

Received 4 September 2024 Accepted 17 September 2024

Edited by M. Weil, Vienna University of Technology, Austria

Phosphane chalcogenides and their metal complexes, Part 9. Part 8: Upmann et al. (2024c).

Keywords: crystal structure; gold; phosphane chalcogenides; secondary interactions.

CCDC references: 2156392; 2156788; 2156791; 2156792; 2156872; 2156873; 2156878

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of seven mixed-valence gold compounds of the form $[(R^1R^2R^3PE)_2Au^I]^+[Au^{III}X_4]^-$ (*R* = tert-butyl or isopropyl, *E* = S or Se, and *X* = Cl or Br)

Daniel Upmann, Dirk Bockfeld, Peter G. Jones* and Eliza Târcoveanu

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany. *Correspondence e-mail: p.jones@tu-braunschweig.de

During our studies of the oxidation of gold(I) complexes of trialkylphosphane chalcogenides, general formula $R^{1}R^{2}R^{3}PEAuX$, (R = tert-butyl or isopropyl, E =S or Se, X = Cl or Br) with PhICl₂ or elemental bromine, we have isolated a set of seven mixed-valence by-products, the bis(trialkylphosphane chalcogenido) gold(I) tetrahalogenidoaurates(III) $[(R^1 R^2 R^3 P E)_2 Au]^+ [Au X_4]^-$. These correspond to the addition of one halogen atom per gold atom of the Au¹ precursor. Compound 1, bis(triisopropylphosphane sulfide)gold(I) tetrachloridoaurate(III), [Au(C₉H₂₁PS)₂][AuCl₄] or [(¹Pr₃PS)₂Au][AuCl₄], crystallizes in space group $P2_1/n$ with Z = 4; the gold(I) atoms of the two cations lie on twofold rotation axes, and the gold(III) atoms of the two anions lie on inversion centres. Compound 2, bis(tert-butyldiisopropylphosphane sulfide)gold(I) tetrachloridoaurate(III), $[Au(C_{10}H_{23}PS)_2][AuCl_4]$ or $[(^{l}Bu^{l}Pr_2PS)_2Au][AuCl_4]$, crystallizes in space group $P\overline{1}$ with Z = 4; the asymmetric unit contains two cations and two anions with no imposed symmetry. A least-squares fit of the two cations gave an r.m.s. deviation of 0.19 Å. Compound 3, bis(tri-tert-butylphosphane sulfide)gold(I) tetrachloridoaurate(III), $[Au(C_{12}H_{27}PS)_2][AuCl_4]$ or $[({}^tBu_3PS)_2Au]$ -[AuCl₄], crystallizes in space group $P\overline{1}$ with Z = 1; both gold atoms lie on inversion centres. Compound 4a, bis(tert-butyldiisopropylphosphane sulfide)gold(I) tetrabromidoaurate(III), $[Au(C_{10}H_{23}PS)_2][AuBr_4]$ or $[({}^tBu{}^tPr_2PS)_2Au]$ -[AuBr₄], crystallizes in space group $P2_1/c$ with Z = 4; the cation lies on a general position, whereas the gold(III) atoms of the two anions lie on inversion centres. Compound 4b, bis(tert-butyldiisopropylphosphane selenide)gold(I) tetrabromidoaurate(III), $[Au(C_{10}H_{23}PSe)_2][AuBr_4]$ or $[(^{t}Bu^{t}Pr_2PSe)_2Au]$ [AuBr₄], is isotypic with 4a. Compound 5a, bis(tri-tert-butylphosphane sulfide)gold(I) tetrabromidoaurate(III), [Au(C₁₂H₂₇PS)₂][AuBr₄] or [(^tBu₃PS) ₂Au][AuBr₄], is isotypic with compound 4a. Compound 5a, bis(tri-tert-butylphosphane sulfide)gold(I) tetrabromidoaurate(III), [Au(C₁₂H₂₇PS)₂][AuBr₄] or $[({}^{t}Bu_{3}PS)_{2}Au][AuBr_{4}]$, crystallizes in space group $P\overline{1}$ with Z = 1; both gold atoms lie on inversion centres. Compound **5b**, bis(tri-*tert*-butylphosphane selenide) gold(I) tetrabromidoaurate(III), $[Au(C_{12}H_{27}PSe)_2][AuBr_4]$ or $[({}^tBu_3PSe)_2Au]$ [AuBr₄], is isotypic with **5a**. All Au^I atoms are linearly coordinated and all Au^{III} atoms exhibit a square-planar coordination environment. The ligands at the Au¹ atoms are antiperiplanar to each other across the $S \cdots S$ vectors. There are several short intramolecular $H \cdots Au$ and $H \cdots E$ contacts. Average bond lengths (Å) are: P-S = 2.0322, P-Se = 2.1933, S-Au = 2.2915, and Se-Au = 2.4037. The complex three-dimensional packing of 1 involves two short C-H_{methi-} _{ne}···Cl contacts (and some slightly longer contacts). For 2, four C-H_{methi-} $_{ne}$ ···Cl interactions combine to produce zigzag chains of residues parallel to the c axis. Additionally, an S \cdots Cl contact is observed that might qualify as a 'chalcogen bond'. The packing of 3 is three-dimensional, but can be broken down into two layer structures, each involving an S···Cl and an H···Cl contact. For the bromido derivatives 4a/b and 5a/b, loose associations of the anions form part of the packing patterns. For all four compounds, these combine with an $E \cdot \cdot \cdot Br$ contact to form layers parallel to the *ab* plane.

Figure 1

The structure of compound 1 in the crystal. Only the asymmetric unit is labelled.

1. Chemical context

In the three previous publications in this series, we have presented structures of trialkylphosphane chalcogenido complexes of gold(I), general formula $[(R^1R^2R^3PE)AuX]$ (Upmann et al., 2024a), the corresponding trihalogenidogold(III) complexes $[(R^1R^2R^3PE)AuX_3]$ (Upmann *et al.*, 2024b) and the further oxidized phosphonium gold(III) derivatives $(R^1 R^2 R^3 PEX)^+ [AuX_4]^-$ (Upmann *et al.*, 2024*c*), where the R groups are *tert*-butyl or isopropyl, the chalcogen atoms E are S or Se, and the halogen atoms X are Cl or Br [the iodidogold(I) derivatives however cannot be oxidized to gold(III)]. The majority of the gold(III) derivatives were synthesized successfully by the oxidation of the Au¹ series with PhICl₂ or elemental bromine, whereby the two oxidation steps each correspond to the addition of two atom equivalents of halogen per atom equivalent of gold. However, some failed syntheses and several syntheses with low yields led us to suspect that the systems in solution were in some cases complex mixtures. One further set of isolated products were the mixed-valence bis(trialkylphosphane chalcogenido)tetrahalogenidoaurates(III) of the gold(I)form $[(R^{1}R^{2}R^{3}PE)_{2}Au]^{+}[AuX_{4}]^{-}$, and the structures of seven such compounds (Scheme, Table 1) are presented here; they correspond to the addition of one halogen atom per gold atom of the Au^I precursor, rather than the two or four halogen atoms added to produce $[(R^1R^2R^3PE)AuX_3]$ or $(R^{1}R^{2}R^{3}PEX)^{+}[AuX_{4}]^{-}$ respectively.

$[(R^1 R^2 R^3 PE)_2 Au]^+ [AuX_4]^-$

Table	1
-------	---

Compositions of the $[(R^1R^2R^3PE)_2Au]^+[AuX_4]^-$	structures presented i	n
this paper (see Scheme).		

Compound	R^1	R^2	R^3	Ε	X
1	ⁱ Pr	^{<i>i</i>} Pr	^{<i>i</i>} Pr	S	Cl
2	^{<i>i</i>} Pr	^{<i>i</i>} Pr	^t Bu	S	Cl
3	^t Bu	^t Bu	^t Bu	S	Cl
4a	ⁱ Pr	^{<i>i</i>} Pr	^t Bu	S	Br
4b	ⁱ Pr	ⁱ Pr	ⁱ Bu	Se	Br
5a	ⁱ Bu	ⁱ Bu	^t Bu	S	Br
5b	ⁱ Bu	^t Bu	^t Bu	Se	Br

Table 2	
Selected geometric parameters (Å, $^{\circ}$) f	or 1 .

Au1-S1	2.2918 (10)	Au3-Cl2	2.2833 (10)
P1-S1	2.0369 (14)	Au3-Cl1	2.2865 (10)
Au2-S2	2.2970 (9)	Au4-Cl3	2.2811 (10)
P2-S2	2.0310 (13)	Au4-Cl4	2.2849 (9)
S1-Au1-S1 ⁱ	179.97 (5)	Cl2-Au3-Cl1	89.99 (4)
C1-P1-S1	107.31 (15)	Cl2-Au3-Cl1 ⁱⁱⁱ	90.01 (4)
P1-S1-Au1	102.05 (5)	Cl1-Au3-Cl1 ⁱⁱⁱ	180.0
S2 ⁱⁱ -Au2-S2	177.70 (5)	Cl3 ^{iv} -Au4-Cl3	180.0
C4-P2-S2	107.67 (13)	Cl3-Au4-Cl4 ^{iv}	89.63 (4)
P2-S2-Au2	102.69 (5)	Cl3-Au4-Cl4	90.37 (4)
Cl2-Au3-Cl2 ⁱⁱⁱ	180.0	Cl4 ^{iv} -Au4-Cl4	180.0
C1-P1-S1-Au1	171.60 (15)	C4-P2-S2-Au2	162.32 (12)
Symmetry codes:	(i) $-x + \frac{1}{2}, y, -$	$-z + \frac{3}{2}$; (ii) $-x + \frac{1}{2}$,	$y, -z + \frac{1}{2};$ (iii)

-x + 1, -y + 1, -z + 1; (iv) -x, -y, -z + 1.

Much introductory material is given in Part 6 of this series (Upmann *et al.*, 2024*a*) and is not repeated here. It is however worth repeating that writing a formal double bond P = E in the formulae of phosphane chalcogenides is an old-fashioned convention that probably does not represent the true nature of the bond. A considerable admixture of the resonance form ${}^{+}P - E^{-}$ is likely to be involved, especially for metal complexes.

2. Structural commentary

The molecular structures of compounds **1–5b** are shown in Figs. 1–7; some short interionic contacts are included in these Figures and are discussed in section 3, *Supramolecular features*. Ellipsoid plots correspond to 50% probability levels except for **4a** (30%). All the structures are solvent-free. Because some alkyl groups are overlapped, not all carbon atoms are labelled. Selected bond lengths and angles are presented in Tables 2–8. All Au^I atoms are linearly coordinated and all Au^{III} atoms are in a square-planar coordination environment (the anions have the ideal 4/*mmm* symmetry to a close approximation). For each phosphane chalcogenido ligand, there is a carbon atom that has an absolute torsion angle C–P–S–Au close to 180°; this is given the lowest number (C1 or C4) of the three carbon atoms bonded to the

Figure 2

The structure of compound **2** in the crystal. Carbon atoms of the second independent cation are labelled with primes. The contact $S3 \cdots Cl2$ is indicated by a dashed bond.

Selected geometric parameters (Å, $^{\circ}$) for 2 .	

Au1-S1	2.2869 (9)	Au3-Cl4	2.2746 (10)
Au1-S2	2.2910 (9)	Au3-Cl1	2.2754 (11)
P1-S1	2.0283 (14)	Au3-Cl2	2.2805 (10)
P2-S2	2.0263 (13)	Au3-Cl3	2.2852 (11)
Au2-S4	2.2935 (9)	Au4-Cl5	2.2780 (10)
Au2-S3	2.2953 (9)	Au4-Cl6	2.2825 (11)
P3-S3	2.0360 (14)	Au4-Cl7	2.2828 (10)
P4-S4	2.0312 (13)	Au4-Cl8	2.2839 (10)
S1 - Au1 - S2	179.28 (4)	C 4-A 3-C 2	179.22 (4)
C1 - P1 - S1	105.10 (13)	Cl1 - Au3 - Cl2	89.46 (4)
C4-P2-S2	105.95 (12)	Cl4-Au3-Cl3	90.14 (4)
P1-S1-Au1	101.88 (5)	Cl1-Au3-Cl3	179.77 (4)
P2-S2-Au1	102.91 (5)	Cl2-Au3-Cl3	90.64 (4)
S4-Au2-S3	177.24 (4)	Cl5-Au4-Cl6	89.61 (4)
C1′-P3-S3	106.48 (15)	Cl5-Au4-Cl7	179.44 (4)
C4' - P4 - S4	106.46 (13)	Cl6-Au4-Cl7	90.15 (4)
P3-S3-Au2	103.22 (5)	Cl5-Au4-Cl8	90.54 (4)
P4-S4-Au2	106.42 (5)	Cl6-Au4-Cl8	179.58 (4)
Cl4-Au3-Cl1	89.76 (4)	Cl7-Au4-Cl8	89.70 (4)
C1-P1-S1-Au1	176.99 (13)	C1′-P3-S3-Au2	-179.04 (18)
C4-P2-S2-Au1	166.51 (12)	C4'-P4-S4-Au2	-162.56 (13)

Table 4

Selected geometric parameters (Å, $^{\circ}$) for 3.

Au1-S1 P1-S1	2.2889 (5) 2.0374 (6)	Au2-Cl1 Au2-Cl2	2.2802 (5) 2.2836 (5)
$S1-Au1-S1^{i}$ C1-P1-S1 P1-S1-Au1 $C11^{ii}-Au2-C11$	180.0 101.57 (6) 107.87 (2) 180.0	$\begin{array}{c} Cl1 - Au2 - Cl2 \\ Cl1 - Au2 - Cl2^{ii} \\ Cl2 - Au2 - Cl2^{ii} \end{array}$	89.664 (18) 90.336 (18) 180.0
C1-P1-S1-Au1	-172.57 (6)		

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 2.

Figure 3

The structure of compound **3** in the crystal. Only the asymmetric unit is labelled. The contact $S1 \cdots Cl1$ is indicated by a dashed bond.

2.4196 (10)

Table 5Selected geomet	tric parameters (Å	, °) for 4a .	
Au1-S1	2.291 (2)	Au2-Br2	
Au1-S2	2.299 (2)	Au2-Br1	

Au1-S2	2.299 (2)	Au2-Br1	2.4421 (11)
S1-P1	2.028 (3)	Au3-Br3	2.4238 (9)
S2-P2	2.028 (3)	Au3-Br4	2.4294 (8)
S1-Au1-S2	178.28 (8)	Br2-Au2-Br1 ¹	89.52 (4)
P1-S1-Au1	102.39 (11)	Br1-Au2-Br1 ⁱ	180.0
P2-S2-Au1	103.89 (11)	Br3 ⁱⁱ -Au3-Br3	180.0
C1-P1-S1	106.3 (3)	Br3-Au3-Br4	90.52 (3)
C4 - P2 - S2	105.9 (3)	Br3-Au3-Br4 ⁱⁱ	89.48 (3)
Br2 ⁱ -Au2-Br2	180.0	Br4-Au3-Br4 ⁱⁱ	180.0
Br2-Au2-Br1	90.48 (4)		
Au1-S1-P1-C1	175.0 (4)	Au1-S2-P2-C4	-164.7 (3)

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 2, -y + 1, -z + 1.

phosphorus atom. This position is always occupied by a *tert*-butyl group, if present.

The asymmetric unit of compound 1, $[({}^{i}Pr_{3}PS)_{2}Au][AuCl_{4}]$, contains two half cations, with the gold(I) atoms on twofold rotation axes 0.25, y, 0.75 (Au1) or 0.25, y, 0.25 (Au2) and two half anions, with the gold(III) atoms on inversion centres 0.5, 0.5, 0.5 (Au3) and 0, 0, 0.5 (Au4); the complete cations and anions are shown in Fig. 1. The three Au-S-P-C torsion angles of the first cation are all roughly 10° larger than those of the second cation. The asymmetric unit of compound 2, $[({}^{t}Bu^{t}Pr_{2}PS)_{2}Au][AuCl_{4}]$, contains two cations and two anions with no imposed symmetry (Fig. 2); the carbon atoms of the second cation are designated with primes. The cations are quite similar, with an r.m.s. deviation of all non-H atoms of 0.193 Å, or 0.117 Å if the carbon atoms are not fitted (Fig. 8); the numbering of the second cation was chosen carefully to give the best fit for all corresponding atom pairs such as C21/ C21'. The asymmetric unit of compound 3, $[(^{t}Bu_{3}PS)_{2}Au]$ -[AuCl₄], contains half a cation, with the gold(I) atom (Au1) on

Figure 4

The structure of compound 4a in the crystal. Only the asymmetric unit is labelled. The contacts S1...Br2 and Br1...Br4 are indicated by dashed bonds.

Table 6 Selected geometric parameters (Å, °) for 4b.

Au1-Se1	2.4017 (4)	Au2-Br2	2.4254 (4)
Au1-Se2	2.4057 (4)	Au2-Br1	2.4337 (4)
Se1-P1	2.1929 (10)	Au3-Br3	2.4285 (4)
Se2-P2	2.1864 (10)	Au3-Br4	2.4320 (4)
Se1-Au1-Se2	176.734 (16)	Br2-Au2-Br1 ⁱ	89.419 (15)
P1-Se1-Au1	98.27 (3)	Br1-Au2-Br1 ⁱ	180.0
P2-Se2-Au1	100.69 (3)	Br3 ⁱⁱ -Au3-Br3	180.0
C1-P1-Se1	106.65 (14)	Br3-Au3-Br4 ⁱⁱ	89.190 (14)
C4-P2-Se2	106.60 (13)	Br3-Au3-Br4	90.809 (14)
Br2-Au2-Br2 ⁱ	180.0	Br4 ⁱⁱ -Au3-Br4	180.0
Br2-Au2-Br1	90.581 (15)		
Au1-Se1-P1-C1	173.20 (15)	Au1-Se2-P2-C4	-163.72 (13)

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 2, -y + 1, -z + 1.

the inversion centre 0.5, 0, 0.5 and half an anion, with the gold(III) atom (Au2) on the inversion centre 0.5, 0.5, 1; the complete cation and anion are shown in Fig. 3. The asymmetric unit of compound 4a, $[({}^{t}Bu^{t}Pr_{2}PS)_{2}Au][AuBr_{4}]$, contains a complete cation on a general position and two half anions with the gold(III) atoms on inversion centres (Au2 on 0.5, 0, 0.5 and Au3 on 1, 0.5, 0.5); the cation and both complete anions are shown in Fig. 4. Compound **4b**, $[({}^{t}Bu^{t}Pr_{2}PSe)_{2}Au]$ -[AuBr₄] (Fig. 5), is isotypic with **4a**. The asymmetric unit of compound 5a, $[({}^{t}Bu_{3}PS)_{2}Au][AuBr_{4}]$, contains half a cation, with the gold(I) atom Au1 on the inversion centre 0.5, 0.5, 0.5, and half an anion, with the gold(III) atom Au2 on the inversion centre 0.5, 1, 1; Fig. 6 shows a complete cation and anion. Compound **5b**, $[({}^{t}Bu_{3}PSe)_{2}Au][AuBr_{4}]$ (Fig. 7), is effectively isotypic with 5a, although there are some appreciable differences in unit cell parameters and in some aspects of the structures (e.g. P - E - Au and $E \cdot \cdot \cdot Br - Au$ angles, see below).

Br2ⁱⁱ-Au2-Br2

2.4245 (2) 2.4260 (2)

180.0

Table 7 Selected geometric parameters (Å, °) for 5a.				
Au1-S1	2.2891 (5)	Au2-Br1	2.4245 (2	
P1-S1	2.0384 (7)	Au2-Br2	2.4260 (2	
$S1^i$ -Au1-S1	180.0	$Br1-Au2-Br2^{ii}$	89.687 (9)	
C1-P1-S1	101.58(7)	Br1-Au2-Br2	90.312 (9)	

Br1-Au2-Br1"	180.0	
C1 - P1 - S1 - Au1	-171.01 (7)	

P1-S1-Au1

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 2.

107.15 (3)

The crowding effect of the bulky alkyl groups is seen in the short intramolecular $H \cdots Au$ and $H \cdots E$ contacts, such as $H32C \cdots Au1 2.70 \text{ Å}$ and $H12B \cdots S1 2.75 \text{ Å}$ for compound 1. The angles $C-H\cdots Au$ and (especially) $C-H\cdots E$ are necessarily narrow. These contacts are included for convenience in Tables 10-16. The ligands at the Au^I atoms are antiperiplanar to each other across the S...S vectors, with $P-S \cdots S-P$ torsion angles of exactly 180° (by symmetry) for 3, 5a and 5b. Other values are 150.01 (8) (the largest deviation from 180°) and $173.16(8)^{\circ}$ for **1**, 169.90(8) and $-163.51(9)^{\circ}$ for **2**, 169.04 (14)° for **4a** and 170.12 (4)° for **4b**.

The ten P-S bond lengths lie in the narrow range 2.0263 (13)-2.0384 (7), av. 2.0322 Å; the three P-Se bond lengths are 2.1864 (10)-2.2009 (6) Å, av. 2.1933 Å. These are closely similar to the averages of 2.0368 and 2.1938 Å observed for the gold(I) halide derivatives (Upmann et al., 2024a). The ten S-Au bond lengths are 2.2869 (9)-2.299 (2) Å, av. 2.2915 Å, and the three Se – Au bond lengths are 2.4017 (4)–2.4057 (4) Å, av. 2.4037 Å. These compare best to the corresponding bond lengths trans to iodine, 2.2959 Å (one value only) for E = S and 2.4017 Å (av. of three values) for E =Se in the complexes with gold(I) halides.

Figure 5

The structure of compound 4b in the crystal. Only the asymmetric unit is labelled. The contacts Se1...Br2 and Br1...Br4 are indicated by dashed bonds.

Br1 Br2

Figure 6

The structure of compound 5a in the crystal. Only the asymmetric unit is labelled. The contact S1...Br1 is indicated by a dashed bond.

\u2

Table 8 Selected geometric parameters (Å, °) for **5b**. Au1-Se1 2.4036 (3) Au2-Br1 2.4265 (3) 2.4295 (3) P1-Se1 2.2009 (6) Au2-Br2 C1-P1-Se1 102.74 (8) Br1-Au2-Br2 90.899 (10) 89.102 (10) P1-Se1-Au1 101.806 (19) Br1-Au2-Br2i Br1ⁱ-Au2-Br1 180.0 180.0 Br2-Au2-Br2ⁱ -169.62 (8) C1-P1-Se1-Au1

Symmetry code: (i) -x + 1, -y + 2, -z + 2.

The P-S-Au angles are 101.88 (5)-107.87 (2)°, av. 104.05°, but the three largest values (for **3**, **5a** and one of four values for **2**) might be considered outliers. One possible explanation for this might be the steric effects of ${}^{t}Bu_{3}P$ groups, and another might be the additional short S...X contacts (see next section), but neither of these possible causes applies to **2**, nor is **5b** affected in the same way despite being isotypic with **5a**. The P-Se-Au angles are 98.27 (3)-101.806 (19)°, av. 100.26°; corresponding average values for the gold(I) halide

The structure of compound **5b** in the crystal. Only the asymmetric unit is labelled. The contact $\text{Sel} \cdots \text{Brl}$ is indicated by a dashed bond.

Figure 8

Least-squares fit of the two independent cations of compound **2**. Cation 1 has the dotted bonds; cation 2 (inverted) is labelled.

 $F \dots X = A \Pi$

Geometric details (Å, °) of $E \cdots X$ contacts.	
Compound Contact $P - E \cdots X - Au E \cdots X$	$\mathbf{P} - E \cdots X$
-	

Compound		L A	1 1 1	<i>E M M</i>
1	none			
2	P3-S3···Cl2-Au3	3.6623 (15)	166.47 (15)	138.96 (4)
2^a	P1-S1···Cl4-Au3	3.8505 (15)	174.74 (5)	137.71 (4)
3	$P1-S1\cdots Cl1-Au1$	3.5617 (7)	157.52 (2)	165.36 (2)
4a	P1-S1···Br2-Au1	3.746 (3)	166.39 (13)	146.20 (5)
4b	P1-Se1···Br2-Au1	3.6251 (6)	173.35 (3)	140.09 (2)
5a	$P1-S1\cdots Br1-Au2$	3.5260 (6)	154.01 (3)	173.46 (1)
5b	$P1-Se1\cdots Br1-Au2$	3.6563 (4)	154.96 (2)	160.33 (1)

Note: (a) Operator for X-Au: -1 + x, y, z.

derivatives were somewhat larger, at 106.17 and 103.86°, respectively. The E-P-C angles tend to be narrower for the atoms C1/C4.

3. Supramolecular features

The exterior surface of the $[(R^1R^2R^3PE)_2Au]^+$ cations consists, to a considerable extent, of hydrogen atoms. In the absence of classical hydrogen-bond donors, the packing energy is thus likely to be determined by a large number of weakly attractive $C-H\cdots X$ hydrogen bonds or $H\cdots H$ van der Waals interactions rather than a small number of short contacts between heavier atoms, a principle that has been expounded convincingly by Dance (2003). Nonetheless, packing diagrams need to be as simple as possible to be readily interpreted. Accordingly, the following discussion attempts to show only the main features of the crystal packing, at the risk of oversimplification. Not all $H\cdots X$ hydrogen bonds are discussed, but are given in Tables 10–16 for completeness. Numerical details for contacts of the form $E\cdots X$ for all compounds are summarized in Table 9. In all packing diagrams, the atom

Figure 9

Packing diagram of compound 1 viewed perpendicular to the bc plane. Methyl groups are omitted for clarity. Dashed lines indicate the two short $H \cdots Cl$ contacts.

Table 10Hydrogen-bond geometry (Å, $^{\circ}$) for 1.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
C32−H32C···Au1	0.98	2.70	3.480 (5)	137
C62−H62C···Au2	0.98	2.92	3.641 (4)	131
$C12 - H12B \cdot \cdot \cdot S1$	0.98	2.75	3.180 (5)	107
$C42 - H42B \cdot \cdot \cdot S2$	0.98	2.74	3.240 (4)	112
$C21 - H21A \cdots Cl1^{iii}$	0.98	2.88	3.840 (5)	167
$C5-H5\cdots Cl1$	1.00	2.75	3.670 (4)	153
$C3-H3\cdots Cl2^v$	1.00	2.79	3.682 (4)	149
$C52-H52A\cdots Cl2$	0.98	2.81	3.770 (4)	167
$C32-H32B\cdots Cl3^{iv}$	0.98	2.94	3.649 (5)	130
$C4-H4\cdots Cl4^{vi}$	1.00	2.93	3.726 (4)	137
C6-H6···Au4	1.00	3.24	4.022 (4)	136

Symmetry codes: (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y, -z + 1; (v) x, y - 1, z; (vi) -x, -y + 1, -z + 1.

labels indicate the asymmetric unit; hydrogen atoms not involved in $H \cdots X$ contacts (and some methyl groups, see individual captions for details) have been omitted for clarity.

