

Received 2 September 2024 Accepted 29 September 2024

Edited by K. V. Domasevitch, National Taras Shevchenko University of Kyiv, Ukraine

Keywords: crystal structure; 1*H*-indole; benzenesulfonamide; π - π interactions; hydrogen bonding; Hirshfeld surface analysis.

CCDC references: 2387808; 2350346

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

The crystal structures determination and Hirshfeld surface analysis of *N*-(4-bromo-3-methoxyphenyl)and *N*-{[3-bromo-1-(phenylsulfonyl)-1*H*-indol-2-yl]methyl}- derivatives of *N*-{[3-bromo-1-(phenylsulfonyl)-1*H*-indol-2-yl]methyl}benzenesulfonamide

S. Madhan,^a M. NizamMohideen,^a* Vinayagam Pavunkumar^b and Arasambattu K. MohanaKrishnan^b

^aDepartment of Physics, The New College, Chennai 600 014, University of Madras, Tamil Nadu, India, and ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamilnadu, India. *Correspondence e-mail: mnizam.new@gmail.com

Two new phenylsulfonylindole derivatives, namely, N-{[3-bromo-1-(phenylsulfonyl)-1*H*-indol-2-yl]methyl}-*N*-(4-bromo-3-methoxyphenyl)benzenesulfonamide, C₂₈H₂₂Br₂N₂O₅S₂, (I), and N,N-bis{[3-bromo-1-(phenylsulfonyl)-1Hindol-2-yl]methyl}benzenesulfonamide, C₃₆H₂₇Br₂N₃O₆S₃, (II), reveal the impact of intramolecular π - π interactions of the indole moieties as a factor not only governing the conformation of N,N-bis(1H-indol-2-yl)methyl)amines, but also significantly influencing the crystal patterns. For I, the crystal packing is dominated by C-H··· π and π - π bonding, with a particular significance of mutual indole-indole interactions. In the case of II, the molecules adopt short intramolecular π - π interactions between two nearly parallel indole ring systems [with the centroids of their pyrrole rings separated by 3.267 (2) Å] accompanied by a set of forced $Br \cdots O$ contacts. This provides suppression of similar interactions between the molecules, while the importance of weak $C-H\cdots O$ hydrogen bonding to the packing naturally increases. Short contacts of the latter type $[C \cdots O = 3.389 (6) \text{ Å}]$ assemble pairs of molecules into centrosymmetric dimers with a cyclic $R_2^2(13)$ ring motif. These findings are consistent with the results of a Hirshfeld surface analysis and together they suggest a tool for modulating the supramolecular behavior of phenylsulfonylated indoles.

1. Chemical context

Sulfonamide derivatives found applications in modern medicine to control diseases caused by bacterial infections (Brown, 1971; Zhao et al., 2016). These species have been famous as sulfa drugs for over 70 years since the discovery of their activity. They are still used as antibiotics (Gulcin & Taslimi, 2018), in spite of the later introduction of penicillin. In particular, numerous formulations based on sulfonamides have repeatedly been used as chemotherapeutics for their antibacterial (Ovung & Bhattacharyya, 2021; Badr, 2008), antifungal (Hanafy et al., 2007) and hypoglycemic properties (Chohan et al., 2010; El-Sayed et al., 2011). Among drugs of other types, sulfonamides also display appreciable antitumor, anticancer, and antithyroid activities (Scozzafava et al., 2003). Some sulfonamide products also possess carbonic anhydrases (CA) inhibition properties (Suparan et al., 2001). The production of new compounds with noteworthy biological activity, which are suited as antiviral and antimicrobial agents, drives interest in synthetic approaches for sulfonamide-functionalized heterocyclic ring systems (Azzam et al., 2020).

Identifying the significance of such compounds for biochemical uses and drug discovery, and our continuing study of the development of indole products have prompted us to examine a series of corresponding N-sulfonyl- and bromo-substituted species. The need for deeper functionalization of the systems by introducing bromine substitutes is motivated by the fact that the presence of halogen atoms in molecules commonly enhances various biological activities and thus halogenation may be recognized as an essential tool for drug optimization (Murphy et al., 2003). For example, the occurrence of bromine atoms on a phenol ring is important for improved antimicrobial activity (Bouthenet et al., 2011). Structural trends in such compounds, including subtle features of their intermolecular interactions, could be applicable to the specific targeting of the substrates in biomedical systems and therefore they may provide new insights into the action of sulfonamide derivatives. In particular, Adsmond & Grant (2001) categorized the hydrogen-bonding preferences of sulfonamides. The availability of multiple aromatic groups in N-sulfonylated indoles imposes also possibility for versatile stacking patterns, which may be competitive to conventional hydrogen bonding. We report herein the crystal-structure determination and Hirshfeld surface analysis of two new indoles: namely, N-{[3-bromo-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}-N-(4-C28H22Br2bromo-3-methoxyphenyl)benzenesulfonamide, $N_2O_5S_2$, (I), and N,N-bis{[3-bromo-1-(phenylsulfonyl)-1H-C₃₆H₂₇Br₂N₃O₆S₃, indol-2-yl]methyl}benzenesulfonamide, (II), which feature a complex interplay of weak hydrogenbonding and $\pi - \pi$ interactions.

2. Structural commentary

The molecular structures of the title compounds, which differ in substituents at the phenylsulfonylated exocyclic N2 atoms (*N*-(4-bromo-3-methoxyphenyl) for **I** and *N*-{[3-bromo-1-(phenylsulfonyl)-1*H*-indol-2-yl]methyl} for **II**), are illustrated in Figs. 1 and 2, respectively. In both the cases, the indole ring systems (N1/C1–C8 and N3/C23–C30) are essentially planar, with a maximum deviation from the corresponding mean planes of 0.039 (4) Å observed for C8 atom in **II**. The torsion angles involving the sulfonamide fragments, O2-S1-N1-C1 [-152.6 (3) for **I** and -175.2 (3)° for **II**], O3-S2-C16-C17 [-153.9 (3) for **I** and -146.4 (3)° for **II**] and O5-S3-N3-C23 [-178.7 (3)° for **II**] indicate an antiperiplanar conformation of the sulfonyl moiety. The dihedral angle between sulfonyl-bound phenyl rings (C9–C14) and the carrier indole ring systems (N1/C1–C8) are 62.0 (2)° for **I** and

Figure 1

The molecular structure of compound I, with atom labeling and displacement ellipsoids drawn at the 20% probability level.

70.9 (2)° for **II**, unlike the orthogonal orientation of these groups in previously reported *N*-phenylsulfonyl indoles (Madhan *et al.*, 2022, 2023*a*,*b*, 2024*a*,*b*). In **I**, the dihedral angle between two sulfonyl-bound phenyl rings (C9–C14 and C16–C21) is 59.0 (2)°, while in **II** they are nearly orthogonal [86.5 (2)°]. The methoxy-bound phenyl ring (C22–C27) in **I** is

Figure 2

The molecular structure of compound II, with atom labeling and displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate the intramolecular π - π interactions of the indole ring systems.

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$) for I .	

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots O1$	0.93	2.39	2.908 (5)	115
$C11-H11\cdots O4^{i}$	0.93	2.76	3.503 (6)	137
C15-H15B···O2	0.97	2.31	2.886 (4)	117
$C18-H18\cdots Cg(N1/C1/C6-C8)^{ii}$	0.93	2.99	3.861 (8)	156
$C18-H18\cdots Cg(C1-C6)^{ii}$	0.93	2.81	3.579(1)	141

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z.

also inclined to the indole framework, subtending a dihedral angle of $73.23 (1)^{\circ}$.

The geometric parameters of I and II agree well with those reported for related structures (Madhan et al., 2022, 2023a,b, 2024a,b). The sulfonamide S atoms exhibit a distorted tetrahedral geometry with the O-S-O angles lying in the range of 119.9 (2)-120.3 (2)°. The increase in these angles, accompanied by a simultaneous decrease in the N-S-C angles [which are $104.3 (2)-106.1 (2)^{\circ}$], from the ideal tetrahedral values are attributed to the Thorpe-Ingold effect (Bassindale, 1984). The widening of the angles may be due to the repulsive interaction between the two short S=O bonds. In both compounds, the expansion of the ipso angles at atoms C1, C3, C4 (and C25, C27, C28 in II), together with the contraction of the apical angles at atoms C2, C5, C6 (and C26, C29, C30 in II) are caused by fusion of the smaller pyrrole ring with the sixmembered benzene ring and the strain is taken up by the angular distortion rather than by bond-length distortion (Allen, 1981).

The molecular conformation of compound **I** is stabilized by the weak intramolecular hydrogen bond $C2-H2\cdots O1$ $[C2\cdots O1 = 2.908 (5) \text{ Å}]$ formed by the sulfone O atoms, which generates an S(6) ring motif. The similar interaction in compound **II** $[C2\cdots O1 = 2.993 (7) \text{ Å}]$ is accompanied by three additional intramolecular hydrogen bonds involving methylene donors and sulfone acceptors $[C15\cdots O2 = 2.850 (5) \text{ Å}, C22\cdots O6 = 2.950 (5) \text{ Å}$ and $C29\cdots O5= 2.907 (5) \text{ Å}]$, which generate S(6) ring motifs.

The most striking feature of the molecular structures is the specific conformation of II, which is controlled by an intramolecular $\pi - \pi$ interaction between the two indole ring systems (Fig. 2). Their planes are almost parallel, while adopting a small angle of 7.2 (2) $^{\circ}$. Two pyrrole and two benzene rings are situated one on the top of another, with the corresponding intercentroid distances being 3.267 (5) and 3.593 (5) Å, respectively, and with the shortest contact of 3.035 (5) Å observed between atoms C8 and C23. A similar intramolecular pairing of aromatic rings separated by flexible triatomic spacers is relevant for the appropriate model of dibenzylketone (Lima et al., 2010). For the latter, the stacked conformation was associated with a relatively small stabilizing enthalpic effect of about 12.9 kJ mol^{-1} and therefore the crystal structure did not inherit the intramolecular stacking observed for the gas phase and solution structures. In contrary, the energetics of the intramolecular indole-indole interaction could be estimated to be far superior (up to $50-60 \text{ kJ mol}^{-1}$; Madhan et al., 2024a) due to the significantly larger interaction areas and higher contribution of London dispersion forces.

Table 2Hydrogen-bond geometry (Å, $^{\circ}$) for II.

$D-\mathrm{H}\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{C2-H2\cdots O1}$	0.93	2.43	2.993 (7)	119
$C13-H13\cdots O3^{i}$	0.93	2.80	3.324 (6)	117
$C14-H14\cdots O4^{i}$	0.93	2.78	3.558 (5)	142
C15−H15B····O2	0.97	2.25	2.850 (5)	119
C18-H18···O3 ⁱⁱ	0.93	2.73	3.575 (6)	151
C19−H19···O4 ⁱⁱⁱ	0.93	2.59	3.443 (6)	152
C19−H19···O6 ⁱⁱⁱ	0.93	2.81	3.467 (6)	129
$C20-H20\cdots Br2^{iii}$	0.93	3.02	3.536 (5)	117
$C22-H22A\cdots O6$	0.97	2.39	2.950 (5)	116
$C27-H27\cdotsO1^{iv}$	0.93	2.48	3.389 (6)	164
$C28-H28\cdots O5^{v}$	0.93	2.63	3.547 (6)	170
C29-H29···O5	0.93	2.35	2.907 (5)	118
$C34-H34\cdots O5^{ii}$	0.93	2.62	3.360 (6)	137
$C35-H35\cdots Cg(C16-C21)^{vi}$	0.93	2.91	3.729 (7)	147

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x + 1, y, z; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 1, -y + 1, -z + 2; (vi) $x - \frac{1}{2}, -y - \frac{1}{2}, z - \frac{1}{2}$.

