H20B109.7C3A—C1—C4A118.3 (3)C20—C21—H21A109.5C4A—C1—H1A104.2 (12)C20—C21—H21B109.5C4A—C1—C2A111.1 (3)C20—C21—H21B109.5N1—C5—H5AA109.0H21A—C21—H21C109.5N1—C5—H5AB109.0H21A—C21—H21C109.5N1—C5—H5BC110.0H21B—C21—H21C109.5N1—C5—C2113.05 (14)O11—C22—H22A109.9N1—C5—C2A108.5 (2)O11—C22—H22B108.3H5BC—C5—H5AB107.8H22A—C22—H22B108.3H5BC—C5—H5AB109.0C23—C22—H22A109.9C2—C5—H5AB109.0C23—C22—H22A109.9C2—C5—H5AB109.0C23—C23—H23A109.5C2A—C5—H5BD110.0C22—C23—H23A109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H	C4—C1—C2	110.97 (17)	O10—C20—H20B	109.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C1—C3	108.61 (16)	O10—C20—C21	109.73 (18)
C3A—C1—H1A103.2 (12)C21—C20—H20A109.7C3A—C1—C2A114.5 (3)C21—C20—H20B109.7C3A—C1—C4A118.3 (3)C20—C21—H21A109.5C4A—C1—H1A104.2 (12)C20—C21—H21B109.5C4A—C1—C2A111.1 (3)C20—C21—H21B109.5N1—C5—H5AA109.0H21A—C21—H21C109.5N1—C5—H5AB109.0H21A—C21—H21C109.5N1—C5—H5BC110.0H21B—C21—H21C109.5N1—C5—H5BD110.0O11—C22—H22A109.9N1—C5—C2113.05 (14)O11—C22—H22B109.9N1—C5—C2A108.5 (2)O11—C22—H22B108.3H5BC—C5—H5AB107.8H22A—C22—H22B108.3H5BC—C5—H5AB109.0C23—C22—H22A109.9C2—C5—H5AB109.0C23—C22—H22B109.9C2—C5—H5AB109.0C22—C23—H23A109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5N2—C6—H6AA109.2H23A—C23—H23B109.5N2—C6—H6AB109.2H23A—C23—H23C109.5	C2A—C1—H1A	103.4 (12)	H20A—C20—H20B	108.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3A—C1—H1A	103.2 (12)	C21—C20—H20A	109.7
C3A—C1—C4A118.3 (3)C20—C21—H21A109.5C4A—C1—H1A104.2 (12)C20—C21—H21B109.5C4A—C1—C2A111.1 (3)C20—C21—H21C109.5N1—C5—H5AA109.0H21A—C21—H21B109.5N1—C5—H5AB109.0H21A—C21—H21C109.5N1—C5—H5BC110.0H21B—C21—H21C109.5N1—C5—H5BD110.0O11—C22—H22A109.9N1—C5—C2113.05 (14)O11—C22—H22B109.9N1—C5—C2A108.5 (2)O11—C22—C23108.74 (14)H5AA—C5—H5AB107.8H22A—C22—H22B109.9C2—C5—H5AB109.0C23—C22—H22B109.9C2—C5—H5AB109.0C22—C23—H23A109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5N2—C6—H6AA109.2H23A—C23—H23C109.5N2—C6—H6AB109.2H23A—C23—H23C109.5	C3A—C1—C2A	114.5 (3)	C21—C20—H20B	109.7
C4A—C1—H1A 104.2 (12)C20—C21—H21B 109.5 C4A—C1—C2A 111.1 (3) $C20$ —C21—H21C 109.5 N1—C5—H5AA 109.0 $H21A$ —C21—H21B 109.5 N1—C5—H5AB 109.0 $H21A$ —C21—H21C 109.5 N1—C5—H5BC 110.0 $H21B$ —C21—H21C 109.5 N1—C5—H5BD 110.0 011 —C22—H22A 109.9 N1—C5—C2 113.05 (14) 011 —C22—H22B 109.9 N1—C5—C2A 108.5 (2) 011 —C22—H22B 108.74 (14)H5AA—C5—H5AB 107.8 H22A—C22—H22B 109.9 C2—C5—H5AA 109.0 C23—C22—H22B 109.9 C2—C5—H5AB 109.0 C22—C23—H23A 109.5 C2A—C5—H5BD 110.0 C22—C23—H23B 109.5 C2A—C5—H5BD 110.0 C22—C23—H23B 109.5 C2A—C5—H5BD 110.0 C22—C23—H23B 109.5 N2—C6—H6AA 109.2 H23A—C23—H23B 109.5 N2—C6—H6AB 109.2 H23A—C23—H23C 109.5	C3A—C1—C4A	118.3 (3)	C20—C21—H21A	109.5