The strongest hydrogen-bond donors are likely to be the methine hydrogen atoms of the isopropyl groups. In compound **1**, the shortest such contacts are $H3\cdots Cl2(x, -1 + y, z) = 2.79$ Å and $H5\cdots Cl1 = 2.75$ Å. Even for these two contacts, the crystallographic symmetry of cations and anions leads to a complex three-dimensional packing. A section of this is shown in Fig. 9, but has the obvious fault that the second anion (centred on Au4) seems to exist in a packing vacuum. The inclusion of the longer contacts $H4\cdots Cl4(-x, 1 - y, 1 - z) = 2.93$ Å and $H6\cdots Au4 = 3.24$ Å provides further information (Fig. 10); the latter might be regarded as a borderline case of a C–H···Au hydrogen bond (Schmidbaur, 2019; Schmidbaur *et al.*, 2014).

For compound **2**, the methine hydrogen atoms again play an important role. Four $C-H\cdots Cl$ interactions (Table 11) combine to produce zigzag chains of residues parallel to the *c* axis (Fig. 11). The atom H6' also has a short contact to Au4 and may thus be part of a three-centre interaction. Additionally, the contact S3 \cdots Cl2, 3.6623 (15) Å, may be regarded as a significant interaction; it would qualify as a 'chalcogen

communications-

Table 11			
Hydrogen-bond geometry	(Å,	°) fo	or 2 .

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C32−H32 <i>C</i> ···Au1	0.98	2.73	3.538 (4)	140
$C32' - H32D \cdots Au2$	0.98	2.73	3.503 (5)	136
$C13-H13B\cdots S1$	0.98	2.62	3.220 (5)	120
$C43 - H43B \cdots S2$	0.98	2.75	3.219 (4)	110
$C43' - H43D \cdots S4$	0.98	2.73	3.219 (4)	112
$C13' - H13E \cdot \cdot \cdot S3$	0.98	2.75	3.227 (5)	111
$C52' - H52F \cdots Cl1$	0.98	2.82	3.733 (4)	155
$C5' - H5' \cdots Cl2$	1.00	2.87	3.839 (4)	163
$C3' - H3' \cdots Cl3^i$	1.00	2.88	3.585 (4)	128
C5−H5···Cl4 ⁱⁱ	1.00	2.79	3.713 (4)	154
$C62 - H62B \cdots Cl4^{ii}$	0.98	2.83	3.692 (4)	147
$C42-H42C\cdots Cl5^{i}$	0.98	2.91	3.754 (4)	145
$C11 - H11C \cdot \cdot \cdot C17^{iii}$	0.98	2.80	3.736 (5)	161
$C6' - H6' \cdots Cl7$	1.00	2.91	3.903 (4)	170
C6′−H6′···Au4	1.00	3.28	4.009 (4)	132
$C62 - H62A \cdots Cl8^{iv}$	0.98	2.93	3.853 (4)	157

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z; (iii) -x + 2, -y, -z + 1; (iv) x - 1, y, z - 1.

bond' (Aakeroy et al., 2019; Vogel et al., 2019), equivalent to the better known halogen bonds (see e.g. Metrangolo et al., 2008). For all the $E \cdots X$ contacts in this paper, the $P - E \cdots X$ angles are reasonably close to linear [range 154.01 (3)-174.74 (5)°], as would be expected for a chalcogen bond, where the positive hole at the donor atom E should lie in the extension of the P-E vector beyond the atom E. The $E \cdot \cdot \cdot X$ —Au angles are also roughly linear [range 140.09 (2)– 173.46 (1)°]. Initially, we subjectively judged the corresponding distance $S1 \cdots Cl4(-1 + x, y, z] = 3.8505 (15) \text{ Å to be}$ too long to be significant, and thus excluded it from the packing diagram. Closer inspection shows, however, that it plays an equivalent role to $S3 \cdot \cdot \cdot Cl2$, thereby linking the chains to form a layer structure parallel to the *ac* plane; this can be seen (implicitly) in Fig. 11. This shows the pitfalls in judging the importance of weak interactions based solely on interatomic distances. The contact H3'...Cl3 links the parent layer at $y \simeq 0.25$ with its inverted counterpart at $y \simeq 0.75$.

The *tert*-butyl derivative **3** contains only methyl hydrogens. The atom Cl1 is involved in the two shortest $H \cdots Cl$ contacts

Figure 10

Packing diagram of compound **1**; the view from Fig. 9 has been extended to include two significantly longer contacts (see text).

Packing diagram of compound **2** viewed perpendicular to the *ac* plane in the region $y \simeq 0.25$. Dashed lines indicate H···Cl or H···Au contacts (thin) or S···Cl contacts (thick).

Table 12			
Hydrogen-bond	geometry	(Å,	°) for 3 .

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C23-H23A···Au1	0.98	2.81	3.421 (2)	121
C33−H33C···Au1	0.98	2.69	3.5832 (19)	151
$C13-H13A\cdots S1$	0.98	2.66	3.164 (2)	112
$C32-H32A\cdots S1$	0.98	2.87	3.353 (2)	111
$C12-H12A\cdots Cl1^{iii}$	0.98	2.91	3.786 (2)	150
$C22-H22A\cdots Cl1^{iv}$	0.98	2.83	3.607 (2)	136
$C23-H23B\cdots Cl1^{i}$	0.98	2.94	3.782 (2)	145

Symmetry codes: (i) -x + 1, -y, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y, -z + 1.

Table 13

Hydrogen-bond geometry (Å, $^{\circ}$) for 4a.

$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C32−H32C···Au1	0.98	2.75	3.514 (11)	135
C13−H13C···S1	0.98	2.76	3.212 (11)	109
$C43 - H43B \cdot \cdot \cdot S2$	0.98	2.77	3.201 (9)	107
$C3-H3\cdots Br1^{iii}$	1.00	3.14	3.809 (9)	126
$C52-H52C\cdots Br1^{i}$	0.98	3.11	4.055 (9)	161
$C5-H5\cdots Br2$	1.00	3.05	3.997 (9)	158
$C62 - H62B \cdots Br2$	0.98	3.04	3.883 (12)	145
$C2-H2\cdots Br3^{iii}$	1.00	3.12	3.927 (9)	139
$C6-H6\cdots Br3^{iv}$	1.00	3.03	3.898 (8)	146
$C32-H32B\cdots Br3^{iii}$	0.98	3.11	4.023 (11)	156
$C42 - H42A \cdots Br3^{v}$	0.98	2.97	3.848 (10)	149
$C62 - H62C \cdot \cdot \cdot Br4^{iv}$	0.98	3.08	4.007 (10)	158

Symmetry codes: (i) -x + 1, -y, -z + 1; (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) -x + 1, -y + 1, -z + 1; (v) x - 1, y - 1, z.

and in the contact $S1 \cdots Cl1$. The combination of $S1 \cdots Cl1$ and the H22 $A \cdots Cl1$ interaction leads to a layer structure parallel to the *ac* plane (Fig. 12). Alternatively, the combination of $S1 \cdots Cl1$ and H12 $A \cdots Cl1$ leads to a layer structure parallel to the *bc* plane (not shown).

For the bromido derivatives, associations of the anions form a readily recognizable part of the packing patterns; we have presented several structures involving loosely connected $[AuX_4]^-$ networks in a previous paper (Döring & Jones, 2016).

For compound **4a**, there are no strikingly short contacts. An acceptable view of the packing as a layer parallel to the *ab* plane in the region $z \simeq 0.5$ can, however, be assembled as shown in Fig. 13, based on the heavy-atom distances Br1...Br4

Figure 12

Packing diagram of compound **3** viewed perpendicular to the *ac* plane in the region $y \simeq 0$. Dashed lines indicate H···Cl contacts (thin) or S···Cl contacts (thick).

communications-

Table 14Hydrogen-bond geometry (Å, °) for 4b.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C32−H32C···Au1	0.98	2.73	3.505 (4)	136
C13−H13C···Se1	0.98	2.80	3.305 (4)	113
C43−H43B···Se2	0.98	2.84	3.304 (4)	110
C3-H3···Br1 ⁱⁱⁱ	1.00	3.13	3.788 (4)	125
$C52-H52C\cdots Br1^{i}$	0.98	3.13	4.086 (4)	165
C5-H5···Br2	1.00	3.02	3.964 (4)	158
$C62 - H62B \cdots Br2$	0.98	3.04	3.802 (4)	136
C2−H2···Br3 ⁱⁱⁱ	1.00	3.20	3.990 (4)	137
C6−H6···Br3 ^{iv}	1.00	3.02	3.870 (4)	144
$C32 - H32B \cdots Br3^{iii}$	0.98	3.06	3.985 (4)	158
$C42 - H42A \cdots Br3^{v}$	0.98	3.03	3.897 (4)	148
$C62 - H62C \cdot \cdot \cdot Br4^{iv}$	0.98	3.10	4.018 (4)	158
Symmetry codes: (i)	-x + 1, -y	, -z + 1; (iii	i) $-x + 1, y - \frac{1}{2}$	$\frac{1}{2}, -z + \frac{1}{2};$ (iv)

-x + 1, -y + 1, -z + 1; (v) x - 1, y - 1, z.

Table 15

Hydrogen-bond geometry (Å, $^{\circ}$) for 5a.

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C33−H33C···Au1	0.98	2.69	3.567 (2)	150
C23−H23A···Au1	0.98	2.86	3.421 (2)	118
C22−H22C···Br1 ⁱⁱⁱ	0.98	2.88	3.756 (2)	150
$C12-H12A\cdots Br1^{iv}$	0.98	3.05	3.890 (2)	145
$C32-H32A\cdots S1$	0.98	2.86	3.338 (2)	111
$C23 - H23A \cdots S1$	0.98	2.98	3.456 (2)	111
$C13-H13A\cdots S1$	0.98	2.67	3.160 (2)	112

Symmetry codes: (iii) -x, -y + 1, -z + 1; (iv) -x + 1, -y + 2, -z + 1.

= 3.9737 (14) and S1...Br2 = 3.746 (3) Å. Contact angles are Au2-Br1...Br4 = 158.85 (4) and Au3-Br4...Br1 = 153.36 (4). The Br...Br contacts link the anions to form a chain parallel to [110], and the S...Br contacts link one set of anions to the cations. Two of the four borderline H...Br hydrogen bonds (from H5 and H6) are also involved in this layer. In the corresponding layer at $z \simeq 0$, the anion chains run parallel to [110]. The isotypic compound **4b** necessarily has the same general packing features. The Br1...Br4 distance is still very long at 4.0054 (6) Å, but the Se1...Br2 contact is shorter than S1...Br2 in **4a**. Interanionic contact angles are

Packing diagram of compound **4a**. The layer structure is parallel to the *ab* plane, but for clarity has been rotated significantly from the ideal view direction perpendicular to this plane. The region $z \simeq 0$ is shown. Methyl groups are omitted. Dashed lines indicate $H \cdots Br$ contacts (thin) or $Br \cdots Br$ and $S \cdots Br$ contacts (thick).

Table 16			
Hydrogen-bond geometry	(Å,	°) for 5b .	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C33−H33C···Au1	0.98	2.64	3.540 (3)	152
C23-H23A···Au1	0.98	2.86	3.449 (3)	120
$C22-H22C\cdots Br1^{ii}$	0.98	2.88	3.851 (3)	173
$C12-H12A\cdots Br1^{iii}$	0.98	3.02	3.793 (3)	137
C32-H32ASe1	0.98	2.95	3.442 (3)	112
$C23-H23A\cdots$ Se1	0.98	3.03	3.556 (3)	115
C13−H13A···Se1	0.98	2.70	3.263 (3)	117

Symmetry codes: (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y + 2, -z + 1.

 $Au2-Br1\cdots Br4 = 159.76(2)$ and $Au3-Br4\cdots Br1 = 153.43(2)$.

The packing of **5a** (Fig. 14) is similar to that of **4a**, but with chains of anions parallel to the *a* axis linked by the contact $Br2\cdots Br2(2 - x, 2 - y, 2 - z) = 3.7582$ (5) Å. The chains are crosslinked *via* the contacts $S1\cdots Br2$ and $H22C\cdots Br1(-x, 1 - y, 1 - z) = 2.88$ Å, the shortest $H\cdots Br$ contact, to form a layer structure parallel to the *ab* plane. The interanionic contact angle is $Au2-Br2\cdots Br2' = 160.34$ (1). The corresponding values for the isotypic compound **5b** are: $Br2\cdots Br2' = 3.7404$ (5), $H22C\cdots Br1' = 2.88$ Å and $Au2-Br2\cdots Br2' = 157.73$ (1). Despite the isotypy, the $E\cdots X$ -Au angles for **5a** and **5b** differ by more than 13° (Table 9).

4. Database survey

The search employed the routine ConQuest (Bruno *et al.*, 2002), part of version 2024.1.0 of the Cambridge Structural Database (CSD; Groom *et al.*, 2016).

Only four structures with a bis(phosphane chalcogenido) gold(I) cation were found in the Database, and all of these involved triphenylphosphane: bis(triphenylphosphane sulfido)gold(I) difluorophosphate (refcode RIVZUR; LeBlanc *et*

Figure 14

Packing diagram of compound **5a**. The layer structure is parallel to the *ab* plane, but for clarity is viewed approximately perpendicular to $[01\overline{1}]$. Dashed lines indicate H···Br contacts (thin) or Br···Br and S···Br contacts (thick).

al., 1997) and three structures from our own work, namely bis(triphenylphosphane selenido)gold(I) hexafluoridoantimonate (SOHCIB; Jones & Thöne, 1991), and the as yet unpublished (but deposited) structures bis(triphenylphosphane sulfido)gold(I) nitrate and bis(triphenylphosphane sulfido)gold(I) bis(methanesulfonyl)amide bis(methanesulfonyl)amine dichloromethane solvate (UREBOK and UREBUQ; Jones & Geissler, 2016*a*,*b*). The five Au–S bond lengths lie in the range 2.277 (2)–2.2963 (3), av. 2.2893 Å and the two Au–Se bond lengths are 2.390 (1) and 2.395 (1) Å, *cf.* the average values in this paper of Au–S = 2.2915 and Au–Se = 2.4037 Å.

5. Synthesis and crystallization

Compound 1: The gold(I) precursor ^{*i*}Pr₃PSAuCl (212 mg, 0.5 mmol) was dissolved in 10 ml of dichloromethane, and a dichloro(phenyl)- λ^3 -iodane solution of ('iodophenvl dichloride', PhICl₂; 344 mg, 1.25 mmol) was added dropwise. The solution initially turned red [presumably because of the formation of a gold(III) intermediate] but became yellow after 20 min stirring. The solvent was removed in vacuo and the residue redissolved in dichloromethane. The solution was overlayered with *n*-pentane and left to stand for 3 d in a refrigerator (276 K), after which vellow crystals had formed. ³¹P NMR: δ 78.86 ppm (s). Compounds **2** and **3** were synthesized from the appropriate gold(I) precursors in the same way as 1. Unfortunately, details were lost when my (PGJ) research group disbanded in 2018.

Compound **4a**: ${}^{i}Pr_{2}{}^{t}BuPSAuBr$ (327 mg, 0.677 mmol) was dissolved in 3 ml of dichloromethane and 6.7 ml of a stock bromine solution (0.1 *M* in dichloromethane) was added. After stirring, the solution was overlayered with *n*-pentane and stored in the refrigerator for 5 d. The red crystals thus obtained were suitable for X-ray diffraction analysis. Yield: 324 mg, 0.287 mmol, 85%. ${}^{31}P{}^{1}H{}$ -NMR (81.01 MHz, CDCl₃, 300 K): δ = 81.6 ppm (*s*). Elemental analysis [%]: calc.: C 21.33, H 4.12, S 5.69; found: C19.94, H 3.82, S 6.08.

Compound **4b**: ^{*i*}Pr₂^{*i*}BuPSeAuBr (369 mg, 0.696 mmol) was dissolved in 3 ml of dichloromethane and 6.9 ml of the stock bromine solution was added. After stirring, the solution was overlayered with *n*-pentane and stored in the refrigerator for 4 d. Since no formation of crystals or precipitation of the desired product was observed, the solvents were removed under reduced pressure and the red product was recrystallized from dichloromethane by overlayering with *n*-pentane. Yield: 316 mg, 0.259 mmol, 75%. ³¹P{¹H}-NMR: δ = 80.2 ppm (*s* with P–Se satellites, ¹J_{P-Se} = 528 Hz). Elemental analysis [%]: calc.: C 19.69, H 3.80; found: C18.14, H 3.45. Single crystals suitable for X-ray diffraction analysis were obtained from a solution in CDCl₃ overlayered with *n*-pentane.

Compound **5a**: ${}^{1}Bu_{3}PSAuBr$ (134 mg, 0.263 mmol) was dissolved in 3 ml of dichloromethane and 2.6 ml of the stock bromine solution was added. After stirring, the solution was overlayered with *n*-pentane and stored in the refrigerator for 7 d. Instead of the formation of crystals or precipitation of the desired product, an oily residue was obtained. The solvents

Table 17

Experimental details.

	1	2	3	4a
Crystal data				
Chemical formula	$[Au(C_9H_{21}PS)_2][AuCl_4]$	$[C_{20}H_{46}AuP_2S_2]$;AuCl ₄]	$[Au(C_{12}H_{27}PS)_2][AuCl_4]$	$[C_{20}H_{46}AuP_2S_2][AuBr_4]$
$M_{ m r}$	920.31	948.36	1004.46	1126.20
Crystal system, space group	Monoclinic, P2/n	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/c$
Temperature (K)	100	100	100	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	14.2552 (4), 9.0574 (2), 23.0043 (7)	11.7607 (3), 16.4174 (4), 17.2173 (4)	8.5541 (2), 9.1550 (3), 12.0421 (4)	13.7871 (4), 10.4042 (3), 22.7240 (6)
$lpha,eta,\gamma(^\circ)$	90, 96.703 (3), 90	79.931 (2), 76.467 (2), 78.015 (2)	107.427 (3), 97.511 (3), 102.841 (3)	90, 93.035 (3), 90
$V(Å^3)$	2949.89 (14)	3133.57 (14)	857.30 (5)	3255.05 (16)
Z	4	4	1	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	10.55	9.94	9.09	14.15
Crystal size (mm)	$0.2 \times 0.1 \times 0.01$	$0.2 \times 0.1 \times 0.03$	$0.2 \times 0.15 \times 0.15$	$0.25 \times 0.15 \times 0.02$
Data collection				
Diffractometer	Oxford Diffraction Xcalibur, Eos	Oxford Diffraction Xcalibur, Eos	Oxford Diffraction Xcalibur, Eos	Oxford Diffraction Xcalibur, Eos
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)
T_{\min}, T_{\max}	0.352, 1.000	0.439, 1.000	0.623, 1.000	0.179, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	79388, 8561, 6768	179513, 18142, 14554	166022, 5209, 4622	169756, 6651, 5373
R _{int}	0.067	0.062	0.043	0.086
θ values (°) (sin θ/λ) _{max} (Å ⁻¹)	$\theta_{\rm max} = 30.0, \theta_{\rm min} = 2.3$ 0.704	$\begin{array}{l} \theta_{\max}=30.0,\theta_{\min}=2.4\\ 0.704 \end{array}$	$\theta_{\rm max} = 31.1, \theta_{\rm min} = 2.4$ 0.726	$\theta_{\rm max} = 26.4, \theta_{\rm min} = 2.2$ 0.625
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.028, 0.049, 1.05	0.030, 0.055, 1.05	0.016, 0.038, 1.09	0.046, 0.112, 1.02
No. of reflections	8561	18142	5209	6651
No. of parameters	269	569	167	288
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.88, -1.42	1.76, -1.51	1.02, -1.38	4.29, -2.02
Extinction method	None	None	SHELXL2019/3 (Sheldrick,	None
			2015), $F_{\rm c}^* = kF_{\rm c}[1 + 0.001 \times F_{\rm c}^2 \lambda^3 / \sin(2\theta)]^{-1/4}$	
Extinction coefficient	-	-	0.00495 (18)	_

5a

Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å)

 $\begin{array}{l} \alpha, \beta, \gamma \ (^{\circ}) \\ V \ (\text{Å}^{3}) \\ Z \\ \text{Radiation type} \\ \mu \ (\text{mm}^{-1}) \\ \text{Crystal size (mm)} \end{array}$

Data collection Diffractometer Absorption correction

 $\begin{array}{l} T_{\min}, \ T_{\max} \\ \text{No. of measured, independent and} \\ \text{observed } [I > 2\sigma(I)] \text{ reflections} \\ R_{\text{int}} \\ \theta \text{ values } (^{\circ}) \\ (\sin \theta | \lambda)_{\max} (\text{\AA}^{-1}) \end{array}$

Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters
$$\begin{split} & [\mathrm{Au}(\mathrm{C_{10}H_{23}PSe})_2][\mathrm{AuBr_4}] \\ & 1220.00 \\ & \mathrm{Monoclinic}, P2_1/c \\ & 100 \\ & 13.7265 \ (3), 10.5615 \ (3), \\ & 22.7782 \ (5) \\ & 90, 94.096 \ (2), 90 \\ & 3293.78 \ (14) \\ & 4 \\ & \mathrm{Mo} \ K\alpha \\ & 16.07 \\ & 0.15 \ \times \ 0.10 \ \times \ 0.05 \end{split}$$

4b

Oxford Diffraction Xcalibur, Eos Multi-scan (*CrysAlis PRO*; Rigaku OD, 2015) 0.589, 1.000 106256, 9556, 7328 0.068 $\theta_{1} = 30.0, \theta_{2} = 2.1$

 $\theta_{\rm max} = 30.0, \, \theta_{\rm min} = 2.1$ 0.704

0.030, 0.049, 1.03 9556 288 $[Au(C_{12}H_{27}PS)_2][AuBr_4]$ 1182.30 Triclinic, $P\overline{1}$ 100 8.4858 (4), 9.3738 (4), 11.9910 (5) 105.533 (4), 97.476 (4), 99.318 (4) 891.63 (7) 1 Mo K α 12.92 0.12 × 0.12 × 0.08 Oxford Diffraction Xcalibur, Eos

Multi-scan (*CrysAlis PRO*; Rigaku OD, 2015) 0.765, 1.000 47038, 5273, 4754

0.035 $\theta_{\rm max} = 30.7, \, \theta_{\rm min} = 2.3$ 0.719

0.017, 0.033, 1.06 5273 167 [Au(C12H27PSe)2][AuBr4] 1276.10 Triclinic, $P\overline{1}$ 100 8.4403 (4), 9.2135 (4), 12.6496 (5) 106.172 (4), 101.100 (4), 97.485 (4) 909.28 (7) 1 Μο Κα 14.56 $0.12\,\times\,0.12\,\times\,0.04$ Oxford Diffraction Xcalibur, Eos Multi-scan (CrysAlis PRO; Rigaku OD, 2015) 0.468, 1.000 48315, 5398, 4704

0.039 $\theta_{\text{max}} = 30.9, \ \theta_{\text{min}} = 2.4$ 0.722

0.020, 0.036, 1.06 5398 166

5b

Table 17 (continued)

Table 17 (continued)			
	4b	5a	5b
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.57, -1.09	0.73, -0.71	0.83, -0.88
Extinction method	None	SHELXL2019/3 (Sheldrick, 2015), $F_c^* = kF_c[1 + 0.001 \times F_c^2 \lambda^3 / \sin(2\theta)]^{-1/4}$	None
Extinction coefficient	-	0.00106 (8)	-

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2019/3 (Sheldrick, 2015), XP (Bruker, 1998) and publcIF (Westrip, 2010).

were removed under reduced pressure, the product was redissolved in a very small amount of dichloromethane, and the product was precipitated by overlayering with *n*-pentane. No crystallization was observed after 4 d; the solvents were again removed under reduced pressure. A third crystallization attempt, from a solution in dichloromethane overlayered with *n*-pentane, was then successful; red crystals suitable for X-ray diffraction analysis were obtained. Yield: 91 mg, 0.077 mmol, 59%. ³¹P{¹H}-NMR: δ = 89.2 ppm (*s*). Elemental analysis [%]: calc.: C 24.38, H 4.60, S 5.42; found: C23.02, H 4.30, S 5.47.

Compound **5b**: ^tBu₃PSeAuBr (154 mg, 0.276 mmol) was dissolved in 3 ml of dichloromethane and 3.3 ml of the stock bromine solution was added. After stirring, the solution was overlayered with *n*-pentane and stored in the refrigerator for 7 d. An oily residue was obtained. The solvents were removed under reduced pressure, the product was redissolved in a very small amount of dichloromethane, and the product precipitated by overlayering with n-pentane. Red crystals suitable for X-ray diffraction analysis were obtained after several recrystallizations from dichloromethane solutions overlayered with *n*-pentane. Additional crystals were found in this sample and were identified as $[(^{t}Bu_{2}POSe)_{2}H]^{+}[AuBr_{4}]^{-}$ by X-ray diffraction (structure to be reported in Part 10 of this series). Yield: 68 mg, 0.053 mmol, 38% (but this includes the impurities). ³¹P{¹H}-NMR: δ = 87.0 ppm (s with P–Se satellites, ${}^{1}J_{P-Se} = 549$ Hz). Elemental analysis [%]: calc.: C 22.59, H 4.27; found: C19.71, H 3.74.

6. Refinement

Details of the measurements and refinements are given in Table 17. Methine hydrogen atoms were included at calculated positions and refined using a riding model with C–H 1.00 Å and $U_{\rm iso}({\rm H}) = 1.2 \times U_{\rm eq}({\rm C})$. Methyl groups were refined, using the command 'AFIX 137', as idealized rigid groups allowed to rotate (from a starting position determined from difference peaks) but not to tip, with C–H = 0.98 Å, H–C–H = 109.5° and $U_{\rm iso}({\rm H}) = 1.5 \times U_{\rm eq}({\rm C})$. This procedure is less reliable for heavy-atom structures, so that any postulated hydrogen bonds involving methyl hydrogen atoms should be interpreted with caution.

Special features: For compounds 3 and 5a, an extinction correction (Sheldrick, 2015) was applied. The data for 4a, measured using a thin and weakly diffracting crystal plate, are appreciably worse than for the other structures, with a maximum electron density peak of 4.2 e Å⁻³ at 0.95 Å from Br1. Residual absorption errors are thus a likely cause of the

large difference peak(s). However, the presence of the largest peak near a bromine rather than a gold atom means that some slight disorder of the anions cannot be ruled out; the components would have to be very close to each other. The data for the isotypic selenium derivative **4b** are of much better quality.

Acknowledgements

We thank the Open Access Publication Funds of the Technical University of Braunschweig for financial support.

