

Received 23 July 2024 Accepted 23 September 2024

Edited by S. P. Kelley, University of Missouri-Columbia, USA

Keywords: crystal structure; cyclodiphosphazanes; mercury(II) halide; *tert*butylamido.

CCDC reference: 2386028

Supporting information: this article has supporting information at journals.iucr.org/e

 OPEN
 ACCESS

 Published under a CC BY 4.0 licence

Mercury(II) halide complex of *cis*-[(^tBuNH)(Se)P(μ-N^tBu)₂P(Se)(NH^tBu)]

Troy Selby-Karney,^a Kalpana Sampath,^b Kuppuswamy Arumugam^b* and Chandru P. Chandrasekaran^a*

^aDepartment of Chemistry and Biochemistry, Lamar University, 4400 MLK Blvd., Beaumont, Texas, 77710, USA, and ^bDepartment of Chemistry, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA. *Correspondence e-mail: kuppuswamy.arumugam@wright.edu, chandru@lamar.edu

The mercury(II) halide complex [1,3-di-tert-butyl-2,4-bis(tert-butylamino)- $1,3,2\lambda^5,4\lambda^5$ -diazadiphosphetidine-2,4-diselone- $\kappa^2 Se,Se'$]diiodidomercury(II) N,N-dimethylformamide monosolvate, $[HgI_2(C_{16}H_{38}N_4P_2Se_2)]\cdot C_3H_7NO \text{ or } (1)$ -HgI₂, **2**, containing cis-[(^tBuNH)(Se)P(μ -N^tBu)₂P(Se)(NH^tBu)] (1) was synthesized and structurally characterized. The crystal structure of 2 confirms the chelation of chalcogen donors to HgI2 with a natural bite angle of 112.95 (2) $^{\circ}$. The coordination geometry around mercury is distorted tetrahedral as indicated by the τ_4 geometry index parameter ($\tau_4 = 0.90$). In the mercury complex, the exocyclic tert-butylamido substituents are arranged in an (endo, endo) fashion, whereas in the free ligand (1), the exocyclic substituents are arranged in an (exo, endo) pattern. Compound 2 displays non-classical N-H···O hydrogen-bonding interactions with the solvent N,N-dimethylformamide. These interactions may introduce geometrical distortion and deviation from an ideal geometry. An isostructural HgBr₂ analogue containing cis-[(^tBuNH)(S)P(μ -N^tBu)₂P(S)(NH^tBu)] was also synthesized and structurally characterized, CIF data for the compound being presented as supporting information.

1. Chemical context

Stable four-membered rings containing phosphorus and nitrogen with the general formula, $[(R)P(\mu-N'Bu)_2P(R)]$ (R = alkyl or aryl), are commonly referred to as cyclodiphosphazanes. They have been used as building blocks to construct interesting macrocycles and polymers (Balakrishna, 2016). These macrocycles are formed by taking advantage of the *cis* orientation of the substituents and the lone pair available on the phosphorus atom (Balakrishna, 2016; Bashall *et al.*, 2002). The bis(amido)cyclodiphosphazane and its P^V analogue have been used as a versatile framework to stabilize main-group elements and transition metals (Stahl, 2000; Briand *et al.*, 2002). The bis(amido)cyclodiphosph(V)azane, $cis-\{[(R)NH](E)P(\mu-N'Bu)_2P(E)[NH(R)]\}$ [E = O, S, Se, N(R); R = alkyl or aryl] and its di-anionic derivatives exhibit three unique coordination modes as shown in Fig. 1. These ligands

are capable of bonding to metals and non-metals via (N,N), (E,E) or (N,E) chelation modes. The (N,E) chelation mode is the most frequently observed because of the rigidity and planarity of the four-membered P₂N₂ ring. More importantly, the (N,N) and (E,E) chelation modes demand large bite angles, and large-size metal ions are well suited for these coordination modes. In 2001, Chivers et al. (2001) reported (S,S) chelation of $cis - [({}^{t}BuN)(S)P(\mu - N^{t}Bu)_{2}P(S)(N^{t}Bu)]$ to the Pt^{II} center with a bite angle of 99.57 (13)°. Recently, we have reported (Se,Se) chelation of $cis-[(^{t}BuNH)(Se)P(\mu N^{t}Bu)_{2}P(Se)(NH^{t}Bu)]$ by a Pd^{II} complex with a bite angle of 110.54 (1)° (Bonnette et al., 2018). It is evident from these examples that the (E,E) coordination mode prefers large metal cations. Mercury ions have been well documented to have an affinity towards sulfur and selenium atoms, and accounting for its larger size, we set out to explore the coordination chemistry of bis(amido)cyclodiphosph(V)azane ligands with mercury(II) halide. Herein, we report the synthesis and solid-state structure of an HgI₂ coordination complex with cis-[(^tBuNH)(Se)P(μ -N^tBu)₂P(Se)(NH^tBu)] (1), and the results are presented below. An isostructural HgBr₂ analogue was also synthesized and structurally characterized. The CIF data for the compound are presented as supporting information.