The impact of the resulting intramolecular stacking on the sulfonylindole geometry is visible from the inspection of configuration around sulfonyl N atoms. The sum of the bond angles around N1 in I [359.5 (2)°] indicates sp^2 hybridization (Beddoes et al., 1986). However, in the case of II, two such parameters are essentially smaller $[346.6 (2)^{\circ} \text{ and } 349.9 (2)^{\circ},$ for N1 and N3, respectively] and therefore these indole N atoms are pyramidalized to almost the same extent as the exocyclic sulfonamide N2 atoms [347.8 (2) $^{\circ}$ in I and 342.2 (2) $^{\circ}$ in **II**]. The configuration for the latter is typical for sulfonamides, which lack π -bonding between the N and S atoms (Blahun et al., 2020). The perceptible pyramidalization of the indole N atoms may be viewed as a consequence of the steric strain imposed by close contacts between the Br and O atoms of two stacked indole systems [the shortest contact is $Br2 \cdots O6 = 3.592$ (4) Å]. At the same time, as a result of the electron-withdrawing character of the phenylsulfonyl group, the indole $N-Csp^2$ bond lengths [N1-C1 = 1.415 (4) andN1-C8 = 1.427 (4) Å in I; 1.427 (5)–1.430 (4) Å in II] are longer than the mean value of 1.355 (14) A° for this bond (Allen et al., 1987; Cambridge Structural Database (CSD), Version 5.37; Groom et al., 2016).

3. Supramolecular features

With the absence of conventional hydrogen-bond donor functionality, the supramolecular patterns of both compounds are controlled by weaker interactions, namely by weak $C-H\cdots O$, $C-H\cdots Br$ and $C-H\cdots \pi$ hydrogen bonds (Tables 1 and 2) and slipped $\pi-\pi$ stacking interactions (Table 3). In the case of I, the latter is prevalent. Antiparallel stacking of two inversion-related indole ring systems [symmetry code: (iii) -x + 1, -y + 1, -z + 1) assemble the molecules into dimers, which are connected into chains along the *b*-axis direction by means of $\pi-\pi$ interactions between inversion-related phenyl rings [symmetry code: (iv) -x + 1, -y + 2, -z + 1] (Fig. 3). For the indole–indole interaction, the corresponding intercentroid distances of 3.532 (2) Å and shortest contacts, down to 3.456 (2) Å (Table 3), are consistent well with those for $\pi-\pi$ interactions seen in the crystal structures of similar

Table 3

Geometry of stacking interactions (Å, °) for I and II.

Cg is a group centroid; plane $\cdots CgB$ is the distance between the mean plane of group A and the centroid of interacting group B; ipa is the interplanar angle; sa is the slippage angle, which is the angle of the $CgA \cdots CgB$ axis to the group A mean plane normal.

Compound	Group A	Group B	Shortest contact	$CgA \cdots CgB$	Plane· · · CgB	ipa	sa
I	(N1/C1/C6-C8)	(C1-C6) ⁱⁱⁱ	3.456 (2)	3.532 (2)	3.450 (2)	1.2 (2)	12.4 (2)
	(C9–C14)	$(C9-C14)^{iv}$	3.397 (2)	3.824 (2)	3.397 (2)	0	27.3 (2)
II	(N1/C1/C6-C8)	(N3/C30/C23-C25)	3.225 (2)	3.267 (2)	3.256 (2)	10.4 (3)	4.8 (2)
	(C1-C6)	(C25-C30)	3.499 (2)	3.593 (3)	3.531 (2)	4.9 (3)	10.7(2)
	(C9-C14)	(C31–C36) ^{vii}	3.464 (2)	3.952 (3)	3.636 (2)	6.64 (16)	23.0 (2)

Symmetry codes for I: (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y + 2, -z + 1; for II: (vii) x - 1, y, z - 1.

1-(phenylsulfonyl)-1*H*-indole derivatives (Madhan *et al.*, 2024*a*). Further connection of the chains by $C-H\cdots\pi$ hydrogen bonds yields corrugated layers parallel to the *ab* plane. Two such $C-H\cdots\pi$ interactions actualize above and below the indole-indole stacks and they are bifurcated, involving both benzo- and pyrrole rings as the acceptors. The corresponding separations are $C18\cdots Cg(N1/C1/C6-C8)^{ii}$ =

Figure 3

(a) Crystal packing of compound I, viewed in a projection nearly on the *ab* plane, showing a non-covalent layer assembled by π - π and C-H···O interactions (identified by dotted lines). (b) Packing of two successive corrugated layers. [Symmetry codes: (i) x + 1, y, z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y + 2, -z + 1.]

3.861 (8) Å and $C18\cdots Cg(C1-C6)^{ii} = 3.579$ (1) Å [symmetry code: (ii) x - 1, y, z). The only C-H···O bond in the structure [C11···O4ⁱ = 3.503 (6)Å; symmetry code: (i) x + 1, y, z] is also identified withing this layer.

One can note that in I, and also in other comparable 1-(phenylsulfonyl)-1H-indoles (Madhan et al., 2024a), the favorable π - π bonded duo is generated due to the interactions at only one axial side of the indole ring system. Therefore, in the case of II, the intermolecular $\pi - \pi$ interactions of the latter are completely suppressed due to the generation of the intramolecular indole-indole stack. This is in line with the increased significance of C-H···O interactions in the crystal of II. The shortest hydrogen-bond contacts are observed for sulfonic O-atom acceptors $[C27 \cdots O1^{iv} = 3.389(6) \text{ Å};$ symmetry code: (iv) -x + 1, -y + 1, -z + 1]. These bonds assemble pairs of the molecules into centrosymmetric dimers (Fig. 4) with a cyclic $R_2^2(13)$ (Bernstein *et al.*, 1995) ring motif. The dimers are further integrated into a three-dimensional framework. The amino-bound phenylsulfonyl groups are held together by a set of C-H···O bonds [viz. C18···O3ⁱⁱ = 3.575 (6) and C19···O4ⁱⁱⁱ = 3.443 (6) Å; symmetry codes: (ii) x + 1, y, z; (iii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, $z - \frac{1}{2}$] and constitute their own layer connectivities in the form of flat square nets, which are parallel to the ac plane (Fig. 4b). These layers are separated by 17.39 Å, which is half of the *b*-axis parameter of the unit cell, and are linked via bis(indolemethyl)amine fragments of the above dimers (Fig. 4b). These bis(indolemethyl)amine fragments themselves afford nominal layers with a set of weak intermolecular interactions, such as C-H···O bonds $[C34...O5^{ii} = 3.360 (6) Å;$ symmetry code: (ii) x + 1, y, z] and relatively distal π - π interactions between the outer phenyl rings, with an intercentroid distance of 3.952(3) Å (Fig. 4c).

4. Hirshfeld surface analysis

In order to investigate the weak intermolecular interactions in the crystal, the Hirshfeld surfaces (d_{norm} , curvedness and shape-index) and 2D fingerprint plots were generated using *Crystal Explorer 17.5* (Spackman *et al.*, 2021). The d_{norm} mapping uses the normalized functions of d_i and d_e (Fig. 5), with white surfaces indicating contacts with distances equal to the sum of van der Waals (vdW) radii, while red and blue colors reflect contacts at the distances below and above sum of the corresponding vdW radii, respectively.

Figure 4

(a) Projection of the structure of **II** on the *ab* plane, showing the assembly of centrosymmetric C-H···O-bonded dimers and their integration into the three-dimensional framework. An individual dimer is colored red and its principal interactions C27-H···O1^{iv}, C13-H···O3ⁱ, C14-H···O4ⁱ and C35-H···Cg(C16-C21)^{vi} are labeled as 1-4, respectively. Two subconnectivities, which are orthogonal to the drawing plane, are marked with gray strips and they are detailed in the projections on the *ac* plane: (*b*) phenylsulfonyl layer; (*c*) π - π and C-H···O interactions between the molecules of **II**. [Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x + 1, y, z; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) x - 1, -y + 1, -z + 1; (vi) $x - \frac{1}{2}, -y - \frac{1}{2}, z - \frac{1}{2}$; (vii) x - 1, y, z - 1.]

The Hirshfeld surfaces for two compounds mapped over d_{norm} using a fixed color scale of -0.125 (red) to 1.678 a.u. (blue) for I and -0.198 (red) to 1.491 a.u. (blue) for II are shown in Fig. 5. One can note weakness of intermolecular bonding in a system that is, particularly the case of I, showing preferably normal van der Waals separations (denoted with several white regions on the surface). The only identified pair of diffuse red spots corresponds to C-H...O bonds. In the case of II, the observed low intense and diffuse red spots are slightly larger in number, which supports the increased significance of weak hydrogen-bonding interactions. The electrostatic potential was also mapped on the Hirshfeld surface using a STO-3G basis set and the Hartree-Fock level of theory (Spackman & Jayatilaka, 2009). The C-H \cdots O hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative electrostatic potentials, respectively (Fig. 6a). The presence of π - π stacking interactions is indicated by red and blue triangles on the shape-index surface (Fig. 6b). Areas on the Hirshfeld surface with high curvedness tend to divide the surface into contact patches with each neighboring molecule. The coordination number in the crystal is defined by the curvedness of the Hirshfeld surface (Fig. 6c). The nearest neighbor in the coordination environment of a molecule is

The Hirshfeld surfaces of compounds I and II mapped over d_{norm} .

Hirshfeld surfaces for visualizing the intermolecular contacts of the title compounds: (a) electrostatic potential, (b) shape-index, (c) curvedness and (d) fragment patches.

Figure 7

n

Two-dimensional fingerprint plots for I and II for all contacts and delineated into the principal contributions of $H \cdots H$, $O \cdots H/H \cdots O$, $C \cdots H/H \cdots C$, $Br \cdots H/H \cdots Br$, $Br \cdots O/O \cdots Br$, $C \cdots C$, $Br \cdots C/C \cdots Br$ and $O \cdots C/C \cdots O$ contacts. Other contributors account for less than 1.0% of contacts to the surface areas.

identified from the color patches on the Hirshfeld surface depending on their closeness to adjacent molecules (Fig. 6d).

Two-dimensional fingerprint plots showing the occurrence of all intermolecular contacts (McKinnon et al., 2007) are presented in Fig. 7. The plots for $H \cdots H$ contacts (Fig. 7b), which represent the largest contributions to the Hirshfeld surfaces (over 30%), show a distinct pattern with a minimum value of $d_e = d_i = 1.1$ Å. Beyond these largest fractions, the short contacts are overwhelmingly $O \cdot \cdot H/H \cdot \cdot O$ (Fig. 7c) and $C \cdots H/H \cdots C$ (Fig. 7d), which deliver as much as 19.9 and 19.2%, respectively, to the Hirshfeld surface in I and 27.2 and 16.2% in II. The significant increase in the $O \cdots H/H \cdots O$ contributions when moving from I to II reflects the growing significance of $C-H \cdots O$ binding. This is in line with a larger number of the available O-atom acceptors in the latter case, but also it is a consequence of the elimination of intermolecular π - π indole bonding. Accordingly, the pair of spikes identifying $O \cdots H/H \cdots O$ contacts on the plots is more diffuse in the case of I. We note also a suppression of $Br \cdot \cdot \cdot H/H \cdot \cdot \cdot Br$ contacts (6.9% for II versus 13.6% for I). This fact does not provide a basis for comparison of the acceptor abilities of the indole- and phenyl-bound Br atoms, but rather reflects the steric unavailability of Br in II due to the forced intramolecular interactions with sulfonyl O atoms. It is worth mentioning that the accumulation of unfavorable Br ··· O contacts within the molecule of II causes the elimination of such contacts between the molecules. This situation is evidenced by markedly different contributions of Br...O/ $O \cdots Br$ contacts to the surface areas, which are 5.1% for I, but are completely absent in the case of **II**. An overlap between nearly parallel aromatic frames, due to the slipped $\pi - \pi$ interactions, is clearly indicated by the $C \cdot \cdot \cdot C$ plots in the form of blue-green areas centered at $ca d_e = d_i = 1.8$ Å. A 50% decrease in the $C \cdots C$ contacts (2.4% for **II** versus 4.8% for **I**)

is also a consequence of intramolecular indole-indole stacking, which mitigates against similar in nature intermolecular interactions.

In brief, the Hirshfeld surface analysis confirms the importance of weak hydrogen bonding and contacts associated with the π - π interactions in establishing the packing. These results complement the main merit of the structure analysis and in total they suggest the possibility of controling the supramolecular behavior of sulfonylated indoles as possible biomedical materials.