C4A—C1—C2A111.1 (3)C20—C21—H21C109.5N1—C5—H5AA109.0H21A—C21—H21B109.5N1—C5—H5AB109.0H21A—C21—H21C109.5N1—C5—H5BC110.0H21B—C21—H21C109.5N1—C5—H5BD110.0O11—C22—H22A109.9N1—C5—C2113.05 (14)O11—C22—H22B109.9N1—C5—C2A108.5 (2)O11—C22—C23108.74 (14)H5AA—C5—H5AB107.8H22A—C22—H22B109.9C2—C5—H5AA109.0C23—C22—H22A109.9C2—C5—H5AB109.0C22—C23—H23A109.5C2A—C5—H5BD110.0C22—C23—H23A109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5N2—C6—H6AA109.2H23A—C23—H23C109.5N2—C6—H6AB109.2H23A—C23—H23C109.5	C4A—C1—H1A	104.2 (12)	C20—C21—H21B	109.5
N1—C5—H5AA109.0H21A—C21—H21B109.5N1—C5—H5AB109.0H21A—C21—H21C109.5N1—C5—H5BC110.0H21B—C21—H21C109.5N1—C5—H5BD110.0O11—C22—H22A109.9N1—C5—C2113.05 (14)O11—C22—H22B109.9N1—C5—C2A108.5 (2)O11—C22—C23108.74 (14)H5AA—C5—H5AB107.8H22A—C22—H22B108.3H5BC—C5—H5BD108.4C23—C22—H22A109.9C2—C5—H5AA109.0C22—C23—H23A109.5C2A—C5—H5BC110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5N2—C6—H6AA109.2H23A—C23—H23C109.5	C4A—C1—C2A	111.1 (3)	C20—C21—H21C	109.5
N1—C5—H5AB109.0H21A—C21—H21C109.5N1—C5—H5BC110.0H21B—C21—H21C109.5N1—C5—H5BD110.0O11—C22—H22A109.9N1—C5—C2113.05 (14)O11—C22—H22B109.9N1—C5—C2A108.5 (2)O11—C22—C23108.74 (14)H5AA—C5—H5AB107.8H22A—C22—H22B108.3H5BC—C5—H5AD108.4C23—C22—H22A109.9C2—C5—H5AA109.0C23—C22—H22B109.9C2—C5—H5AB109.0C22—C23—H23A109.5C2A—C5—H5BD110.0C22—C23—H23B109.5N2—C6—H6AA109.2H23A—C23—H23B109.5N2—C6—H6AB109.2H23A—C23—H23C109.5	N1—C5—H5AA	109.0	H21A—C21—H21B	109.5
N1—C5—H5BC110.0H21B—C21—H21C109.5N1—C5—H5BD110.0O11—C22—H22A109.9N1—C5—C2113.05 (14)O11—C22—H22B109.9N1—C5—C2A108.5 (2)O11—C22—C23108.74 (14)H5AA—C5—H5AB107.8H22A—C22—H22B108.3H5BC—C5—H5AD108.4C23—C22—H22A109.9C2—C5—H5AA109.0C23—C22—H22B109.9C2—C5—H5AB109.0C22—C23—H23A109.5C2A—C5—H5BD110.0C22—C23—H23B109.5N2—C6—H6AA109.2H23A—C23—H23C109.5N2—C6—H6AB109.2H23A—C23—H23C109.5	N1—C5—H5AB	109.0	H21A—C21—H21C	109.5
N1—C5—H5BD110.0O11—C22—H22A109.9N1—C5—C2113.05 (14)O11—C22—H22B109.9N1—C5—C2A108.5 (2)O11—C22—C23108.74 (14)H5AA—C5—H5AB107.8H22A—C22—H22B108.3H5BC—C5—H5AD108.4C23—C22—H22A109.9C2—C5—H5AA109.0C23—C22—H22B109.9C2—C5—H5AB109.0C22—C23—H23A109.5C2A—C5—H5BD110.0C22—C23—H23B109.5N2—C6—H6AA109.2H23A—C23—H23B109.5N2—C6—H6AB109.2H23A—C23—H23C109.5	N1—C5—H5BC	110.0	H21B—C21—H21C	109.5