2. Structural commentary

Compound 2 crystallizes in the monoclinic crystal system in space group $P2_1/n$. The molecular structure of **2** is illustrated in Fig. 2. The crystal structure confirms the chelation of 1 through selenium donors to stabilize the HgI₂ moiety, with an Se1-Hg1-Se2 natural bite angle of 112.95 (2)°. The coordination geometry around the mercury atom is distorted tetrahedral, as indicated by the parameter $\tau_4 = 0.90$. The geometry index τ_4 was developed by Okuniewski and coworkers to distinguish various four-coordinate geometries (Okuniewski et al., 2015; Yang et al., 2007) with $\tau_4 = 0$ for a square-planar geometry, 0.24 for seesaw, and 1 for a tetrahedral geometry. The Hg–Se [Hg1-Se1 = 2.7508(5) Å;Hg1-Se2 = 2.7835 (6) Å], and Hg-I [Hg1-I1 = 2.7290 (4) Å; Hg1–I2 = 2.7409 (4) Å] bond distances are within the typical ranges reported for the HgI₂ complexes with selenium ligands (Palmer & Parkin, 2015). In complex 2, the P1-Se1 and

riyarogen oona	geometry (11,).		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3\cdots O1$ $N4-H4\cdots O1$	0.82(6) 0.79(5)	2.18(6) 2.27(5)	2.986 (6) 3.051 (5)	165 (4) 169 (6)
	0.77 (5)	2.27(3)	5.051 (5)	107 (0)

P2—Se2 bonds [2.1260 (13) and 2.1302 (12) Å, respectively] are slightly elongated compared to the P—Se bond [2.078 (1) Å] in the uncoordinated ligand **1**. The fourmembered P₂N₂ ring in complex **2** is slightly puckered, as indicated by the angle subtended by the planes N1/P1/N2 and N1/P2/N2 [8.7 (3)°]. The corresponding dihedral angle for the uncoordinated ligand is 3.73 (2)° (Hill *et al.*, 1994).

3. Supramolecular features

In the crystal of 2, the N-H functional groups present in bis(tert-butylamido)cyclodiphosph(V)azane and oxygen from the DMF solvent molecule are involved in N-H···O hydrogen-bonding interactions (Fig. 3, Table 1). Three different conformational isomers are feasible for the *cis*-bis-(amido)cyclodiphosph(V)azane with respect to the relative orientations of the exocyclic nitrogen substituents (Fig. 4). In 2, the exocyclic substituents are arranged in a (*endo*, *endo*) fashion, whereas in ligand 1 they are arranged in an (*exo*, *endo*) orientation (Hill *et al.*, 1994; Chivers *et al.*, 2002). The conformational change in the coordination sphere of 2 may result from the formation of intermolecular interactions. A similar conformational change influenced by hydrogenbonding interactions has been previously reported (Chandrasekaran *et al.*, 2011).

Figure 2

Displacement ellipsoid plot for **2** (50% probability level). The DMF solvent molecule and all the hydrogen atoms are omitted for clarity, except for those at N3 and N4.

Figure 3

Hydrogen-bonding interactions (Table 1) between the complex and the DMF solvent molecule in the crystal.

4. Database survey

A search of the Cambridge Structural Database (CSD Data, March 2024; Groom et al., 2016) gave the following hits for cis-{[(R)_nCN](Se)P[(R)_nN]₂P(Se)[NC(R)_n]}: dichlorido[1,3-ditert-butyl-2,4-bis(tert-butylamino)-1,3,2,4-diazadiphosphetidine-2,4-diselone-Se,Se']palladium(II)} (Bonnette et al., 2018; CCDC No. 1549758), bis[μ -(2,4-bis(tert-butylamido)-1,3-bis-(tert-butyl)-2,4-diseleno-2,4-diphosphetidine)]hexakis(tetrahydrofuran)tetrapotassium, (Chivers et al., 2001; CCDC No. 142628), bis-N,N',1,3-tetra-tert-butyl-1,3,2,4-diazadiphosphetidine-2,4-diamine 2,4-bis(selenide)]silver(I) trifluoromethanesulfonate (Knight & Woollins, 2016; CCDC No. 1042705) and [1,3-di-tert-butyl-2,4-bis(tert-butylamino)-1,3,2,4-diazadiphosphetidine-2,4-diselone]bis(triphenylphosphine)palladium bis(tetrafluoroborate) dichloromethane solvate (Plajer et al., 2020; CCDC No. 1890520). The P=Se and P-N bond distances for 2 are in agreement with those in the above compounds.

Figure 4

Possible conformational isomers for *cis*-bis(amido)cyclodiphosph(V) azanes.

5. Synthesis and crystallization

Synthesis of cis-[HgI₂(1)] (2):