5. Database survey

A search of the Cambridge Structural Database (Version 5.37; Groom *et al.*, 2016) indicated 123 compounds incorporating the phenylsulfonyl-1*H*-indole moiety. Of these, the most closely related examples are provided by structures of bromosubstituted 3-methyl-1-(phenylsulfonyl)-1*H*-indole derivatives (JOMJII, JOMJAA and JOMJEE; Madhan *et al.*, 2024*b*), ethyl 2-acetoxymethyl-1-phenylsulfonyl-1*H*-indole-3carboxylate (HUCQUS; Gunasekaran *et al.*, 2009), 3-iodo-2methyl-1-phenylsulfonyl-1*H*-indole (ULESEK; Ramathilagam *et al.*, 2011) and 1-(2-bromomethyl-1-phenylsulfonyl-1*H*-indol-3-yl) propan-1-one (CIQFEP; Umadevi *et al.*, 2013). In these structures, the sulfonyl-bound phenyl rings are almost orthogonal to the indole ring systems, with the corresponding dihedral angles lying in the range 73.35 (7)–89.91 (11)°.

6. Synthesis and crystallization

Compound I: To a solution of N-(3-methoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide (0.45 g, 0.845 mmol) in 5 ml of dry CH₂Cl₂, a mixture of phenyliodonium diacetate (0.40 g, 1.268 mmol) and CuBr₂

Table 4

Experimental details.

	I	Ш
Crystal data		
Chemical formula	$C_{28}H_{22}Br_2N_2O_5S_2$	$C_{36}H_{27}Br_2N_3O_6S_3$
$M_{\rm r}$	690.41	853.60
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/n$
Temperature (K)	303	303
a, b, c (Å)	9.5718 (6), 14.4498 (8), 20.0041 (12)	8.2664 (4), 34.7886 (18), 12.5972 (6)
β (°)	92.874 (2)	104.550 (2)
$V(\dot{A}^3)$	2763.3 (3)	3506.5 (3)
Z	4	4
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	3.13	2.54
Crystal size (mm)	$0.29 \times 0.24 \times 0.20$	$0.29\times0.19\times0.04$
Data collection		
Diffractometer	Bruker D8 Venture Diffractometer	Bruker D8 Venture Diffractometer
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, \hat{T}_{\max}	0.589, 0.753	0.491, 0.745
No. of measured, independent and observed $[I > $	90697, 5234, 4173	73921, 6434, 5196
$2\sigma(I)$] reflections		
R _{int}	0.071	0.071
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.099, 1.05	0.048, 0.120, 1.12
No. of reflections	5234	6434
No. of parameters	353	451
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.74, -1.41	0.46, -0.47

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2019/2 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020), WinGX (Farrugia, 2012), publcIF (Westrip, 2010) and PLATON (Spek, 2020).

(0.56 g, 2.537 mmol) in 10 ml of CH₂Cl₂ was slowly added at 273 K. The reaction mixture was allowed to stir for 3 h at 273 K under an N₂ atmosphere. After completion of the reaction (monitored by TLC), it was poured over cooled saturated aqueous NaHCO₃ solution (20 mL) and then extracted with CH_2Cl_2 (2 × 10 mL). The extract was dried over Na₂SO₄. Removal of the solvent followed by recrystallization of the crude product from 5 mL of methanol afforded *N*-{[3-bromo-1-(phenylsulfonyl)-1*H*-indol-2-yl] methyl}-N-(4-bromo-3-methoxyphenyl)benzenesulfonamide (0.45 g, 78%) as a colorless solid, m.p. = 495–496 K. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3), \delta, \text{ p.p.m.: } 7.96 (d, J = 8.4 \text{ Hz}, 1\text{H}), 7.69-7.64$ (*m*, 4H), 7.57–7.34 (*m*, 6H), 7.29–7.24 (*m*, 2H), 7.20–7.11 (*m*, 2H), 6.36 (s, 1H), 6.25 (d, J = 8.4 Hz, 1H), 5.28 (s, 2H), 3.49 (s, 3H). ${}^{13}C{}^{1}H$ NMR (75 MHz, CDCl₃), δ , p.p.m.: 155.4, 138.0, 137.9, 137.4, 136.3, 134.2, 133.1, 132.6, 130.2, 129.4, 128.8, 128.4, 128.2, 126.8, 126.6, 124.5, 122.7, 120.1, 115.2, 113.6, 111.7, 107.7, 56.1, 45.8. DEPT-135 ¹³C NMR (CDCl₃), δ, p.p.m.: 134.2, 133.1, 132.6, 129.4, 128.9, 128.2, 126.8, 126.6, 124.5, 122.7, 120.2, 115.2, 113.6, 56.1, 45.8. HRMS (ESI) m/z: [M+H]⁺ Calculated for $C_{28}H_{23}^{79}Br_2N_2O_5S_2$: 688.9415; found: 688.9407.

Compound **II**: To a solution of *N*,*N*-bis{[1-(phenylsulfonyl)-1*H*-indol-2-yl]methyl}benzenesulfonamide (0.25 g, 0.359 mmol) in 5 ml of dry CH₂Cl₂, a mixture of phenyliodonium diacetate (0.23 g, 0.719 mmol) and CuBr₂ (0.24 g, 1.079 mmol) in 10 ml of CH₂Cl₂ was slowly added at 273 K. The reaction mixture was allowed to stir for 3 h at 273 K under an N₂ atmosphere. After completion of the reaction (monitored by TLC), it was poured over cooled saturated aqueous NaHCO₃ solution (20 mL) and then extracted with CH₂Cl₂ (2 × 10 mL). The extract was dried over Na₂SO₄. Removal of the solvent followed by recrystallization of the crude product from 5 ml of methanol afforded *N*,*N*-bis{[3-bromo-1-(phenyl-sulfonyl)-1*H*-indol-2-yl]methyl}benzenesulfonamide (0.15 g, 60%) as a colorless solid, m.p. = 529–531 K. ¹H NMR (300 MHz, CDCl₃), δ , p.p.m.: 7.93 (*d*, *J* = 8.1 Hz, 2H), 7.77 (*d*, *J* = 7.5 Hz, 2H), 7.52–7.45 (*m*, 6H), 7.38–7.19 (*m*, 13H), 7.14–7.09 (*m*, 2H), 5.14 (*s*, 4H). ¹³C{¹H} NMR (75 MHz, CDCl₃), δ , p.p.m.: 138.9, 137.4, 136.6, 133.9, 131.9, 129.5, 129.2, 128.0, 127.5, 126.6, 126.3, 124.6, 120.0, 115.7, 109.2, 45.0.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. All hydrogen atoms were positioned geometrically and refined as riding with C–H = 0.93 Å (aromatic CH), 0.97 Å (CH₂) and 0.96 Å (CH₃) and 0.97 Å with $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C})$ for methyl groups and 1.2U_{eq}(C) for other H atoms.

Acknowledgements

The authors are thanks to the SAIF, IIT, Madras, India, for the data collection.

References

- Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.
- Allen, F. H. (1981). Acta Cryst. B37, 900-906.

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Azzam, R. A., Elgemeie, G. H. & Osman, R. R. (2020). J. Mol. Struct. 1201, 127194.
- Badr, E. E. (2008). J. Dispersion Sci. Technol. 29, 1143-1149.
- Bassindale, A. (1984). *The Third Dimension in Organic Chemistry*, ch. 1, p. 11. New York: John Wiley and Sons.
- Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Blahun, O. P., Rozhenko, A. B., Rusanov, E., Zhersh, S., Tolmachev, A. A., Volochnyuk, D. M. & Grygorenko, O. O. (2020). J. Org. Chem. 85, 5288–5299.
- Bouthenet, E., Oh, K.-B., Park, S., Nagi, N. K., Lee, H.-S. & Matthews, S. E. (2011). Bioorg. Med. Chem. Lett. 21, 7142–7145.
- Brown, G. M. (1971). Adv. Enzymol. Relat. Areas Mol. Biol. 35, 35–77.
- Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chohan, Z. H., Youssoufi, M. H., Jarrahpour, A. & Ben Hadda, T. (2010). *Eur. J. Med. Chem.* **45**, 1189–1199.
- El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). *Eur. J. Med. Chem.* 46, 3714–3720.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gulcin, I. & Taslimi, P. (2018). Expert Opin. Ther. Pat. 28, 541-549.
- Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2069.
- Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Nippon Ishinkin Gakkai Zasshi, 48, 47–50.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Lima, C. F. R. A. C., Sousa, C. A. D., Rodriguez-Borges, J. E., Melo, A., Gomes, L. R., Low, J. N. & Santos, L. M. N. B. F. (2010). *Phys. Chem. Chem. Phys.* **12**, 11228–11237.

- research communications
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Madhan, S., NizamMohideen, M., Harikrishnan, K. & MohanaKrishnan, A. K. (2024a). Acta Cryst. E80, 682–690.
- Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2022). Acta Cryst. E78, 1198–1203.
- Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023a). Acta Cryst. E79, 521–525.
- Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023b). Acta Cryst. E79, 741–746.
- Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2024b). Acta Cryst. E80, 845–851.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Murphy, C. D. (2003). J. Appl. Microbiol. 94, 539-548.
- Ovung, A. & Bhattacharyya, J. (2021). Biophys. Rev. 13, 259-272.
- Ramathilagam, C., Saravanan, V., Mohanakrishnan, A. K., Chakkaravarthi, G., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, 0632.
- Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). *Curr. Med. Chem.* **10**, 925–953.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Suparan, C. T., Briganti, F., Tilli, S., Chegwidden, W. R. & Scozzafava, A. (2001). *Bioorg. Med. Chem.* 9, 703–714.
- Umadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). *Acta Cryst.* E**69**, o1802–o1803.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhao, Y., Shadrick, W. R., Wallace, M. J., Wu, Y., Griffith, E. C., Qi, J., Yun, M., White, S. W. & Lee, R. E. (2016). *Bioorg. Med. Chem. Lett.* **26**, 3950–3954.

Acta Cryst. (2024). E80, 1110-1117 [https://doi.org/10.1107/S2056989024009587]

The crystal structures determination and Hirshfeld surface analysis of *N*-(4bromo-3-methoxyphenyl)- and *N*-{[3-bromo-1-(phenylsulfonyl)-1*H*-indol-2yl]methyl}- derivatives of *N*-{[3-bromo-1-(phenylsulfonyl)-1*H*-indol-2yl]methyl}benzenesulfonamide

S. Madhan, M. NizamMohideen, Vinayagam Pavunkumar and Arasambattu K. MohanaKrishnan

Computing details

N-{[3-Bromo-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}-N-(4-bromo-3-methoxyphenyl)benzenesulfonamide (I)

Crystal data C₂₈H₂₂Br₂N₂O₅S₂ $M_r = 690.41$ Monoclinic, $P2_1/n$ a = 9.5718 (6) Å b = 14.4498 (8) Å c = 20.0041 (12) Å $\beta = 92.874$ (2)°

Data collection

Z = 4

V = 2763.3 (3) Å³

Bruker D8 Venture Diffractometer Radiation source: micro focus sealed tube ω and φ scans Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015) $T_{\min} = 0.589$, $T_{\max} = 0.753$ 90697 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.099$ S = 1.055234 reflections 353 parameters 0 restraints F(000) = 1384 $D_x = 1.660 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 90697 reflections $\theta = 1.4-25.0^{\circ}$ $\mu = 3.13 \text{ mm}^{-1}$ T = 303 KBlock, colorless $0.29 \times 0.24 \times 0.20 \text{ mm}$