N1—C5—C2113.05 (14)O11—C22—H22B109.9N1—C5—C2A108.5 (2)O11—C22—C23108.74 (14)H5AA—C5—H5AB107.8H22A—C22—H22B108.3H5BC—C5—H5BD108.4C23—C22—H22A109.9C2—C5—H5AA109.0C23—C22—H22B109.9C2—C5—H5AB109.0C22—C23—H23A109.5C2A—C5—H5BD110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23C109.5N2—C6—H6AA109.2H23A—C23—H23C109.5N2—C6—H6AB109.2H23A—C23—H23C109.5	N1—C5—H5BD	110.0	O11—C22—H22A	109.9
N1—C5—C2A108.5 (2)O11—C22—C23108.74 (14)H5AA—C5—H5AB107.8H22A—C22—H22B108.3H5BC—C5—H5BD108.4C23—C22—H22A109.9C2—C5—H5AA109.0C23—C22—H22B109.9C2—C5—H5AB109.0C22—C23—H23A109.5C2A—C5—H5BC110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23B109.5N2—C6—H6AA109.2H23A—C23—H23B109.5N2—C6—H6AB109.2H23A—C23—H23C109.5	N1—C5—C2	113.05 (14)	O11—C22—H22B	109.9
H5AA—C5—H5AB107.8H22A—C22—H22B108.3H5BC—C5—H5BD108.4C23—C22—H22A109.9C2—C5—H5AA109.0C23—C22—H22B109.9C2—C5—H5AB109.0C22—C23—H23A109.5C2A—C5—H5BC110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23C109.5N2—C6—H6AA109.2H23A—C23—H23B109.5N2—C6—H6AB109.2H23A—C23—H23C109.5	N1—C5—C2A	108.5 (2)	O11—C22—C23	108.74 (14)
H5BC—C5—H5BD108.4C23—C22—H22A109.9C2—C5—H5AA109.0C23—C22—H22B109.9C2—C5—H5AB109.0C22—C23—H23A109.5C2A—C5—H5BC110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23C109.5N2—C6—H6AA109.2H23A—C23—H23B109.5N2—C6—H6AB109.2H23A—C23—H23C109.5	Н5АА—С5—Н5АВ	107.8	H22A—C22—H22B	108.3
C2—C5—H5AA109.0C23—C22—H22B109.9C2—C5—H5AB109.0C22—C23—H23A109.5C2A—C5—H5BC110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23C109.5N2—C6—H6AA109.2H23A—C23—H23B109.5N2—C6—H6AB109.2H23A—C23—H23C109.5	H5BC—C5—H5BD	108.4	С23—С22—Н22А	109.9
C2—C5—H5AB109.0C22—C23—H23A109.5C2A—C5—H5BC110.0C22—C23—H23B109.5C2A—C5—H5BD110.0C22—C23—H23C109.5N2—C6—H6AA109.2H23A—C23—H23B109.5N2—C6—H6AB109.2H23A—C23—H23C109.5	С2—С5—Н5АА	109.0	С23—С22—Н22В	109.9
C2A-C5-H5BC110.0C22-C23-H23B109.5C2A-C5-H5BD110.0C22-C23-H23C109.5N2-C6-H6AA109.2H23A-C23-H23B109.5N2-C6-H6AB109.2H23A-C23-H23C109.5	С2—С5—Н5АВ	109.0	С22—С23—Н23А	109.5
C2A—C5—H5BD110.0C22—C23—H23C109.5N2—C6—H6AA109.2H23A—C23—H23B109.5N2—C6—H6AB109.2H23A—C23—H23C109.5	C2A—C5—H5BC	110.0	C22—C23—H23B	109.5
N2—C6—H6AA 109.2 H23A—C23—H23B 109.5 N2—C6—H6AB 109.2 H23A—C23—H23C 109.5	C2A—C5—H5BD	110.0	С22—С23—Н23С	109.5
N2—C6—H6AB 109.2 H23A—C23—H23C 109.5	N2—C6—H6AA	109.2	H23A—C23—H23B	109.5