References

- Aakeroy, C. B., Bryce, D. L., Desiraju, G. R., Frontera, A., Legon, A. C., Nicotra, F., Rissanen, K., Scheiner, S., Terraneo, G., Metrangolo, P. & Resnati, G. (2019). *Pure Appl. Chem.* **91**, 1889– 1892.
- Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389– 397.
- Dance, I. (2003). New J. Chem. 27, 22-27.
- Döring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930–936.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.
- Jones, P. G. & Geissler, N. (2016a). Experimental Crystal Structure Determination (refcode UREBOK, CCDC 1489550). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1m000n.
- Jones, P. G. & Geissler, N. (2016b). Experimental Crystal Structure Determination (refcode UREBUQ, CCDC 1489551). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1m001p.
- Jones, P. G. & Thöne, C. (1991). Inorg. Chim. Acta, 181, 291-294.
- LeBlanc, D. J., Britten, J. F. & Lock, C. J. L. (1997). Acta Cryst. C53, 1204–1206.
- Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). *Angew. Chem. Int. Ed.* **47**, 6114–6127.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Schmidbaur, H. (2019). Angew. Chem. Int. Ed. 58, 5806-5809.
- Schmidbaur, H., Raubenheimer, H. G. & Dobrańska, L. (2014). *Chem. Soc. Rev.* 43, 345–380.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Upmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024*a*). *Acta Cryst.* E80, 34–49.
- Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024b). Acta Cryst. E80, 355–369.
- Upmann, D., Bockfeld, D., Jones, P. G. & Târcoveanu, E. (2024c). Acta Cryst. E80, 506–521.
- Vogel, L., Wonner, P. & Huber, S. M. (2019). Angew. Chem. Int. Ed. 58, 1880–1891.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2024). E80, 1087-1096 [https://doi.org/10.1107/S2056989024009095]

Crystal structures of seven mixed-valence gold compounds of the form $[(R^1R^2R^3PE)_2Au^l]^+[Au^{III}X_4]^-$ (*R* = *tert*-butyl or isopropyl, *E* = S or Se, and *X* = Cl or Br)

Daniel Upmann, Dirk Bockfeld, Peter G. Jones and Eliza Târcoveanu

Computing details

Bis[tris(propan-2-yl)- λ^5 -phosphanethione- κ S]gold(I) tetrachloridoaurate(III) (1)

Crystal data

[Au(C₉H₂₁PS)₂][AuCl₄] $M_r = 920.31$ Monoclinic, P2/n a = 14.2552 (4) Å b = 9.0574 (2) Å c = 23.0043 (7) Å $\beta = 96.703$ (3)° V = 2949.89 (14) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur, Eos	
diffractometer	
Radiation source: fine-focus sealed tube	
Detector resolution: 16.1419 pixels mm ⁻¹	
ω scans	
Absorption correction: multi-scan	
(CrysAlisPro; Rigaku OD, 2015)	
$T_{\min} = 0.352, \ T_{\max} = 1.000$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.049$ S = 1.058561 reflections 269 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1752 $D_x = 2.072 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 13693 reflections $\theta = 2.2-30.9^{\circ}$ $\mu = 10.55 \text{ mm}^{-1}$ T = 100 KPlate, yellow $0.2 \times 0.1 \times 0.01 \text{ mm}$

79388 measured reflections 8561 independent reflections 6768 reflections with $I > 2\sigma(I)$ $R_{int} = 0.067$ $\theta_{max} = 30.0^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -20 \rightarrow 19$ $k = -12 \rightarrow 12$ $l = -32 \rightarrow 32$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0115P)^2 + 3.8854P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.88 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -1.42 \text{ e} \text{ Å}^{-3}$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Aul	0.250000	0.16205 (2)	0.750000	0.01848 (5)
P1	0.40748 (7)	0.10509 (10)	0.65390 (4)	0.0155 (2)
S1	0.40795 (7)	0.16199 (11)	0.73960 (4)	0.0205 (2)
C1	0.5290 (3)	0.1275 (5)	0.6355 (2)	0.0308 (10)
H1	0.532119	0.228422	0.618203	0.037*
C2	0.3309 (3)	0.2305 (5)	0.60681 (19)	0.0316 (10)
H2	0.264765	0.205070	0.613560	0.038*
C3	0.3638 (3)	-0.0800 (4)	0.63756 (17)	0.0231 (9)
Н3	0.375877	-0.102080	0.596482	0.028*
C11	0.5527 (3)	0.0174 (5)	0.58739 (19)	0.0306 (10)
H11A	0.613911	0.043213	0.574737	0.046*
H11B	0.503597	0.022832	0.553879	0.046*
H11C	0.555460	-0.083109	0.603246	0.046*
C12	0.6032 (3)	0.1233 (6)	0.6871 (2)	0.0399 (12)
H12A	0.602198	0.026748	0.706203	0.060*
H12B	0.590623	0.200846	0.714857	0.060*
H12C	0.665336	0.139608	0.673958	0.060*
C21	0.3437 (3)	0.3888 (5)	0.6232 (2)	0.0361 (12)
H21A	0.408757	0.418712	0.619453	0.054*
H21B	0.330692	0.402695	0.663722	0.054*
H21C	0.299932	0.449242	0.597113	0.054*
C22	0.3374 (3)	0.1980 (5)	0.54151 (17)	0.0290 (10)
H22A	0.292393	0.260521	0.517277	0.044*
H22B	0.322461	0.093894	0.533345	0.044*
H22C	0.401610	0.218923	0.532475	0.044*
C31	0.4205 (4)	-0.1933 (5)	0.67700 (19)	0.0393 (12)
H31A	0.410246	-0.176105	0.717843	0.059*
H31B	0.487841	-0.182985	0.672941	0.059*
H31C	0.399513	-0.293202	0.665392	0.059*
C32	0.2585 (3)	-0.0991 (5)	0.6398 (2)	0.0382 (12)
H32A	0.240526	-0.201437	0.630085	0.057*
H32B	0.223674	-0.032412	0.611456	0.057*
H32C	0.243262	-0.075910	0.679211	0.057*
Au2	0.250000	0.42020 (2)	0.250000	0.01671 (5)
P2	0.08159 (7)	0.41223 (10)	0.34215 (4)	0.01334 (18)
S2	0.08998 (7)	0.42528 (11)	0.25477 (4)	0.01859 (19)
C4	-0.0376 (3)	0.4736 (4)	0.35505 (16)	0.0171 (8)
H4	-0.033456	0.583258	0.359869	0.020*
C5	0.1682 (3)	0.5331 (4)	0.38310 (16)	0.0172 (8)
Н5	0.231986	0.495079	0.376483	0.021*
C6	0.1028 (3)	0.2246 (4)	0.37055 (16)	0.0182 (8)
Н6	0.090265	0.225372	0.412414	0.022*
C41	-0.0681 (3)	0.4139 (4)	0.41232 (17)	0.0214 (8)
H41A	-0.126748	0.462489	0.420171	0.032*
H41B	-0.018520	0.433737	0.444578	0.032*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H41C	-0.078608	0.307132	0.408812	0.032*
C42	-0.1140 (3)	0.4461 (4)	0.30340 (17)	0.0215 (8)
H42A	-0.122633	0.339554	0.297532	0.032*
H42B	-0.094417	0.490538	0.267886	0.032*
H42C	-0.173578	0.490530	0.311818	0.032*
C51	0.1621 (3)	0.6919 (4)	0.35998 (18)	0.0257 (9)
H51A	0.100251	0.733540	0.365331	0.038*
H51B	0.170246	0.692107	0.318262	0.038*
H51C	0.211915	0.751577	0.381555	0.038*
C52	0.1636 (3)	0.5282 (4)	0.44935 (16)	0.0201 (8)
H52A	0.218437	0.579700	0.469577	0.030*
H52B	0.163846	0.425200	0.462415	0.030*
H52C	0.105526	0.576554	0.458390	0.030*
C61	0.0345 (3)	0.1131 (4)	0.33827 (18)	0.0224 (9)
H61A	0.045051	0.109188	0.296955	0.034*
H61B	-0.030649	0.143660	0.341327	0.034*
H61C	0.045569	0.015228	0.355907	0.034*
C62	0.2058 (3)	0.1760 (4)	0.36953 (19)	0.0273 (9)
H62A	0.214190	0.076285	0.385846	0.041*
H62B	0.247746	0.244578	0.393013	0.041*
H62C	0.221056	0.176091	0.329094	0.041*
Au3	0.500000	0.500000	0.500000	0.01729 (5)
C11	0.42083 (7)	0.44491 (11)	0.41040 (4)	0.0263 (2)
C12	0.39843 (7)	0.69109 (11)	0.50949 (5)	0.0276 (2)
Au4	0.000000	0.000000	0.500000	0.01674 (5)
C13	-0.14756 (7)	0.08430 (11)	0.51132 (5)	0.0264 (2)
Cl4	0.06567 (7)	0.19959 (11)	0.55010 (5)	0.0282 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Au1	0.01698 (11)	0.02131 (11)	0.01830 (11)	0.000	0.00687 (8)	0.000
P1	0.0137 (5)	0.0176 (5)	0.0158 (5)	-0.0032 (4)	0.0039 (4)	0.0001 (4)
S 1	0.0168 (5)	0.0270 (5)	0.0183 (5)	-0.0012 (4)	0.0044 (4)	-0.0043 (4)
C1	0.024 (2)	0.037 (3)	0.033 (3)	-0.0023 (18)	0.008 (2)	-0.0043 (19)
C2	0.028 (2)	0.031 (2)	0.035 (3)	0.0010 (19)	0.003 (2)	0.010(2)
C3	0.031 (2)	0.020 (2)	0.018 (2)	-0.0065 (18)	0.0019 (17)	-0.0022 (17)
C11	0.020 (2)	0.044 (3)	0.029 (2)	0.0002 (19)	0.0101 (18)	-0.011 (2)
C12	0.018 (2)	0.065 (3)	0.036 (3)	0.001 (2)	0.003 (2)	-0.011 (2)
C21	0.037 (3)	0.032 (2)	0.040 (3)	0.017 (2)	0.010 (2)	0.012 (2)
C22	0.025 (2)	0.035 (2)	0.025 (2)	-0.0068 (19)	-0.0020 (18)	0.0120 (19)
C31	0.071 (4)	0.019 (2)	0.028 (3)	0.005 (2)	0.007 (2)	0.0081 (19)
C32	0.039 (3)	0.047 (3)	0.029 (3)	-0.027(2)	0.005 (2)	-0.005 (2)
Au2	0.01542 (11)	0.02050 (10)	0.01564 (11)	0.000	0.00788 (8)	0.000
P2	0.0125 (5)	0.0151 (4)	0.0130 (5)	-0.0004(4)	0.0039 (4)	-0.0005 (4)
S2	0.0157 (5)	0.0266 (5)	0.0143 (5)	-0.0014 (4)	0.0051 (4)	0.0008 (4)
C4	0.0147 (19)	0.0197 (19)	0.018 (2)	0.0010 (14)	0.0084 (15)	-0.0035 (15)
C5	0.0127 (19)	0.0198 (19)	0.019 (2)	-0.0028 (14)	0.0022 (15)	-0.0022 (14)

C6	0.019 (2)	0.0180 (19)	0.018 (2)	0.0008 (15)	0.0025 (15)	0.0017 (15)
C41	0.015 (2)	0.030 (2)	0.020(2)	-0.0040 (17)	0.0068 (16)	-0.0021 (17)
C42	0.0113 (19)	0.029 (2)	0.025 (2)	0.0030 (15)	0.0047 (16)	0.0020 (17)
C51	0.031 (2)	0.019 (2)	0.028 (2)	-0.0097 (17)	0.0075 (18)	-0.0045 (17)
C52	0.021 (2)	0.022 (2)	0.017 (2)	-0.0046 (15)	-0.0008 (16)	0.0006 (15)
C61	0.026 (2)	0.0153 (19)	0.025 (2)	-0.0034 (15)	0.0019 (18)	-0.0020 (15)
C62	0.023 (2)	0.022 (2)	0.037 (3)	0.0063 (17)	0.0039 (18)	0.0067 (18)
Au3	0.01436 (10)	0.01801 (10)	0.01919 (11)	-0.00544 (8)	0.00067 (8)	0.00143 (9)
Cl1	0.0208 (5)	0.0341 (5)	0.0228 (5)	-0.0042 (4)	-0.0026 (4)	-0.0027 (4)
Cl2	0.0228 (5)	0.0242 (5)	0.0349 (6)	0.0010 (4)	-0.0006 (4)	-0.0031 (4)
Au4	0.02179 (11)	0.01332 (9)	0.01512 (10)	-0.00296 (8)	0.00222 (8)	-0.00090 (8)
C13	0.0234 (5)	0.0247 (5)	0.0311 (6)	-0.0012 (4)	0.0033 (4)	-0.0080 (4)
Cl4	0.0264 (6)	0.0216 (5)	0.0362 (6)	-0.0042 (4)	0.0016 (4)	-0.0121 (4)

Geometric parameters (Å, °)

Au1—S1	2.2918 (10)	P2—C4	1.844 (4)
Au1—S1 ⁱ	2.2919 (10)	P2—S2	2.0310 (13)
P1—C3	1.812 (4)	C4—C41	1.534 (5)
P1—C2	1.838 (4)	C4—C42	1.536 (5)
P1—C1	1.842 (4)	C4—H4	1.0000
P1—S1	2.0369 (14)	C5—C51	1.532 (5)
C1—C12	1.494 (6)	C5—C52	1.534 (5)
C1—C11	1.556 (6)	С5—Н5	1.0000
C1—H1	1.0000	C6—C61	1.533 (5)
C2—C21	1.488 (6)	C6—C62	1.534 (5)
C2—C22	1.544 (6)	С6—Н6	1.0000
С2—Н2	1.0000	C41—H41A	0.9800
C3—C32	1.519 (6)	C41—H41B	0.9800
C3—C31	1.535 (6)	C41—H41C	0.9800
С3—Н3	1.0000	C42—H42A	0.9800
C11—H11A	0.9800	C42—H42B	0.9800
C11—H11B	0.9800	C42—H42C	0.9800
C11—H11C	0.9800	C51—H51A	0.9800
C12—H12A	0.9800	C51—H51B	0.9800
C12—H12B	0.9800	C51—H51C	0.9800
C12—H12C	0.9800	C52—H52A	0.9800
C21—H21A	0.9800	C52—H52B	0.9800
C21—H21B	0.9800	C52—H52C	0.9800
C21—H21C	0.9800	C61—H61A	0.9800
C22—H22A	0.9800	C61—H61B	0.9800
C22—H22B	0.9800	C61—H61C	0.9800
C22—H22C	0.9800	C62—H62A	0.9800
C31—H31A	0.9800	C62—H62B	0.9800
C31—H31B	0.9800	C62—H62C	0.9800
C31—H31C	0.9800	Au3—Cl2	2.2833 (10)
C32—H32A	0.9800	Au3—Cl2 ⁱⁱⁱ	2.2833 (10)
C32—H32B	0.9800	Au3—Cl1	2.2865 (10)

С32—Н32С	0.9800	Au3—Cl1 ⁱⁱⁱ	2.2865 (10)
Au2—S2 ⁱⁱ	2.2970 (9)	Au4—Cl3 ^{iv}	2.2811 (10)
Au2—S2	2.2970 (9)	Au4—C13	2.2811 (10)
P2—C5	1.828 (4)	Au4—Cl4 ^{iv}	2.2849 (9)
Р2—С6	1.833 (4)	Au4—Cl4	2.2849 (9)
S1—Au1—S1 ⁱ	179.97 (5)	C4—P2—S2	107.67 (13)
C3—P1—C2	106.5 (2)	P2—S2—Au2	102.69 (5)
C3—P1—C1	111.3 (2)	C41—C4—C42	111.1 (3)
C2—P1—C1	107.8 (2)	C41—C4—P2	113.0 (3)
C3—P1—S1	113.40 (14)	C42—C4—P2	114.2 (2)
C2—P1—S1	110.41 (15)	C41—C4—H4	105.9
C1—P1—S1	107.31 (15)	C42—C4—H4	105.9
P1—S1—Au1	102.05 (5)	P2—C4—H4	105.9
C12—C1—C11	110.9 (4)	C51—C5—C52	111.4 (3)
C12—C1—P1	114.3 (3)	C51—C5—P2	112.1 (3)
C11—C1—P1	112.4 (3)	C52—C5—P2	112.9 (3)
C12—C1—H1	106.2	C51—C5—H5	106.7
C11—C1—H1	106.2	С52—С5—Н5	106.7
P1—C1—H1	106.2	Р2—С5—Н5	106.7
C21—C2—C22	114.2 (4)	C61—C6—C62	111.0 (3)
C21—C2—P1	113.6 (3)	C61—C6—P2	111.6 (3)
C22—C2—P1	110.9 (3)	C62—C6—P2	112.3 (3)
C21—C2—H2	105.8	С61—С6—Н6	107.2
С22—С2—Н2	105.8	С62—С6—Н6	107.2
P1—C2—H2	105.8	Р2—С6—Н6	107.2
C32—C3—C31	111.0 (4)	C4—C41—H41A	109.5
C32—C3—P1	114.5 (3)	C4—C41—H41B	109.5
C31—C3—P1	110.6 (3)	H41A—C41—H41B	109.5
С32—С3—Н3	106.8	C4—C41—H41C	109.5
С31—С3—Н3	106.8	H41A—C41—H41C	109.5
P1—C3—H3	106.8	H41B—C41—H41C	109.5
C1	109.5	C4—C42—H42A	109.5
C1	109.5	C4—C42—H42B	109.5
H11A—C11—H11B	109.5	H42A—C42—H42B	109.5
C1—C11—H11C	109.5	C4—C42—H42C	109.5
H11A—C11—H11C	109.5	H42A—C42—H42C	109.5
H11B—C11—H11C	109.5	H42B—C42—H42C	109.5
C1-C12-H12A	109.5	C5C51H51A	109.5
C1-C12-H12B	109.5	C5-C51-H51B	109.5
H12A—C12—H12B	109.5	H51A—C51—H51B	109.5
C1-C12-H12C	109.5	C5—C51—H51C	109.5
H12A—C12—H12C	109.5	H51A—C51—H51C	109.5
H12B-C12-H12C	109.5	H51B—C51—H51C	109.5
C2-C21-H21A	109.5	C5—C52—H52A	109.5
C2-C21-H21B	109.5	C5—C52—H52B	109.5
H21A—C21—H21B	109.5	H52A—C52—H52B	109.5
C2—C21—H21C	109.5	C5—C52—H52C	109.5

H21A—C21—H21C	109.5	H52A—C52—H52C	109.5
H21B—C21—H21C	109.5	H52B—C52—H52C	109.5
C2—C22—H22A	109.5	C6—C61—H61A	109.5
C2—C22—H22B	109.5	C6—C61—H61B	109.5
H22A—C22—H22B	109.5	H61A—C61—H61B	109.5
C2—C22—H22C	109.5	C6—C61—H61C	109.5
H22A—C22—H22C	109.5	H61A—C61—H61C	109.5
H22B—C22—H22C	109.5	H61B—C61—H61C	109.5
C3—C31—H31A	109.5	C6—C62—H62A	109.5
C3—C31—H31B	109.5	C6—C62—H62B	109.5
H31A—C31—H31B	109.5	H62A—C62—H62B	109.5
C3—C31—H31C	109.5	C6—C62—H62C	109.5
H31A—C31—H31C	109.5	H62A—C62—H62C	109.5
H31B—C31—H31C	109.5	H62B—C62—H62C	109.5
С3—С32—Н32А	109.5	Cl2—Au3—Cl2 ⁱⁱⁱ	180.0
C3—C32—H32B	109.5	Cl2—Au3—Cl1	89.99 (4)
H32A—C32—H32B	109.5	Cl2 ⁱⁱⁱ —Au3—Cl1	90.01 (4)
С3—С32—Н32С	109.5	Cl2—Au3—Cl1 ⁱⁱⁱ	90.01 (4)
H32A—C32—H32C	109.5	Cl2 ⁱⁱⁱ —Au3—Cl1 ⁱⁱⁱ	89.99 (4)
H32B—C32—H32C	109.5	Cl1—Au3—Cl1 ⁱⁱⁱ	180.0
S2 ⁱⁱ —Au2—S2	177.70 (5)	Cl3 ^{iv} —Au4—Cl3	180.0
C5—P2—C6	107.35 (17)	Cl3 ^{iv} —Au4—Cl4 ^{iv}	90.37 (4)
C5—P2—C4	108.43 (17)	Cl3—Au4—Cl4 ^{iv}	89.63 (4)
C6—P2—C4	109.83 (17)	Cl3 ^{iv} —Au4—Cl4	89.63 (4)
C5—P2—S2	111.16 (13)	Cl3—Au4—Cl4	90.37 (4)
C6—P2—S2	112.35 (13)	Cl4 ^{iv} —Au4—Cl4	180.0
C3—P1—S1—Au1	-65.05 (16)	C5—P2—S2—Au2	43.70 (14)
C2—P1—S1—Au1	54.33 (16)	C6—P2—S2—Au2	-76.62 (14)
C1—P1—S1—Au1	171.60 (15)	C4—P2—S2—Au2	162.32 (12)
C3—P1—C1—C12	-102.6 (4)	C5—P2—C4—C41	-82.6 (3)
C2—P1—C1—C12	141.0 (3)	C6—P2—C4—C41	34.4 (3)
S1—P1—C1—C12	22.0 (4)	S2—P2—C4—C41	157.0 (2)
C3—P1—C1—C11	24.9 (4)	C5—P2—C4—C42	149.1 (3)
C2—P1—C1—C11	-91.5 (3)	C6—P2—C4—C42	-93.9 (3)
S1—P1—C1—C11	149.5 (3)	S2—P2—C4—C42	28.7 (3)
C3—P1—C2—C21	167.8 (3)	C6—P2—C5—C51	175.7 (3)
C1—P1—C2—C21	-72.6 (4)	C4—P2—C5—C51	-65.7 (3)
S1—P1—C2—C21	44.4 (4)	S2—P2—C5—C51	52.5 (3)
C3—P1—C2—C22	-62.0(3)	C6—P2—C5—C52	-57.5 (3)
C1—P1—C2—C22	57.6 (3)	C4—P2—C5—C52	61.1 (3)
S1—P1—C2—C22	174.5 (2)	S2—P2—C5—C52	179.3 (2)
C2—P1—C3—C32	-51.0 (4)	C5—P2—C6—C61	-179.0 (3)
C1—P1—C3—C32	-168.3 (3)	C4—P2—C6—C61	63.3 (3)
S1—P1—C3—C32	70.6 (3)	S2—P2—C6—C61	-56.5 (3)
C2—P1—C3—C31	-177.3 (3)	C5—P2—C6—C62	-53.7 (3)

C1—P1—C3—C31	65.5 (4)	C4—P2—C6—C62	-171.4 (3)
S1—P1—C3—C31	-55.7 (3)	S2—P2—C6—C62	68.8 (3)

Symmetry codes: (i) -x+1/2, y, -z+3/2; (ii) -x+1/2, y, -z+1/2; (iii) -x+1, -y+1, -z+1; (iv) -x, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C32—H32C···Au1	0.98	2.70	3.480 (5)	137
C62—H62 <i>C</i> ···Au2	0.98	2.92	3.641 (4)	131
C12—H12 <i>B</i> ···S1	0.98	2.75	3.180 (5)	107
C42—H42 <i>B</i> ···S2	0.98	2.74	3.240 (4)	112
C21—H21A····Cl1 ⁱⁱⁱ	0.98	2.88	3.840 (5)	167
C5—H5…Cl1	1.00	2.75	3.670 (4)	153
C3—H3…Cl2 ^v	1.00	2.79	3.682 (4)	149
C52—H52A····Cl2	0.98	2.81	3.770 (4)	167
C32—H32 <i>B</i> ···Cl3 ^{iv}	0.98	2.94	3.649 (5)	130
C4—H4···Cl4 ^{vi}	1.00	2.93	3.726 (4)	137
C6—H6…Au4	1.00	3.24	4.022 (4)	136

Symmetry codes: (iii) -x+1, -y+1, -z+1; (iv) -x, -y, -z+1; (v) x, y-1, z; (vi) -x, -y+1, -z+1.