5234 independent reflections 4173 reflections with $I > 2\sigma(I)$ $R_{int} = 0.071$ $\theta_{max} = 25.7^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = -11 \rightarrow 11$ $k = -17 \rightarrow 17$ $l = -24 \rightarrow 24$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0293P)^2 + 5.9561P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.74$ e Å⁻³ $\Delta\rho_{min} = -1.41$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.5912 (4)	0.6131 (2)	0.46145 (17)	0.0360 (8)	
C2	0.7216 (4)	0.6188 (3)	0.4946 (2)	0.0485 (9)	
H2	0.746482	0.669420	0.521272	0.058*	
C3	0.8133 (5)	0.5462 (3)	0.4864 (2)	0.0581 (11)	
Н3	0.901819	0.548866	0.507653	0.070*	
C4	0.7775 (5)	0.4695 (3)	0.4473 (2)	0.0575 (11)	
H4	0.841931	0.421970	0.443087	0.069*	
C5	0.6482 (5)	0.4633 (3)	0.41506 (19)	0.0486 (10)	
Н5	0.623774	0.411785	0.389142	0.058*	
C6	0.5536 (4)	0.5362 (2)	0.42199 (17)	0.0372 (8)	
C7	0.4158 (4)	0.5529 (2)	0.39470 (17)	0.0397 (8)	
C8	0.3685 (4)	0.6356(2)	0.41568 (16)	0.0337 (7)	
C9	0.5386 (4)	0.8611 (2)	0.46312 (18)	0.0401 (8)	
C10	0.6823 (5)	0.8709 (3)	0.4644 (3)	0.0610 (12)	
H10	0.740032	0.827279	0.485932	0.073*	
C11	0.7389 (6)	0.9465 (3)	0.4332 (3)	0.0775 (16)	
H11	0.835512	0.953850	0.433711	0.093*	
C12	0.6537 (6)	1.0105 (3)	0.4017 (2)	0.0686 (14)	
H12	0.692625	1.061212	0.380876	0.082*	
C13	0.5117 (6)	1.0007 (3)	0.4006 (2)	0.0617 (12)	
H13	0.454818	1.044675	0.379011	0.074*	
C14	0.4518 (5)	0.9258 (3)	0.43145 (19)	0.0479 (9)	
H14	0.355072	0.919091	0.430866	0.057*	
C15	0.2288 (4)	0.6783 (3)	0.39902 (17)	0.0374 (8)	
H15A	0.168446	0.632698	0.376678	0.045*	
H15B	0.186408	0.696104	0.440144	0.045*	
C16	-0.0367 (4)	0.7764 (3)	0.31156 (18)	0.0404 (8)	
C17	-0.1273 (4)	0.7228 (3)	0.3466 (2)	0.0544 (11)	
H17	-0.117432	0.718441	0.392956	0.065*	
C18	-0.2334 (5)	0.6754 (3)	0.3113 (2)	0.0640 (12)	
H18	-0.296109	0.639804	0.334362	0.077*	
C19	-0.2469 (4)	0.6806 (3)	0.2427 (2)	0.0564 (11)	
H19	-0.317930	0.648112	0.219529	0.068*	
C20	-0.1556 (4)	0.7338 (3)	0.2082 (2)	0.0557 (11)	
H20	-0.165121	0.737115	0.161734	0.067*	
C21	-0.0501 (4)	0.7820 (3)	0.2420 (2)	0.0508 (10)	
H21	0.011626	0.818004	0.218646	0.061*	
C22	0.2982 (4)	0.7476 (2)	0.29018 (16)	0.0347 (8)	
C23	0.2612 (4)	0.6733 (3)	0.24960 (19)	0.0453 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H23	0.195602	0.630544	0.263040	0.054*
C24	0.3227 (4)	0.6627 (3)	0.18851 (18)	0.0482 (10)
H24	0.300825	0.611588	0.161749	0.058*
C25	0.4159 (4)	0.7279 (3)	0.16766 (17)	0.0395 (8)
C26	0.4523 (4)	0.8037 (3)	0.20774 (18)	0.0405 (8)
C27	0.3937 (4)	0.8122 (3)	0.26980 (18)	0.0386 (8)
H27	0.418840	0.861639	0.297649	0.046*
C28	0.5954 (7)	0.9366 (4)	0.2262 (3)	0.090 (2)
H28A	0.519832	0.977821	0.235067	0.135*
H28B	0.667708	0.970260	0.205184	0.135*
H28C	0.632434	0.910622	0.267595	0.135*
N1	0.4763 (3)	0.67482 (19)	0.45867 (14)	0.0344 (6)
N2	0.2386 (3)	0.7612 (2)	0.35510 (14)	0.0356 (6)
01	0.5542 (3)	0.75110 (19)	0.56538 (13)	0.0516 (7)
O2	0.3206 (3)	0.78625 (18)	0.51436 (13)	0.0488 (7)
O3	0.1411 (3)	0.91308 (19)	0.31900 (14)	0.0516 (7)
O4	0.0678 (3)	0.8422 (2)	0.42399 (13)	0.0552 (7)
05	0.5454 (3)	0.8642 (2)	0.18304 (14)	0.0589 (8)
S1	0.46528 (10)	0.76919 (6)	0.50760 (4)	0.0375 (2)
S2	0.10295 (10)	0.83326 (7)	0.35581 (5)	0.0412 (2)
Br1	0.50238 (5)	0.71099 (4)	0.08522 (2)	0.05801 (14)
Br2	0.31588 (6)	0.46768 (3)	0.34009 (2)	0.06813 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0391 (19)	0.0333 (18)	0.0364 (18)	0.0038 (15)	0.0097 (15)	0.0063 (15)
C2	0.043 (2)	0.044 (2)	0.059 (2)	0.0010 (17)	0.0015 (18)	0.0019 (19)
C3	0.044 (2)	0.062 (3)	0.068 (3)	0.013 (2)	0.003 (2)	0.009 (2)
C4	0.060 (3)	0.052 (3)	0.061 (3)	0.024 (2)	0.014 (2)	0.009 (2)
C5	0.067 (3)	0.038 (2)	0.042 (2)	0.0142 (19)	0.0155 (19)	0.0004 (17)
C6	0.048 (2)	0.0349 (18)	0.0295 (17)	0.0050 (16)	0.0095 (15)	0.0036 (14)
C7	0.054 (2)	0.0360 (19)	0.0289 (17)	0.0034 (17)	0.0023 (16)	-0.0022 (15)
C8	0.042 (2)	0.0340 (18)	0.0251 (16)	-0.0003 (15)	0.0038 (14)	0.0010 (14)
C9	0.050 (2)	0.0294 (18)	0.042 (2)	0.0005 (16)	0.0067 (16)	-0.0062 (15)
C10	0.049 (3)	0.038 (2)	0.097 (4)	0.0055 (19)	0.016 (2)	0.003 (2)
C11	0.066 (3)	0.054 (3)	0.117 (5)	-0.004 (2)	0.041 (3)	-0.002 (3)
C12	0.102 (4)	0.038 (2)	0.068 (3)	-0.008 (3)	0.032 (3)	-0.001 (2)
C13	0.096 (4)	0.038 (2)	0.051 (3)	0.004 (2)	-0.003 (2)	-0.0018 (19)
C14	0.058 (2)	0.039 (2)	0.045 (2)	0.0029 (18)	-0.0065 (18)	-0.0071 (17)
C15	0.0388 (19)	0.042 (2)	0.0314 (17)	-0.0015 (16)	0.0040 (14)	0.0008 (15)
C16	0.0337 (19)	0.045 (2)	0.043 (2)	0.0061 (16)	0.0080 (15)	0.0088 (16)
C17	0.051 (2)	0.070 (3)	0.044 (2)	-0.001 (2)	0.0175 (19)	0.011 (2)
C18	0.054 (3)	0.071 (3)	0.069 (3)	-0.010 (2)	0.025 (2)	0.011 (2)
C19	0.041 (2)	0.059 (3)	0.069 (3)	0.000(2)	0.000 (2)	0.004 (2)
C20	0.053 (3)	0.071 (3)	0.043 (2)	-0.002 (2)	-0.0014 (19)	0.011 (2)
C21	0.046 (2)	0.063 (3)	0.044 (2)	-0.006 (2)	0.0044 (18)	0.0190 (19)
C22	0.0319 (18)	0.043 (2)	0.0296 (17)	0.0069 (15)	0.0018 (14)	0.0011 (15)

C23	0.044 (2)	0.053 (2)	0.0390 (19)	-0.0077 (18)	0.0043 (16)	-0.0029 (17)
C24	0.050 (2)	0.061 (3)	0.0338 (19)	-0.004 (2)	-0.0002 (17)	-0.0115 (18)
C25	0.0339 (19)	0.057 (2)	0.0271 (16)	0.0076 (17)	0.0033 (14)	-0.0004 (16)
C26	0.0366 (19)	0.045 (2)	0.0407 (19)	0.0022 (16)	0.0082 (15)	0.0017 (17)
C27	0.0382 (19)	0.0396 (19)	0.0384 (19)	0.0015 (16)	0.0060 (15)	-0.0028 (15)
C28	0.109 (4)	0.078 (4)	0.086 (4)	-0.049 (3)	0.052 (3)	-0.028 (3)
N1	0.0377 (16)	0.0299 (14)	0.0358 (15)	0.0025 (12)	0.0041 (12)	-0.0035 (12)
N2	0.0369 (16)	0.0411 (16)	0.0291 (14)	0.0056 (13)	0.0047 (12)	0.0027 (12)
01	0.0678 (19)	0.0501 (16)	0.0359 (14)	0.0026 (14)	-0.0065 (13)	-0.0033 (12)
O2	0.0461 (15)	0.0508 (16)	0.0508 (16)	0.0035 (13)	0.0147 (12)	-0.0137 (13)
O3	0.0532 (17)	0.0416 (15)	0.0599 (17)	0.0042 (13)	0.0024 (13)	0.0061 (13)
O4	0.0559 (17)	0.0688 (19)	0.0412 (15)	0.0214 (15)	0.0073 (13)	-0.0074 (14)
05	0.068 (2)	0.0602 (18)	0.0507 (17)	-0.0152 (15)	0.0275 (15)	-0.0064 (14)
S1	0.0441 (5)	0.0353 (4)	0.0334 (4)	0.0024 (4)	0.0055 (4)	-0.0053 (4)
S2	0.0402 (5)	0.0451 (5)	0.0384 (5)	0.0088 (4)	0.0055 (4)	0.0014 (4)
Br1	0.0547 (3)	0.0844 (3)	0.0358 (2)	0.0026 (2)	0.01070 (17)	-0.0083 (2)
Br2	0.0946 (4)	0.0496 (3)	0.0575 (3)	0.0103 (2)	-0.0228 (2)	-0.0210 (2)

Geometric parameters (Å, °)

C1—C2	1.386 (5)	C16—S2	1.768 (4)
C1—C6	1.399 (5)	C17—C18	1.388 (6)
C1—N1	1.415 (4)	C17—H17	0.9300
С2—С3	1.382 (6)	C18—C19	1.375 (6)
С2—Н2	0.9300	C18—H18	0.9300
C3—C4	1.388 (6)	C19—C20	1.375 (6)
С3—Н3	0.9300	C19—H19	0.9300
C4—C5	1.370 (6)	C20—C21	1.377 (6)
C4—H4	0.9300	C20—H20	0.9300
С5—С6	1.400 (5)	C21—H21	0.9300
С5—Н5	0.9300	C22—C23	1.381 (5)
С6—С7	1.423 (5)	C22—C27	1.383 (5)
С7—С8	1.352 (5)	C22—N2	1.457 (4)
C7—Br2	1.876 (4)	C23—C24	1.391 (5)
C8—N1	1.427 (4)	С23—Н23	0.9300
C8—C15	1.495 (5)	C24—C25	1.377 (5)
C9—C10	1.381 (6)	C24—H24	0.9300
C9—C14	1.384 (5)	C25—C26	1.391 (5)
C9—S1	1.764 (4)	C25—Br1	1.898 (3)
C10-C11	1.382 (6)	C26—O5	1.358 (4)
С10—Н10	0.9300	C26—C27	1.394 (5)
C11—C12	1.367 (7)	C27—H27	0.9300
C11—H11	0.9300	C28—O5	1.425 (6)
C12—C13	1.365 (7)	C28—H28A	0.9600
С12—Н12	0.9300	C28—H28B	0.9600
C13—C14	1.384 (6)	C28—H28C	0.9600
С13—Н13	0.9300	N1—S1	1.685 (3)
C14—H14	0.9300	N2—S2	1.665 (3)