	N2—C6—H6AB	109.2	H23A—C23—H23C	109.5

N2—C6—H6BC	109.5	H23B_C23_H23C	109.5
N2-C6-H6BD	109.5	012 - C24 - H24A	110.2
$N_2 = C_6 = C_3$	111.97 (16)	012 - 024 - H24R	110.2
$N_2 = C_0 = C_3$	110.5(2)	012 - 024 - 0124D	107.54 (16)
$H_{6AA} = C_{6} = H_{6AB}$	107.9	$H_{24} = C_{24} = C_{23}$	107.54 (10)
HOAA-CO-HOAD	107.5	1124A - C24 - 1124B	100.5
HOBC - CO - HOBD	100.1	$C_{25} = C_{24} = H_{24} R_{25}$	110.2
C_{3} C_{0} $H(AP)$	109.2	С23—С24—Н24В	110.2
C_{3} — C_{0} — $H_{0}AB$	109.2	C24—C25—H25A	109.5
C3A—C6—H6BC	109.5	C24—C25—H25B	109.5
C3A—C6—H6BD	109.5	С24—С25—Н25С	109.5
N3—C7—H7AA	109.1	H25A—C25—H25B	109.5
N3—C7—H7AB	109.1	H25A—C25—H25C	109.5
N3—C7—H7BC	110.1	H25B—C25—H25C	109.5
N3—C7—H7BD	110.1	C1—C2—C5	112.41 (18)
N3—C7—C4	112.46 (15)	C1—C2—H2A	109.1
N3—C7—C4A	107.8 (2)	C1—C2—H2B	109.1
H7AA—C7—H7AB	107.8	C5—C2—H2A	109.1
H7BC—C7—H7BD	108.5	С5—С2—Н2В	109.1
С4—С7—Н7АА	109.1	H2A—C2—H2B	107.9
C4—C7—H7AB	109.1	C1—C3—H3A	108.8
C4A—C7—H7BC	110.1	C1—C3—H3B	108.8
C4A—C7—H7BD	110.1	C6—C3—C1	113.63 (17)
O1—C8—N1	123.86 (14)	С6—С3—НЗА	108.8
O1—C8—C11	121.44 (14)	С6—С3—Н3В	108.8
N1—C8—C11	114,70 (14)	H3A—C3—H3B	107.7
02—C9—N2	123.68 (15)	C1-C4-C7	114.59 (17)
02-C9-C12	121.02(15)	C1-C4-H4A	108.6
$N_{2} - C_{9} - C_{12}$	115 30 (14)	C1 - C4 - H4B	108.6
03-C10-N3	124 25 (15)	C7-C4-H4A	108.6
03 - C10 - C13	120.97 (15)	C7-C4-H4B	108.6
N3_C10_C13	120.97(13) 114.78(14)	$H_{4} = C_{4} = H_{4} B$	107.6
$P_1 = C_{11} = H_{11A}$	100 7	$C_1 C_2 A H_2 A A$	107.0
	109.7	C1 - C2A - H2AB	108.8
$\Gamma = C \Gamma = \Pi = \Pi = D$	109.7	$C_1 = C_2 A = C_1 A $	100.0
C_{0} C_{11} H_{11}	109.70 (10)	C_{5} C_{2A} U_{2A}	113.0 (3)
	109.7	C_{3} C_{2} C_{2	100.0
	109.7	U2AA C2A U2AD	108.8
HIIA—CII—HIIB	108.2	H2AA—C2A—H2AB	10/./
P3-C12-H12A	109.5	C1 = C3A = C6	114.5 (3)
P3-C12-H12B	109.5	CI = C3A = H3AA	108.6
C9—C12—P3	110.80 (11)	СІ—СЗА—НЗАВ	108.6
C9—C12—H12A	109.5	С6—С3А—НЗАА	108.6
C9—C12—H12B	109.5	С6—С3А—НЗАВ	108.6
H12A—C12—H12B	108.1	НЗАА—СЗА—НЗАВ	107.6
P2—C13—H13A	109.6	C1—C4A—H4AA	107.4
P2—C13—H13B	109.6	C1—C4A—H4AB	107.4
C10—C13—P2	110.07 (11)	C7—C4A—C1	119.9 (3)
C10—C13—H13A	109.6	C7—C4A—H4AA	107.4
C10-C13-H13B	109.6	C7—C4A—H4AB	107.4

H13A—C13—H13B	108.2	H4AA—C4A—H4AB	106.9
P1	-169.31 (13)	N2—C9—C12—P3	114.58 (14)
P1	131.70 (16)	N3—C7—C4—C1	55.4 (2)
P2-011-C22-C23	119.26 (14)	N3—C7—C4A—C1	-62.0 (4)
P2—O12—C24—C25	151.86 (17)	N3—C10—C13—P2	126.59 (13)