A dichloromethane (10 mL) solution of *cis*-[(^tBuHN)(Se) $P(\mu - {}^{t}BuN)_{2}P(Se)(NH^{t}Bu)$ (1) (100 mg, 0.197 mmol) was added dropwise over an acetonitrile (5 mL) solution of HgI₂ (88 mg; 0.197 mmol) under an N₂ atmosphere at ambient temperature. The resulting reaction mixture was stirred for 4 h at 295 K. The solution was then concentrated to nearly 5 mL and stored at 248 K for a day to afford an analytically pure white microcrystalline product. Yield: 91% (172 mg). X-ray quality crystals are obtained by slow evaporation from a DMF solution at room temperature, m.p. 465-467 K. ¹H NMR (400 MHz, DMSO-*d*₆): 1.44 (*s*, 18H, ^{*t*}Bu), 1.58 (*s*, 18H, ^{*t*}Bu), 2.58 (br s, 2H, NH). IR (cm⁻¹): 3200 (br w), 2975 (w), 1462 (w), 1388 (w), 1366 (m), 1222 (w), 1183 (m), 1030 (vs), 899 (s), 851 (w), 731 (m), 678 (m). Absorption spectrum [DMSO; λ_{max} , nm ($\varepsilon_{\rm M}$, M^{-1} cm⁻¹)]: 270 (13947). Analysis calculated for C₁₆H₃₈N₄P₂Se₂HgI₂: C, 20.00; H, 3.99; N, 5.83. Found: C, 20.26; H, 4.47; N, 5.98.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Methyl (CH₃) hydrogen atoms were treated as a rotating group and added using the riding-model approximation to the carbon atom to which they are attached [C-H = 0.98 Å with $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm CH}_3)$.

7. Data for isostructural HgBr₂ complex

Synthesis and spectroscopic data for an isostructural HgBr₂ with *cis*-[(^{*i*}BuHN)(S)P(μ -^{*i*}BuN)₂P(S)(NH^{*i*}Bu)] are presented below. Spectroscopic analysis and single-crystal structure determination strongly support these are isostructural complexes. For more information regarding solid-state structure determination, please refer to CCDC: 2380829. The CIF data for this compound is available in the supporting information

A dichloromethane (10 mL) solution of *cis*-[(^tBuHN)(S)- $P(\mu - {}^{t}BuN)_{2}P(S)(NH^{t}Bu)$ (1) (100 mg, 0.24 mmol) was added dropwise over an acetonitrile (5 mL) solution of HgBr₂ (87.4 mg; 0.24 mmol) under an N₂ atmosphere at ambient temperature. The resulting reaction mixture was stirred for 4 h at 295 K. The solution was then concentrated to nearly 5 mL and stored at 248 K for a day to afford an analytically pure white microcrystalline product. Yield: 83% (156 mg). X-ray quality crystals were obtained by slow evaporation from DMF solution at room temperature, m.p. 483-485 K. ¹H NMR (400 MHz, DMSO-*d*₆): 1.45 (*s*, 18H, ^{*t*}Bu), 1.59 (*s*, 18H, ^{*t*}Bu), 2.54 (br s, 2H, NH). IR (cm⁻¹): 3194 (br m; N-H), 2977 (w), 1471 (w), 1391 (w), 1369 (m), 1225 (w), 1185 (s), 1046 (vs), 907 (m), 852 (m), 745 (s), 705 (m). Absorption spectrum [DMSO; λ_{max} , nm (ε_{M} , M^{-1} cm⁻¹)]: 282 (17054). Analysis calculated for C₁₆H₃₈N₄P₂S₂HgBr₂: C, 24.86; H, 4.95; N, 7.25; S, 8.30. Found: C, 25.03; H, 5.08; N, 7.75; S, 8.22.

Acknowledgements

The authors would like to acknowledge support by funds from the Chemistry Department, Wright State University, College of Science and Mathematics. The authors would also like to acknowledge Dr Grossie, Wright State University, for help with low-temperature data X-ray diffraction collection.

Funding information

This work is funded in part by the Welch Foundation (V-0004; Chandrasekaran). Funding for this research was provided by: National Institutes of Health, National Cancer Institute (grant No. CA232765 to Kuppuswamy Arumugam); American Chemical Society Petroleum Research Fund (grant No. 59893UR7 to Kuppuswamy Arumugam).

References

- Balakrishna, M. S. (2016). Dalton Trans. 45, 12252-12282.
- Bashall, A., Bond, A. D., Doyle, E. L., García, F., Kidd, S., Lawson, G. T., Parry, M. C., McPartlin, M., Woods, A. D. & Wright, D. S. (2002). *Chem. Eur. J.* 8, 3377–3385.
- Bonnette, A., Mague, J. T. & Chandrasekaran, P. (2018). Acta Cryst. E74, 180–183.
- Briand, G. G., Chivers, T. & Krahn, M. (2002). Coord. Chem. Rev. 233–234, 237–254.
- Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin. USA.
- Chandrasekaran, P., Mague, J. T. & Balakrishna, M. S. (2011). Eur. J. Inorg. Chem. 2011, 2264–2272.
- Chivers, T., Fedorchuk, C., Krahn, M., Parvez, M. & Schatte, G. (2001). *Inorg. Chem.* 40, 1936–1942.
- Chivers, T., Krahn, M. & Schatte, G. (2002). Inorg. Chem. 41, 4348–4354.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hill, T. G., Haltiwanger, R. C., Thompson, M. L., Katz, S. A. & Norman, A. D. (1994). *Inorg. Chem.* **33**, 1770–1777.
- Knight, F. R. & Woollins, J. D. (2016). CSD Communication (No. 1042705). CCDC, Cambridge, England.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.