C15—N2	1.491 (4)	O1—S1	1.425 (3)
C15—H15A	0.9700	O2—S1	1.420 (3)
C15—H15B	0.9700	O3—S2	1.426 (3)
C16—C17	1.380 (5)	O4—S2	1.427 (3)
C16—C21	1.393 (5)		
C2—C1—C6	121.1 (3)	C19—C18—H18	119.7
C2-C1-N1	131.4 (3)	C17—C18—H18	119.7
C6-C1-N1	107.5 (3)	C18—C19—C20	120.1 (4)
C3—C2—C1	117.4 (4)	C18—C19—H19	120.0
С3—С2—Н2	121.3	С20—С19—Н19	120.0
C1—C2—H2	121.3	C19—C20—C21	120.4 (4)
C2—C3—C4	122.2 (4)	С19—С20—Н20	119.8
С2—С3—Н3	118.9	С21—С20—Н20	119.8
С4—С3—Н3	118.9	C20—C21—C16	119.3 (4)
C5—C4—C3	120.6 (4)	C20—C21—H21	120.3
C5—C4—H4	119.7	C16—C21—H21	120.3
C3—C4—H4	119.7	C23—C22—C27	120.4 (3)
C4—C5—C6	118.5 (4)	C23—C22—N2	121.9 (3)
C4—C5—H5	120.8	C27—C22—N2	117.7 (3)
С6—С5—Н5	120.8	C22—C23—C24	119.6 (4)
C1—C6—C5	120.3 (4)	С22—С23—Н23	120.2
C1—C6—C7	106.8 (3)	С24—С23—Н23	120.2
C5—C6—C7	132.9 (4)	C25—C24—C23	120.0 (4)
C8—C7—C6	110.5 (3)	C25—C24—H24	120.0
C8—C7—Br2	126.3 (3)	C23—C24—H24	120.0
C6—C7—Br2	123.2 (3)	C24—C25—C26	120.8 (3)
C7—C8—N1	107.1 (3)	C24—C25—Br1	119.5 (3)
C7—C8—C15	127.2 (3)	C26—C25—Br1	119.6 (3)
N1—C8—C15	125.6 (3)	O5—C26—C25	116.5 (3)
C10—C9—C14	120.9 (4)	O5—C26—C27	124.6 (3)
C10—C9—S1	119.3 (3)	C25—C26—C27	118.8 (3)
C14—C9—S1	119.6 (3)	C22—C27—C26	120.3 (3)
C9—C10—C11	119.1 (4)	С22—С27—Н27	119.8
C9—C10—H10	120.5	С26—С27—Н27	119.8
C11—C10—H10	120.5	O5—C28—H28A	109.5
C12—C11—C10	120.3 (5)	O5—C28—H28B	109.5
C12—C11—H11	119.9	H28A—C28—H28B	109.5
C10-C11-H11	119.9	O5—C28—H28C	109.5
C13—C12—C11	120.5 (4)	H28A—C28—H28C	109.5
C13—C12—H12	119.8	H28B—C28—H28C	109.5
C11—C12—H12	119.8	C1—N1—C8	108.1 (3)
C12—C13—C14	120.6 (4)	C1—N1—S1	124.0 (2)
С12—С13—Н13	119.7	C8—N1—S1	127.4 (2)
C14—C13—H13	119.7	C22—N2—C15	117.1 (3)
C9—C14—C13	118.6 (4)	C22—N2—S2	115.6 (2)
C9—C14—H14	120.7	C15—N2—S2	115.1 (2)
C13—C14—H14	120.7	C26—O5—C28	117.3 (3)

N2—C15—C8	112.3 (3)	O2—S1—O1	120.03 (17)
N2—C15—H15A	109.1	O2—S1—N1	106.60 (15)
C8—C15—H15A	109.1	O1—S1—N1	105.69 (15)
N2-C15-H15B	109.1	02 - S1 - C9	109.41 (18)
C8-C15-H15B	109.1	01 - 81 - 69	108 10 (18)
H15A - C15 - H15B	107.9	N1 - S1 - C9	106 14 (15)
C17-C16-C21	120.7(4)	03 - 82 - 04	119.92 (18)
C17 - C16 - S2	120.7(1) 119.0(3)	03 - 52 - 01 03 - 52 - N2	106 35 (16)
C_{21} C_{16} S_{2}	119.0(3) 1201(3)	$03 \ 52 \ N2$ $04 \ S2 \ N2$	106.66 (15)
C_{16} C_{17} C_{18}	120.1(5) 118.8(4)	03 - 52 - 016	100.00(13) 108.91(17)
$C_{16} = C_{17} = C_{18}$	120.6	03 - 52 - C10	108.91(17) 108.18(18)
$C_{10} = C_{17} = H_{17}$	120.0	$N_2 = S_2 = C_{10}$	105.08 (16)
$C_{10} = C_{17} = M_{17}$	120.0	112-52-010	105.98 (10)
019-018-017	120.7 (4)		
C6-C1-C2-C3	0.8 (6)	Br1—C25—C26—C27	-1764(3)
N1 - C1 - C2 - C3	-179.1(4)	C_{23} C_{22} C_{27} C_{26}	0.8 (5)
C1 - C2 - C3 - C4	-0.8(6)	N2-C22-C27-C26	-1789(3)
$C_2 - C_3 - C_4 - C_5$	0.2(7)	05-022 027 020	179.1(3)
$C_{2} = C_{3} = C_{4} = C_{5} = C_{6}$	0.2(7) 0.4(6)	$C_{25} = C_{26} = C_{27} = C_{22}$	-1.7(5)
$C_2 = C_1 = C_2 = C_2$	-0.2(5)	$C_{23} = C_{20} = C_{27} = C_{22}$	1.7(5) 178.6(4)
$C_2 - C_1 - C_0 - C_3$	0.2(3)	$C_2 - C_1 - N_1 - C_8$	-1.2(4)
$C_{1}^{2} = C_{1}^{2} = C_{0}^{2} = C_{1}^{2}$	-1701(3)	$C_0 = C_1 = N_1 = C_0$	-0.6(5)
$C_2 - C_1 - C_0 - C_7$	1/9.1(3)	$C_2 = C_1 = N_1 = S_1$	9.0(3)
NI = CI = CO = C/	0.8(4)	$C_0 - C_1 - N_1 - S_1$	170.3(2)
C4 - C5 - C6 - C1	-0.4(5)	C = C = N = C I	1.2 (4)
C4 - C5 - C6 - C7	1/8.1 (4)	C15 - C8 - N1 - C1	1/9.8 (3)
	-0.1 (4)	C/=C8=N1=S1	-1/0.2(3)
C5-C6-C7-C8	-178.7 (4)	C15—C8—N1—S1	8.4 (5)
C1—C6—C7—Br2	-177.9 (2)	C23—C22—N2—C15	44.3 (5)
C5—C6—C7—Br2	3.4 (6)	C27—C22—N2—C15	-136.0 (3)
C6—C7—C8—N1	-0.7 (4)	C23—C22—N2—S2	-96.5 (4)
Br2—C7—C8—N1	177.1 (2)	C27—C22—N2—S2	83.3 (3)
C6—C7—C8—C15	-179.3 (3)	C8—C15—N2—C22	59.7 (4)
Br2—C7—C8—C15	-1.5 (5)	C8—C15—N2—S2	-159.4 (2)
C14—C9—C10—C11	-0.3 (7)	C25—C26—O5—C28	-173.4 (4)
S1—C9—C10—C11	-175.7 (4)	C27—C26—O5—C28	5.8 (6)
C9—C10—C11—C12	0.1 (8)	C1—N1—S1—O2	-152.6 (3)
C10—C11—C12—C13	0.0 (8)	C8—N1—S1—O2	17.5 (3)
C11—C12—C13—C14	0.1 (7)	C1—N1—S1—O1	-23.9 (3)
C10-C9-C14-C13	0.3 (6)	C8—N1—S1—O1	146.3 (3)
S1—C9—C14—C13	175.7 (3)	C1—N1—S1—C9	90.8 (3)
C12—C13—C14—C9	-0.2 (6)	C8—N1—S1—C9	-99.1 (3)
C7—C8—C15—N2	-111.1 (4)	C10—C9—S1—O2	164.5 (3)
N1-C8-C15-N2	70.5 (4)	C14—C9—S1—O2	-11.0 (3)
C21—C16—C17—C18	-0.9 (6)	C10-C9-S1-O1	32.2 (4)
S2-C16-C17-C18	-177.5 (3)	C14—C9—S1—O1	-143.3 (3)
C16—C17—C18—C19	1.0 (7)	C10—C9—S1—N1	-80.8 (4)
C17—C18—C19—C20	-0.6 (7)	C14—C9—S1—N1	103.7 (3)
C18—C19—C20—C21	0.1 (7)	C22—N2—S2—O3	-46.6 (3)

C19—C20—C21—C16 C17—C16—C21—C20	0.1 (7) 0.4 (6)	C15—N2—S2—O3 C22—N2—S2—O4	171.8 (2) -175.7 (3)
S2-C16-C21-C20	177.0 (3)	C15—N2—S2—O4	42.8 (3)
C27—C22—C23—C24	1.3 (6)	C22—N2—S2—C16	69.2 (3)
N2-C22-C23-C24	-179.0 (3)	C15—N2—S2—C16	-72.3 (3)
C22—C23—C24—C25	-2.4 (6)	C17—C16—S2—O3	-153.9 (3)
C23—C24—C25—C26	1.5 (6)	C21—C16—S2—O3	29.4 (4)
C23—C24—C25—Br1	178.5 (3)	C17—C16—S2—O4	-22.0 (4)
C24—C25—C26—O5	179.8 (4)	C21—C16—S2—O4	161.3 (3)
Br1-C25-C26-O5	2.8 (5)	C17—C16—S2—N2	92.0 (3)
C24—C25—C26—C27	0.5 (6)	C21—C16—S2—N2	-84.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C2—H2…O1	0.93	2.39	2.908 (5)	115
C11—H11…O4 ⁱ	0.93	2.76	3.503 (6)	137
C15—H15 <i>B</i> ···O2	0.97	2.31	2.886 (4)	117
C18—H18…Cg(N1/C1/C6–C8) ⁱⁱ	0.93	2.99	3.861 (8)	156
C18—H18··· <i>Cg</i> (C1–C6) ⁱⁱ	0.93	2.81	3.579 (1)	141

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*.

N,N-Bis{[3-bromo-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide (II)

Crystal data

 $C_{36}H_{27}Br_2N_3O_6S_3$ $M_r = 853.60$ Monoclinic, $P2_1/n$ a = 8.2664 (4) Å b = 34.7886 (18) Å c = 12.5972 (6) Å $\beta = 104.550$ (2)° V = 3506.5 (3) Å³ Z = 4

Data collection

Bruker D8 Venture Diffractometer Radiation source: micro focus sealed tube ω and φ scans Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015) $T_{\min} = 0.491$, $T_{\max} = 0.745$ 73921 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.120$ S = 1.126434 reflections F(000) = 1720 $D_x = 1.617 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 73921 reflections $\theta = 1.4-25.0^{\circ}$ $\mu = 2.54 \text{ mm}^{-1}$ T = 303 KBlock, colorless $0.29 \times 0.19 \times 0.04 \text{ mm}$

6434 independent reflections 5196 reflections with $I > 2\sigma(I)$ $R_{int} = 0.071$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -9 \rightarrow 9$ $k = -41 \rightarrow 41$ $l = -15 \rightarrow 15$

451 parameters0 restraintsHydrogen site location: inferred from neighbouring sitesH-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0397P)^2 + 5.0983P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.2266 (5)	0.42112 (11)	0.6112 (3)	0.0474 (10)
C2	0.2075 (6)	0.45836 (12)	0.5688 (4)	0.0691 (14)
H2	0.242319	0.465117	0.506636	0.083*
C3	0.1341 (8)	0.48456 (15)	0.6241 (6)	0.090 (2)
Н3	0.119704	0.509708	0.598397	0.108*
C4	0.0814 (7)	0.47499 (17)	0.7155 (6)	0.091 (2)
H4	0.032049	0.493682	0.749854	0.109*
C5	0.1002 (5)	0.43816 (16)	0.7576 (4)	0.0700 (14)
Н5	0.065741	0.431822	0.820239	0.084*
C6	0.1726 (5)	0.41075 (12)	0.7029 (3)	0.0482 (10)
C7	0.2180 (5)	0.37117 (11)	0.7239 (3)	0.0432 (9)
C8	0.2986 (4)	0.35808 (10)	0.6506 (3)	0.0361 (8)
C9	0.0542 (5)	0.37495 (11)	0.3929 (3)	0.0431 (9)
C10	-0.0441 (6)	0.40600 (13)	0.3488 (3)	0.0568 (11)
H10	0.004062	0.429860	0.343575	0.068*
C11	-0.2147 (7)	0.40109 (18)	0.3127 (4)	0.0713 (14)
H11	-0.282247	0.421807	0.283294	0.086*
C12	-0.2844 (6)	0.36617 (19)	0.3199 (4)	0.0747 (15)
H12	-0.399556	0.363131	0.295081	0.090*
C13	-0.1865 (6)	0.33531 (16)	0.3634 (4)	0.0711 (14)
H13	-0.235668	0.311493	0.367608	0.085*
C14	-0.0158 (6)	0.33944 (12)	0.4008 (4)	0.0564 (11)
H14	0.050914	0.318655	0.430778	0.068*
C15	0.3938 (5)	0.32126 (10)	0.6489 (3)	0.0416 (9)
H15A	0.315178	0.300654	0.621888	0.050*
H15B	0.464582	0.324063	0.598503	0.050*
C16	0.6415 (5)	0.24696 (10)	0.6959 (3)	0.0429 (9)
C17	0.8099 (6)	0.24045 (14)	0.7415 (4)	0.0619 (12)
H17	0.853833	0.242415	0.816857	0.074*
C18	0.9117 (7)	0.23100 (17)	0.6738 (6)	0.0870 (18)
H18	1.024933	0.226412	0.703439	0.104*
C19	0.8454 (10)	0.22842 (16)	0.5629 (6)	0.091 (2)
H19	0.914182	0.222430	0.517049	0.109*
C20	0.6786 (10)	0.23460 (17)	0.5192 (4)	0.094 (2)
H20	0.634731	0.232593	0.443842	0.113*
C21	0.5756 (7)	0.24368 (13)	0.5848 (4)	0.0671 (14)