(2)

Crystal data

 $[C_{20}H_{46}AuP_2S_2][AuCl_4]$ $M_r = 948.36$ Triclinic, $P\overline{1}$ a = 11.7607 (3) Å b = 16.4174 (4) Å c = 17.2173 (4) Å $\alpha = 79.931$ (2)° $\beta = 76.467$ (2)° $\gamma = 78.015$ (2)° V = 3133.57 (14) Å³

Data collection

Oxford Diffraction Xcalibur, Eos diffractometer Radiation source: fine-focus sealed tube Detector resolution: 16.1419 pixels mm⁻¹ ω scan Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) $T_{\min} = 0.439, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.055$ S = 1.0518142 reflections Z = 4 F(000) = 1816 $D_x = 2.010 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 29113 reflections $\theta = 2.6-29.3^{\circ}$ $\mu = 9.94 \text{ mm}^{-1}$ T = 100 K Irregular, yellow $0.2 \times 0.1 \times 0.03 \text{ mm}$

179513 measured reflections 18142 independent reflections 14554 reflections with $I > 2\sigma(I)$ $R_{int} = 0.062$ $\theta_{max} = 30.0^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -16 \rightarrow 16$ $k = -23 \rightarrow 23$ $l = -24 \rightarrow 24$

569 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained
$$\begin{split} &w = 1/[\sigma^2(F_o{}^2) + (0.0131P)^2 + 6.8476P] \\ & \text{where } P = (F_o{}^2 + 2F_c{}^2)/3 \\ (\Delta/\sigma)_{\text{max}} = 0.003 \\ \Delta\rho_{\text{max}} = 1.76 \text{ e } \text{ Å}{}^{-3} \\ \Delta\rho_{\text{min}} = -1.51 \text{ e } \text{ Å}{}^{-3} \end{split}$$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Aul	0.48897 (2)	0.25766 (2)	0.11667 (2)	0.01904 (3)	
P1	0.65776 (9)	0.12888 (6)	0.23566 (5)	0.01599 (19)	
P2	0.32324 (8)	0.37600 (6)	-0.01205 (5)	0.01458 (18)	
S 1	0.48357 (9)	0.17782 (6)	0.24001 (6)	0.0223 (2)	
S2	0.49694 (8)	0.33712 (6)	-0.00728 (5)	0.02008 (19)	
C1	0.6636 (4)	0.0667 (2)	0.3368 (2)	0.0218 (8)	
C2	0.7470 (4)	0.2132 (2)	0.2107 (2)	0.0249 (9)	
H2	0.739298	0.238202	0.154450	0.030*	
C3	0.7205 (3)	0.0595 (2)	0.1565 (2)	0.0218 (8)	
Н3	0.796910	0.025971	0.169002	0.026*	
C4	0.3193 (3)	0.4617 (2)	-0.0990 (2)	0.0173 (7)	
C5	0.2373 (3)	0.4086 (2)	0.0843 (2)	0.0185 (8)	
Н5	0.238463	0.355630	0.123184	0.022*	
C6	0.2555 (3)	0.2910 (2)	-0.0287(2)	0.0189 (8)	
H6	0.173762	0.316567	-0.037394	0.023*	
C11	0.7849 (4)	0.0125 (3)	0.3374 (3)	0.0330 (10)	
H11A	0.788223	-0.015214	0.392312	0.050*	
H11B	0.846361	0.047727	0.319028	0.050*	
H11C	0.798460	-0.030174	0.301359	0.050*	
C12	0.6438 (5)	0.1290 (3)	0.3984 (3)	0.0513 (16)	
H12A	0.576686	0.173869	0.390043	0.077*	
H12B	0.715499	0.153350	0.390992	0.077*	
H12C	0.626500	0.099208	0.453176	0.077*	
C13	0.5653 (6)	0.0158 (4)	0.3624 (3)	0.0647 (19)	
H13A	0.580882	-0.028721	0.328129	0.097*	
H13B	0.489482	0.052318	0.357070	0.097*	
H13C	0.561548	-0.009454	0.418718	0.097*	
C21	0.6999 (5)	0.2869 (3)	0.2602 (3)	0.0394 (12)	
H21A	0.719734	0.270530	0.313569	0.059*	
H21B	0.613461	0.301665	0.266013	0.059*	
H21C	0.736408	0.335405	0.232470	0.059*	
C22	0.8809 (4)	0.1820 (3)	0.2047 (3)	0.0354 (11)	
H22A	0.924110	0.227828	0.178535	0.053*	
H22B	0.906918	0.135043	0.172786	0.053*	
H22C	0.897101	0.163197	0.258871	0.053*	
C31	0.6414 (5)	-0.0025 (3)	0.1573 (3)	0.0557 (17)	
H31A	0.562335	0.027942	0.151144	0.084*	
H31B	0.634882	-0.040047	0.208461	0.084*	
H31C	0.675727	-0.035745	0.112618	0.084*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C32	0.7499 (4)	0.1072 (3)	0.0722 (2)	0.0281 (9)
H32A	0.786250	0.067220	0.033565	0.042*
H32B	0.805569	0.144478	0.071352	0.042*
H32C	0.676938	0.140731	0.057536	0.042*
C41	0.2004 (3)	0.4758 (2)	-0.1253 (2)	0.0212 (8)
H41A	0.135487	0.488833	-0.079446	0.032*
H41B	0.192092	0.424833	-0.144179	0.032*
H41C	0.197517	0.522762	-0.168982	0.032*
C42	0.3353 (4)	0.5421 (2)	-0.0718 (2)	0.0255 (9)
H42A	0.346931	0.585296	-0.118628	0.038*
H42B	0.404837	0.530013	-0.046819	0.038*
H42C	0.264402	0.562261	-0.032639	0.038*
C43	0.4226 (4)	0.4404 (3)	-0.1701 (2)	0.0245 (9)
H43A	0.418038	0.386865	-0.185988	0.037*
H43B	0.498338	0.435704	-0.153661	0.037*
H43C	0.417156	0.484922	-0.215714	0.037*
C51	0.2904 (4)	0.4669 (3)	0.1212 (2)	0.0235 (8)
H51A	0.282209	0.523054	0.090075	0.035*
H51B	0.374658	0.44446	0.120056	0.035*
H51C	0.248157	0.470546	0.177138	0.035*
C52	0.1062 (3)	0.4419 (3)	0.0846 (2)	0.0234 (8)
H52A	0.062218	0.444425	0.140235	0.035*
H52B	0.074902	0.404378	0.059648	0.035*
H52C	0.097270	0.498308	0.054037	0.035*
C61	0.3222 (4)	0.2510 (3)	-0.1042 (2)	0.0257 (9)
H61A	0.406212	0.232869	-0.101671	0.039*
H61B	0.315043	0.292169	-0.152196	0.039*
H61C	0.288025	0.202256	-0.107121	0.039*
C62	0.2419 (4)	0.2228 (3)	0.0441 (2)	0.0301 (10)
H62A	0.205266	0.179200	0.032166	0.045*
H62B	0.191409	0.247693	0.090976	0.045*
H62C	0.320221	0.197724	0.055940	0.045*
Au2	0.52570(2)	0.24364 (2)	0.61149 (2)	0.01930 (4)
P3	0.31820 (9)	0.36332 (6)	0.51182 (5)	0.01685 (19)
P4	0.72218 (8)	0.13621 (6)	0.73190 (5)	0.01544 (18)
S3	0.49682 (9)	0.32173 (6)	0.49120 (6)	0.0211 (2)
S4	0.54537 (8)	0.16443 (6)	0.73283 (6)	0.0218 (2)
C1′	0.2853 (4)	0.4263 (3)	0.4163 (3)	0.0373 (12)
C2′	0.2378 (4)	0.2751 (3)	0.5450 (3)	0.0380 (11)
H2′	0.252865	0.253936	0.600446	0.046*
C3′	0.2684 (4)	0.4293 (3)	0.5933 (2)	0.0275 (9)
H3′	0.186042	0.459127	0.590095	0.033*
C4′	0.7427 (3)	0.0464 (2)	0.8131 (2)	0.0184 (8)
C5′	0.8066 (3)	0.1136 (2)	0.6315 (2)	0.0183 (7)
H5′	0.798293	0.168662	0.596019	0.022*
C6′	0.7780 (3)	0.2252 (2)	0.7523 (2)	0.0202 (8)
H6′	0.863175	0.205404	0.755815	0.024*
C11′	0.1651 (4)	0.4848 (3)	0.4305 (3)	0.0367 (11)

H11D	0.170437	0.530459	0.458597	0.055*
H11E	0.104696	0.453038	0.463451	0.055*
H11F	0.143251	0.508320	0.378594	0.055*
C12′	0.2781 (5)	0.3620 (4)	0.3605 (3)	0.0544 (16)
H12D	0.260704	0.392602	0.309260	0.082*
H12E	0.214953	0.329839	0.387207	0.082*
H12F	0.354198	0.323599	0.350416	0.082*
C13′	0.3812 (5)	0.4729 (4)	0.3710(3)	0.0614 (18)
H13D	0.359083	0.504405	0.321298	0.092*
H13E	0.455181	0.433099	0.357491	0.092*
H13F	0.392788	0.512079	0.404245	0.092*
C21′	0.2811 (6)	0.1994 (3)	0.5013 (4)	0.0657(18)
H21D	0.238745	0.153877	0.530006	0.099*
H21E	0.366506	0.181038	0.499016	0.099*
H21F	0.266361	0.213757	0.446447	0.099*
C22'	0.1015 (4)	0.3025 (3)	0.5589 (3)	0.0416 (12)
H22D	0.077941	0.322226	0.506917	0.062*
H22E	0.076839	0 347923	0 592604	0.062*
H22E	0.063127	0.254538	0.586041	0.062*
C31′	0.3458(5)	0 4967 (4)	0 5815 (4)	0.068(2)
H31D	0.312063	0.534938	0.622057	0.102*
H31E	0.348268	0 528432	0 527492	0.102*
H31F	0.426441	0.469793	0.587296	0.102*
C32'	0.2630 (5)	0 3813 (4)	0.6767 (3)	0.0496(15)
H32D	0.343596	0.355874	0.683918	0.074*
H32E	0.215579	0.337005	0.683586	0.074*
H32F	0.226339	0.419659	0 716807	0.074*
C41′	0.8615 (4)	0.0404 (3)	0.8388 (2)	0.0261 (9)
H41D	0.872739	-0.008814	0.879385	0.039*
H41E	0.860462	0.091281	0.861679	0.039*
H41F	0.926805	0.035045	0.791739	0.039*
C42′	0 7419 (4)	-0.0354(2)	0 7816 (2)	0.0276 (9)
H42D	0.738943	-0.081423	0.826405	0.0270())
H42E	0.814144	-0.048362	0 740742	0.041*
H42F	0.672094	-0.028658	0.757719	0.041*
C43'	0.6410(4)	0.0571(3)	0.8871(2)	0.0252 (9)
H43D	0.565266	0.058735	0.871840	0.038*
H43E	0.639369	0 109708	0.907238	0.038*
H43F	0.653535	0.009798	0.929376	0.038*
C51′	0.00000000000000000000000000000000000	0.0546(3)	0.5922(2)	0.020
H51D	0.797156	0.057498	0.534931	0.0217(5)
H51E	0.673156	0.071609	0.597815	0.037*
H51E	0.777308	-0.003063	0.618711	0.037*
C52'	0.9404(3)	0.005005	0.6784(2)	0.0231 (8)
H52D	0.956131	0.029125	0.655723	0.035*
H52E	0.967510	0 124647	0.655406	0.035*
H52E	0.982958	0.089005	0 572079	0.035*
C61′	0.7120 (4)	0.2560 (3)	0.8327(2)	0.0294 (9)
001	0.7120 (7)	0.2300 (3)	0.0527 (2)	0.02) + ())

H61D	0.736821	0.308121	0.837276	0.044*	
H61E	0.730728	0.213110	0.877341	0.044*	
H61F	0.626197	0.266581	0.834993	0.044*	
C62′	0.7733 (4)	0.2993 (3)	0.6845 (3)	0.0313 (10)	
H62D	0.690635	0.320098	0.679368	0.047*	
H62E	0.819906	0.280639	0.633583	0.047*	
H62F	0.806264	0.344345	0.697038	0.047*	
Au3	0.98348 (2)	0.27544 (2)	0.35919 (2)	0.02001 (4)	
Cl1	1.00561 (11)	0.13536 (7)	0.40405 (6)	0.0336 (2)	
Cl2	0.82031 (10)	0.29765 (8)	0.46001 (6)	0.0347 (3)	
Cl3	0.96111 (10)	0.41602 (7)	0.31367 (7)	0.0354 (3)	
Cl4	1.14644 (10)	0.25137 (7)	0.25917 (6)	0.0316 (2)	
Au4	1.01677 (2)	0.23730 (2)	0.88035 (2)	0.02243 (4)	
C15	0.92275 (10)	0.29549 (7)	0.99435 (6)	0.0339 (2)	
Cl6	0.97628 (10)	0.36488 (6)	0.80532 (7)	0.0334 (2)	
C17	1.11237 (10)	0.17979 (7)	0.76589 (6)	0.0331 (2)	
C18	1.05632 (10)	0.10927 (6)	0.95503 (6)	0.0294 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Aul	0.01852 (7)	0.02126 (7)	0.01813 (7)	0.00208 (6)	-0.00925 (5)	-0.00392 (5)
P1	0.0160 (5)	0.0185 (5)	0.0137 (4)	-0.0016 (4)	-0.0052 (4)	-0.0017 (3)
P2	0.0141 (4)	0.0175 (4)	0.0121 (4)	-0.0018 (4)	-0.0037 (3)	-0.0017 (3)
S 1	0.0183 (5)	0.0268 (5)	0.0196 (5)	0.0018 (4)	-0.0056 (4)	-0.0016 (4)
S2	0.0157 (5)	0.0271 (5)	0.0174 (4)	-0.0005 (4)	-0.0057 (3)	-0.0035 (4)
C1	0.022 (2)	0.025 (2)	0.0187 (18)	-0.0033 (16)	-0.0065 (15)	0.0000 (15)
C2	0.035 (2)	0.026 (2)	0.0187 (19)	-0.0108 (18)	-0.0114 (17)	-0.0017 (16)
C3	0.0177 (19)	0.026 (2)	0.0218 (19)	-0.0018 (16)	-0.0014 (15)	-0.0080 (16)
C4	0.0187 (19)	0.0213 (18)	0.0123 (16)	-0.0034 (15)	-0.0057 (14)	0.0006 (14)
C5	0.0188 (19)	0.0214 (18)	0.0138 (17)	0.0004 (15)	-0.0030 (14)	-0.0031 (14)
C6	0.0170 (19)	0.0211 (18)	0.0199 (18)	-0.0044 (15)	-0.0034 (15)	-0.0049 (15)
C11	0.032 (2)	0.031 (2)	0.029 (2)	0.0069 (19)	-0.0100 (19)	0.0055 (18)
C12	0.079 (4)	0.046 (3)	0.019 (2)	0.025 (3)	-0.017 (2)	-0.009(2)
C13	0.070 (4)	0.083 (4)	0.050 (3)	-0.048 (4)	-0.036 (3)	0.042 (3)
C21	0.059 (3)	0.032 (2)	0.035 (3)	-0.016 (2)	-0.016 (2)	-0.007 (2)
C22	0.033 (3)	0.047 (3)	0.032 (2)	-0.021 (2)	-0.017 (2)	0.008 (2)
C31	0.051 (3)	0.052 (3)	0.069 (4)	-0.034 (3)	0.023 (3)	-0.042 (3)
C32	0.033 (2)	0.034 (2)	0.0164 (19)	-0.0012 (19)	-0.0044 (17)	-0.0073 (17)
C41	0.020(2)	0.027 (2)	0.0159 (18)	-0.0025 (16)	-0.0070 (15)	0.0006 (15)
C42	0.033 (2)	0.022 (2)	0.022 (2)	-0.0082 (17)	-0.0083 (17)	0.0010 (16)
C43	0.025 (2)	0.033 (2)	0.0160 (18)	-0.0084 (18)	-0.0043 (16)	-0.0004 (16)
C51	0.026 (2)	0.030(2)	0.0157 (18)	-0.0036 (17)	-0.0057 (16)	-0.0082 (16)
C52	0.021 (2)	0.031 (2)	0.0171 (18)	-0.0020 (17)	-0.0019 (15)	-0.0066 (16)
C61	0.029 (2)	0.028 (2)	0.023 (2)	-0.0073 (18)	-0.0023 (17)	-0.0107 (17)
C62	0.042 (3)	0.030 (2)	0.023 (2)	-0.017 (2)	-0.0086 (19)	-0.0006 (17)
Au2	0.01677 (7)	0.01970 (7)	0.02024 (7)	0.00131 (5)	-0.00621 (5)	-0.00155 (5)
P3	0.0174 (5)	0.0165 (4)	0.0150 (4)	-0.0009 (4)	-0.0037 (4)	0.0003 (4)

P4	0.0159 (5)	0.0156 (4)	0.0146 (4)	-0.0020 (4)	-0.0045 (4)	-0.0004 (3)
S3	0.0177 (5)	0.0217 (5)	0.0192 (4)	0.0031 (4)	-0.0020 (4)	-0.0004 (4)
S4	0.0154 (5)	0.0291 (5)	0.0191 (5)	-0.0022 (4)	-0.0044 (4)	0.0009 (4)
C1′	0.031 (3)	0.039 (3)	0.029 (2)	0.010(2)	-0.0075 (19)	0.013 (2)
C2′	0.039 (3)	0.026 (2)	0.054 (3)	-0.015 (2)	-0.014 (2)	0.000 (2)
C3′	0.018 (2)	0.034 (2)	0.033 (2)	-0.0010 (17)	-0.0034 (17)	-0.0173 (19)
C4′	0.023 (2)	0.0165 (17)	0.0158 (17)	-0.0067 (15)	-0.0071 (15)	0.0044 (14)
C5′	0.0180 (19)	0.0230 (19)	0.0122 (16)	-0.0020 (15)	-0.0010 (14)	-0.0024 (14)
C6′	0.020 (2)	0.0201 (19)	0.0197 (18)	-0.0052 (16)	-0.0015 (15)	-0.0033 (15)
C11′	0.025 (2)	0.035 (2)	0.041 (3)	0.0050 (19)	-0.011 (2)	0.011 (2)
C12′	0.070 (4)	0.065 (4)	0.026 (3)	0.011 (3)	-0.020(3)	-0.012 (2)
C13′	0.038 (3)	0.065 (4)	0.056 (3)	-0.004 (3)	-0.002 (3)	0.039 (3)
C21′	0.073 (5)	0.026 (3)	0.103 (5)	-0.010 (3)	-0.027 (4)	-0.010 (3)
C22′	0.031 (3)	0.047 (3)	0.051 (3)	-0.017 (2)	-0.016 (2)	0.006 (2)
C31′	0.038 (3)	0.060 (4)	0.118 (6)	-0.013 (3)	0.001 (3)	-0.062 (4)
C32′	0.040 (3)	0.077 (4)	0.028 (2)	0.017 (3)	-0.012 (2)	-0.024 (3)
C41′	0.025 (2)	0.031 (2)	0.023 (2)	-0.0039 (17)	-0.0111 (16)	0.0039 (17)
C42′	0.039 (3)	0.0195 (19)	0.025 (2)	-0.0094 (18)	-0.0082 (18)	0.0031 (16)
C43′	0.027 (2)	0.033 (2)	0.0171 (19)	-0.0104 (18)	-0.0053 (16)	0.0018 (16)
C51′	0.026 (2)	0.033 (2)	0.0173 (19)	-0.0022 (18)	-0.0087 (16)	-0.0062 (16)
C52′	0.019 (2)	0.032 (2)	0.0187 (19)	-0.0032 (16)	-0.0026 (15)	-0.0062 (16)
C61′	0.029 (2)	0.030 (2)	0.030 (2)	-0.0056 (19)	-0.0004 (18)	-0.0160 (18)
C62′	0.043 (3)	0.019 (2)	0.034 (2)	-0.0115 (19)	-0.012 (2)	0.0027 (17)
Au3	0.02045 (8)	0.02755 (8)	0.01329 (7)	-0.00675 (6)	-0.00314 (5)	-0.00348 (5)
Cl1	0.0455 (7)	0.0283 (5)	0.0255 (5)	-0.0100 (5)	-0.0038 (5)	-0.0001 (4)
Cl2	0.0279 (6)	0.0493 (7)	0.0205 (5)	-0.0034 (5)	0.0021 (4)	-0.0010 (4)
C13	0.0357 (6)	0.0284 (5)	0.0331 (6)	-0.0003 (5)	0.0036 (5)	-0.0008 (4)
Cl4	0.0334 (6)	0.0332 (5)	0.0252 (5)	-0.0097 (5)	0.0078 (4)	-0.0099 (4)
Au4	0.02084 (8)	0.02208 (7)	0.02728 (8)	-0.00589 (6)	-0.00502 (6)	-0.00837 (6)
C15	0.0346 (6)	0.0333 (6)	0.0330 (6)	-0.0063 (5)	0.0015 (5)	-0.0132 (5)
C16	0.0352 (6)	0.0232 (5)	0.0406 (6)	-0.0051 (4)	-0.0055 (5)	-0.0039 (4)
C17	0.0418 (7)	0.0307 (5)	0.0279 (5)	-0.0042 (5)	-0.0055 (5)	-0.0118 (4)
C18	0.0304 (6)	0.0267 (5)	0.0319 (5)	-0.0052 (4)	-0.0084 (4)	-0.0035 (4)

Geometric parameters (Å, °)

Au1—S1	2.2869 (9)	P3—C1′	1.860 (4)
Au1—S2	2.2910 (9)	P3—S3	2.0360 (14)
P1—C2	1.840 (4)	P4—C6′	1.837 (4)
P1—C3	1.850 (4)	P4—C5′	1.838 (4)
P1—C1	1.867 (4)	P4—C4′	1.865 (3)
P1—S1	2.0283 (14)	P4—S4	2.0312 (13)
Р2—С5	1.834 (4)	C1′—C13′	1.485 (7)
Р2—С6	1.837 (4)	C1′—C11′	1.527 (6)
P2—C4	1.869 (3)	C1′—C12′	1.573 (7)
P2—S2	2.0263 (13)	C2′—C21′	1.503 (7)
C1—C13	1.505 (6)	C2′—C22′	1.546 (7)
C1—C11	1.519 (5)	C2'—H2'	1.0000

C1—C12	1.545 (6)	C3'—C32'	1.507 (6)
C2—C21	1.535 (6)	C3'—C31'	1.531 (7)
C2—C22	1.537 (6)	C3'—H3'	1.0000
С2—Н2	1.0000	C4′—C42′	1.536 (5)
C3—C31	1.512 (6)	C4′—C43′	1.537 (5)
C_{3} — C_{32}	1.523 (5)	C4'—C41'	1.541 (5)
С3—Н3	1 0000	C5'-C51'	1.527(5)
C4-C41	1 529 (5)	C5' - C52'	1.527(5) 1.534(5)
C_{4} C_{42}	1.527(5) 1.534(5)	C5' H5'	1.0000
$C_4 = C_{42}$	1.534(5)	C_{1}	1.0000
C4—C43	1.340 (3)	C0 - C02	1.555 (5)
C5-C52	1.524 (5)		1.535 (5)
C5-C51	1.535 (5)	С6'—Н6'	1.0000
С5—Н5	1.0000	C11'—H11D	0.9800
C6—C62	1.531 (5)	C11'—H11E	0.9800
C6—C61	1.531 (5)	C11'—H11F	0.9800
С6—Н6	1.0000	C12'—H12D	0.9800
C11—H11A	0.9800	C12'—H12E	0.9800
C11—H11B	0.9800	C12'—H12F	0.9800
C11—H11C	0.9800	C13'—H13D	0.9800
C12—H12A	0.9800	C13'—H13E	0.9800
C12—H12B	0.9800	C13'—H13F	0.9800
C12 - H12C	0.9800	C21′—H21D	0.9800
C12_H120	0.9800	C21′H21E	0.9800
C12 U12D	0.9800	C_{21} H21E	0.9800
С13—П13В	0.9800	$C_{21} - H_{21}F$	0.9800
	0.9800	C22 H22D	0.9800
C2I—H2IA	0.9800	C22 ⁻ H22E	0.9800
C21—H21B	0.9800	C22'—H22F	0.9800
C21—H21C	0.9800	C31'—H31D	0.9800
C22—H22A	0.9800	C31′—H31E	0.9800
C22—H22B	0.9800	C31′—H31F	0.9800
С22—Н22С	0.9800	C32'—H32D	0.9800
C31—H31A	0.9800	С32'—Н32Е	0.9800
C31—H31B	0.9800	C32'—H32F	0.9800
C31—H31C	0.9800	C41′—H41D	0.9800
С32—Н32А	0.9800	C41′—H41E	0.9800
С32—Н32В	0.9800	C41′—H41F	0.9800
С32—Н32С	0.9800	C42'—H42D	0.9800
C41—H41A	0.9800	C42′—H42E	0.9800
C41—H41B	0.9800	C42'—H42F	0.9800
	0.9800	C_{42} H_{42}	0.9000
	0.9800	$C_{43} = H_{43} D_{43} D_{43$	0.9800
C42—H42A	0.9800	C43 - H43E	0.9800
C42—H42B	0.9800	C43	0.9800
C42—H42C	0.9800	CST—HSID	0.9800
C43—H43A	0.9800	C51'—H51E	0.9800
C43—H43B	0.9800	C51'—H51F	0.9800
C43—H43C	0.9800	C52'—H52D	0.9800
C51—H51A	0.9800	С52′—Н52Е	0.9800
C51—H51B	0.9800	C52'—H52F	0.9800

C51—H51C	0.9800	C61'—H61D	0.9800
C52—H52A	0.9800	C61'—H61E	0.9800
С52—Н52В	0.9800	C61′—H61F	0.9800
С52—Н52С	0.9800	C62′—H62D	0.9800
C61—H61A	0.9800	С62′—Н62Е	0.9800
C61—H61B	0.9800	C62′—H62F	0.9800
C61—H61C	0.9800	Au3—Cl4	2.2746 (10)
С62—Н62А	0.9800	Au3—Cl1	2.2754 (11)
C62—H62B	0.9800	Au3—Cl2	2.2805 (10)
С62—Н62С	0.9800	Au3—Cl3	2.2852 (11)
Au2-S4	2 2935 (9)	Au4C15	2,2780(10)
Au2—S3	2 2953 (9)	Au4C16	2.2700(10) 2.2825(11)
P3_C2'	1.828(4)	$\Delta u 4 - C 17$	2.2029(11) 2.2828(10)
P3_C3'	1.825(4)	Au4	2.2828(10) 2.2839(10)
15-05	1.055 (4)	Au4-Clo	2.2659 (10)
\$1—Au1—\$2	179.28 (4)	C1′—P3—S3	106.48 (15)
$C^2 - P^1 - C^3$	105 43 (18)	C6' - P4 - C5'	105 38 (17)
$C_2 = P_1 = C_1$	113 57 (18)	C6' - P4 - C4'	109.30(17) 109.30(17)
$C_2 = P_1 = C_1$	109 59 (18)	C5' - P4 - C4'	109.50(17) 113 54 (17)
$C_2 P_1 S_1$	109.59(10) 110.40(14)	C6' - P4 - S4	113.34(17) 111.80(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112.92 (13)	C5' PA SA	111.00(13) 110.47(13)
$C_{1} = 1 = 51$	112.92(13) 105.10(13)	$C_3 - 14 - 54$ $C_4' = P_4 = S_4$	110.47(13) 106.46(13)
$C_1 - 1 - 5_1$	105.10(13) 105.27(17)	$D_{4} = 14 = 34$ $D_{2} = 52 = 4 \pm 2$	100.40(13) 103.22(5)
$C_{5} = P_{2} = C_{4}$	103.27(17) 112.74(17)	$P_3 = S_3 = A_{12}$	105.22(5)
$C_{3} - P_{2} - C_{4}$	113.74(17)	P4—54—Au2	106.42(5)
$C_{0}-P_{2}-C_{4}$	109.42 (17)		111.4 (4)
C5-P2-S2	110.69 (12)	$C13^{\circ}$ $-C1^{\circ}$ $-C12^{\circ}$	105.8 (4)
C6—P2—S2	111.89 (13)	$C11^{\prime}$ — $C1^{\prime}$ — $C12^{\prime}$	107.7 (4)
C4—P2—S2	105.95 (12)	C13'—C1'—P3	113.3 (4)
P1—S1—Au1	101.88 (5)	C11'—C1'—P3	111.6 (3)
P2—S2—Aul	102.91 (5)	C12'—C1'—P3	106.6 (3)
C13—C1—C11	112.1 (4)	C21'—C2'—C22'	112.6 (4)
C13—C1—C12	107.8 (4)	C21′—C2′—P3	117.8 (4)
C11—C1—C12	107.3 (4)	C22'—C2'—P3	113.2 (3)
C13—C1—P1	110.4 (3)	C21′—C2′—H2′	103.7
C11—C1—P1	111.1 (3)	C22'—C2'—H2'	103.7
C12—C1—P1	108.1 (3)	P3—C2'—H2'	103.7
C21—C2—C22	112.3 (4)	C32'—C3'—C31'	109.5 (4)
C21—C2—P1	115.4 (3)	C32′—C3′—P3	114.3 (3)
C22—C2—P1	114.2 (3)	C31′—C3′—P3	111.1 (3)
C21—C2—H2	104.5	С32'—С3'—Н3'	107.2
С22—С2—Н2	104.5	C31'—C3'—H3'	107.2
P1—C2—H2	104.5	P3—C3'—H3'	107.2
C31—C3—C32	110.0 (4)	C42'—C4'—C43'	108.5 (3)
C31—C3—P1	112.3 (3)	C42'—C4'—C41'	109.3 (3)
C32—C3—P1	113.4 (3)	C43'—C4'—C41'	108.8 (3)
С31—С3—Н3	106.9	C42'—C4'—P4	109.0 (2)
С32—С3—Н3	106.9	C43'—C4'—P4	110.5 (3)
Р1—С3—Н3	106.9	C41′—C4′—P4	110.6 (3)