Table	2

Experimental	details.
--------------	----------

Crystal data	
Chemical formula	$[HgI_{2}(C_{16}H_{38}N_{4}P_{2}Se_{2})]\cdot C_{3}H_{7}NO$
Mr	1033.85
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	300
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.1747 (8), 17.3698 (13), 20.841 (2)
β (°)	101.049 (3)
$V(\dot{A}^3)$	3259.7 (5)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	8.97
Crystal size (mm)	$0.53 \times 0.28 \times 0.26$
Data collection	
Diffractometer	Bruker SMART X2S
Absorption correction	Multi-scan (SADABS; Krause et al., 2015
T_{\min}, T_{\max}	0.309, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	45600, 9576, 6956
R _{int}	0.077
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.725
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.089, 1.00
No. of reflections	9576
No. of parameters	310
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}$, $\Delta \rho_{\rm min}$ (e Å ⁻³)	1.911.92

Computer programs: *APEX2* and *SAINT* (Bruker, 2016), *SHELXT2018/2* (Sheldrick, 2015*a*), *SHELXL2019/1* (Sheldrick, 2015*b*), *Mercury* (Macrae *et al.*, 2020) and *OLEX2* (Dolomanov *et al.*, 2009).

- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). *Polyhedron*, **90**, 47–57.
- Palmer, J. H. & Parkin, G. (2015). J. Am. Chem. Soc. 137, 4503-4516.
- Plajer, A. J., Lee, S., Bond, A. D., Goodman, J. M. & Wright, D. S. (2020). *Dalton Trans.* **49**, 3403–3407.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Stahl, L. (2000). Coord. Chem. Rev. 210, 203-250.
- Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.

Acta Cryst. (2024). E80, 1142-1145 [https://doi.org/10.1107/S205698902400937X]

Mercury(II) halide complex of *cis*-[(^tBuNH)(Se)P(μ -N^tBu)₂P(Se)(NH^tBu)]

Troy Selby-Karney, Kalpana Sampath, Kuppuswamy Arumugam and Chandru P. Chandrasekaran

Computing details

[1,3-Di-*tert*-butyl-2,4-bis(*tert*-butylamino)-1,3, $2\lambda^5$, $4\lambda^5$ -diazadiphosphetidine-2,4-diselone- κ^2 Se,Se']diiodidomercury(II) *N*,*N*-dimethylformamide monosolvate

Crystal data

[HgI₂(C₁₆H₃₈N₄P₂Se₂)]·C₃H₇NO $M_r = 1033.85$ Monoclinic, $P2_1/n$ a = 9.1747 (8) Å b = 17.3698 (13) Å c = 20.841 (2) Å $\beta = 101.049$ (3)° V = 3259.7 (5) Å³ Z = 4

Data collection

```
Bruker SMART X2S
diffractometer
\omega scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
T_{\min} = 0.309, T_{\max} = 0.746
45600 measured reflections
```

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.089$ S = 1.009576 reflections 310 parameters 0 restraints Hydrogen site location: mixed F(000) = 1944 $D_x = 2.107 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8829 reflections $\theta = 2.3-26.8^{\circ}$ $\mu = 8.97 \text{ mm}^{-1}$ T = 300 KPrism, colorless $0.53 \times 0.28 \times 0.26 \text{ mm}$