H21	0.462055	0.247598	0.554608	0.081*
C22	0.6628 (5)	0.33072 (11)	0.7938 (3)	0.0455 (9)
H22A	0.717555	0.322827	0.868007	0.055*
H22B	0.732885	0.322749	0.746573	0.055*
C23	0.6489 (4)	0.37330 (11)	0.7907 (3)	0.0390 (8)
C24	0.6816 (5)	0.39717 (12)	0.7143 (3)	0.0454 (9)
C25	0.6421 (5)	0.43593 (12)	0.7368 (3)	0.0462 (9)
C26	0.6451 (6)	0.47079 (14)	0.6812 (4)	0.0646 (13)
H26	0.682286	0.471908	0.617395	0.078*
C27	0.5912 (7)	0.50320 (14)	0.7244 (5)	0.0746 (15)
H27	0.592151	0.526653	0.689090	0.090*
C28	0.5358 (7)	0.50180 (13)	0.8183 (5)	0.0706 (14)
H28	0.501929	0.524470	0.845424	0.085*
C29	0.5286 (5)	0.46829 (12)	0.8734 (4)	0.0541 (11)
H29	0.487987	0.467571	0.935870	0.065*
C30	0.5854 (5)	0.43506 (10)	0.8315 (3)	0.0415 (9)
C31	0.8482 (5)	0.39173 (12)	1.0480 (3)	0.0443 (9)
C32	0.9122 (6)	0.42849 (16)	1.0514 (4)	0.0699 (14)
H32	0.841943	0.449515	1.030325	0.084*
C33	1.0838 (8)	0.4333 (2)	1.0869 (5)	0.094 (2)
H33	1.130676	0.457639	1.088526	0.113*
C34	1.1843 (7)	0.4018 (3)	1.1197 (5)	0.098 (2)
H34	1.299428	0.405079	1.142745	0.117*
C35	1.1190 (7)	0.3657 (2)	1.1194 (5)	0.0891 (19)
H35	1.188587	0.344814	1.144262	0.107*
C36	0.9479 (6)	0.36050 (15)	1.0816 (4)	0.0664 (13)
H36	0.901555	0.336052	1.079059	0.080*
N1	0.3054 (4)	0.38863 (8)	0.5760 (2)	0.0400 (7)
N2	0.4990 (4)	0.31064 (8)	0.7588 (2)	0.0389 (7)
N3	0.5879 (4)	0.39605 (8)	0.8669 (2)	0.0375 (7)
01	0.3214 (4)	0.41488 (10)	0.3958 (3)	0.0727 (9)
O2	0.3521 (4)	0.34514 (9)	0.4273 (2)	0.0566 (7)
03	0.3523 (4)	0.24801 (9)	0.7430 (3)	0.0728 (10)
O4	0.6071 (5)	0.25830 (9)	0.8922 (2)	0.0659 (9)
05	0.5475 (4)	0.41314 (9)	1.0495 (2)	0.0549 (7)
O6	0.5948 (4)	0.34548 (8)	1.0092 (2)	0.0606 (8)
S1	0.27243 (13)	0.38060 (3)	0.43993 (8)	0.0467 (2)
S2	0.51553 (13)	0.26365 (3)	0.78055 (9)	0.0470 (2)
S3	0.63083 (12)	0.38513 (3)	1.00122 (8)	0.0416 (2)
Br1	0.74777 (6)	0.38250 (2)	0.58953 (4)	0.07276 (18)
Br2	0.17344 (7)	0.34427 (2)	0.84137 (4)	0.07746 (19)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.042 (2)	0.038 (2)	0.052 (2)	0.0029 (17)	-0.0057 (18)	-0.0091 (18)
C2	0.078 (3)	0.040 (2)	0.071 (3)	0.008 (2)	-0.016 (3)	0.001 (2)
C3	0.091 (4)	0.044 (3)	0.110 (5)	0.023 (3)	-0.022 (4)	-0.021 (3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~.		a a za (A)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	0.060 (3)	0.073 (4)	0.119 (5)	0.031 (3)	-0.019 (3)	-0.050 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5	0.045 (3)	0.083 (4)	0.076 (3)	0.017 (2)	0.004 (2)	-0.031 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6	0.0325 (19)	0.055 (2)	0.052 (2)	0.0094 (17)	0.0005 (17)	-0.0170 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7	0.036 (2)	0.054 (2)	0.038 (2)	0.0044 (17)	0.0058 (16)	-0.0004 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8	0.0357 (19)	0.0359 (19)	0.0353 (19)	0.0020 (15)	0.0061 (15)	0.0013 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	0.051 (2)	0.046 (2)	0.0330 (19)	0.0019 (18)	0.0108 (17)	-0.0048 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10	0.067 (3)	0.058 (3)	0.040 (2)	0.007 (2)	0.004 (2)	0.0027 (19)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	0.071 (3)	0.091 (4)	0.044 (3)	0.025 (3)	0.000 (2)	-0.005 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	0.052 (3)	0.111 (5)	0.058 (3)	0.001 (3)	0.007 (2)	-0.027 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	0.065 (3)	0.080 (4)	0.068 (3)	-0.024 (3)	0.018 (3)	-0.024 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C14	0.066 (3)	0.048 (2)	0.052 (3)	-0.004 (2)	0.008 (2)	-0.0083 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	0.046 (2)	0.0311 (19)	0.046 (2)	0.0052 (16)	0.0086 (17)	-0.0013 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	0.053 (2)	0.0288 (19)	0.045 (2)	0.0068 (16)	0.0103 (18)	0.0000 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17	0.051 (3)	0.071 (3)	0.061 (3)	0.007 (2)	0.009 (2)	-0.014 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18	0.057 (3)	0.092 (4)	0.116 (5)	0.008 (3)	0.030 (3)	-0.021 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19	0.134 (6)	0.070 (4)	0.093 (5)	0.018 (4)	0.075 (4)	0.003 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C20	0.152 (6)	0.083 (4)	0.049 (3)	0.058 (4)	0.029 (3)	-0.002(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	0.089 (4)	0.051 (3)	0.054 (3)	0.025 (2)	0.006 (3)	-0.010(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	0.039 (2)	0.046 (2)	0.050 (2)	0.0004 (17)	0.0076 (17)	-0.0103 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23	0.0342 (19)	0.044 (2)	0.0376 (19)	-0.0023 (15)	0.0062 (15)	-0.0092 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C24	0.038 (2)	0.059 (3)	0.041 (2)	-0.0138 (18)	0.0134 (17)	-0.0082(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C25	0.042 (2)	0.049 (2)	0.045 (2)	-0.0151 (18)	0.0055 (18)	-0.0016 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C26	0.061 (3)	0.068 (3)	0.063 (3)	-0.021(2)	0.012 (2)	0.015 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C27	0.077 (3)	0.047 (3)	0.087 (4)	-0.014(2)	-0.003(3)	0.019 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C28	0.077(3)	0.039(3)	0.089 (4)	-0.001(2)	0.009 (3)	0.000(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C29	0.055 (3)	0.045 (2)	0.057 (3)	0.0029 (19)	0.004 (2)	-0.007(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C30	0.042(2)	0.035(2)	0.043(2)	-0.0041(16)	0.0021 (17)	-0.0016(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C31	0.043(2)	0.059(3)	0.0315(19)	-0.0041(18)	0.0021(17)	-0.0073(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C32	0.058(3)	0.083(4)	0.060(3)	-0.018(3)	0.000(2)	0.007(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C33	0.030(3) 0.072(4)	0.003(1) 0.132(6)	0.000(3) 0.070(4)	-0.053(4)	0.000(2) 0.004(3)	0.007(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C34	0.072(1) 0.042(3)	0.192(0)	0.070(1)	-0.008(4)	0.001(3)	-0.018(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C35	0.042(3)	0.134 (6)	0.050(5) 0.073(4)	0.000(4)	0.017(3)	-0.033(4)
C500.000 (3)0.014 (3)0.001 (3)0.001 (2)0.001 (2)0.020 (2)N10.0451 (17)0.0349 (16)0.0385 (17)0.0024 (13)0.0079 (14)-0.0004 (13)N20.0416 (17)0.0309 (16)0.0441 (17)0.0046 (13)0.0106 (14)0.0029 (13)N30.0416 (17)0.0360 (16)0.0348 (16)-0.0013 (13)0.0095 (13)-0.0033 (12)O10.083 (2)0.072 (2)0.063 (2)-0.0196 (18)0.0183 (18)0.0201 (17)O20.0584 (18)0.068 (2)0.0465 (16)0.0097 (15)0.0196 (14)-0.0085 (14)O30.0582 (19)0.0482 (18)0.118 (3)-0.0067 (15)0.034 (2)0.0129 (18)O40.099 (3)0.0575 (19)0.0452 (17)0.0221 (17)0.0260 (17)0.0143 (14)O50.0543 (17)0.0699 (19)0.0461 (16)0.0056 (14)0.0228 (14)-0.0075 (14)O60.074 (2)0.0516 (18)0.0562 (18)-0.0182 (15)0.0162 (16)0.0063 (14)S10.0528 (6)0.0515 (6)0.0365 (5)-0.0042 (5)0.0126 (4)0.0050 (4)S20.0541 (6)0.0357 (5)0.0551 (6)0.0062 (4)0.0136 (4)-0.0027 (4)Br10.0661 (3)0.1085 (4)0.0535 (3)-0.0273 (3)0.0333 (2)-0.0247 (3)Br20.0688 (3)0.1127 (5)0.0610 (3)0.0127 (3)0.0352 (3)0.0225 (3)	C36	0.055(3)	0.134(0) 0.074(3)	0.075(4)	0.028(4)	0.002(3)	-0.033(4)
N1 $0.0451(17)$ $0.0549(10)$ $0.0585(17)$ $0.0024(15)$ $0.0075(14)$ $0.0004(15)$ N2 $0.0416(17)$ $0.0309(16)$ $0.0441(17)$ $0.0046(13)$ $0.0106(14)$ $0.0029(13)$ N3 $0.0416(17)$ $0.0360(16)$ $0.0348(16)$ $-0.0013(13)$ $0.0095(13)$ $-0.0033(12)$ O1 $0.083(2)$ $0.072(2)$ $0.063(2)$ $-0.0196(18)$ $0.0183(18)$ $0.0201(17)$ O2 $0.0584(18)$ $0.068(2)$ $0.0465(16)$ $0.0097(15)$ $0.0196(14)$ $-0.0085(14)$ O3 $0.0582(19)$ $0.0482(18)$ $0.118(3)$ $-0.0067(15)$ $0.034(2)$ $0.0129(18)$ O4 $0.099(3)$ $0.0575(19)$ $0.0452(17)$ $0.0221(17)$ $0.0260(17)$ $0.0143(14)$ O5 $0.0543(17)$ $0.0699(19)$ $0.0461(16)$ $0.0056(14)$ $0.0228(14)$ $-0.0075(14)$ O6 $0.074(2)$ $0.0516(18)$ $0.0562(18)$ $-0.0182(15)$ $0.0162(16)$ $0.0063(14)$ S1 $0.0528(6)$ $0.0515(6)$ $0.0365(5)$ $-0.0042(5)$ $0.0126(4)$ $0.0050(4)$ S2 $0.0541(6)$ $0.0357(5)$ $0.0551(6)$ $0.0062(4)$ $0.0211(5)$ $0.0076(4)$ S3 $0.0416(5)$ $0.0473(5)$ $0.0378(5)$ $-0.0273(3)$ $0.0333(2)$ $-0.0247(3)$ Br1 $0.0661(3)$ $0.1127(5)$ $0.0610(3)$ $0.0127(3)$ $0.0352(3)$ $0.0225(3)$	N1	0.000(3)	0.074(3)	0.001(3)	0.013(2)	0.007(2)	-0.020(2)