C41—C4—C42	110.0 (3)	C51'—C5'—C52'	111.5 (3)
C41—C4—C43	110.3 (3)	C51′—C5′—P4	115.9 (3)
C42—C4—C43	107.7 (3)	C52′—C5′—P4	112.9 (2)
C41—C4—P2	110.0 (3)	C51′—C5′—H5′	105.2
C42—C4—P2	108.1 (2)	C52'—C5'—H5'	105.2
C43—C4—P2	110.7 (3)	P4—C5'—H5'	105.2
C52—C5—C51	111.0 (3)	C62'—C6'—C61'	109.3 (3)
C52—C5—P2	113.9 (2)	C62'—C6'—P4	112.4 (3)
C51—C5—P2	116.0 (3)	C61′—C6′—P4	112.6 (3)
С52—С5—Н5	104.9	C62'—C6'—H6'	107.5
С51—С5—Н5	104.9	C61′—C6′—H6′	107.5
Р2—С5—Н5	104.9	P4—C6'—H6'	107.5
C62—C6—C61	109.7 (3)	C1'—C11'—H11D	109.5
C62—C6—P2	112.8 (3)	C1'—C11'—H11E	109.5
C61—C6—P2	112.7 (3)	H11D—C11′—H11E	109.5
С62—С6—Н6	107.1	C1'—C11'—H11F	109.5
С61—С6—Н6	107.1	H11D—C11′—H11F	109.5
Р2—С6—Н6	107.1	H11E—C11′—H11F	109.5
C1—C11—H11A	109.5	C1'—C12'—H12D	109.5
C1—C11—H11B	109.5	C1'—C12'—H12E	109.5
H11A—C11—H11B	109.5	H12D—C12′—H12E	109.5
C1—C11—H11C	109.5	C1'—C12'—H12F	109.5
H11A—C11—H11C	109.5	H12D—C12′—H12F	109.5
H11B—C11—H11C	109.5	H12E—C12′—H12F	109.5
C1—C12—H12A	109.5	C1'—C13'—H13D	109.5
C1—C12—H12B	109.5	C1'—C13'—H13E	109.5
H12A—C12—H12B	109.5	H13D—C13′—H13E	109.5
C1—C12—H12C	109.5	C1'—C13'—H13F	109.5
H12A—C12—H12C	109.5	H13D—C13′—H13F	109.5
H12B—C12—H12C	109.5	H13E—C13′—H13F	109.5
C1—C13—H13A	109.5	C2'—C21'—H21D	109.5
C1—C13—H13B	109.5	C2'—C21'—H21E	109.5
H13A—C13—H13B	109.5	H21D—C21′—H21E	109.5
C1—C13—H13C	109.5	C2'—C21'—H21F	109.5
H13A—C13—H13C	109.5	H21D—C21′—H21F	109.5
H13B—C13—H13C	109.5	H21E—C21′—H21F	109.5
C2—C21—H21A	109.5	C2'—C22'—H22D	109.5
C2—C21—H21B	109.5	C2'—C22'—H22E	109.5
H21A—C21—H21B	109.5	H22D—C22′—H22E	109.5
C2—C21—H21C	109.5	C2'—C22'—H22F	109.5
H21A—C21—H21C	109.5	H22D—C22′—H22F	109.5
H21B—C21—H21C	109.5	H22E—C22'—H22F	109.5
C2—C22—H22A	109.5	C3'—C31'—H31D	109.5
C2—C22—H22B	109.5	C3′—C31′—H31E	109.5
H22A—C22—H22B	109.5	H31D—C31′—H31E	109.5
C2—C22—H22C	109.5	C3'—C31'—H31F	109.5
H22A—C22—H22C	109.5	H31D—C31′—H31F	109.5
H22B—C22—H22C	109.5	H31E—C31′—H31F	109.5

C3—C31—H31A	109.5	C3′—C32′—H32D	109.5
C3—C31—H31B	109.5	C3′—C32′—H32E	109.5
H31A—C31—H31B	109.5	H32D—C32′—H32E	109.5
C3—C31—H31C	109.5	C3'—C32'—H32F	109.5
H31A—C31—H31C	109.5	H32D—C32′—H32F	109.5
H31B-C31-H31C	109.5	H32E—C32′—H32E	109.5
C3—C32—H32A	109.5	C4'-C41'-H41D	109.5
C3—C32—H32B	109.5	C4'-C41'-H41E	109.5
H32A_C32_H32B	109.5	H41D-C41'-H41F	109.5
C3_C32_H32C	109.5	C4'-C41'-H41F	109.5
H_{32} H	109.5	H_{1} C_{1} H_{1} H_{1}	109.5
H32R C32 H32C	109.5	H41E $CA1'$ H41E	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	CA' = CA2' = HA2D	109.5
C4 = C41 = H41R	109.5	C4 = C42 = 1142D C4' = C42' = H42E	109.5
$U_{4} = U_{4} = U_{4$	109.5	C4 = C42 = 1142E	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$\begin{array}{ccc} \mathbf{H}_{42}\mathbf{D}_{}\mathbf{C}_{42}\mathbf{D}_{}\mathbf{H}_{42}\mathbf{E} \\ \mathbf{C}_{41}\mathbf{D}_{}\mathbf{C}_{421}\mathbf{D}_{}\mathbf{H}_{42}\mathbf{E} \\ \mathbf{C}_{421}\mathbf{D}_{}\mathbf{C}_{421}\mathbf{D}_{}\mathbf{H}_{42}\mathbf{E} \end{array}$	109.5
U4 - U41 - H41C	109.5	C4 - C42 - H42F	109.5
H4IA - C4I - H4IC	109.5	H42D - C42 - H42F	109.5
H4IB - C4I - H4IC	109.5	H42E - C42 - H42F	109.5
C4—C42—H42A	109.5	C4 - C43 - H43D	109.5
C4—C42—H42B	109.5	C4' - C43' - H43E	109.5
H42A—C42—H42B	109.5	H43D—C43'—H43E	109.5
C4—C42—H42C	109.5	C4'—C43'—H43F	109.5
H42A—C42—H42C	109.5	H43D—C43′—H43F	109.5
H42B—C42—H42C	109.5	H43E—C43′—H43F	109.5
C4—C43—H43A	109.5	C5'—C51'—H51D	109.5
C4—C43—H43B	109.5	C5'—C51'—H51E	109.5
H43A—C43—H43B	109.5	H51D—C51′—H51E	109.5
C4—C43—H43C	109.5	C5'—C51'—H51F	109.5
H43A—C43—H43C	109.5	H51D—C51′—H51F	109.5
H43B—C43—H43C	109.5	H51E—C51′—H51F	109.5
C5-C51-H51A	109.5	C5'—C52'—H52D	109.5
C5-C51-H51B	109.5	C5'—C52'—H52E	109.5
H51A—C51—H51B	109.5	H52D—C52′—H52E	109.5
C5-C51-H51C	109.5	C5'—C52'—H52F	109.5
H51A—C51—H51C	109.5	H52D—C52′—H52F	109.5
H51B—C51—H51C	109.5	H52E—C52′—H52F	109.5
С5—С52—Н52А	109.5	C6'—C61'—H61D	109.5
С5—С52—Н52В	109.5	C6'—C61'—H61E	109.5
H52A—C52—H52B	109.5	H61D—C61′—H61E	109.5
С5—С52—Н52С	109.5	C6'—C61'—H61F	109.5
H52A—C52—H52C	109.5	H61D—C61′—H61F	109.5
H52B—C52—H52C	109.5	H61E—C61′—H61F	109.5
C6—C61—H61A	109.5	C6'—C62'—H62D	109.5
C6—C61—H61B	109.5	C6'—C62'—H62E	109.5
H61A—C61—H61B	109.5	H62D—C62′—H62E	109.5
C6—C61—H61C	109.5	C6'—C62'—H62F	109.5
H61A—C61—H61C	109.5	H62D—C62′—H62F	109.5
H61B—C61—H61C	109.5	H62E—C62′—H62F	109.5

С6—С62—Н62А	109.5	Cl4—Au3—Cl1	89.76 (4)
C6—C62—H62B	109.5	Cl4—Au3—Cl2	179.22 (4)
H62A—C62—H62B	109.5	Cl1—Au3—Cl2	89.46 (4)
С6—С62—Н62С	109.5	Cl4—Au3—Cl3	90.14 (4)
H62A—C62—H62C	109.5	Cl1—Au3—Cl3	179.77 (4)
H62B—C62—H62C	109.5	Cl2—Au3—Cl3	90.64 (4)
S4—Au2—S3	177.24 (4)	C15—Au4—C16	89.61 (4)
C2'—P3—C3'	105.3 (2)	Cl5—Au4—Cl7	179.44 (4)
C2'—P3—C1'	113.0 (2)	Cl6—Au4—Cl7	90.15 (4)
C3'—P3—C1'	109.3 (2)	C15—Au4—C18	90.54 (4)
C2′—P3—S3	110.71 (16)	C16—Au4—C18	179.58 (4)
C3'—P3—S3	112.14 (14)	C17—Au4—C18	89.70 (4)
C2—P1—S1—Au1	54.15 (14)	C2'—P3—S3—Au2	-55.89 (18)
C3—P1—S1—Au1	-63.59 (14)	C3'—P3—S3—Au2	61.40 (16)
C1—P1—S1—Au1	176.99 (13)	C1′—P3—S3—Au2	-179.04 (18)
C5—P2—S2—Au1	42.76 (14)	C6'—P4—S4—Au2	78.15 (13)
C6—P2—S2—Au1	-74.31 (13)	C5'—P4—S4—Au2	-38.86(14)
C4—P2—S2—Au1	166.51 (12)	C4′—P4—S4—Au2	-162.56 (13)
C2—P1—C1—C13	164.8 (4)	C2'—P3—C1'—C13'	-155.7 (4)
C3—P1—C1—C13	-77.6 (4)	C3'—P3—C1'—C13'	87.4 (4)
S1—P1—C1—C13	44.0 (4)	S3—P3—C1′—C13′	-34.0 (4)
C2—P1—C1—C11	-70.3 (3)	C2'—P3—C1'—C11'	77.6 (4)
C3—P1—C1—C11	47.3 (3)	C3'—P3—C1'—C11'	-39.4 (4)
S1—P1—C1—C11	168.9 (3)	S3—P3—C1′—C11′	-160.7 (3)
C2—P1—C1—C12	47.1 (4)	C2'—P3—C1'—C12'	-39.8 (4)
C3—P1—C1—C12	164.7 (3)	C3'—P3—C1'—C12'	-156.7 (3)
S1—P1—C1—C12	-73.7 (3)	S3—P3—C1′—C12′	82.0 (3)
C3—P1—C2—C21	170.8 (3)	C3'—P3—C2'—C21'	-165.1 (4)
C1—P1—C2—C21	-69.2 (4)	C1'—P3—C2'—C21'	75.6 (5)
S1—P1—C2—C21	48.5 (3)	S3—P3—C2′—C21′	-43.7 (5)
C3—P1—C2—C22	-56.8 (3)	C3'—P3—C2'—C22'	60.6 (4)
C1—P1—C2—C22	63.2 (3)	C1′—P3—C2′—C22′	-58.7 (4)
S1—P1—C2—C22	-179.1 (3)	S3—P3—C2′—C22′	-178.0 (3)
C2—P1—C3—C31	-167.5 (4)	C2'—P3—C3'—C32'	44.4 (4)
C1—P1—C3—C31	69.9 (4)	C1'—P3—C3'—C32'	166.1 (3)
S1—P1—C3—C31	-46.9 (4)	S3—P3—C3′—C32′	-76.0 (3)
C2—P1—C3—C32	-42.2 (3)	C2'—P3—C3'—C31'	169.0 (4)
C1—P1—C3—C32	-164.7 (3)	C1'—P3—C3'—C31'	-69.3 (4)
S1—P1—C3—C32	78.5 (3)	S3—P3—C3′—C31′	48.6 (4)
C5—P2—C4—C41	-76.6 (3)	C6'—P4—C4'—C42'	-158.7 (3)
C6—P2—C4—C41	40.8 (3)	C5'—P4—C4'—C42'	-41.4 (3)
S2—P2—C4—C41	161.5 (2)	S4—P4—C4'—C42'	80.4 (3)
C5—P2—C4—C42	43.5 (3)	C6'—P4—C4'—C43'	82.1 (3)
C6—P2—C4—C42	160.9 (3)	C5'—P4—C4'—C43'	-160.5 (3)
S2—P2—C4—C42	-78.3 (3)	S4—P4—C4'—C43'	-38.8 (3)
C5—P2—C4—C43	161.2 (3)	C6'—P4—C4'—C41'	-38.4 (3)
C6—P2—C4—C43	-81.4 (3)	C5'—P4—C4'—C41'	78.9 (3)

S2—P2—C4—C43	39.4 (3)	S4—P4—C4′—C41′	-159.3 (2)
C6—P2—C5—C52	-61.1 (3)	C6'—P4—C5'—C51'	-167.3 (3)
C4—P2—C5—C52	58.7 (3)	C4'—P4—C5'—C51'	73.1 (3)
S2—P2—C5—C52	177.8 (2)	S4—P4—C5′—C51′	-46.4 (3)
C6—P2—C5—C51	168.2 (3)	C6'—P4—C5'—C52'	62.5 (3)
C4—P2—C5—C51	-72.0 (3)	C4'—P4—C5'—C52'	-57.1 (3)
S2—P2—C5—C51	47.1 (3)	S4—P4—C5′—C52′	-176.6 (2)
C5—P2—C6—C62	-50.7 (3)	C5'—P4—C6'—C62'	53.1 (3)
C4—P2—C6—C62	-173.3 (3)	C4'—P4—C6'—C62'	175.4 (3)
S2—P2—C6—C62	69.6 (3)	S4—P4—C6'—C62'	-67.0 (3)
C5—P2—C6—C61	-175.7 (3)	C5'—P4—C6'—C61'	176.9 (3)
C4—P2—C6—C61	61.7 (3)	C4'—P4—C6'—C61'	-60.7 (3)
S2—P2—C6—C61	-55.4 (3)	S4—P4—C6'—C61'	56.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
C32—H32C···Au1	0.98	2.73	3.538 (4)	140
C32′—H32D…Au2	0.98	2.73	3.503 (5)	136
C13—H13 <i>B</i> ···S1	0.98	2.62	3.220 (5)	120
C43—H43 <i>B</i> ···S2	0.98	2.75	3.219 (4)	110
C43′—H43D…S4	0.98	2.73	3.219 (4)	112
C13′—H13E…S3	0.98	2.75	3.227 (5)	111
C52′—H52F…Cl1	0.98	2.82	3.733 (4)	155
C5'—H5'…Cl2	1.00	2.87	3.839 (4)	163
C3′—H3′···Cl3 ⁱ	1.00	2.88	3.585 (4)	128
C5—H5···Cl4 ⁱⁱ	1.00	2.79	3.713 (4)	154
C62—H62B····Cl4 ⁱⁱ	0.98	2.83	3.692 (4)	147
C42—H42 C ···Cl5 ⁱ	0.98	2.91	3.754 (4)	145
C11—H11C····Cl7 ⁱⁱⁱ	0.98	2.80	3.736 (5)	161
C6'—H6'…Cl7	1.00	2.91	3.903 (4)	170
C6'—H6'…Au4	1.00	3.28	4.009 (4)	132
C62—H62 <i>A</i> ···C18 ^{iv}	0.98	2.93	3.853 (4)	157

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*-1, *y*, *z*; (iii) -*x*+2, -*y*, -*z*+1; (iv) *x*-1, *y*, *z*-1.

Bis(tri-tert-butylphosphane sulfide-*k*S)gold(I) tetrachloridoaurate(III) (3)

Crystal data	
$[Au(C_{12}H_{27}PS)_2][AuCl_4]$	Z = 1
$M_r = 1004.46$	F(000) = 486
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.946 {\rm ~Mg} {\rm ~m}^{-3}$
a = 8.5541 (2) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 9.1550 (3) Å	Cell parameters from 64231 reflections
c = 12.0421 (4) Å	$\theta = 2.4 - 30.8^{\circ}$
$\alpha = 107.427 (3)^{\circ}$	$\mu = 9.09 \text{ mm}^{-1}$
$\beta = 97.511(3)^{\circ}$	T = 100 K
$\gamma = 102.841 (3)^{\circ}$	Block, yellow
V = 857.30 (5) Å ³	$0.2 \times 0.15 \times 0.15 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur, Eos	166022 measured reflections
diffractometer	5209 independent reflections
Radiation source: fine-focus sealed X-ray tube	4622 reflections with $I > 2\sigma(I)$
Detector resolution: 16.1419 pixels mm ⁻¹	$R_{int} = 0.043$
ω -scan	$\theta_{max} = 31.1^\circ, \theta_{min} = 2.4^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(CrysAlisPro; Rigaku OD, 2015)	$k = -13 \rightarrow 13$
$T_{min} = 0.623, T_{max} = 1.000$	$l = -17 \rightarrow 17$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.016$	H-atom parameters constrained
$wR(F^2) = 0.038$	$w = 1/[\sigma^2(F_o^2) + (0.0185P)^2 + 0.7041P]$
S = 1.09	where $P = (F_o^2 + 2F_c^2)/3$
5209 reflections	$(\Delta/\sigma)_{max} < 0.001$
167 parameters	$\Delta\rho_{max} = 1.02$ e Å ⁻³
0 restraints	$\Delta\rho_{min} = -1.38$ e Å ⁻³
Primary atom site location: structure-invariant	Extinction correction: <i>SHELXL2019/3</i>
direct methods	(Sheldrick, 2015), $F_c^* =$
Secondary atom site location: difference Fourier map	$kF_{\rm c}[1+0.001 \times F_{\rm c}^2 \lambda^3/\sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00495 (18)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Au1	0.500000	0.000000	0.500000	0.01381 (4)	
P1	0.23333 (6)	0.11351 (5)	0.31699 (4)	0.01003 (9)	
S1	0.32514 (6)	0.15468 (6)	0.49180 (4)	0.01576 (9)	
C1	0.1171 (2)	0.2704 (2)	0.32846 (16)	0.0142 (3)	
C2	0.0891 (2)	-0.0945 (2)	0.24486 (16)	0.0132 (3)	
C3	0.4057 (2)	0.1460 (2)	0.23434 (15)	0.0129 (3)	
C11	-0.0022 (3)	0.2404 (2)	0.21169 (18)	0.0187 (4)	
H11A	-0.048072	0.331055	0.219483	0.028*	
H11B	-0.091156	0.143334	0.194725	0.028*	
H11C	0.056734	0.227528	0.146391	0.028*	
C12	0.2395 (3)	0.4356 (2)	0.36375 (18)	0.0192 (4)	
H12A	0.294950	0.441402	0.298285	0.029*	
H12B	0.321044	0.453291	0.435083	0.029*	
H12C	0.180728	0.517607	0.380378	0.029*	
C13	0.0194 (3)	0.2785 (2)	0.42887 (18)	0.0200 (4)	
H13A	0.095897	0.310702	0.505547	0.030*	
H13B	-0.055894	0.173395	0.413300	0.030*	
H13C	-0.043387	0.356352	0.431261	0.030*	
C21	0.0403 (2)	-0.1412 (2)	0.10879 (16)	0.0168 (4)	
H21A	-0.044660	-0.243312	0.076309	0.025*	
H21B	0.136711	-0.151025	0.074283	0.025*	
H21C	-0.002069	-0.058982	0.089049	0.025*	
C22	-0.0668 (3)	-0.1054 (2)	0.29582 (19)	0.0202 (4)	
H22A	-0.134025	-0.216395	0.266777	0.030*	

H22B	-0.129498	-0.039380	0.270205	0.030*
H22C	-0.036434	-0.067401	0.382994	0.030*
C23	0.1666 (3)	-0.2184 (2)	0.27418 (17)	0.0169 (4)
H23A	0.191786	-0.193494	0.360662	0.025*
H23B	0.267939	-0.215856	0.244147	0.025*
H23C	0.089573	-0.324714	0.236401	0.025*
C31	0.3485 (3)	0.1787 (2)	0.11975 (16)	0.0163 (4)
H31A	0.439144	0.190646	0.078153	0.024*
H31B	0.313906	0.276878	0.140200	0.024*
H31C	0.256104	0.089492	0.067927	0.024*
C32	0.5508 (2)	0.2864 (2)	0.31569 (18)	0.0174 (4)
H32A	0.590922	0.263261	0.386809	0.026*
H32B	0.514561	0.383441	0.339413	0.026*
H32C	0.639240	0.301838	0.272617	0.026*
C33	0.4723 (2)	-0.0006(2)	0.20037 (17)	0.0156 (4)
H33A	0.567529	0.022387	0.164807	0.023*
H33B	0.386675	-0.091506	0.142802	0.023*
H33C	0.505082	-0.026062	0.271857	0.023*
Au2	0.500000	0.500000	1.000000	0.01173 (3)
C11	0.47385 (6)	0.37675 (5)	0.80089 (4)	0.01857 (9)
C12	0.26132 (6)	0.56585 (6)	0.96144 (5)	0.02260 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.01493 (6)	0.01813 (5)	0.01024 (5)	0.00713 (4)	-0.00002 (3)	0.00674 (4)
P1	0.0118 (2)	0.01147 (18)	0.00798 (18)	0.00499 (16)	0.00147 (15)	0.00387 (15)
S 1	0.0196 (3)	0.0211 (2)	0.00863 (18)	0.01049 (18)	0.00142 (16)	0.00501 (16)
C1	0.0176 (10)	0.0159 (8)	0.0132 (8)	0.0105 (7)	0.0041 (7)	0.0063 (6)
C2	0.0130 (10)	0.0138 (7)	0.0131 (8)	0.0037 (6)	0.0016 (6)	0.0053 (6)
C3	0.0146 (10)	0.0129 (7)	0.0118 (7)	0.0043 (7)	0.0038 (6)	0.0043 (6)
C11	0.0186 (11)	0.0247 (9)	0.0178 (9)	0.0128 (8)	0.0013 (7)	0.0103 (7)
C12	0.0254 (12)	0.0135 (8)	0.0195 (9)	0.0086 (7)	0.0043 (8)	0.0045 (7)
C13	0.0245 (12)	0.0253 (9)	0.0179 (9)	0.0165 (8)	0.0097 (8)	0.0091 (7)
C21	0.0178 (11)	0.0161 (8)	0.0129 (8)	0.0020 (7)	-0.0006 (7)	0.0033 (6)
C22	0.0156 (11)	0.0232 (9)	0.0237 (10)	0.0048 (8)	0.0068 (8)	0.0104 (8)
C23	0.0201 (11)	0.0130 (8)	0.0186 (9)	0.0042 (7)	0.0029 (7)	0.0078 (7)
C31	0.0198 (11)	0.0169 (8)	0.0138 (8)	0.0048 (7)	0.0048 (7)	0.0074 (7)
C32	0.0133 (10)	0.0163 (8)	0.0192 (9)	0.0012 (7)	0.0010 (7)	0.0043 (7)
C33	0.0145 (10)	0.0170 (8)	0.0170 (8)	0.0071 (7)	0.0049 (7)	0.0057 (7)
Au2	0.01168 (6)	0.00828 (5)	0.01555 (5)	0.00233 (3)	0.00367 (3)	0.00448 (3)
Cl1	0.0220 (3)	0.01572 (19)	0.0169 (2)	0.00531 (17)	0.00461 (17)	0.00374 (15)
Cl2	0.0178 (3)	0.0207 (2)	0.0266 (2)	0.00959 (18)	0.00110 (18)	0.00259 (18)

Geometric parameters (Å, °)

Au1—S1	2.2889 (5)	С13—Н13С	0.9800
Au1—S1 ⁱ	2.2889 (5)	C21—H21A	0.9800

P1—C2	1.8939 (19)	C21—H21B	0.9800
P1—C3	1.9024 (19)	C21—H21C	0.9800
P1	1.9036 (18)	C22—H22A	0.9800
P1—S1	2.0374 (6)	C22—H22B	0.9800
C1—C12	1.536 (3)	C22—H22C	0.9800
C1-C11	1.537 (3)	C23—H23A	0.9800
C1—C13	1.550 (3)	C23—H23B	0.9800
C2—C22	1.535 (3)	C23—H23C	0.9800
C2—C21	1.538 (2)	C31—H31A	0.9800
C2—C23	1.538 (2)	C31—H31B	0.9800
C_{3} — C_{33}	1 538 (2)	C31—H31C	0.9800
C_{3} - C_{31}	1 539 (2)	C32—H32A	0.9800
C_{3} C_{3}	1.539(2) 1 540(3)	C32—H32B	0.9800
C11—H11A	0.9800	C32—H32C	0.9800
C11—H11B	0.9800	C33—H33A	0.9800
C11—H11C	0.9800	C33—H33B	0.9800
C12 H12A	0.9800	C33 H33C	0.9800
C12—I112A C12—I112B	0.9800		2 2802 (5)
C12—III2D C12—III2D	0.9800	Au2 - Cl1	2.2802(3)
C12 - H12C	0.9800	Au2—Cl1	2.2002(3)
$C13 - \Pi13A$	0.9800	Au2 - Cl2	2.2830(3)
С13—п13Б	0.9800	Au2—C12"	2.2830 (3)
S1—Au1—S1 ⁱ	180.0	H13B—C13—H13C	109.5
C2—P1—C3	111.14 (8)	C2-C21-H21A	109.5
C2—P1—C1	111.01 (9)	C2—C21—H21B	109.5
C3—P1—C1	111.40 (8)	H21A—C21—H21B	109.5
C2—P1—S1	110.51 (6)	C2—C21—H21C	109.5
C3—P1—S1	110.85 (6)	H21A—C21—H21C	109.5
C1—P1—S1	101.57 (6)	H21B—C21—H21C	109.5
P1—S1—Au1	107.87 (2)	C2—C22—H22A	109.5
C12—C1—C11	108.62 (15)	C2—C22—H22B	109.5
C12—C1—C13	106.15 (15)	H22A—C22—H22B	109.5
C11—C1—C13	108.74 (16)	C2—C22—H22C	109.5
C12—C1—P1	109.58 (13)	H22A—C22—H22C	109.5
C11—C1—P1	112.97 (12)	H22B—C22—H22C	109.5
C13—C1—P1	110.54 (12)	C2—C23—H23A	109.5
C22-C2-C21	108.92 (16)	C2—C23—H23B	109.5
$C_{22} - C_{2} - C_{23}$	105.94 (15)	H23A—C23—H23B	109.5
$C_{21} - C_{2} - C_{23}$	108.80 (15)	C2-C23-H23C	109.5
$C_{22} - C_{2} - P_{1}$	109 76 (13)	$H_{23A} - C_{23} - H_{23C}$	109.5
$C_{21} = C_{2} = P_{1}$	112 22 (12)	$H_{23B} - C_{23} - H_{23C}$	109.5
$C_{23} C_{2} P_{1}$	110.98(13)	C_{3} C_{31} H_{31A}	109.5
$C_{33} - C_{3} - C_{31}$	108 25 (14)	$C_3 - C_{31} - H_{31B}$	109.5
C_{33} C_{3} C_{37}	106 34 (16)	H31A-C31-H31B	109.5
$C_{31} - C_{3} - C_{32}$	109 41 (15)	C_3 — C_31 — H_31C	109.5
C_{33} C_{3} P_{1}	110 79 (12)	H_{31A} C_{31} H_{31C}	109.5
C_{31} C_{3} P_{1}	111 87 (12)	H31B - C31 - H31C	109.5
C_{32} C_{3} P_{1}	110 02 (12)	C3_C32_H32A	109.5
0.52 - 0.5 - 1.1	110.02 (12)	CJ-CJ2-1152A	107.5

C1—C11—H11A	109.5	С3—С32—Н32В	109.5
C1-C11-H11B	109.5	H32A—C32—H32B	109.5
H11A—C11—H11B	109.5	С3—С32—Н32С	109.5
C1-C11-H11C	109.5	H32A—C32—H32C	109.5
H11A—C11—H11C	109.5	H32B—C32—H32C	109.5
H11B—C11—H11C	109.5	С3—С33—Н33А	109.5
C1—C12—H12A	109.5	С3—С33—Н33В	109.5
C1—C12—H12B	109.5	Н33А—С33—Н33В	109.5
H12A—C12—H12B	109.5	С3—С33—Н33С	109.5
C1—C12—H12C	109.5	Н33А—С33—Н33С	109.5
H12A—C12—H12C	109.5	H33B—C33—H33C	109.5
H12B—C12—H12C	109.5	Cl1 ⁱⁱ —Au2—Cl1	180.0
C1—C13—H13A	109.5	Cl1 ⁱⁱ —Au2—Cl2	90.336 (18)
C1—C13—H13B	109.5	Cl1—Au2—Cl2	89.664 (18)
H13A—C13—H13B	109.5	Cl1 ⁱⁱ —Au2—Cl2 ⁱⁱ	89.664 (18)
C1—C13—H13C	109.5	Cl1—Au2—Cl2 ⁱⁱ	90.336 (18)
H13A—C13—H13C	109.5	Cl2—Au2—Cl2 ⁱⁱ	180.0
C2—P1—S1—Au1	69.57 (7)	C3—P1—C2—C21	-46.59 (15)
C3—P1—S1—Au1	-54.11 (6)	C1—P1—C2—C21	77.99 (15)
C1—P1—S1—Au1	-172.57 (6)	S1—P1—C2—C21	-170.10 (11)
C2—P1—C1—C12	-168.83 (12)	C3—P1—C2—C23	75.38 (14)
C3—P1—C1—C12	-44.40 (15)	C1—P1—C2—C23	-160.04 (12)
S1—P1—C1—C12	73.67 (13)	S1—P1—C2—C23	-48.13 (14)
C2—P1—C1—C11	-47.57 (16)	C2—P1—C3—C33	-42.58 (15)
C3—P1—C1—C11	76.86 (15)	C1—P1—C3—C33	-166.94 (12)
S1—P1—C1—C11	-165.08 (13)	S1—P1—C3—C33	80.74 (13)
C2—P1—C1—C13	74.52 (15)	C2—P1—C3—C31	78.30 (14)
C3—P1—C1—C13	-161.04 (13)	C1—P1—C3—C31	-46.06 (14)
S1—P1—C1—C13	-42.98 (14)	S1—P1—C3—C31	-158.38 (11)
C3—P1—C2—C22	-167.85 (12)	C2—P1—C3—C32	-159.88 (12)
C1—P1—C2—C22	-43.27 (15)	C1—P1—C3—C32	75.76 (14)
S1—P1—C2—C22	68.64 (13)	S1—P1—C3—C32	-36.56 (13)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C23—H23 <i>A</i> ···Au1	0.98	2.81	3.421 (2)	121
C33—H33 <i>C</i> ···Au1	0.98	2.69	3.5832 (19)	151
C13—H13A····S1	0.98	2.66	3.164 (2)	112
C32—H32A···S1	0.98	2.87	3.353 (2)	111
C12—H12A····Cl1 ⁱⁱⁱ	0.98	2.91	3.786 (2)	150
C22—H22A····Cl1 ^{iv}	0.98	2.83	3.607 (2)	136
C23—H23 <i>B</i> ···Cl1 ⁱ	0.98	2.94	3.782 (2)	145

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*, -*y*, -*z*+1.