9576 independent reflections 6956 reflections with $I > 2\sigma(I)$ $R_{int} = 0.077$ $\theta_{max} = 31.0^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -12 \rightarrow 13$ $k = -24 \rightarrow 19$ $l = -28 \rightarrow 29$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0325P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.004$ $\Delta\rho_{max} = 1.91$ e Å⁻³ $\Delta\rho_{min} = -1.91$ e Å⁻³ Extinction correction: *SHELXL2019/1* (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc²\lambda³/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00052 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Hg1	0.70533 (2)	0.77295 (2)	0.58150 (2)	0.02178 (6)	
II	0.60217 (4)	0.91950 (2)	0.55729 (2)	0.02891 (9)	
I2	0.90720 (4)	0.72186 (2)	0.50978 (2)	0.02938 (9)	
Se1	0.49422 (5)	0.65923 (3)	0.55275 (2)	0.01821 (11)	
Se2	0.81087 (5)	0.79005 (3)	0.71512 (2)	0.01874 (11)	
P1	0.51042 (12)	0.62623 (6)	0.65210 (6)	0.0119 (2)	
P2	0.67826 (12)	0.69810 (6)	0.73987 (6)	0.0120 (2)	
N2	0.6846 (4)	0.61881 (19)	0.69491 (18)	0.0131 (8)	
N1	0.4974 (4)	0.6991 (2)	0.70322 (19)	0.0127 (7)	
01	0.4763 (4)	0.5489 (2)	0.80940 (19)	0.0317 (9)	
N3	0.4072 (4)	0.5541 (2)	0.6635 (2)	0.0164 (8)	
H3	0.413 (5)	0.547 (3)	0.703 (3)	0.020*	
N4	0.7002 (4)	0.6801 (2)	0.81733 (19)	0.0158 (8)	
H4	0.649 (5)	0.644 (3)	0.820 (3)	0.019*	
N5	0.3773 (5)	0.4941 (2)	0.8902 (2)	0.0274 (10)	
C5	0.8046 (5)	0.5593 (3)	0.6959 (3)	0.0193 (10)	
C6	0.7986 (5)	0.5287 (3)	0.6268 (3)	0.0243 (11)	
H6A	0.704074	0.504766	0.611382	0.036*	
H6B	0.876292	0.491634	0.627173	0.036*	
H6C	0.811614	0.570583	0.598316	0.036*	
C11	0.4061 (6)	0.4524 (3)	0.5785 (3)	0.0333 (14)	
H11A	0.450455	0.488033	0.552709	0.050*	
H11B	0.343410	0.417284	0.550175	0.050*	
H11C	0.482767	0.424099	0.606659	0.050*	
C9	0.3141 (5)	0.4963 (2)	0.6196 (2)	0.0181 (10)	
C1	0.3696 (5)	0.7508 (3)	0.7113 (2)	0.0163 (9)	
C10	0.1830 (6)	0.5362 (3)	0.5759 (3)	0.0323 (13)	
H10A	0.124250	0.562406	0.602559	0.048*	
H10B	0.122930	0.498552	0.549292	0.048*	
H10C	0.219481	0.572836	0.548227	0.048*	
C13	0.7805 (5)	0.7175 (3)	0.8783 (2)	0.0187 (10)	
C4	0.4225 (5)	0.8335 (3)	0.7189 (3)	0.0261 (12)	
H4A	0.493585	0.838807	0.758917	0.039*	
H4B	0.339431	0.866754	0.719846	0.039*	
H4C	0.468055	0.847230	0.682688	0.039*	
C7	0.9542 (5)	0.5971 (3)	0.7207 (3)	0.0355 (14)	
H7A	0.969762	0.637485	0.691327	0.053*	
H7B	1.031512	0.559332	0.723061	0.053*	
H7C	0.955868	0.618207	0.763393	0.053*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C15	0.9469 (5)	0.7146 (3)	0.8823 (3)	0.0311 (13)
H15A	0.978069	0.662043	0.880656	0.047*
H15B	0.995907	0.737546	0.922644	0.047*
H15C	0.972166	0.742541	0.846240	0.047*
C8	0.7780 (7)	0.4949 (3)	0.7420 (3)	0.0422 (16)
H8A	0.783163	0.515386	0.785149	0.063*
H8B	0.852543	0.455882	0.743044	0.063*
H8C	0.681607	0.472865	0.726814	0.063*
C3	0.2467 (5)	0.7432 (3)	0.6512 (3)	0.0314 (13)
H3A	0.282388	0.760832	0.613343	0.047*
H3B	0.163030	0.773861	0.656945	0.047*
H3C	0.217140	0.690297	0.645353	0.047*
C12	0.2550 (6)	0.4405 (3)	0.6658 (3)	0.0279 (12)
H12A	0.336981	0.416839	0.694597	0.042*
H12B	0.195746	0.401487	0.640602	0.042*
H12C	0.195348	0.468331	0.691109	0.042*
C16	0.7383 (6)	0.6705 (3)	0.9345 (2)	0.0261 (11)
H16A	0.632584	0.671853	0.931349	0.039*
H16B	0.785992	0.692134	0.975582	0.039*
H16C	0.770054	0.618135	0.931728	0.039*
C19	0.3824 (7)	0.4343 (3)	0.9396 (3)	0.0422 (16)
H19A	0.291802	0.405187	0.930901	0.063*
H19B	0.393780	0.457611	0.982021	0.063*
H19C	0.464897	0.400734	0.938354	0.063*
C14	0.7257 (6)	0.8005 (3)	0.8827 (3)	0.0302 (12)
H14A	0.748134	0.829921	0.846829	0.045*
H14B	0.774377	0.823051	0.923183	0.045*
H14C	0.620304	0.800291	0.880742	0.045*
C17	0.4744 (6)	0.4989 (3)	0.8515 (3)	0.0310 (13)
H17	0.548158	0.461504	0.856240	0.037*
C2	0.3118 (6)	0.7242 (3)	0.7719 (3)	0.0269 (12)
H2A	0.281575	0.671275	0.766623	0.040*
H2B	0.228388	0.755317	0.777098	0.040*
H2C	0.389085	0.729280	0.809801	0.040*
C18	0.2577 (8)	0.5492 (4)	0.8855 (4)	0.072 (3)
H18A	0.164600	0.523685	0.870597	0.108*
H18B	0.270631	0.588982	0.855095	0.108*
H18C	0.258555	0.571560	0.927697	0.108*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.02744 (11)	0.02015 (11)	0.01887 (11)	-0.00093 (7)	0.00728 (8)	0.00364 (8)
I1	0.0387 (2)	0.02087 (18)	0.0257 (2)	0.00404 (14)	0.00268 (15)	0.00612 (14)
I2	0.02607 (17)	0.0364 (2)	0.0285 (2)	-0.00545 (14)	0.01224 (15)	-0.00543 (16)
Se1	0.0244 (2)	0.0215 (2)	0.0084 (2)	-0.00507 (19)	0.00213 (18)	0.00068 (19)
Se2	0.0234 (2)	0.0186 (2)	0.0138 (2)	-0.00661 (18)	0.00253 (19)	0.00001 (19)
P1	0.0155 (5)	0.0115 (5)	0.0088 (6)	-0.0001 (4)	0.0026 (4)	-0.0007 (4)