N2 $0.0410(17)$ $0.0309(10)$ $0.0411(17)$ $0.0040(13)$ $0.0100(14)$ $0.0029(13)$ N3 $0.0416(17)$ $0.0360(16)$ $0.0348(16)$ $-0.0013(13)$ $0.0095(13)$ $-0.0033(12)$ O1 $0.083(2)$ $0.072(2)$ $0.063(2)$ $-0.0196(18)$ $0.0183(18)$ $0.0201(17)$ O2 $0.0584(18)$ $0.068(2)$ $0.0465(16)$ $0.0097(15)$ $0.0196(14)$ $-0.0085(14)$ O3 $0.0582(19)$ $0.0482(18)$ $0.118(3)$ $-0.0067(15)$ $0.034(2)$ $0.0129(18)$ O4 $0.099(3)$ $0.0575(19)$ $0.0452(17)$ $0.0221(17)$ $0.0260(17)$ $0.0143(14)$ O5 $0.0543(17)$ $0.0699(19)$ $0.0461(16)$ $0.0056(14)$ $0.0228(14)$ $-0.0075(14)$ O6 $0.074(2)$ $0.0516(18)$ $0.0562(18)$ $-0.0182(15)$ $0.0162(16)$ $0.0063(14)$ S1 $0.0528(6)$ $0.0515(6)$ $0.0365(5)$ $-0.0042(5)$ $0.0126(4)$ $0.0050(4)$ S2 $0.0541(6)$ $0.0357(5)$ $0.0551(6)$ $0.0062(4)$ $0.0211(5)$ $0.0076(4)$ S3 $0.0416(5)$ $0.0473(5)$ $0.0378(5)$ $-0.0050(4)$ $0.0136(4)$ $-0.0027(4)$ Br1 $0.0661(3)$ $0.1127(5)$ $0.0610(3)$ $0.0127(3)$ $0.0352(3)$ $0.0225(3)$	N2	0.0431(17)	0.0349(10)	0.0385(17)	0.0024(13)	0.0079(14)	0.0004(13)
N3 $0.0416(17)$ $0.0300(10)$ $0.0348(10)$ $-0.0013(13)$ $0.0093(13)$ $-0.0033(12)$ O1 $0.083(2)$ $0.072(2)$ $0.063(2)$ $-0.0196(18)$ $0.0183(18)$ $0.0201(17)$ O2 $0.0584(18)$ $0.068(2)$ $0.0465(16)$ $0.0097(15)$ $0.0196(14)$ $-0.0085(14)$ O3 $0.0582(19)$ $0.0482(18)$ $0.118(3)$ $-0.0067(15)$ $0.034(2)$ $0.0129(18)$ O4 $0.099(3)$ $0.0575(19)$ $0.0452(17)$ $0.0221(17)$ $0.0260(17)$ $0.0143(14)$ O5 $0.0543(17)$ $0.0699(19)$ $0.0461(16)$ $0.0056(14)$ $0.0228(14)$ $-0.0075(14)$ O6 $0.074(2)$ $0.0516(18)$ $0.0562(18)$ $-0.0182(15)$ $0.0126(4)$ $0.0063(14)$ S1 $0.0528(6)$ $0.0515(6)$ $0.0365(5)$ $-0.0042(5)$ $0.0126(4)$ $0.0050(4)$ S2 $0.0541(6)$ $0.0357(5)$ $0.0551(6)$ $0.0062(4)$ $0.0211(5)$ $0.0076(4)$ S3 $0.0416(5)$ $0.0473(5)$ $0.0378(5)$ $-0.0050(4)$ $0.0136(4)$ $-0.0027(4)$ Br1 $0.0661(3)$ $0.1127(5)$ $0.0610(3)$ $0.0127(3)$ $0.0352(3)$ $0.0225(3)$	N2	0.0410(17)	0.0309(10)	0.0441(17) 0.0248(16)	-0.0040(13)	0.0100(14)	-0.0023(13)
01 $0.083(2)$ $0.072(2)$ $0.063(2)$ $-0.0196(18)$ $0.0183(18)$ $0.0201(17)$ 02 $0.0584(18)$ $0.068(2)$ $0.0465(16)$ $0.0097(15)$ $0.0196(14)$ $-0.0085(14)$ 03 $0.0582(19)$ $0.0482(18)$ $0.118(3)$ $-0.0067(15)$ $0.034(2)$ $0.0129(18)$ 04 $0.099(3)$ $0.0575(19)$ $0.0452(17)$ $0.0221(17)$ $0.0260(17)$ $0.0143(14)$ 05 $0.0543(17)$ $0.0699(19)$ $0.0461(16)$ $0.0056(14)$ $0.0228(14)$ $-0.0075(14)$ 06 $0.074(2)$ $0.0516(18)$ $0.0562(18)$ $-0.0182(15)$ $0.0162(16)$ $0.0063(14)$ $S1$ $0.0528(6)$ $0.0515(6)$ $0.0365(5)$ $-0.0042(5)$ $0.0126(4)$ $0.0050(4)$ $S2$ $0.0541(6)$ $0.0357(5)$ $0.0551(6)$ $0.0062(4)$ $0.0211(5)$ $0.0076(4)$ $S3$ $0.0416(5)$ $0.0473(5)$ $0.0378(5)$ $-0.0050(4)$ $0.0136(4)$ $-0.0027(4)$ $Br1$ $0.0661(3)$ $0.1127(5)$ $0.0610(3)$ $0.0127(3)$ $0.0352(3)$ $0.0225(3)$	N3 01	0.0410(17)	0.0300(10)	0.0348(10)	-0.0013(13)	0.0093(13)	-0.0033(12)
02 $0.0584 (18)$ $0.068 (2)$ $0.0465 (16)$ $0.0097 (15)$ $0.0196 (14)$ $-0.0085 (14)$ 03 $0.0582 (19)$ $0.0482 (18)$ $0.118 (3)$ $-0.0067 (15)$ $0.034 (2)$ $0.0129 (18)$ 04 $0.099 (3)$ $0.0575 (19)$ $0.0452 (17)$ $0.0221 (17)$ $0.0260 (17)$ $0.0143 (14)$ 05 $0.0543 (17)$ $0.0699 (19)$ $0.0461 (16)$ $0.0056 (14)$ $0.0228 (14)$ $-0.0075 (14)$ 06 $0.074 (2)$ $0.0516 (18)$ $0.0562 (18)$ $-0.0182 (15)$ $0.0162 (16)$ $0.0063 (14)$ $S1$ $0.0528 (6)$ $0.0515 (6)$ $0.0365 (5)$ $-0.0042 (5)$ $0.0126 (4)$ $0.0050 (4)$ $S2$ $0.0541 (6)$ $0.0357 (5)$ $0.0551 (6)$ $0.0062 (4)$ $0.0211 (5)$ $0.0076 (4)$ $S3$ $0.0416 (5)$ $0.0473 (5)$ $0.0378 (5)$ $-0.0050 (4)$ $0.0136 (4)$ $-0.0027 (4)$ $Br1$ $0.0661 (3)$ $0.1127 (5)$ $0.0610 (3)$ $0.0127 (3)$ $0.0352 (3)$ $0.0225 (3)$		0.085(2)	0.072(2)	0.003(2)	-0.0190(18)	0.0185(18)	0.0201(17)
0.3 $0.0582 (19)$ $0.0482 (18)$ $0.118 (3)$ $-0.0067 (15)$ $0.034 (2)$ $0.0129 (18)$ 0.4 $0.099 (3)$ $0.0575 (19)$ $0.0452 (17)$ $0.0221 (17)$ $0.0260 (17)$ $0.0143 (14)$ 0.5 $0.0543 (17)$ $0.0699 (19)$ $0.0461 (16)$ $0.0056 (14)$ $0.0228 (14)$ $-0.0075 (14)$ 0.6 $0.074 (2)$ $0.0516 (18)$ $0.0562 (18)$ $-0.0182 (15)$ $0.0162 (16)$ $0.0063 (14)$ $S1$ $0.0528 (6)$ $0.0515 (6)$ $0.0365 (5)$ $-0.0042 (5)$ $0.0126 (4)$ $0.0050 (4)$ $S2$ $0.0541 (6)$ $0.0357 (5)$ $0.0551 (6)$ $0.0062 (4)$ $0.0211 (5)$ $0.0076 (4)$ $S3$ $0.0416 (5)$ $0.0473 (5)$ $0.0378 (5)$ $-0.0050 (4)$ $0.0136 (4)$ $-0.0027 (4)$ $Br1$ $0.0661 (3)$ $0.1187 (5)$ $0.0610 (3)$ $0.0127 (3)$ $0.0352 (3)$ $0.0225 (3)$	02	0.0584 (18)	0.068(2)	0.0465 (16)	0.0097(15)	0.0196 (14)	-0.0085(14)
04 $0.099(3)$ $0.0575(19)$ $0.0452(17)$ $0.0221(17)$ $0.0260(17)$ $0.0143(14)$ 05 $0.0543(17)$ $0.0699(19)$ $0.0461(16)$ $0.0056(14)$ $0.0228(14)$ $-0.0075(14)$ 06 $0.074(2)$ $0.0516(18)$ $0.0562(18)$ $-0.0182(15)$ $0.0162(16)$ $0.0063(14)$ $S1$ $0.0528(6)$ $0.0515(6)$ $0.0365(5)$ $-0.0042(5)$ $0.0126(4)$ $0.0050(4)$ $S2$ $0.0541(6)$ $0.0357(5)$ $0.0551(6)$ $0.0062(4)$ $0.0211(5)$ $0.0076(4)$ $S3$ $0.0416(5)$ $0.0473(5)$ $0.0378(5)$ $-0.0050(4)$ $0.0136(4)$ $-0.0027(4)$ $Br1$ $0.0661(3)$ $0.1185(4)$ $0.0535(3)$ $-0.0273(3)$ $0.0333(2)$ $-0.0247(3)$ $Br2$ $0.0688(3)$ $0.1127(5)$ $0.0610(3)$ $0.0127(3)$ $0.0352(3)$ $0.0225(3)$	03	0.0582 (19)	0.0482 (18)	0.118(3)	-0.006/(15)	0.034 (2)	0.0129 (18)
O5 0.0543 (17) 0.0699 (19) 0.0461 (16) 0.0056 (14) 0.0228 (14) -0.0075 (14) O6 0.074 (2) 0.0516 (18) 0.0562 (18) -0.0182 (15) 0.0162 (16) 0.0063 (14) S1 0.0528 (6) 0.0515 (6) 0.0365 (5) -0.0042 (5) 0.0126 (4) 0.0050 (4) S2 0.0541 (6) 0.0357 (5) 0.0551 (6) 0.0062 (4) 0.0211 (5) 0.0076 (4) S3 0.0416 (5) 0.0473 (5) 0.0378 (5) -0.0050 (4) 0.0136 (4) -0.0027 (4) Br1 0.0661 (3) 0.1085 (4) 0.0535 (3) -0.0273 (3) 0.0333 (2) -0.0247 (3) Br2 0.0688 (3) 0.1127 (5) 0.0610 (3) 0.0127 (3) 0.0352 (3) 0.0225 (3)	04	0.099 (3)	0.0575 (19)	0.0452 (17)	0.0221(17)	0.0260 (17)	0.0143 (14)
06 0.074 (2) 0.0516 (18) 0.0562 (18) -0.0182 (15) 0.0162 (16) 0.0063 (14) S1 0.0528 (6) 0.0515 (6) 0.0365 (5) -0.0042 (5) 0.0126 (4) 0.0050 (4) S2 0.0541 (6) 0.0357 (5) 0.0551 (6) 0.0062 (4) 0.0211 (5) 0.0076 (4) S3 0.0416 (5) 0.0473 (5) 0.0378 (5) -0.0050 (4) 0.0136 (4) -0.0027 (4) Br1 0.0661 (3) 0.1085 (4) 0.0535 (3) -0.0273 (3) 0.0333 (2) -0.0247 (3) Br2 0.0688 (3) 0.1127 (5) 0.0610 (3) 0.0127 (3) 0.0352 (3) 0.0225 (3)	05	0.0543 (17)	0.0699 (19)	0.0461 (16)	0.0056 (14)	0.0228 (14)	-0.0075 (14)
S1 0.0528 (6) 0.0515 (6) 0.0365 (5) -0.0042 (5) 0.0126 (4) 0.0050 (4) S2 0.0541 (6) 0.0357 (5) 0.0551 (6) 0.0062 (4) 0.0211 (5) 0.0076 (4) S3 0.0416 (5) 0.0473 (5) 0.0378 (5) -0.0050 (4) 0.0136 (4) -0.0027 (4) Br1 0.0661 (3) 0.1085 (4) 0.0535 (3) -0.0273 (3) 0.0333 (2) -0.0247 (3) Br2 0.0688 (3) 0.1127 (5) 0.0610 (3) 0.0127 (3) 0.0352 (3) 0.0225 (3)	06	0.074 (2)	0.0516 (18)	0.0562 (18)	-0.0182 (15)	0.0162 (16)	0.0063 (14)
S2 0.0541 (6) 0.0357 (5) 0.0551 (6) 0.0062 (4) 0.0211 (5) 0.0076 (4) S3 0.0416 (5) 0.0473 (5) 0.0378 (5) -0.0050 (4) 0.0136 (4) -0.0027 (4) Br1 0.0661 (3) 0.1085 (4) 0.0535 (3) -0.0273 (3) 0.0333 (2) -0.0247 (3) Br2 0.0688 (3) 0.1127 (5) 0.0610 (3) 0.0127 (3) 0.0352 (3) 0.0225 (3)	SI	0.0528 (6)	0.0515 (6)	0.0365 (5)	-0.0042 (5)	0.0126 (4)	0.0050 (4)
S3 0.0416 (5) 0.0473 (5) 0.0378 (5) -0.0050 (4) 0.0136 (4) -0.0027 (4) Br1 0.0661 (3) 0.1085 (4) 0.0535 (3) -0.0273 (3) 0.0333 (2) -0.0247 (3) Br2 0.0688 (3) 0.1127 (5) 0.0610 (3) 0.0127 (3) 0.0352 (3) 0.0225 (3)	S2	0.0541 (6)	0.0357 (5)	0.0551 (6)	0.0062 (4)	0.0211 (5)	0.0076 (4)
Br1 0.0661 (3) 0.1085 (4) 0.0535 (3) -0.0273 (3) 0.0333 (2) -0.0247 (3) Br2 0.0688 (3) 0.1127 (5) 0.0610 (3) 0.0127 (3) 0.0352 (3) 0.0225 (3)	S3	0.0416 (5)	0.0473 (5)	0.0378 (5)	-0.0050 (4)	0.0136 (4)	-0.0027 (4)
Br2 $0.0688(3)$ $0.1127(5)$ $0.0610(3)$ $0.0127(3)$ $0.0352(3)$ $0.0225(3)$	Brl	0.0661 (3)	0.1085 (4)	0.0535 (3)	-0.0273 (3)	0.0333 (2)	-0.0247 (3)
	Br2	0.0688 (3)	0.1127 (5)	0.0610 (3)	0.0127 (3)	0.0352 (3)	0.0225 (3)