P3—O9—C18—C19	142.53 (12)	C5—N1—C8—O1	3.3 (2)
P3-010-C20-C21	-145.69 (17)	C5—N1—C8—C11	-176.51 (13)
O1—C8—C11—P1	-70.88 (17)	C6—N2—C9—O2	2.7 (3)
O2—C9—C12—P3	-65.17 (18)	C6—N2—C9—C12	-177.08 (14)
O3—C10—C13—P2	-53.21 (19)	C7—N3—C10—O3	3.7 (3)
O4—P1—O7—C14	31.54 (14)	C7—N3—C10—C13	-176.07 (14)
O4—P1—O8—C16	52.59 (15)	C8—N1—C5—C2	78.0 (2)
O4—P1—C11—C8	-41.31 (13)	C8—N1—C5—C2A	138.4 (2)
O5—P3—O9—C18	33.23 (14)	C9—N2—C6—C3	87.1 (2)
O5—P3—O10—C20	62.32 (17)	C9—N2—C6—C3A	143.7 (2)
O5—P3—C12—C9	-45.33 (13)	C10—N3—C7—C4	79.6 (2)
O6—P2—O11—C22	27.99 (14)	C10—N3—C7—C4A	132.3 (3)
O6—P2—O12—C24	56.73 (14)	C11—P1—O7—C14	-96.14 (13)
O6—P2—C13—C10	-34.53 (14)	C11—P1—O8—C16	176.58 (13)
O7—P1—O8—C16	-70.93 (14)	C12—P3—O9—C18	-94.69 (13)
O7—P1—C11—C8	85.75 (12)	C12—P3—O10—C20	-173.55 (16)
O8—P1—O7—C14	157.15 (12)	C13—P2—O11—C22	-100.87 (13)
O8—P1—C11—C8	-166.67 (11)	C13—P2—O12—C24	-178.94 (12)
O9—P3—O10—C20	-61.33 (16)	C2-C1-C3-C6	66.6 (2)
O9—P3—C12—C9	81.70 (12)	C2-C1-C4-C7	-174.01 (17)
O10-P3-O9-C18	159.22 (12)	C3—C1—C2—C5	-175.92 (16)
O10—P3—C12—C9	-170.81 (11)	C3—C1—C4—C7	68.2 (2)
O11—P2—O12—C24	-67.24 (13)	C4—C1—C2—C5	65.5 (2)
O11—P2—C13—C10	93.74 (12)	C4—C1—C3—C6	-173.29 (18)
O12—P2—O11—C22	153.50 (12)	C2A—C1—C3A—C6	177.4 (3)
O12—P2—C13—C10	-159.72 (12)	C2A—C1—C4A—C7	-47.4 (5)
N1	61.5 (2)	C3A—C1—C2A—C5	-43.5 (4)
N1-C5-C2A-C1	-69.9 (3)	C3A—C1—C4A—C7	177.1 (3)
N1-C8-C11-P1	108.97 (13)	C4A—C1—C2A—C5	179.2 (3)
N2-C6-C3-C1	62.7 (2)	C4A—C1—C3A—C6	-48.6 (5)
N2-C6-C3A-C1	-60.9 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1…O6	0.86 (2)	2.07 (2)	2.9138 (18)	168.8 (19)
N2—H2…O4	0.79 (2)	2.06 (2)	2.8465 (18)	170 (2)
N3—H3…O5	0.82 (2)	2.10 (2)	2.8975 (19)	167 (2)
C11—H11A····O6	0.99	2.36	3.2433 (19)	148
C11—H11 <i>B</i> ···O6 ⁱ	0.99	2.48	3.3235 (19)	143
C12—H12A····O4	0.99	2.37	3.2476 (19)	148
C12—H12 <i>B</i> ····O2 ⁱⁱ	0.99	2.35	3.321 (2)	168

C13—H13A····O5	0.99	2.37	3.259 (2)	149
C14—H14A…O1	0.99	2.56	3.326 (2)	135
C17—H17 <i>B</i> ····O3 ⁱⁱⁱ	0.98	2.65	3.427 (3)	137
C18—H18A····O2	0.99	2.57	3.215 (2)	122
C22—H22 B ···O1 ⁱ	0.99	2.80	3.472 (2)	126
C23—H23 <i>C</i> ···O3	0.98	2.69	3.460 (2)	135
C24—H24 A ···O1 ⁱ	0.99	2.55	3.480 (2)	156
C24—H24 <i>B</i> ···O8	0.99	2.57	3.444 (2)	147
$C4A$ — $H4AA$ ···· $O2^{iv}$	0.99	2.39	3.241 (5)	144

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+1, -*y*+2, -*z*+1; (iii) *x*-1, *y*, *z*; (iv) -*x*+2, -*y*+2, -*z*+1.