(4a)

Crystal data

 $[C_{20}H_{46}AuP_2S_2][AuBr_4]$ $M_r = 1126.20$ Monoclinic, $P2_1/c$ a = 13.7871 (4) Å b = 10.4042 (3) Å c = 22.7240 (6) Å $\beta = 93.035$ (3)° V = 3255.05 (16) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur, Eos	169756 measured reflections
diffractometer	6651 independent reflections
Radiation source: fine-focus sealed tube	5373 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.086$
Detector resolution: 16.1419 pixels mm ⁻¹	$\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
ω scans	$h = -17 \rightarrow 17$
Absorption correction: multi-scan	$k = -13 \rightarrow 13$
(CrysAlisPro; Rigaku OD, 2015)	$l = -28 \rightarrow 28$
$T_{\min} = 0.179, \ T_{\max} = 1.000$	
Definement	

F(000) = 2104

 $\theta = 2.2 - 30.8^{\circ}$

Plate, red

 $\mu = 14.15 \text{ mm}^{-1}$ T = 100 K

 $0.25 \times 0.15 \times 0.02 \text{ mm}$

 $D_{\rm x} = 2.298 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 21928 reflections

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.046$ Hydrogen site location: inferred from $wR(F^2) = 0.112$ neighbouring sites S = 1.01H-atom parameters constrained 6651 reflections $w = 1/[\sigma^2(F_o^2) + (0.0456P)^2 + 52.5404P]$ 288 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 4.29 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -2.01 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Aul	0.24485 (2)	0.11240 (3)	0.25008 (2)	0.02621 (10)	
S1	0.41029 (16)	0.0981 (2)	0.24669 (10)	0.0324 (5)	
S2	0.07841 (15)	0.1215 (2)	0.25162 (9)	0.0244 (4)	
P1	0.42826 (15)	0.0729 (2)	0.15946 (10)	0.0263 (5)	
P2	0.05250 (14)	0.1109 (2)	0.33849 (9)	0.0185 (4)	
C1	0.5617 (7)	0.0747 (12)	0.1503 (5)	0.042 (3)	
C2	0.3598 (6)	0.1931 (9)	0.1152 (4)	0.035 (2)	
H2	0.290131	0.171352	0.120356	0.042*	
C3	0.3793 (7)	-0.0843 (9)	0.1331 (4)	0.034 (2)	
Н3	0.403408	-0.098618	0.092919	0.041*	
C4	-0.0785 (6)	0.0723 (8)	0.3419 (4)	0.0253 (18)	
C5	0.1320 (6)	-0.0082 (8)	0.3757 (4)	0.0265 (19)	
Н5	0.198759	0.029053	0.374540	0.032*	

C6	0.0793 (6)	0.2636 (8)	0.3766 (4)	0.0258 (18)
H6	0.057290	0.253613	0.417557	0.031*
C11	0.5854 (8)	0.0056 (14)	0.0919 (5)	0.058 (3)
H11A	0.549249	0.046773	0.058669	0.086*
H11B	0.566570	-0.085013	0.093993	0.086*
HIIC	0.655200	0.011751	0.086195	0.086*
C12	0.5926 (8)	0.2149(14)	0.1483 (6)	0.066(4)
H12A	0.573351	0.258815	0 184025	0.098*
H12R	0.561060	0.256358	0.113609	0.098*
H12C	0.663262	0.219893	0.145991	0.098*
C13	0.005202	0.217073	0.143991 0.2019 (5)	0.053(3)
U13 H13A	0.685956	0.0072 (13)	0.2017(3)	0.033 (3)
	0.003950	-0.090952	0.194901	0.080
	0.592112	-0.080832	0.203330	0.080*
П ISC С21	0.000320	0.034134	0.238433	0.080°
C21	0.3703 (8)	0.3304 (10)	0.1368 (5)	0.051 (3)
H2IA	0.434/9/	0.362892	0.128362	0.076*
H2IB	0.362406	0.333117	0.179423	0.076*
H21C	0.320426	0.384062	0.116684	0.076*
C22	0.3721 (7)	0.1803 (12)	0.0489 (5)	0.047 (3)
H22A	0.327595	0.239615	0.027542	0.070*
H22B	0.357354	0.091942	0.036443	0.070*
H22C	0.439150	0.201201	0.040191	0.070*
C31	0.4160 (9)	-0.1961 (10)	0.1715 (6)	0.056 (3)
H31A	0.403905	-0.178072	0.212789	0.084*
H31B	0.485941	-0.207142	0.167340	0.084*
H31C	0.381921	-0.274922	0.159017	0.084*
C32	0.2687 (7)	-0.0875 (10)	0.1270 (5)	0.044 (3)
H32A	0.247338	-0.169714	0.109731	0.067*
H32B	0.245345	-0.016976	0.101434	0.067*
H32C	0.242271	-0.077874	0.165978	0.067*
C41	-0.1141 (6)	0.1065 (10)	0.4030 (4)	0.035 (2)
H41A	-0.182794	0.083275	0.404724	0.052*
H41B	-0.106347	0.198989	0.409927	0.052*
H41C	-0.075846	0.058925	0.433394	0.052*
C42	-0.0943(7)	-0.0724(9)	0.3307 (5)	0.037(2)
H42A	-0.068124	-0.121210	0.364893	0.056*
H42B	-0.060853	-0.098273	0.295628	0.056*
H42C	-0.163946	-0.089882	0.324619	0.056*
C43	-0.1389(6)	0.1458 (10)	0.2934(4)	0.035(2)
H43A	-0.208206	0.131701	0.298556	0.053*
H43R	-0.122220	0.11/1305	0.254591	0.053*
H43C	-0.122222	0.237874	0.204001	0.053*
C51	0.124408	-0.1385(0)	0.290491 0.3453(5)	0.033
U51A	0.1380 (8)	-0.1383(9)	0.3433(3)	0.040(2)
1131A 1151D	0.193024	-0.10/4/3	0.303324	0.000.
	0.149021	-0.123364	0.303408	0.000*
пл. С52	0.078043	-0.10011/	0.349324	0.000^{-1}
U32	0.1148 (7)	-0.0230(10)	0.4419 (4)	0.035 (2)
нэдА	0.052543	-0.066256	0.446579	0.053*

H52B	0.113586	0.062093	0.460311	0.053*
H52C	0.167320	-0.074274	0.460772	0.053*
C61	0.0213 (8)	0.3770 (9)	0.3487 (4)	0.039 (2)
H61A	0.047881	0.458103	0.364470	0.058*
H61B	-0.047003	0.369536	0.358168	0.058*
H61C	0.026189	0.375374	0.305875	0.058*
C62	0.1868 (7)	0.2922 (11)	0.3823 (5)	0.049 (3)
H62A	0.211143	0.306366	0.343095	0.074*
H62B	0.221040	0.219364	0.401179	0.074*
H62C	0.197859	0.369531	0.406374	0.074*
Au2	0.500000	0.000000	0.500000	0.03200 (14)
Br1	0.62987 (7)	0.15379 (12)	0.48418 (5)	0.0454 (3)
Br2	0.41237 (7)	0.07330 (12)	0.41121 (5)	0.0455 (3)
Au3	1.000000	0.500000	0.500000	0.02361 (12)
Br3	0.90685 (7)	0.67401 (9)	0.45406 (4)	0.0342 (2)
Br4	0.85112 (6)	0.38951 (8)	0.52231 (4)	0.0311 (2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.02586 (17)	0.03220 (19)	0.02182 (17)	-0.00487 (14)	0.01293 (13)	-0.00523 (14)
S 1	0.0265 (11)	0.0505 (14)	0.0207 (11)	-0.0065 (10)	0.0061 (8)	-0.0088 (10)
S2	0.0254 (10)	0.0293 (11)	0.0193 (10)	-0.0019 (8)	0.0091 (8)	-0.0014 (8)
P1	0.0190 (10)	0.0409 (13)	0.0195 (11)	0.0044 (9)	0.0062 (8)	-0.0019 (10)
P2	0.0187 (9)	0.0209 (10)	0.0166 (10)	0.0025 (8)	0.0063 (7)	-0.0001 (8)
C1	0.022 (4)	0.068 (7)	0.038 (6)	0.005 (5)	0.009 (4)	0.006 (5)
C2	0.021 (4)	0.041 (6)	0.044 (6)	0.003 (4)	0.011 (4)	0.007 (4)
C3	0.037 (5)	0.040 (5)	0.026 (5)	0.002 (4)	0.005 (4)	-0.010 (4)
C4	0.026 (4)	0.029 (4)	0.022 (4)	-0.002 (3)	0.006 (3)	-0.002 (3)
C5	0.030 (4)	0.027 (4)	0.023 (5)	0.009 (4)	0.010 (4)	0.001 (3)
C6	0.030 (4)	0.029 (5)	0.019 (4)	0.003 (4)	0.003 (3)	-0.002(3)
C11	0.032 (6)	0.096 (10)	0.046 (7)	0.015 (6)	0.016 (5)	0.003 (6)
C12	0.034 (6)	0.087 (10)	0.077 (9)	-0.024 (6)	0.012 (6)	0.011 (8)
C13	0.025 (5)	0.092 (10)	0.043 (7)	0.008 (5)	0.000 (4)	0.006 (6)
C21	0.056 (7)	0.035 (6)	0.063 (8)	-0.001 (5)	0.024 (6)	0.006 (5)
C22	0.035 (5)	0.069 (8)	0.037 (6)	-0.001 (5)	0.003 (4)	0.016 (5)
C31	0.071 (8)	0.032 (6)	0.064 (8)	0.007 (5)	-0.009 (6)	0.003 (5)
C32	0.046 (6)	0.037 (6)	0.051 (7)	-0.011 (5)	0.004 (5)	-0.006 (5)
C41	0.021 (4)	0.051 (6)	0.033 (5)	0.005 (4)	0.011 (4)	0.006 (4)
C42	0.037 (5)	0.032 (5)	0.044 (6)	-0.004 (4)	0.018 (4)	0.000 (4)
C43	0.026 (4)	0.049 (6)	0.031 (5)	0.008 (4)	0.003 (4)	0.002 (4)
C51	0.051 (6)	0.035 (5)	0.036 (6)	0.018 (5)	0.012 (5)	0.002 (4)
C52	0.036 (5)	0.041 (5)	0.029 (5)	0.010 (4)	0.006 (4)	0.010 (4)
C61	0.059 (6)	0.029 (5)	0.029 (5)	0.007 (4)	0.010 (4)	0.000 (4)
C62	0.041 (6)	0.046 (6)	0.062 (7)	-0.010 (5)	0.012 (5)	-0.025 (6)
Au2	0.0213 (2)	0.0516 (3)	0.0233 (3)	0.0109 (2)	0.00309 (18)	-0.0048 (2)
Br1	0.0338 (5)	0.0646 (7)	0.0379 (6)	-0.0013 (5)	0.0037 (4)	0.0039 (5)
Br2	0.0384 (5)	0.0619 (7)	0.0356 (6)	0.0105 (5)	-0.0036 (4)	0.0010 (5)

Au3	0.0247 (2)	0.0193 (2)	0.0267 (3)	-0.00104 (17)	0.00136 (18)	0.00288 (17)
Br3	0.0332 (5)	0.0257 (4)	0.0435 (6)	0.0025 (4)	-0.0003 (4)	0.0066 (4)
Br4	0.0286 (4)	0.0278 (4)	0.0370 (5)	-0.0054 (3)	0.0040 (4)	0.0032 (4)

Geometric parameters (Å, °)

Au1—S1	2.291 (2)	C21—H21C	0.9800
Au1—S2	2.299 (2)	C22—H22A	0.9800
S1—P1	2.028 (3)	C22—H22B	0.9800
S2—P2	2.028 (3)	C22—H22C	0.9800
P1—C2	1.834 (10)	C31—H31A	0.9800
P1—C3	1.857 (10)	C31—H31B	0.9800
P1—C1	1.862 (9)	C31—H31C	0.9800
P2—C5	1.831 (9)	C32—H32A	0.9800
P2—C6	1.838 (9)	C32—H32B	0.9800
P2—C4	1.856 (8)	С32—Н32С	0.9800
C1—C12	1.521 (17)	C41—H41A	0.9800
C1—C13	1.531 (14)	C41—H41B	0.9800
C1—C11	1.561 (15)	C41—H41C	0.9800
C2—C21	1.515 (15)	C42—H42A	0.9800
C2—C22	1.532 (14)	C42—H42B	0.9800
C2—H2	1.0000	C42—H42C	0.9800
C3—C31	1.524 (14)	C43—H43A	0.9800
C3—C32	1.524 (13)	C43—H43B	0.9800
С3—Н3	1.0000	C43—H43C	0.9800
C4—C41	1.540 (12)	C51—H51A	0.9800
C4—C42	1.541 (13)	C51—H51B	0.9800
C4—C43	1.546 (12)	C51—H51C	0.9800
C5—C51	1.527 (12)	С52—Н52А	0.9800
C5—C52	1.542 (12)	С52—Н52В	0.9800
С5—Н5	1.0000	С52—Н52С	0.9800
C6—C62	1.510 (13)	C61—H61A	0.9800
C6—C61	1.542 (12)	C61—H61B	0.9800
С6—Н6	1.0000	C61—H61C	0.9800
C11—H11A	0.9800	C62—H62A	0.9800
C11—H11B	0.9800	С62—Н62В	0.9800
C11—H11C	0.9800	С62—Н62С	0.9800
C12—H12A	0.9800	Au2—Br2 ⁱ	2.4195 (10)
C12—H12B	0.9800	Au2—Br2	2.4196 (10)
C12—H12C	0.9800	Au2—Br1	2.4421 (11)
C13—H13A	0.9800	Au2—Br1 ⁱ	2.4421 (11)
C13—H13B	0.9800	Au3—Br3 ⁱⁱ	2.4238 (9)
C13—H13C	0.9800	Au3—Br3	2.4238 (9)
C21—H21A	0.9800	Au3—Br4	2.4294 (8)
C21—H21B	0.9800	Au3—Br4 ⁱⁱ	2.4294 (8)
S1—Au1—S2	178.28 (8)	H21B—C21—H21C	109.5
P1—S1—Au1	102.39 (11)	C2—C22—H22A	109.5

P2—S2—Au1	103.89 (11)	C2—C22—H22B	109.5
C2—P1—C3	104.9 (5)	H22A—C22—H22B	109.5
C2—P1—C1	114.5 (5)	C2—C22—H22C	109.5
C3—P1—C1	108.5 (5)	H22A—C22—H22C	109.5
C2—P1—S1	111.2 (3)	H22B—C22—H22C	109.5
C3—P1—S1	111.6 (3)	C3—C31—H31A	109.5
C1—P1—S1	106.3 (3)	C3—C31—H31B	109.5
C5—P2—C6	105.5 (4)	H31A—C31—H31B	109.5
C5—P2—C4	113.3 (4)	C3—C31—H31C	109.5
C6—P2—C4	109.8 (4)	H31A—C31—H31C	109.5
C5—P2—S2	110.8 (3)	H31B—C31—H31C	109.5
C6 - P2 - S2	111.7 (3)	C3—C32—H32A	109.5
C4 - P2 - S2	105.9 (3)	C3—C32—H32B	109.5
C12-C1-C13	109.6 (10)	H32A—C32—H32B	109.5
C12 - C1 - C11	110 1 (10)	C_{3} C_{3} H_{3}^{2} H_{3}^{2} C_{3}^{2} H_{3}^{2} H_{3}^{2} C_{3}^{2} H_{3}^{2} H_{3}^{2} C_{3}^{2} H_{3}^{2}	109.5
C13-C1-C11	108.9 (9)	$H_{32A} - C_{32} - H_{32C}$	109.5
C12 - C1 - P1	100.9(7) 107.0(7)	H32B-C32-H32C	109.5
C12 C1 P1	107.0(7)	C4 - C41 - H41A	109.5
C11 - C1 - P1	111.1(7) 110.0(7)	C4 - C41 - H41B	109.5
$C_{21} - C_{22} - C_{22}$	110.0(7) 112.8(9)	H41A - C41 - H41B	109.5
$C_{21} = C_{2} = C_{22}$	112.0(9) 115.3(8)	C4-C41-H41C	109.5
$C_{22} = C_{2} = P_{1}$	113.5(0) 113.6(7)	H41A - C41 - H41C	109.5
$C_{22} = C_{2} = H_{1}$	104.6	H41B-C41-H41C	109.5
$C_{21} C_{2} H_{2}$	104.6	C4-C42-H42A	109.5
P1_C2_H2	104.6	C4— $C42$ — $H42B$	109.5
$C_{31} - C_{3} - C_{32}$	109.6 (9)	H42A - C42 - H42B	109.5
$C_{31} - C_{3} - P_{1}$	109.6(7)	C4 - C42 - H42C	109.5
$C_{32} - C_{3} - P_{1}$	112.0(7) 113.2(7)	H42A - C42 - H42C	109.5
C_{31} C_{3} H_{3}	107.0	H42B - C42 - H42C	109.5
C32—C3—H3	107.0	C4 - C43 - H43A	109.5
P1-C3-H3	107.0	C4-C43-H43B	109.5
C41 - C4 - C42	107.0 108.9(7)	H43A - C43 - H43B	109.5
C41 - C4 - C43	100.9(7) 1101(7)	C4-C43-H43C	109.5
C42 - C4 - C43	107.5(8)	H43A - C43 - H43C	109.5
C41 - C4 - P2	110 2 (6)	H43B-C43-H43C	109.5
C42 - C4 - P2	109.5 (6)	C_{5} C_{51} H_{51A}	109.5
C42 - C4 - P2	110.6 (6)	C5-C51-H51B	109.5
$C_{+3} = C_{+} = C_{2}$ $C_{51} = C_{5} = C_{52}$	110.0(0) 111.6(8)	H_{51A} C_{51} H_{51B}	109.5
C51 - C5 - P2	1161(7)	C5-C51-H51C	109.5
C52 - C5 - P2	113.5 (6)	$H_{51}A = C_{51} = H_{51}C_{51}$	109.5
$C_{52} = C_{5} = H_{5}$	104.8	H51B-C51-H51C	109.5
C52—C5—H5	104.8	C5-C52-H52A	109.5
P2-C5-H5	104.8	C5-C52-H52R	109.5
C_{62} C_{6} C_{61}	111 7 (8)	H52A-C52-H52B	109.5
C62 - C6 - P2	112.5 (6)	C5-C52-H52C	109.5
C61—C6—P2	112.3 (6)	H52A—C52—H52C	109.5
C62—C6—H6	106.6	H52B-C52-H52C	109.5
C61—C6—H6	106.6	C6—C61—H61A	109.5
	100.0		107.5

Р2—С6—Н6	106.6	C6—C61—H61B	109.5
C1-C11-H11A	109.5	H61A—C61—H61B	109.5
C1—C11—H11B	109.5	C6—C61—H61C	109.5
H11A—C11—H11B	109.5	H61A—C61—H61C	109.5
C1—C11—H11C	109.5	H61B—C61—H61C	109.5
H11A—C11—H11C	109.5	C6—C62—H62A	109.5
H11B—C11—H11C	109.5	C6—C62—H62B	109.5
C1—C12—H12A	109.5	H62A—C62—H62B	109.5
C1—C12—H12B	109.5	C6—C62—H62C	109.5
H12A—C12—H12B	109.5	H62A—C62—H62C	109.5
C1—C12—H12C	109.5	H62B—C62—H62C	109.5
H12A—C12—H12C	109.5	Br2 ⁱ —Au2—Br2	180.0
H12B—C12—H12C	109.5	Br2 ⁱ —Au2—Br1	89.52 (4)
C1—C13—H13A	109.5	Br2—Au2—Br1	90.48 (4)
C1—C13—H13B	109.5	Br2 ⁱ —Au2—Br1 ⁱ	90.48 (4)
H13A—C13—H13B	109.5	Br2—Au2—Br1 ⁱ	89.52 (4)
C1—C13—H13C	109.5	Br1—Au2—Br1 ⁱ	180.0
H13A—C13—H13C	109.5	Br3 ⁱⁱ —Au3—Br3	180.0
H13B—C13—H13C	109.5	Br3 ⁱⁱ —Au3—Br4	89.48 (3)
C2-C21-H21A	109.5	Br3—Au3—Br4	90.52 (3)
C2—C21—H21B	109.5	Br3 ⁱⁱ —Au3—Br4 ⁱⁱ	90.52 (3)
H21A—C21—H21B	109.5	Br3—Au3—Br4 ⁱⁱ	89.48 (3)
C2—C21—H21C	109.5	Br4—Au3—Br4 ⁱⁱ	180.0
H21A—C21—H21C	109.5		
Au1—S1—P1—C2	49.8 (3)	C2—P1—C3—C32	-45.8 (8)
Au1—S1—P1—C3	-66.9 (3)	C1—P1—C3—C32	-168.6 (7)
Au1—S1—P1—C1	175.0 (4)	S1—P1—C3—C32	74.7 (8)
Au1—S2—P2—C5	-41.5 (3)	C5—P2—C4—C41	77.6 (7)
Au1—S2—P2—C6	75.8 (3)	C6—P2—C4—C41	-40.0 (7)
Au1—S2—P2—C4	-164.7 (3)	S2—P2—C4—C41	-160.8 (6)
C2—P1—C1—C12	41.1 (9)	C5—P2—C4—C42	-42.2 (7)
C3—P1—C1—C12	157.9 (8)	C6—P2—C4—C42	-159.9 (6)
S1—P1—C1—C12	-82.0 (8)	S2—P2—C4—C42	79.4 (6)
C2—P1—C1—C13	160.8 (8)	C5-P2-C4-C43	-160.5(6)
C3—P1—C1—C13	-82.4 (9)	C6—P2—C4—C43	81.9 (7)
S1—P1—C1—C13	37.6 (9)	S2—P2—C4—C43	-38.9 (6)
C2—P1—C1—C11	-78.5 (9)	C6—P2—C5—C51	-168.6 (7)
C3—PI—CI—CII	38.2 (9)	C4—P2—C5—C51	71.2 (8)
SI-PI-CI-CII	158.3 (7)	S2—P2—C5—C51	-47.6 (7)
C3—P1—C2—C21	167.3 (7)	C6—P2—C5—C52	60.0 (8)
C1 - P1 - C2 - C21	-/3.9(8)	C4 - P2 - C5 - C52	-60.1 (8)
S1 - P1 - C2 - C21	46.6 (8)	S2—P2—C5—C52	-17/8.9(6)
$C_3 - P_1 - C_2 - C_{22}$	-60.3(8)	C_{2} P_{2} C_{6} C_{62}	50.3 (8)
C1 - P1 - C2 - C22	S8.S (9)	C4—P2—C6—C62	172.6 (7)
	170 0 (()		70 2 (2)
SI = FI = C2 = C22	179.0 (6)	S2—P2—C6—C62	-70.2 (8)

C1—P1—C3—C31	66.4 (9)	C4—P2—C6—C61	-60.2 (7)
S1—P1—C3—C31	-50.4 (8)	S2—P2—C6—C61	57.0 (7)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
C32—H32 <i>C</i> ···Au1	0.98	2.75	3.514 (11)	135
C13—H13C…S1	0.98	2.76	3.212 (11)	109
C43—H43 <i>B</i> ···S2	0.98	2.77	3.201 (9)	107
C3—H3···Br1 ⁱⁱⁱ	1.00	3.14	3.809 (9)	126
C52—H52 C ···Br1 ⁱ	0.98	3.11	4.055 (9)	161
C5—H5…Br2	1.00	3.05	3.997 (9)	158
C62—H62 <i>B</i> ···Br2	0.98	3.04	3.883 (12)	145
C2—H2···Br3 ⁱⁱⁱ	1.00	3.12	3.927 (9)	139
C6—H6···Br3 ^{iv}	1.00	3.03	3.898 (8)	146
C32—H32 <i>B</i> ···Br3 ⁱⁱⁱ	0.98	3.11	4.023 (11)	156
C42—H42 A ···Br3 ^v	0.98	2.97	3.848 (10)	149
C62—H62 C ···Br4 ^{iv}	0.98	3.08	4.007 (10)	158

Symmetry codes: (i) -x+1, -y, -z+1; (iii) -x+1, y-1/2, -z+1/2; (iv) -x+1, -y+1, -z+1; (v) x-1, y-1, z.