P2	0.0137 (5)	0.0134 (6)	0.0084 (6)	0.0007 (4)	0.0011 (4)	-0.0003(5)
N2	0.0138 (17)	0.0145 (19)	0.0106 (19)	0.0040 (14)	0.0015 (15)	-0.0008 (15)
N1	0.0149 (17)	0.0106 (17)	0.012 (2)	0.0012 (14)	0.0005 (15)	-0.0037 (15)
01	0.040 (2)	0.033 (2)	0.025 (2)	-0.0009 (17)	0.0146 (18)	0.0076 (17)
N3	0.025 (2)	0.016 (2)	0.009 (2)	-0.0055 (16)	0.0064 (17)	-0.0010 (16)
N4	0.023 (2)	0.019 (2)	0.0047 (19)	-0.0072 (16)	0.0006 (15)	0.0008 (16)
N5	0.039 (3)	0.026 (2)	0.018 (2)	-0.0017 (19)	0.008 (2)	0.0066 (19)
C5	0.020 (2)	0.016 (2)	0.023 (3)	0.0082 (18)	0.006 (2)	-0.001 (2)
C6	0.019 (2)	0.025 (3)	0.031 (3)	0.003 (2)	0.010 (2)	-0.013 (2)
C11	0.036 (3)	0.027 (3)	0.041 (4)	-0.010 (2)	0.018 (3)	-0.014 (3)
C9	0.021 (2)	0.014 (2)	0.021 (3)	-0.0110 (18)	0.010(2)	-0.006 (2)
C1	0.017 (2)	0.015 (2)	0.018 (3)	0.0061 (18)	0.0039 (19)	-0.0005 (19)
C10	0.029 (3)	0.038 (3)	0.029 (3)	-0.013 (2)	0.000 (2)	-0.006 (3)
C13	0.024 (2)	0.028 (3)	0.004 (2)	-0.001 (2)	0.0003 (18)	-0.0053 (19)
C4	0.026 (3)	0.016 (2)	0.039 (4)	0.005 (2)	0.012 (2)	-0.001 (2)
C7	0.023 (3)	0.044 (3)	0.037 (4)	0.007 (2)	-0.001 (2)	-0.017 (3)
C15	0.028 (3)	0.050 (3)	0.015 (3)	-0.003 (2)	0.002 (2)	-0.001 (2)
C8	0.052 (4)	0.031 (3)	0.049 (4)	0.028 (3)	0.023 (3)	0.023 (3)
C3	0.023 (3)	0.036 (3)	0.032 (3)	0.013 (2)	-0.003 (2)	-0.010 (3)
C12	0.037 (3)	0.019 (3)	0.032 (3)	-0.008 (2)	0.017 (3)	0.002 (2)
C16	0.037 (3)	0.031 (3)	0.010 (3)	-0.001 (2)	0.005 (2)	0.003 (2)
C19	0.068 (4)	0.036 (3)	0.022 (3)	-0.008 (3)	0.007 (3)	0.012 (3)
C14	0.043 (3)	0.029 (3)	0.017 (3)	0.000 (2)	0.001 (2)	-0.004 (2)
C17	0.027 (3)	0.034 (3)	0.032 (3)	0.007 (2)	0.007 (2)	0.006 (3)
C2	0.028 (3)	0.029 (3)	0.027 (3)	0.009 (2)	0.013 (2)	0.005 (2)
C18	0.077 (5)	0.085 (6)	0.069 (6)	0.043 (4)	0.050 (5)	0.041 (5)

Geometric parameters (Å, °)

Hg1—I1	2.7290 (4)	C10—H10B	0.9600
Hg1—I2	2.7409 (4)	C10—H10C	0.9600
Hg1—Se1	2.7508 (5)	C13—C15	1.514 (6)
Hg1—Se2	2.7835 (6)	C13—C16	1.536 (7)
Se1—P1	2.1260 (13)	C13—C14	1.535 (7)
Se2—P2	2.1302 (12)	C4—H4A	0.9600
P1—P2	2.4893 (16)	C4—H4B	0.9600
P1—N2	1.679 (4)	C4—H4C	0.9600
P1—N1	1.674 (4)	C7—H7A	0.9600
P1—N3	1.615 (4)	С7—Н7В	0.9600
P2—N2	1.673 (4)	С7—Н7С	0.9600
P2—N1	1.689 (4)	C15—H15A	0.9600
P2—N4	1.619 (4)	C15—H15B	0.9600
N2—C5	1.507 (5)	C15—H15C	0.9600
N1—C1	1.511 (5)	C8—H8A	0.9600
O1—C17	1.237 (6)	C8—H8B	0.9600
N3—H3	0.83 (5)	C8—H8C	0.9600
N3—C9	1.508 (6)	С3—НЗА	0.9600
N4—H4	0.79 (5)	С3—Н3В	0.9600