Bis[tert-butylbis(propan-2-yl)-25-phosphaneselanone-kSe]gold(I) tetrabromidoaurate(III) (4b)

Crystal data

[Au(C₁₀H₂₃PSe)₂][AuBr₄] $M_r = 1220.00$ Monoclinic, $P2_1/c$ a = 13.7265 (3) Å b = 10.5615 (3) Å c = 22.7782 (5) Å $\beta = 94.096$ (2)° V = 3293.78 (14) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur, Eos diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 16.1419 pixels mm⁻¹ ω -scan Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) $T_{\min} = 0.589, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.049$ S = 1.039556 reflections F(000) = 2248 $D_x = 2.460 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 14834 reflections $\theta = 2.1-30.9^{\circ}$ $\mu = 16.07 \text{ mm}^{-1}$ T = 100 KBlock, red $0.15 \times 0.10 \times 0.05 \text{ mm}$

106256 measured reflections 9556 independent reflections 7328 reflections with $I > 2\sigma(I)$ $R_{int} = 0.068$ $\theta_{max} = 30.0^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -19 \rightarrow 18$ $k = -14 \rightarrow 14$ $l = -31 \rightarrow 32$

288 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained
$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.012P)^2 + 5.9573P] \\ &\text{where } P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} = 0.001 \\ \Delta\rho_{\text{max}} = 1.57 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} = -1.09 \text{ e } \text{\AA}^{-3} \end{split}$$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Aul	0.24873 (2)	0.10808 (2)	0.25292 (2)	0.01848 (4)
Se1	0.42270 (3)	0.08281 (4)	0.25371 (2)	0.02074 (9)
Se2	0.07358 (3)	0.12570 (4)	0.24726 (2)	0.01833 (9)
P1	0.43426 (7)	0.06549 (10)	0.15853 (4)	0.0141 (2)
P2	0.04571 (7)	0.10969 (9)	0.34028 (4)	0.0134 (2)
C1	0.5678 (3)	0.0643 (4)	0.14645 (19)	0.0236 (10)
C2	0.3652 (3)	0.1931 (4)	0.11898 (18)	0.0194 (9)
H2	0.295074	0.175806	0.125240	0.023*
C3	0.3795 (3)	-0.0832 (4)	0.12957 (17)	0.0153 (8)
H3	0.397880	-0.092943	0.088119	0.018*
C4	-0.0870 (3)	0.0738 (4)	0.34291 (17)	0.0172 (8)
C5	0.1267 (3)	-0.0098 (4)	0.37674 (17)	0.0165 (8)
Н5	0.194062	0.025662	0.375221	0.020*
C6	0.0740 (3)	0.2594 (4)	0.37980 (17)	0.0171 (8)
H6	0.050848	0.250060	0.420222	0.021*
C11	0.5845 (3)	0.0012 (5)	0.08645 (19)	0.0308 (11)
H11A	0.544312	0.043902	0.055113	0.046*
H11B	0.566130	-0.088336	0.087749	0.046*
H11C	0.653543	0.008335	0.078613	0.046*
C12	0.6047 (3)	0.2010 (5)	0.1463 (2)	0.0331 (12)
H12A	0.587663	0.243740	0.182332	0.050*
H12B	0.574290	0.245624	0.111966	0.050*
H12C	0.675814	0.201222	0.144413	0.050*
C13	0.6256 (3)	-0.0082 (5)	0.19610 (19)	0.0314 (11)
H13A	0.694832	-0.010263	0.188273	0.047*
H13B	0.600627	-0.094936	0.197944	0.047*
H13C	0.618066	0.034451	0.233725	0.047*
C21	0.3847 (3)	0.3265 (4)	0.1430 (2)	0.0311 (11)
H21A	0.448024	0.356236	0.131240	0.047*
H21B	0.385387	0.325042	0.186071	0.047*
H21C	0.333086	0.383713	0.127183	0.047*
C22	0.3722 (3)	0.1874 (4)	0.05189 (18)	0.0251 (10)
H22A	0.326132	0.248084	0.032713	0.038*
H22B	0.356010	0.101816	0.037759	0.038*
H22C	0.438734	0.208837	0.042465	0.038*
C31	0.4188 (3)	-0.1992 (4)	0.16431 (19)	0.0274 (10)
H31A	0.409001	-0.187487	0.206161	0.041*
H31B	0.488618	-0.209048	0.159131	0.041*
H31C	0.383729	-0.275104	0.149802	0.041*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C32	0.2679 (3)	-0.0823 (4)	0.12822 (19)	0.0240 (10)
H32A	0.242184	-0.160863	0.110274	0.036*
H32B	0.242496	-0.009761	0.105043	0.036*
H32C	0.247573	-0.075548	0.168477	0.036*
C41	-0.1208 (3)	0.1055 (4)	0.40416 (18)	0.0231 (9)
H41A	-0.189397	0.081130	0.405943	0.035*
H41B	-0.113890	0.196704	0.411331	0.035*
H41C	-0.080627	0.059008	0.434214	0.035*
C42	-0.1041 (3)	-0.0681 (4)	0.3305 (2)	0.0267 (10)
H42A	-0.073381	-0.118090	0.362976	0.040*
H42B	-0.075486	-0.091157	0.293759	0.040*
H42C	-0.174460	-0.085360	0.326776	0.040*
C43	-0.1477 (3)	0.1481 (4)	0.29472 (18)	0.0215 (9)
H43A	-0.217398	0.135308	0.299443	0.032*
H43B	-0.131990	0.117656	0.255859	0.032*
H43C	-0.132170	0.238473	0.298253	0.032*
C51	0.1300 (3)	-0.1379 (4)	0.3458 (2)	0.0262 (10)
H51A	0.188011	-0.184748	0.361037	0.039*
H51B	0.132754	-0.124701	0.303362	0.039*
H51C	0.071231	-0.186470	0.353138	0.039*
C52	0.1124 (3)	-0.0258 (4)	0.44255 (17)	0.0233 (9)
H52A	0.051663	-0.072157	0.447351	0.035*
H52B	0.108884	0.057749	0.461002	0.035*
H52C	0.167590	-0.073191	0.461309	0.035*
C61	0.0203 (3)	0.3717 (4)	0.35124 (19)	0.0237 (10)
H61A	0.043459	0.449991	0.370687	0.035*
H61B	-0.049992	0.362428	0.355154	0.035*
H61C	0.032726	0.375305	0.309436	0.035*
C62	0.1842 (3)	0.2847 (4)	0.3870 (2)	0.0271 (10)
H62A	0.210806	0.285379	0.348149	0.041*
H62B	0.216222	0.217969	0.411220	0.041*
H62C	0.196118	0.366949	0.406064	0.041*
Au2	0.500000	0.000000	0.500000	0.01658 (5)
Br1	0.62575 (3)	0.15694 (4)	0.48524 (2)	0.02692 (10)
Br2	0.40674 (3)	0.07184 (4)	0.41181 (2)	0.02478 (10)
Au3	1.000000	0.500000	0.500000	0.01530 (5)
Br3	0.90816 (3)	0.67316 (4)	0.45277 (2)	0.02375 (9)
Br4	0.84937 (3)	0.39442 (4)	0.52190 (2)	0.02172 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.02021 (8)	0.02011 (8)	0.01628 (8)	-0.00264 (7)	0.00940 (6)	-0.00332 (7)
Se1	0.0194 (2)	0.0312 (2)	0.0120 (2)	-0.00504 (18)	0.00327 (15)	-0.00602 (17)
Se2	0.0206 (2)	0.0221 (2)	0.0129 (2)	0.00093 (16)	0.00597 (15)	-0.00077 (16)
P1	0.0118 (5)	0.0191 (5)	0.0115 (5)	-0.0008(4)	0.0023 (4)	-0.0010 (4)
P2	0.0134 (5)	0.0143 (5)	0.0126 (5)	0.0022 (4)	0.0032 (4)	0.0002 (4)
C1	0.0097 (19)	0.037 (3)	0.024 (2)	0.0010 (18)	0.0065 (16)	0.001 (2)

C2	0.016 (2)	0.018 (2)	0.025 (2)	-0.0017 (16)	0.0048 (17)	0.0036 (17)
C3	0.018 (2)	0.0153 (19)	0.013 (2)	-0.0002 (15)	0.0000 (15)	-0.0025 (16)
C4	0.0156 (19)	0.019 (2)	0.018 (2)	0.0035 (16)	0.0041 (16)	0.0003 (17)
C5	0.0136 (19)	0.017 (2)	0.019 (2)	0.0050 (16)	0.0030 (15)	0.0027 (16)
C6	0.019 (2)	0.019 (2)	0.014 (2)	0.0014 (16)	0.0010 (15)	-0.0017 (16)
C11	0.023 (2)	0.046 (3)	0.025 (3)	0.005 (2)	0.0104 (19)	0.000(2)
C12	0.018 (2)	0.046 (3)	0.035 (3)	-0.014 (2)	0.005 (2)	-0.001 (2)
C13	0.016 (2)	0.054 (3)	0.024 (3)	0.004 (2)	-0.0021 (18)	0.005 (2)
C21	0.035 (3)	0.020 (2)	0.040 (3)	0.000 (2)	0.013 (2)	0.004 (2)
C22	0.022 (2)	0.030 (3)	0.024 (2)	-0.0022 (19)	0.0028 (18)	0.0088 (19)
C31	0.038 (3)	0.020 (2)	0.024 (2)	0.005 (2)	0.000 (2)	-0.0015 (19)
C32	0.022 (2)	0.021 (2)	0.029 (3)	-0.0071 (18)	-0.0001 (18)	-0.0045 (19)
C41	0.018 (2)	0.034 (3)	0.018 (2)	0.0044 (18)	0.0076 (17)	-0.0010 (19)
C42	0.021 (2)	0.026 (2)	0.034 (3)	-0.0043 (19)	0.0071 (19)	0.000(2)
C43	0.015 (2)	0.029 (2)	0.020 (2)	0.0030 (17)	0.0015 (16)	0.0008 (18)
C51	0.028 (2)	0.018 (2)	0.032 (3)	0.0104 (18)	0.0026 (19)	0.0014 (19)
C52	0.028 (2)	0.023 (2)	0.019 (2)	0.0035 (18)	0.0031 (18)	0.0076 (18)
C61	0.036 (3)	0.014 (2)	0.020 (2)	0.0036 (18)	0.0020 (19)	-0.0031 (17)
C62	0.024 (2)	0.022 (2)	0.036 (3)	-0.0046 (18)	0.003 (2)	-0.009 (2)
Au2	0.01443 (11)	0.02328 (12)	0.01210 (11)	0.00557 (9)	0.00144 (8)	-0.00054 (9)
Br1	0.0228 (2)	0.0343 (2)	0.0235 (2)	-0.00354 (19)	0.00076 (17)	0.00478 (19)
Br2	0.0216 (2)	0.0346 (2)	0.0176 (2)	0.00501 (18)	-0.00265 (16)	0.00469 (18)
Au3	0.01867 (11)	0.01204 (10)	0.01515 (11)	-0.00082 (8)	0.00087 (8)	-0.00027 (8)
Br3	0.0242 (2)	0.0172 (2)	0.0293 (2)	0.00082 (17)	-0.00192 (17)	0.00480 (18)
Br4	0.0218 (2)	0.0187 (2)	0.0248 (2)	-0.00377 (16)	0.00270 (16)	0.00122 (17)

Geometric parameters (Å, °)

Au1—Se1	2.4017 (4)	C21—H21C	0.9800
Au1—Se2	2.4057 (4)	C22—H22A	0.9800
Se1—P1	2.1929 (10)	C22—H22B	0.9800
Se2—P2	2.1864 (10)	C22—H22C	0.9800
P1—C3	1.843 (4)	C31—H31A	0.9800
P1—C2	1.845 (4)	C31—H31B	0.9800
P1—C1	1.873 (4)	C31—H31C	0.9800
Р2—С5	1.840 (4)	С32—Н32А	0.9800
Р2—С6	1.847 (4)	С32—Н32В	0.9800
P2—C4	1.866 (4)	С32—Н32С	0.9800
C1—C12	1.530 (6)	C41—H41A	0.9800
C1—C13	1.538 (6)	C41—H41B	0.9800
C1—C11	1.552 (6)	C41—H41C	0.9800
C2—C21	1.528 (6)	C42—H42A	0.9800
C2—C22	1.539 (6)	C42—H42B	0.9800
С2—Н2	1.0000	C42—H42C	0.9800
C3—C32	1.530 (5)	C43—H43A	0.9800
C3—C31	1.535 (5)	C43—H43B	0.9800
С3—Н3	1.0000	C43—H43C	0.9800
C4—C41	1.538 (5)	C51—H51A	0.9800

C4 C42	1541(6)	O51 U51D	0.0000
C4—C42	1.541 (6)	C51—H51B	0.9800
C4—C43	1.544 (5)	C51—H51C	0.9800
C5—C51	1.528 (5)	C52—H52A	0.9800
C5—C52	1.535 (5)	C52—H52B	0.9800
С5—Н5	1.0000	C52—H52C	0.9800
C6—C61	1.519 (5)	C61—H61A	0.9800
C6—C62	1.534 (6)	C61—H61B	0.9800
С6—Н6	1.0000	C61—H61C	0.9800
C11—H11A	0.9800	C62—H62A	0.9800
C11—H11B	0.9800	C62—H62B	0.9800
C11—H11C	0.9800	C62—H62C	0.9800
C12—H12A	0.9800	Au2—Br2	2.4254 (4)
C12—H12B	0.9800	Au2—Br2 ⁱ	2.4254 (4)
C12—H12C	0.9800	Au2—Br1	2.4337 (4)
C13—H13A	0.9800	Au2—Br1 ⁱ	2 4337 (4)
C13—H13B	0.9800	Au3—Br3 ⁱⁱ	2.1337(1) 2.4285(4)
C13_H13C	0.9800	$\Delta u_3 = Br_3$	2.1205(1) 2.4285(4)
	0.9800	Au2 $\mathbf{D}_{\mathbf{r}}^{\mathbf{r}}$	2.4205 (4)
C21—H21A	0.9800	$Au_2 = Dr_4$	2.4320 (4)
С21—П21В	0.9800	Au5—BI4	2.4320 (4)
Se1—Au1—Se2	176,734 (16)	H21B—C21—H21C	109.5
P1—Se1—Au1	98.27 (3)	C2—C22—H22A	109.5
P2—Se2—Au1	100.69 (3)	C2-C22-H22B	109.5
$C_3 = P_1 = C_2$	105.00(0)	$H_{22}^{22} = C_{22}^{22} = H_{22}^{22} B_{22}^{22}$	109.5
$C_3 = P_1 = C_1$	108.68 (19)	$C_2 - C_2^2 - H_2^2 C_2^2$	109.5
$C_2 = P_1 = C_1$	$114\ 03\ (19)$	$H_{22} = C_{22} = H_{22} = H$	109.5
$C_2 P_1 S_{e1}$	111 62 (13)	H22R C22 H22C	109.5
$C_2 = P_1 = S_2 P_1$	110.54(13)	$C_{2}^{2} C_{21}^{21} H_{21}^{21}$	109.5
$C_2 = 11 = 5c_1$	106.65(14)	$C_2 = C_2 = H_2 I P$	109.5
$C_1 - F_1 - Se_1$	105.52(14)		109.5
$C_3 = P_2 = C_0$	103.33 (18)		109.5
$C_{5}-P_{2}-C_{4}$	113.97 (18)		109.5
C_{6} P2 C_{4}	109.25 (18)	H3IA—C3I—H3IC	109.5
C5—P2—Se2	110.39 (13)	H3IB—C3I—H3IC	109.5
C6—P2—Se2	111.16 (13)	C3—C32—H32A	109.5
C4—P2—Se2	106.60 (13)	C3—C32—H32B	109.5
C12—C1—C13	108.5 (4)	H32A—C32—H32B	109.5
C12—C1—C11	109.4 (4)	C3—C32—H32C	109.5
C13—C1—C11	109.5 (4)	H32A—C32—H32C	109.5
C12—C1—P1	108.8 (3)	H32B—C32—H32C	109.5
C13—C1—P1	110.7 (3)	C4—C41—H41A	109.5
C11—C1—P1	109.9 (3)	C4—C41—H41B	109.5
C21—C2—C22	111.7 (3)	H41A—C41—H41B	109.5
C21—C2—P1	115.3 (3)	C4—C41—H41C	109.5
C22—C2—P1	113.0 (3)	H41A—C41—H41C	109.5
С21—С2—Н2	105.2	H41B—C41—H41C	109.5
С22—С2—Н2	105.2	C4—C42—H42A	109.5
Р1—С2—Н2	105.2	C4—C42—H42B	109.5
C32—C3—C31	109.3 (3)	H42A—C42—H42B	109.5

C32—C3—P1	112.6 (3)	C4—C42—H42C	109.5
C31—C3—P1	112.1 (3)	H42A—C42—H42C	109.5
С32—С3—Н3	107.6	H42B—C42—H42C	109.5
С31—С3—Н3	107.6	C4—C43—H43A	109.5
Р1—С3—Н3	107.6	C4—C43—H43B	109.5
C41—C4—C42	109.1 (3)	H43A—C43—H43B	109.5
C41—C4—C43	110.6 (3)	C4—C43—H43C	109.5
C42—C4—C43	107.2 (3)	H43A—C43—H43C	109.5
C41—C4—P2	110.1 (3)	H43B—C43—H43C	109.5
C42—C4—P2	109.2 (3)	C5—C51—H51A	109.5
C43—C4—P2	110.6 (3)	C5—C51—H51B	109.5
C51—C5—C52	111.3 (3)	H51A—C51—H51B	109.5
C51—C5—P2	115.8 (3)	C5—C51—H51C	109.5
C52—C5—P2	113.6 (3)	H51A—C51—H51C	109.5
С51—С5—Н5	105.0	H51B—C51—H51C	109.5
С52—С5—Н5	105.0	C5—C52—H52A	109.5
Р2—С5—Н5	105.0	C5—C52—H52B	109.5
C61—C6—C62	110.7 (3)	H52A—C52—H52B	109.5
C61—C6—P2	112.4 (3)	C5—C52—H52C	109.5
C62—C6—P2	111.9 (3)	H52A—C52—H52C	109.5
С61—С6—Н6	107.2	H52B—C52—H52C	109.5
С62—С6—Н6	107.2	C6—C61—H61A	109.5
Р2—С6—Н6	107.2	C6—C61—H61B	109.5
C1—C11—H11A	109.5	H61A—C61—H61B	109.5
C1—C11—H11B	109.5	C6—C61—H61C	109.5
H11A—C11—H11B	109.5	H61A—C61—H61C	109.5
C1—C11—H11C	109.5	H61B—C61—H61C	109.5
H11A—C11—H11C	109.5	C6—C62—H62A	109.5
H11B—C11—H11C	109.5	C6—C62—H62B	109.5
C1—C12—H12A	109.5	H62A—C62—H62B	109.5
C1—C12—H12B	109.5	C6—C62—H62C	109.5
H12A—C12—H12B	109.5	H62A—C62—H62C	109.5
C1—C12—H12C	109.5	H62B—C62—H62C	109.5
H12A—C12—H12C	109.5	Br2—Au2—Br2 ⁱ	180.0
H12B—C12—H12C	109.5	Br2—Au2—Br1	90.581 (15)
C1—C13—H13A	109.5	Br2 ⁱ —Au2—Br1	89.419 (15)
C1—C13—H13B	109.5	Br2—Au2—Br1 ⁱ	89.419 (15)
H13A—C13—H13B	109.5	Br2 ⁱ —Au2—Br1 ⁱ	90.581 (15)
C1—C13—H13C	109.5	Br1—Au2—Br1 ⁱ	180.0
H13A—C13—H13C	109.5	Br3 ⁱⁱ —Au3—Br3	180.0
H13B—C13—H13C	109.5	Br3 ⁱⁱ —Au3—Br4 ⁱⁱ	90.810 (14)
C2-C21-H21A	109.5	Br3—Au3—Br4 ⁱⁱ	89.190 (14)
C2-C21-H21B	109.5	Br3 ⁱⁱ —Au3—Br4	89.191 (14)
H21A—C21—H21B	109.5	Br3—Au3—Br4	90.809 (14)
C2-C21-H21C	109.5	Br4 ⁱⁱ —Au3—Br4	180.0
H21A—C21—H21C	109.5		
Au1—Se1—P1—C3	-68.24 (14)	C2—P1—C3—C31	-171.7 (3)

Au1—Se1—P1—C2	48.73 (14)	C1—P1—C3—C31	65.7 (3)
Au1—Se1—P1—C1	173.20 (15)	Se1—P1—C3—C31	-51.7 (3)
Au1—Se2—P2—C5	-39.44 (14)	C5—P2—C4—C41	77.4 (3)
Au1—Se2—P2—C6	77.32 (14)	C6—P2—C4—C41	-40.4 (3)
Au1—Se2—P2—C4	-163.72 (13)	Se2—P2—C4—C41	-160.6 (2)
C3—P1—C1—C12	157.2 (3)	C5—P2—C4—C42	-42.3 (3)
C2—P1—C1—C12	40.0 (4)	C6—P2—C4—C42	-160.1 (3)
Se1—P1—C1—C12	-82.3 (3)	Se2—P2—C4—C42	79.7 (3)
C3—P1—C1—C13	-83.6 (3)	C5—P2—C4—C43	-160.1 (3)
C2—P1—C1—C13	159.2 (3)	C6—P2—C4—C43	82.2 (3)
Se1—P1—C1—C13	36.9 (3)	Se2—P2—C4—C43	-38.1 (3)
C3—P1—C1—C11	37.4 (4)	C6—P2—C5—C51	-170.1 (3)
C2—P1—C1—C11	-79.8 (3)	C4—P2—C5—C51	70.0 (3)
Se1—P1—C1—C11	157.9 (3)	Se2—P2—C5—C51	-49.9 (3)
C3—P1—C2—C21	169.5 (3)	C6—P2—C5—C52	59.2 (3)
C1—P1—C2—C21	-71.4 (3)	C4—P2—C5—C52	-60.7 (3)
Se1—P1—C2—C21	48.7 (3)	Se2—P2—C5—C52	179.4 (3)
C3—P1—C2—C22	-60.3 (3)	C5—P2—C6—C61	174.2 (3)
C1—P1—C2—C22	58.8 (3)	C4—P2—C6—C61	-62.8 (3)
Se1—P1—C2—C22	178.9 (2)	Se2—P2—C6—C61	54.5 (3)
C2—P1—C3—C32	-48.0 (3)	C5—P2—C6—C62	48.9 (3)
C1—P1—C3—C32	-170.6 (3)	C4—P2—C6—C62	171.8 (3)
Se1—P1—C3—C32	72.0 (3)	Se2—P2—C6—C62	-70.8 (3)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

4

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (iii) -*x*+1, *y*-1/2, -*z*+1/2; (iv) -*x*+1, -*y*+1, -*z*+1; (v) *x*-1, *y*-1, *z*.