N4—C13	1.491 (6)	C3—H3C	0.9600
N5—C19	1.457 (6)	C12—H12A	0.9600
N5—C17	1.314 (7)	C12—H12B	0.9600
N5-C18	1.444 (7)	C12—H12C	0.9600
С5—С6	1.526 (7)	C16—H16A	0.9600
С5—С7	1.520 (7)	C16—H16B	0.9600
С5—С8	1.525 (7)	C16—H16C	0.9600
C6—H6A	0.9600	C19—H19A	0.9600
С6—Н6В	0.9600	C19—H19B	0.9600
С6—Н6С	0.9600	C19—H19C	0.9600
C11—H11A	0.9600	C14—H14A	0.9600
C11—H11B	0.9600	C14—H14B	0.9600
C11—H11C	0.9600	C14—H14C	0.9600
	1 519 (6)	C17H17	0.9000
C_{1} C_{10}	1.519(0) 1.530(7)	$C_2 H_2 \Lambda$	0.9500
C_{2}	1.536 (7)	$C_2 = H_2 R$	0.9000
C_{2}	1.556 (6)	C_2 —H2B	0.9000
CI = C4	1.515 (0)		0.9600
CI = C3	1.522 (7)	C18—H18A	0.9600
CI - C2	1.531 (/)	CI8—HI8B	0.9600
C10—H10A	0.9600	C18—H18C	0.9600
I1—Hg1—I2	116.603 (13)	H10A—C10—H10C	109.5
I1—Hg1—Se1	115.134 (15)	H10B—C10—H10C	109.5
I1—Hg1—Se2	97.310 (14)	N4—C13—C15	111.2 (4)
I2—Hg1—Se1	99.784 (14)	N4—C13—C16	105.3 (4)
I2—Hg1—Se2	115.997 (16)	N4—C13—C14	110.2 (4)
Se1—Hg1—Se2	112.950 (15)	C15—C13—C16	109.9 (4)
P1—Se1—Hg1	93.82 (3)	C15—C13—C14	111.4 (4)
P2—Se2—Hg1	93.27 (4)	C14—C13—C16	108.7 (4)
Se1—P1—P2	119.89 (6)	C1—C4—H4A	109.5
N2—P1—Se1	114.83 (14)	C1—C4—H4B	109.5
N2—P1—P2	41.95 (12)	C1—C4—H4C	109.5
N1—P1—Se1	114.57 (14)	H4A—C4—H4B	109.5
N1 - P1 - P2	42 48 (12)	H4A - C4 - H4C	109.5
N1 - P1 - N2	84 07 (18)	H4B-C4-H4C	109.5
N3—P1—Se1	114 75 (16)	C5-C7-H7A	109.5
N3P1P2	125 36 (16)	C_{5} C_{7} H_{7} H_{7	109.5
N3 P1 N2	112.8 (2)	$C_5 C_7 H_7C$	109.5
N3 P1 N1	112.0 (2)	$H_{7A} = C_7 + H_{7B}$	109.5
S_{e} P P_1	112.2(2) 110.08(6)	H7A $C7$ $H7C$	109.5
$N_2 = 0 = 0 = 0$	119.50(0) 112.51(14)	H7P C7 H7C	109.5
$N_2 = F_2 = St_2$	115.51 (14)	$\Pi/B - C/ - \Pi/C$	109.5
$N_2 - P_2 - P_1$	42.13 (12)	CI3—CI5—HI5A	109.3
$N_2 - r_2 - N_1$	83./9(1/) 11(10(14)	C12 C15 H15C	109.5
N1 - P2 - Se2	110.10 (14)	U_{13} — U_{13} — $H_{13}U_{13}$	109.5
NI - P2 - P1	42.01 (12)		109.5
N4—P2—Se2	114.77 (15)	HISA-CIS-HISC	109.5
N4—P2—P1	125.25 (15)	H15B—C15—H15C	109.5
N4—P2—N2	112.8 (2)	C5—C8—H8A	109.5

N4—P2—N1	112.1 (2)	C5—C8—H8B	109.5
P2—N2—P1	95.90 (17)	C5—C8—H8C	109.5
C5—N2—P1	132.7 (3)	H8A—C8—H8B	109.5
C5—N2—P2	131.3 (3)	H8A—C8—H8C	109.5
P1—N1—P2	95.51 (18)	H8B—C8—H8C	109.5
C1—N1—P1	132.2 (3)	C1—C3—H3A	109.5
C1—N1—P2	132.2 (3)	C1—C3—H3B	109.5
P1—N3—H3	110 (3)	C1—C3—H3C	109.5
C9—N3—P1	135.0 (3)	НЗА—СЗ—НЗВ	109.5
C9—N3—H3	115 (3)	НЗА—СЗ—НЗС	109.5
P2—N4—H4	105 (4)	НЗВ—СЗ—НЗС	109.5
C13—N4—P2	135.5 (3)	C9—C12—H12A	109.5
C13—N4—H4	119 (4)	C9—C12—H12B	109.5
C17—N5—C19	123.0 (5)	C9—C12—H12C	109.5
C17—N5—C18	120.8 (5)	H12A—C12—H12B	109.5
C18—N5—C19	116.2 (5)	H12A—C12—H12C	109.5
N2-C5-C6	109.4 (4)	H12B—C12—H12C	109.5
N2-C5-C7	108.6 (4)	C13—C16—H16A	109.5
N2-C5-C8	107.9(4)	C13—C16—H16B	109.5
C7 - C5 - C6	107.9(1) 109.8(4)	C13 - C16 - H16C	109.5
C7 - C5 - C8	109.0(1) 110.2(5)	H16A—C16—H16B	109.5
C8 - C5 - C6	110.2(0) 111.0(4)	H16A - C16 - H16C	109.5
C5-C6-H6A	109.5	H16B—C16—H16C	109.5
C5-C6-H6B	109.5	N5-C19-H19A	109.5
$C_5 - C_6 - H_{6}C$	109.5	N5-C19-H19B	109.5
H_{6A} C_{6} H_{6B}	109.5	N5-C19-H19C	109.5
H6A - C6 - H6C	109.5	H19A - C19 - H19B	109.5
H6B-C6-H6C	109.5	H19A - C19 - H19C	109.5
H11A—C11—H11B	109.5	H19B-C19-H19C	109.5
H11A—C11—H11C	109.5	C13— $C14$ — $H14A$	109.5
H11B-C11-H11C	109.5	C13 $C14$ $H14B$	109.5
C9-C11-H11A	109.5	C13 $C14$ $H14C$	109.5
C9-C11-H11B	109.5	H14A - C14 - H14B	109.5
C9-C11-H11C	109.5	H14A - C14 - H14C	109.5
N3-C9-C11	111 4 (4)	H14B $C14$ $H14C$	109.5
$N_3 - C_9 - C_{10}$	110.4(4)	01-C17-N5	109.3 125.7(5)
$N_{3} - C_{9} - C_{12}$	105.5(4)	01 - C17 - H17	117.2
$C_{11} - C_{9} - C_{10}$	105.5(4)	N5-C17-H17	117.2
$C_{11} - C_{9} - C_{12}$	10.3(5) 109.8(4)	C1 - C2 - H2A	109.5
C_{10} C_{9} C_{12}	109.0(1) 109.2(4)	C1 - C2 - H2B	109.5
N1 - C1 - C4	109.2(4) 109.5(4)	C1 - C2 - H2C	109.5
N1 - C1 - C3	109.0(4)	$H_2A = C_2 = H_2B$	109.5
N1 - C1 - C2	109.0(4) 108.1(4)	$H_2A = C_2 = H_2C$	109.5
C_{4} C_{1} C_{3}	100.1(4) 100.9(4)	H2R - C2 - H2C	109.5
C4-C1-C2	110 8 (4)	N5-C18-H18A	109.5
$C_{3} = C_{1} = C_{2}$	100.5(4)	N5-C18-H18R	109.5
$C_{1} = C_{1} = C_{2}$	109.5 (+)	$N_{5} - C_{18} - H_{18C}$	109.5
C_{0}	109.5	$H18\Delta - C18 H18B$	109.5
	1.7.7.2	110A - 010 - 110D	107

C9—C10—H10C	109.5	H18A—C18—H18C	109.5
H10A—C10—H10B	109.5	H18B—C18—H18C	109.5
Se1—P1—N2—P2	107.86 (15)	P2—N1—C1—C4	40.6 (6)
Se1—P1—N2—C5	-75.0 (4)	P2—N1—C1—C3	160.8 (4)
Se1—P1—N1—P2	-108.19 (15)	P2—N1—C1—C2	-80.2 (5)
Se1—P1—N1—C1	69.0 (4)	P2—N4—C13—C15	-66.1 (6)
Se1—P1—N3—C9	9.6 (5)	P2—N4—C13—C16	175.0 (4)
Se2—P2—N2—P1	-109.36 (14)	P2-N4-C13-C14	58.0 (6)
Se2—P2—N2—C5	73.5 (4)	N2—P1—N1—P2	6.44 (18)
Se2—P2—N1—P1	106.70 (14)	N2—P1—N1—C1	-176.4 (4)
Se2—P2—N1—C1	-70.4 (4)	N2—P1—N3—C9	-124.4 (4)
Se2—P2—N4—C13	7.9 (5)	N2—P2—N1—P1	-6.47 (19)
P1—P2—N2—C5	-177.2 (5)	N2—P2—N1—C1	176.4 (4)
P1—P2—N1—C1	-177.1 (5)	N2—P2—N4—C13	140.0 (4)
P1—P2—N4—C13	-173.4 (4)	N1—P1—N2—P2	-6.51 (19)
P1—N2—C5—C6	36.4 (6)	N1—P1—N2—C5	170.6 (4)
P1—N2—C5—C7	156.1 (4)	N1—P1—N3—C9	142.7 (4)
P1—N2—C5—C8	-84.5 (5)	N1—P2—N2—P1	6.45 (19)
P1—N1—C1—C4	-135.6 (4)	N1—P2—N2—C5	-170.7 (4)
P1—N1—C1—C3	-15.3 (6)	N1—P2—N4—C13	-127.4 (4)
P1—N1—C1—C2	103.6 (5)	N3—P1—N2—P2	-118.1 (2)
P1—N3—C9—C11	57.2 (6)	N3—P1—N2—C5	59.0 (5)
P1—N3—C9—C10	-65.9 (6)	N3—P1—N1—P2	118.7 (2)
P1-N3-C9-C12	176.3 (4)	N3—P1—N1—C1	-64.2 (5)
P2—P1—N2—C5	177.1 (5)	N4—P2—N2—P1	117.9 (2)
P2—P1—N1—C1	177.1 (5)	N4—P2—N2—C5	-59.3 (4)
P2—P1—N3—C9	-170.7 (4)	N4—P2—N1—P1	-118.6 (2)
P2—N2—C5—C6	-147.5 (4)	N4—P2—N1—C1	64.2 (5)
P2—N2—C5—C7	-27.7 (6)	C19—N5—C17—O1	-179.1 (6)
P2—N2—C5—C8	91.7 (5)	C18—N5—C17—O1	0.9 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N3—H3…O1	0.82 (6)	2.18 (6)	2.986 (6)	165 (4)
N4—H4…O1	0.79 (5)	2.27 (5)	3.051 (5)	169 (6)