Bis(tri-tert-butylphosphane sulfide)gold(I) tetrabromidoaurate(III) (5a)

Crystal data	
$[Au(C_{12}H_{27}PS)_2][AuBr_4]$	a = 8.4858 (4) Å
$M_r = 1182.30$	b = 9.3738 (4) Å
Triclinic, $P\overline{1}$	c = 11.9910 (5) Å

 $a = 105.533 (4)^{\circ}$ $\beta = 97.476 (4)^{\circ}$ $\gamma = 99.318 (4)^{\circ}$ $V = 891.63 (7) \text{ Å}^{3}$ Z = 1 F(000) = 558 $D_{x} = 2.202 \text{ Mg m}^{-3}$

Data collection

Oxford Diffraction Xcalibur, Eos diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 16.1419 pixels mm⁻¹ ω scan Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) $T_{\min} = 0.765, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.017$ $wR(F^2) = 0.033$ S = 1.065273 reflections 167 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 18685 reflections $\theta = 2.3-30.7^{\circ}$ $\mu = 12.92 \text{ mm}^{-1}$ T = 100 KBlock, dichroic red / orange $0.12 \times 0.12 \times 0.08 \text{ mm}$

47038 measured reflections 5273 independent reflections 4754 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 30.7^\circ, \theta_{min} = 2.3^\circ$ $h = -12 \rightarrow 12$ $k = -13 \rightarrow 13$ $l = -17 \rightarrow 17$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0116P)^2 + 0.584P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 0.73$ e Å⁻³ $\Delta\rho_{min} = -0.71$ e Å⁻³ Extinction correction: *SHELXL2019/3* (Sheldrick, 2015), $F_c^* = kF_c[1+0.001 \times F_c^2 \lambda^3 / \sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00106 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Au1	0.500000	0.500000	0.500000	0.01767 (3)	
P1	0.23519 (6)	0.62570 (6)	0.31823 (4)	0.01195 (9)	
S1	0.32147 (7)	0.65725 (6)	0.49172 (4)	0.01907 (11)	
C1	0.1193 (3)	0.7846 (2)	0.32673 (19)	0.0179 (4)	
C2	0.0947 (2)	0.4340 (2)	0.25201 (18)	0.0161 (4)	
C3	0.4086 (2)	0.6476 (2)	0.23441 (18)	0.0148 (4)	
C11	0.0041 (3)	0.7651 (3)	0.2107 (2)	0.0229 (5)	
H11A	-0.046051	0.853518	0.218391	0.034*	
H11B	-0.080684	0.673822	0.193650	0.034*	
H11C	0.065876	0.755553	0.146441	0.034*	
C12	0.2391 (3)	0.9378 (2)	0.3589 (2)	0.0242 (5)	
H12A	0.294987	0.942582	0.293034	0.036*	
H12B	0.319085	0.948369	0.428893	0.036*	
H12C	0.179396	1.020062	0.375282	0.036*	
C13	0.0190 (3)	0.7956 (3)	0.4264 (2)	0.0255 (5)	
H13A	0.092498	0.822098	0.502309	0.038*	

H13B	-0.054057	0.697986	0.413248	0.038*
H13C	-0.045101	0.873804	0.426810	0.038*
C21	0.0490 (3)	0.3926 (3)	0.11710 (18)	0.0214 (4)
H21A	-0.032059	0.297666	0.087433	0.032*
H21B	0.146181	0.380317	0.082385	0.032*
H21C	0.003949	0.473460	0.095605	0.032*
C22	-0.0621 (3)	0.4321 (3)	0.3032 (2)	0.0249 (5)
H22A	-0.124008	0.499729	0.275828	0.037*
H22B	-0.034697	0.466349	0.389330	0.037*
H22C	-0.127572	0.328918	0.276980	0.037*
C23	0.1708 (3)	0.3088 (2)	0.2847 (2)	0.0214 (4)
H23A	0.189478	0.328889	0.370358	0.032*
H23B	0.274437	0.307373	0.257067	0.032*
H23C	0.096941	0.210579	0.247410	0.032*
C31	0.3558 (3)	0.6877 (3)	0.12054 (19)	0.0202 (4)
H31A	0.446562	0.692699	0.077889	0.030*
H31B	0.323728	0.785957	0.140472	0.030*
H31C	0.263619	0.609826	0.070876	0.030*
C32	0.5513 (3)	0.7717 (3)	0.3137 (2)	0.0215 (4)
H32A	0.588570	0.743513	0.384194	0.032*
H32B	0.515439	0.867910	0.337020	0.032*
H32C	0.640651	0.782509	0.270440	0.032*
C33	0.4739 (3)	0.5008 (2)	0.20084 (19)	0.0192 (4)
H33A	0.567617	0.516960	0.162526	0.029*
H33B	0.388545	0.419573	0.146635	0.029*
H33C	0.506945	0.472478	0.271985	0.029*
Au2	0.500000	1.000000	1.000000	0.01376 (3)
Br1	0.43975 (3)	0.87358 (2)	0.78998 (2)	0.02087 (5)
Br2	0.77780 (3)	0.96487 (3)	1.00751 (2)	0.02657 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.01701 (6)	0.02443 (6)	0.01215 (6)	0.00535 (4)	-0.00136 (4)	0.00762 (4)
P1	0.0115 (2)	0.0145 (2)	0.0100 (2)	0.00275 (18)	0.00132 (18)	0.00408 (19)
S1	0.0214 (3)	0.0257 (3)	0.0100 (2)	0.0085 (2)	0.00031 (19)	0.0041 (2)
C1	0.0179 (10)	0.0197 (10)	0.0175 (10)	0.0086 (8)	0.0036 (8)	0.0050 (8)
C2	0.0157 (10)	0.0168 (10)	0.0142 (10)	-0.0010 (8)	-0.0002 (8)	0.0061 (8)
C3	0.0147 (9)	0.0164 (9)	0.0151 (10)	0.0037 (7)	0.0056 (8)	0.0059 (8)
C11	0.0208 (11)	0.0294 (12)	0.0233 (11)	0.0117 (9)	0.0026 (9)	0.0124 (10)
C12	0.0279 (12)	0.0161 (10)	0.0292 (13)	0.0080 (9)	0.0060 (10)	0.0053 (9)
C13	0.0259 (12)	0.0316 (12)	0.0233 (12)	0.0148 (10)	0.0114 (10)	0.0069 (10)
C21	0.0235 (11)	0.0210 (11)	0.0153 (11)	-0.0003 (9)	-0.0047 (8)	0.0046 (9)
C22	0.0175 (11)	0.0293 (12)	0.0269 (12)	-0.0025 (9)	0.0050 (9)	0.0103 (10)
C23	0.0250 (11)	0.0170 (10)	0.0220 (11)	0.0009 (8)	0.0011 (9)	0.0087 (9)
C31	0.0222 (11)	0.0235 (11)	0.0197 (11)	0.0066 (9)	0.0082 (9)	0.0111 (9)
C32	0.0137 (10)	0.0237 (11)	0.0265 (12)	0.0013 (8)	0.0027 (9)	0.0086 (9)
C33	0.0190 (10)	0.0234 (11)	0.0182 (11)	0.0089 (8)	0.0060 (8)	0.0070 (9)

Au2	0.01409 (5)	0.00987 (5)	0.01663 (6)	0.00063 (4)	0.00114 (4)	0.00460 (4)
Br1	0.02326 (11)	0.01784 (10)	0.01773 (11)	-0.00018 (8)	0.00122 (8)	0.00270 (8)
Br2	0.01682 (10)	0.02703 (12)	0.03089 (13)	0.00700 (9)	0.00045 (9)	0.00063 (10)

Geometric parameters (Å, °)

Au1—S1 ⁱ	2.2891 (5)	C13—H13C	0.9800	
Au1—S1	2.2891 (5)	C21—H21A	0.9800	
Р1—С2	1.892 (2)	C21—H21B	0.9800	
Р1—С3	1.901 (2)	C21—H21C	0.9800	
P1	1.901 (2)	C22—H22A	0.9800	
P1—S1	2.0384 (7)	C22—H22B	0.9800	
C1-C12	1.540 (3)	C22—H22C	0.9800	
C1-C11	1.541 (3)	C23—H23A	0.9800	
C1—C13	1.546 (3)	C23—H23B	0.9800	
C2—C22	1.535 (3)	C23—H23C	0.9800	
C2-C21	1.539 (3)	C31—H31A	0.9800	
C2—C23	1.540 (3)	C31—H31B	0.9800	
C3—C33	1.539 (3)	C31—H31C	0.9800	
C3—C31	1.541 (3)	C32—H32A	0.9800	
C3—C32	1.541 (3)	C32—H32B	0.9800	
C11—H11A	0.9800	С32—Н32С	0.9800	
C11—H11B	0.9800	С33—Н33А	0.9800	
C11—H11C	0.9800	С33—Н33В	0.9800	
C12—H12A	0.9800	С33—Н33С	0.9800	
C12—H12B	0.9800	Au2—Br1	2.4245 (2)	
C12—H12C	0.9800	Au2—Br1 ⁱⁱ	2.4245 (2)	
С13—Н13А	0.9800	Au2—Br2 ⁱⁱ	2.4260 (2)	
C13—H13B	0.9800	Au2—Br2	2.4260 (2)	
C1i A-1 C1	190.0		100 5	
SI - AuI - SI	180.0	HISB—CIS—HISC	109.5	
$C_2 = P_1 = C_3$	111.22 (9)	$C_2 = C_2 = H_2 I A$	109.5	
C_2 PI C_1	111.27 (10)	$C_2 = C_2 = H_2 B$	109.5	
$C_3 - P_1 - C_1$	111.39 (9)	$H_2IA = C_2I = H_2IB$	109.5	
C2-PI-SI	110.08 (7)	$C_2 = C_2 = H_2 = H_2 = C_2$	109.5	
$C_3 - P_1 - S_1$	110.94 (7)	$H_{21}A - C_{21} - H_{21}C$	109.5	
CI - PI - SI	101.58 (7)	$H_2IB = C_2I = H_2IC$	109.5	
PI = SI = AUI	107.15(3)	C2—C22—H22A	109.5	
C12 - C1 - C11	108.38 (18)	C2—C22—H22B	109.5	
C12-C1-C13	106.10 (18)	H22A - C22 - H22B	109.5	
CII - CI - CI3	108.66 (18)	C2—C22—H22C	109.5	
C12-C1-P1	110.09 (14)	H22A—C22—H22C	109.5	
CII—CI—PI	113.07 (15)	H22B—C22—H22C	109.5	
CI3—CI—PI	110.28 (14)	$C_2 = C_{23} = H_{23}A$	109.5	
$C_{22} - C_{2} - C_{21}$	108.46 (18)	$U_2 - U_2 - H_2 B$	109.5	
C22 - C2 - C23	105.66 (17)	H23A—C23—H23B	109.5	
$C_{21} - C_{2} - C_{23}$	109.05 (17)	$U_2 - U_2 - H_2 C_2 - H_$	109.5	
C22—C2—P1	109.93 (15)	H23A—C23—H23C	109.5	

C21—C2—P1	112.27 (14)	H23B—C23—H23C	109.5
C23—C2—P1	111.23 (14)	C3—C31—H31A	109.5
C33—C3—C31	108.08 (17)	C3—C31—H31B	109.5
C33—C3—C32	106.56 (17)	H31A—C31—H31B	109.5
C31—C3—C32	109.51 (16)	C3—C31—H31C	109.5
C33—C3—P1	110.98 (14)	H31A—C31—H31C	109.5
C31—C3—P1	111.94 (14)	H31B—C31—H31C	109.5
C32—C3—P1	109.63 (14)	C3—C32—H32A	109.5
C1—C11—H11A	109.5	C3—C32—H32B	109.5
C1—C11—H11B	109.5	H32A—C32—H32B	109.5
H11A—C11—H11B	109.5	C3—C32—H32C	109.5
C1—C11—H11C	109.5	H32A—C32—H32C	109.5
H11A—C11—H11C	109.5	H32B—C32—H32C	109.5
H11B—C11—H11C	109.5	С3—С33—Н33А	109.5
C1—C12—H12A	109.5	С3—С33—Н33В	109.5
C1—C12—H12B	109.5	H33A—C33—H33B	109.5
H12A—C12—H12B	109.5	С3—С33—Н33С	109.5
C1—C12—H12C	109.5	H33A—C33—H33C	109.5
H12A—C12—H12C	109.5	H33B—C33—H33C	109.5
H12B—C12—H12C	109.5	Br1—Au2—Br1 ⁱⁱ	180.0
C1—C13—H13A	109.5	Br1—Au2—Br2 ⁱⁱ	89.687 (9)
C1—C13—H13B	109.5	Br1 ⁱⁱ —Au2—Br2 ⁱⁱ	90.313 (9)
H13A—C13—H13B	109.5	Br1—Au2—Br2	90.312 (9)
C1—C13—H13C	109.5	Br1 ⁱⁱ —Au2—Br2	89.687 (9)
H13A—C13—H13C	109.5	Br2 ⁱⁱ —Au2—Br2	180.0
C2—P1—S1—Au1	71.01 (7)	C3—P1—C2—C21	-46.85 (17)
C3—P1—S1—Au1	-52.53 (7)	C1—P1—C2—C21	77.96 (17)
C1—P1—S1—Au1	-171.01 (7)	S1—P1—C2—C21	-170.22 (13)
C2—P1—C1—C12	-169.51 (14)	C3—P1—C2—C23	75.67 (16)
C3—P1—C1—C12	-44.79 (17)	C1—P1—C2—C23	-159.52 (14)
S1—P1—C1—C12	73.37 (15)	S1—P1—C2—C23	-47.70 (16)
C2—P1—C1—C11	-48.13 (18)	C2—P1—C3—C33	-40.99 (17)
C3—P1—C1—C11	76.59 (17)	C1—P1—C3—C33	-165.73 (14)
S1—P1—C1—C11	-165.24 (14)	S1—P1—C3—C33	81.89 (15)
C2—P1—C1—C13	73.75 (17)	C2—P1—C3—C31	79.86 (16)
C3—P1—C1—C13	-161.53 (15)	C1—P1—C3—C31	-44.89 (17)
S1—P1—C1—C13	-43.37 (16)	S1—P1—C3—C31	-157.27 (13)
C3—P1—C2—C22	-167.67 (14)	C2—P1—C3—C32	-158.42 (13)
C1—P1—C2—C22	-42.86 (17)	C1—P1—C3—C32	76.83 (15)
S1—P1—C2—C22	68.96 (15)	S1—P1—C3—C32	-35.55 (15)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C33—H33C…Au1	0.98	2.69	3.567 (2)	150

C23—H23 A ···Au1	0.98	2.86	3.421 (2)	118
C12— $H12A$ ····Br1 ^{iv}	0.98	3.05	3.730 (2) 3.890 (2)	145
C32—H32 <i>A</i> ···S1 C23—H23 <i>A</i> ···S1	0.98 0.98	2.86 2.98	3.338 (2) 3.456 (2)	111 111
C13—H13A…S1	0.98	2.67	3.160 (2)	112

Symmetry codes: (iii) -*x*, -*y*+1, -*z*+1; (iv) -*x*+1, -*y*+2, -*z*+1.

Bis(tri-*tert*-butylphosphane selenide-κSe)gold(I) tetrabromidoaurate(III) (5b)

Crystal data

$[Au(C_{12}H_{27}PSe)_2][AuBr_4]$	Z = 1
$M_r = 1276.10$	F(000) = 594
Triclinic, P1	$D_{\rm x} = 2.330 {\rm ~Mg} {\rm m}^{-3}$
a = 8.4403 (4) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
b = 9.2135 (4) Å	Cell parameters from 14356 reflections
c = 12.6496(5) Å	$\theta = 2.3 - 30.8^{\circ}$
$\alpha = 106.172 \ (4)^{\circ}$	$\mu = 14.56 \text{ mm}^{-1}$
$\beta = 101.100 \ (4)^{\circ}$	T = 100 K
$\gamma = 97.485 \ (4)^{\circ}$	Block, dichroic red / orange
V = 909.28 (7) Å ³	$0.12 \times 0.12 \times 0.04 \text{ mm}$
Data collection	

Oxford Diffraction Xcalibur, Eos	48315 measured reflections
diffractometer	5398 independent reflections
Radiation source: fine-focus sealed tube	4704 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int}=0.039$
Detector resolution: 16.1419 pixels mm ⁻¹	$\theta_{\rm max} = 30.9^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$
ω scan	$h = -12 \rightarrow 12$
Absorption correction: multi-scan	$k = -13 \rightarrow 13$
(CrysAlisPro; Rigaku OD, 2015)	$l = -18 \rightarrow 18$
$T_{\min} = 0.468, \ T_{\max} = 1.000$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier

•
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.013P)^2 + 0.5218P]$
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.83 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\min} = -0.87 \text{ e} \text{ Å}^{-3}$

Fractional	atomic	coordinates	and	isotrop	ic or	equivalent	isotro	pic dis	placement	parameters	$(Å^2$)
									,	/	1	/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Au1	0.500000	0.500000	0.500000	0.01861 (4)	
P1	0.23823 (7)	0.64599 (7)	0.31359 (5)	0.01078 (12)	
Se1	0.33995 (3)	0.69690(3)	0.49665 (2)	0.01875 (6)	
C1	0.1452 (3)	0.8210 (3)	0.3065 (2)	0.0149 (5)	
C2	0.0740 (3)	0.4642 (3)	0.2605 (2)	0.0157 (5)	

C3	0.4077 (3)	0.6294 (3)	0.2335 (2)	0.0149 (5)
C11	0.0226 (3)	0.7960 (3)	0.1928 (2)	0.0187 (5)
H11A	-0.012248	0.893101	0.191675	0.028*
H11B	-0.073718	0.717803	0.183909	0.028*
H11C	0.075797	0.761303	0.130341	0.028*
C12	0.2828 (3)	0.9601 (3)	0.3281 (2)	0.0211 (6)
H12A	0.335033	0.943442	0.264003	0.032*
H12B	0.365231	0.972203	0.397672	0.032*
H12C	0.236033	1.053424	0.336352	0.032*
C13	0.0553 (3)	0.8691 (3)	0.4026 (2)	0.0236 (6)
H13A	0.133672	0.894224	0.476149	0.035*
H13B	-0.033236	0.783986	0.394871	0.035*
H13C	0.008642	0.959636	0.397541	0.035*
C21	0.0156 (3)	0.4067 (3)	0.1300 (2)	0.0240 (6)
H21A	-0.077729	0.320043	0.106641	0.036*
H21B	0.105937	0.373030	0.097288	0.036*
H21C	-0.018463	0.490517	0.103187	0.036*
C22	-0.0744 (3)	0.4956 (3)	0.3114 (3)	0.0247 (6)
H22A	-0.125847	0.570296	0.281828	0.037*
H22B	-0.037130	0.537331	0.394132	0.037*
H22C	-0.154595	0.399274	0.290525	0.037*
C23	0.1345 (3)	0.3327 (3)	0.2995 (2)	0.0213 (6)
H23A	0.165564	0.364689	0.382498	0.032*
H23B	0.230240	0.308679	0.269764	0.032*
H23C	0.046253	0.241134	0.270923	0.032*
C31	0.3563 (3)	0.6577 (3)	0.1182 (2)	0.0222 (6)
H31A	0.445177	0.645911	0.078661	0.033*
H31B	0.334466	0.762354	0.130622	0.033*
H31C	0.256479	0.582947	0.072048	0.033*
C32	0.5661 (3)	0.7457 (3)	0.3056 (2)	0.0218 (6)
H32A	0.603830	0.722334	0.376128	0.033*
H32B	0.543344	0.850345	0.323377	0.033*
H32C	0.651798	0.738455	0.262964	0.033*
C33	0.4516 (3)	0.4686 (3)	0.2097 (2)	0.0196 (5)
H33A	0.543109	0.465501	0.172319	0.029*
H33B	0.355681	0.391299	0.160333	0.029*
H33C	0.483986	0.446471	0.281408	0.029*
Au2	0.500000	1.000000	1.000000	0.01304 (3)
Br1	0.38051 (3)	0.89229 (3)	0.79758 (2)	0.02139 (6)
Br2	0.77027 (3)	0.96169 (3)	0.97214 (2)	0.02058 (6)

Atomic displacement parameters (\mathring{A}^2)

x x 11	T 700	T T ² 2	T T 10	* 12	T 702
U^{II}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
0.01911 (7)	0.02043 (7)	0.01488 (7)	0.00373 (5)	-0.00363 (5)	0.00853 (6)
0.0104 (3)	0.0105 (3)	0.0104 (3)	0.0024 (2)	0.0000 (2)	0.0032 (2)
0.02330 (13)	0.01952 (13)	0.01099 (12)	0.00578 (10)	-0.00139 (10)	0.00389 (10)
0.0162 (11)	0.0135 (11)	0.0157 (12)	0.0049 (9)	0.0032 (9)	0.0049 (10)
	U ¹¹ 0.01911 (7) 0.0104 (3) 0.02330 (13) 0.0162 (11)	U ¹¹ U ²² 0.01911 (7) 0.02043 (7) 0.0104 (3) 0.0105 (3) 0.02330 (13) 0.01952 (13) 0.0162 (11) 0.0135 (11)	U^{11} U^{22} U^{33} 0.01911 (7)0.02043 (7)0.01488 (7)0.0104 (3)0.0105 (3)0.0104 (3)0.02330 (13)0.01952 (13)0.01099 (12)0.0162 (11)0.0135 (11)0.0157 (12)	U^{11} U^{22} U^{33} U^{12} 0.01911 (7)0.02043 (7)0.01488 (7)0.00373 (5)0.0104 (3)0.0105 (3)0.0104 (3)0.0024 (2)0.02330 (13)0.01952 (13)0.01099 (12)0.00578 (10)0.0162 (11)0.0135 (11)0.0157 (12)0.0049 (9)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Acta Cryst. (2024). E80, 1087-1096

C2	0.0134 (11)	0.0126 (11)	0.0178 (13)	-0.0007 (9)	-0.0017 (9)	0.0047 (10)
C3	0.0126 (11)	0.0191 (12)	0.0160 (12)	0.0058 (9)	0.0051 (9)	0.0079 (10)
C11	0.0156 (12)	0.0219 (13)	0.0206 (14)	0.0086 (10)	0.0020 (10)	0.0093 (11)
C12	0.0228 (13)	0.0122 (12)	0.0286 (15)	0.0037 (10)	0.0052 (11)	0.0075 (11)
C13	0.0267 (14)	0.0236 (14)	0.0235 (15)	0.0123 (11)	0.0106 (11)	0.0054 (11)
C21	0.0220 (13)	0.0189 (13)	0.0215 (14)	-0.0001 (11)	-0.0079 (11)	0.0021 (11)
C22	0.0144 (12)	0.0246 (14)	0.0383 (17)	0.0014 (11)	0.0058 (11)	0.0160 (13)
C23	0.0212 (13)	0.0141 (12)	0.0279 (15)	0.0015 (10)	0.0005 (11)	0.0099 (11)
C31	0.0244 (14)	0.0291 (15)	0.0197 (14)	0.0122 (11)	0.0097 (11)	0.0118 (12)
C32	0.0121 (11)	0.0244 (14)	0.0314 (15)	0.0038 (10)	0.0044 (11)	0.0129 (12)
C33	0.0209 (13)	0.0219 (13)	0.0192 (13)	0.0118 (10)	0.0072 (10)	0.0065 (11)
Au2	0.01454 (6)	0.00968 (6)	0.01406 (7)	0.00039 (5)	0.00263 (5)	0.00384 (5)
Br1	0.02170 (13)	0.02263 (13)	0.01498 (13)	-0.00268 (10)	0.00182 (10)	0.00310 (10)
Br2	0.01669 (12)	0.02068 (13)	0.02315 (14)	0.00422 (10)	0.00508 (10)	0.00445 (10)

Geometric parameters (Å, °)

Aul—Sel	2.4036 (3)	C13—H13C	0.9800	
Au1—Se1 ⁱ	2.4036 (3)	C21—H21A	0.9800	
P1—C2	1.895 (2)	C21—H21B	0.9800	
P1—C1	1.900 (2)	C21—H21C	0.9800	
P1—C3	1.904 (2)	C22—H22A	0.9800	
P1—Se1	2.2009 (6)	C22—H22B	0.9800	
C1—C12	1.537 (3)	C22—H22C	0.9800	
C1—C11	1.541 (3)	C23—H23A	0.9800	
C1—C13	1.547 (3)	С23—Н23В	0.9800	
C2—C22	1.538 (4)	С23—Н23С	0.9800	
C2—C23	1.538 (3)	C31—H31A	0.9800	
C2-C21	1.543 (4)	C31—H31B	0.9800	
C3—C33	1.537 (3)	C31—H31C	0.9800	
C3—C32	1.543 (3)	C32—H32A	0.9800	
C3—C31	1.543 (3)	C32—H32B	0.9800	
C11—H11A	0.9800	C32—H32C	0.9800	
C11—H11B	0.9800	С33—Н33А	0.9800	
C11—H11C	0.9800	С33—Н33В	0.9800	
C12—H12A	0.9800	С33—Н33С	0.9800	
C12—H12B	0.9800	Au2—Br1 ⁱⁱ	2.4265 (3)	
C12—H12C	0.9800	Au2—Br1	2.4265 (3)	
С13—Н13А	0.9800	Au2—Br2	2.4295 (3)	
C13—H13B	0.9800	Au2—Br2 ⁱⁱ	2.4295 (3)	
Se1—Au1—Se1 ⁱ	180.0	H13B—C13—H13C	109.5	
C2—P1—C1	111.15 (11)	C2—C21—H21A	109.5	
C2—P1—C3	111.98 (11)	C2—C21—H21B	109.5	
C1—P1—C3	110.57 (11)	H21A—C21—H21B	109.5	
C2-P1-Se1	109.06 (8)	C2—C21—H21C	109.5	
C1—P1—Se1	102.74 (8)	H21A—C21—H21C	109.5	
C3—P1—Se1	110.96 (8)	H21B—C21—H21C	109.5	

P1—Se1—Au1	101.806 (19)	C2—C22—H22A	109.5
C12—C1—C11	109.1 (2)	C2—C22—H22B	109.5
C12—C1—C13	105.1 (2)	H22A—C22—H22B	109.5
C11—C1—C13	108.1 (2)	C2—C22—H22C	109.5
C12—C1—P1	109.79 (17)	H22A—C22—H22C	109.5
C11—C1—P1	113.56 (17)	H22B—C22—H22C	109.5
C13—C1—P1	110.76 (17)	C2—C23—H23A	109.5
C22—C2—C23	106.1 (2)	C2—C23—H23B	109.5
C22—C2—C21	109.1 (2)	H23A—C23—H23B	109.5
C23—C2—C21	108.2 (2)	C2—C23—H23C	109.5
C22—C2—P1	109.27 (17)	H23A—C23—H23C	109.5
C23—C2—P1	111.81 (16)	H23B—C23—H23C	109.5
C21—C2—P1	112.14 (17)	C3—C31—H31A	109.5
C33—C3—C32	106.7 (2)	C3—C31—H31B	109.5
C33—C3—C31	107.3 (2)	H31A—C31—H31B	109.5
C32—C3—C31	109.5 (2)	C3—C31—H31C	109.5
C33—C3—P1	111.40 (17)	H31A—C31—H31C	109.5
C32—C3—P1	109.97 (17)	H31B-C31-H31C	109.5
C31—C3—P1	111.73 (17)	C3—C32—H32A	109.5
C1-C11-H11A	109.5	C3—C32—H32B	109.5
C1C11H11B	109.5	H32A—C32—H32B	109.5
H11A—C11—H11B	109.5	$C_3 = C_3 = H_3 2 C$	109.5
C1-C11-H11C	109.5	H32A—C32—H32C	109.5
H11A—C11—H11C	109.5	H32B-C32-H32C	109.5
H11B—C11—H11C	109.5	C3—C33—H33A	109.5
C1-C12-H12A	109.5	C3—C33—H33B	109.5
C1—C12—H12B	109.5	H33A—C33—H33B	109.5
H12A—C12—H12B	109.5	C3—C33—H33C	109.5
C1-C12-H12C	109.5	H33A—C33—H33C	109.5
H12A— $C12$ — $H12C$	109.5	H33B—C33—H33C	109.5
H12B—C12—H12C	109.5	Br1 ⁱⁱ —Au2—Br1	180.0
C1—C13—H13A	109.5	Br1 ⁱⁱ —Au2—Br2	89.101 (10)
C1—C13—H13B	109.5	Br1—Au2—Br2	90.899 (10)
H13A—C13—H13B	109.5	Br1 ⁱⁱ —Au2—Br2 ⁱⁱ	90.898 (10)
C1—C13—H13C	109.5	Br1—Au2—Br2 ⁱⁱ	89.102 (10)
H13A—C13—H13C	109.5	Br2—Au2—Br2 ⁱⁱ	180.0
C2—P1—Se1—Au1	72.38 (9)	C1—P1—C2—C23	-161.96 (18)
C1—P1—Se1—Au1	-169.62(8)	C3—P1—C2—C23	73.8 (2)
C3—P1—Se1—Au1	-51.43 (8)	Se1—P1—C2—C23	-49.39 (19)
$C_2 = P_1 = C_1 = C_1^2$	-169.27(17)	C1 - P1 - C2 - C21	76.3 (2)
C3—P1—C1—C12	-44.3 (2)	C3—P1—C2—C21	-47.9(2)
Se1—P1—C1—C12	74.22 (17)	Se1—P1—C2—C21	-171.13 (16)
C2—P1—C1—C11	-46.8 (2)	C2—P1—C3—C33	-39.8 (2)
C3—P1—C1—C11	78.21 (19)	C1—P1—C3—C33	-164.31 (17)
Se1—P1—C1—C11	-163.33 (16)	Se1—P1—C3—C33	82.36 (17)
C2—P1—C1—C13	75.1 (2)	C2—P1—C3—C32	-157.89 (17)
C3—P1—C1—C13	-159.92 (17)	C1—P1—C3—C32	77.56 (19)
	× /		

Se1—P1—C1—C13	-41.45 (18)	Se1—P1—C3—C32	-35.76 (18)
C1—P1—C2—C22	-44.8 (2)	C2—P1—C3—C31	80.3 (2)
C3—P1—C2—C22	-168.98 (17)	C1—P1—C3—C31	-44.3 (2)
Se1—P1—C2—C22	67.81 (18)	Se1—P1—C3—C31	-157.59 (16)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+2, -*z*+2.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H···A
C33—H33 <i>C</i> ···Au1	0.98	2.64	3.540 (3)	152
C23—H23A···Au1	0.98	2.86	3.449 (3)	120
C22—H22C···Br1 ⁱⁱⁱ	0.98	2.88	3.851 (3)	173
C12—H12A···Br1 ^{iv}	0.98	3.02	3.793 (3)	137
C32—H32A…Se1	0.98	2.95	3.442 (3)	112
C23—H23A…Se1	0.98	3.03	3.556 (3)	115
C13—H13A…Se1	0.98	2.70	3.263 (3)	117

Symmetry codes: (iii) -*x*, -*y*+1, -*z*+1; (iv) -*x*+1, -*y*+2, -*z*+1.