Geometric parameters (Å, °)

C1—C6	1.387 (6)	C21—H21	0.9300
C1—C2	1.395 (6)	C22—C23	1.485 (5)
C1—N1	1.429 (5)	C22—N2	1.489 (5)
C2—C3	1.377 (8)	C22—H22A	0.9700
С2—Н2	0.9300	C22—H22B	0.9700
C3—C4	1.371 (9)	C23—C24	1.348 (5)
С3—Н3	0.9300	C23—N3	1.430 (4)
C4—C5	1.380 (8)	C24—C25	1.432 (6)
C4—H4	0.9300	C24—Br1	1.861 (4)
C5—C6	1.397 (6)	C25—C30	1.387 (6)
С5—Н5	0.9300	C25—C26	1.405 (6)
C6—C7	1.434 (6)	C26—C27	1.374 (7)
С7—С8	1.347 (5)	С26—Н26	0.9300
C7—Br2	1.864 (4)	C27—C28	1.373 (8)
C8—N1	1.429 (5)	С27—Н27	0.9300
C8—C15	1.507 (5)	C28—C29	1.366 (6)
C9—C14	1.378 (6)	C28—H28	0.9300
C9—C10	1.381 (6)	C29—C30	1.400 (6)
C9—S1	1.763 (4)	С29—Н29	0.9300
C10—C11	1.379 (7)	C30—N3	1.427 (5)
C10—H10	0.9300	C31—C36	1.365 (6)
C11—C12	1.357 (8)	C31—C32	1.381 (6)
C11—H11	0.9300	C31—S3	1.760 (4)
C12—C13	1.373 (8)	C32—C33	1.386 (7)
C12—H12	0.9300	С32—Н32	0.9300
C13—C14	1.379 (7)	C33—C34	1.375 (10)
С13—Н13	0.9300	С33—Н33	0.9300
C14—H14	0.9300	C34—C35	1.366 (10)
C15—N2	1.485 (5)	C34—H34	0.9300
C15—H15A	0.9700	C35—C36	1.387 (7)
C15—H15B	0.9700	С35—Н35	0.9300
C16—C21	1.373 (6)	С36—Н36	0.9300
C16—C17	1.385 (6)	N1—S1	1.690 (3)
C16—S2	1.765 (4)	N2—S2	1.658 (3)
C17—C18	1.380 (7)	N3—S3	1.683 (3)
С17—Н17	0.9300	01—S1	1.417 (3)
C18—C19	1.370 (9)	O2—S1	1.426 (3)
C18—H18	0.9300	O3—S2	1.421 (3)
C19—C20	1.367 (9)	O4—S2	1.432 (3)
C19—H19	0.9300	O5—S3	1.416 (3)
C20—C21	1.364 (8)	O6—S3	1.420 (3)
C20—H20	0.9300		
C6—C1—C2	122.1 (4)	H22A—C22—H22B	107.7
C6—C1—N1	108.6 (3)	C24—C23—N3	107.8 (3)
C2C1N1	129.2 (4)	C24—C23—C22	127.3 (3)

C3—C2—C1	116.3 (6)	N3—C23—C22	124.9 (3)
С3—С2—Н2	121.8	C23—C24—C25	110.0 (3)
C1—C2—H2	121.8	C23—C24—Br1	126.0 (3)
C4—C3—C2	122.5 (5)	C25—C24—Br1	123.7 (3)
С4—С3—Н3	118.7	C30—C25—C26	120.0 (4)
С2—С3—Н3	118.7	C30—C25—C24	107.0 (3)
C3—C4—C5	121.3 (5)	C26—C25—C24	132.9 (4)
C3—C4—H4	119.4	C27—C26—C25	117.5 (5)
C5—C4—H4	119.4	C27—C26—H26	121.2
C4—C5—C6	117.7 (6)	C25—C26—H26	121.2
C4—C5—H5	121.1	C_{28} — C_{27} — C_{26}	121.6 (5)
С6—С5—Н5	121.1	C28—C27—H27	119.2
C1-C6-C5	120.1 (4)	C26—C27—H27	119.2
C1 - C6 - C7	106.2 (3)	C_{29} C_{28} C_{27}	122.3 (5)
$C_{5}-C_{6}-C_{7}$	133.6(5)	C29—C28—H28	118.8
C8-C7-C6	110.4 (4)	C27—C28—H28	118.8
C8-C7-Br2	127.2(3)	C_{28} C_{29} C_{30}	116.9 (5)
$C6-C7-Br^2$	127.2(3)	C_{28} C_{29} H_{29}	121.6
C7 - C8 - N1	107.9(3)	C_{30} C_{29} H_{29}	121.0
C7 - C8 - C15	1304(3)	$C_{25} - C_{30} - C_{29}$	121.6 (4)
N1-C8-C15	121.1 (3)	C_{25} C_{30} N_{3}	107.9(3)
C14 - C9 - C10	121.0(4)	C_{29} C_{30} N3	130 3 (4)
C14-C9-S1	119.2 (3)	C_{36} C_{31} C_{32}	122.1 (4)
C10-C9-S1	119.8 (3)	$C_{36} - C_{31} - S_{3}$	119.1 (3)
C11—C10—C9	119.0 (5)	C_{32} C_{31} S_{3}	118.8 (3)
C11—C10—H10	120.5	C31—C32—C33	118.3 (5)
C9—C10—H10	120.5	C31—C32—H32	120.9
C12—C11—C10	120.4 (5)	C33—C32—H32	120.9
C12—C11—H11	119.8	C34—C33—C32	119.6 (6)
C10—C11—H11	119.8	С34—С33—Н33	120.2
C11—C12—C13	120.6 (5)	С32—С33—Н33	120.2
C11—C12—H12	119.7	C35—C34—C33	121.6 (5)
C13—C12—H12	119.7	С35—С34—Н34	119.2
C12—C13—C14	120.3 (5)	С33—С34—Н34	119.2
С12—С13—Н13	119.8	C34—C35—C36	119.2 (6)
C14—C13—H13	119.8	С34—С35—Н35	120.4
C9—C14—C13	118.8 (4)	С36—С35—Н35	120.4
C9—C14—H14	120.6	C31—C36—C35	119.2 (5)
C13—C14—H14	120.6	С31—С36—Н36	120.4
N2—C15—C8	112.6 (3)	С35—С36—Н36	120.4
N2—C15—H15A	109.1	C8—N1—C1	106.8 (3)
C8—C15—H15A	109.1	C8—N1—S1	121.4 (2)
N2—C15—H15B	109.1	C1—N1—S1	118.4 (3)
C8—C15—H15B	109.1	C15—N2—C22	115.8 (3)
H15A—C15—H15B	107.8	C15—N2—S2	113.9 (2)
C21—C16—C17	120.6 (4)	C22—N2—S2	112.5 (2)
C21—C16—S2	120.0 (3)	C30—N3—C23	107.2 (3)
C17—C16—S2	119.2 (3)	C30—N3—S3	120.8 (2)
	· /		

C18—C17—C16	119.3 (5)	C23—N3—S3	121.9 (2)
C18—C17—H17	120.4	O1—S1—O2	119.9 (2)
C16—C17—H17	120.4	O1—S1—N1	105.65 (19)
C19—C18—C17	119.7 (5)	O2—S1—N1	107.17 (16)
C19—C18—H18	120.1	O1—S1—C9	109.3 (2)
C17—C18—H18	120.1	O2—S1—C9	109.17 (18)
C20—C19—C18	120.3 (5)	N1—S1—C9	104.47 (17)
C20—C19—H19	119.8	03—82—04	120.0 (2)
C18—C19—H19	119.8	O3—S2—N2	106.90 (17)
C21—C20—C19	120.8 (5)	04 - 82 - N2	106.97 (18)
C21—C20—H20	119.6	03 - 82 - C16	109.1(2)
C19 - C20 - H20	119.6	04 - 82 - C16	107.72(19)
C_{20} C_{21} C_{16}	119.3 (5)	$N^2 - S^2 - C^{16}$	107.12(17) 105.13(17)
C_{20} C_{21} H_{21}	120.4	05-83-06	109.19(17) 120.34(19)
C_{16} C_{21} H_{21}	120.1	05 - 53 - 00	105.89 (16)
C^{23} C^{22} N^{2}	113.7(3)	06 - 83 - N3	107.18(17)
C_{23} C_{22} H_{22}	108.8	05 - 53 - C31	107.10(17) 109.42(18)
N_{2} C_{22} H_{22}	108.8	06 - S3 - C31	109.42(10) 108.5(2)
C_{23} C_{22} H_{22R}	108.8	$N_3 = S_3 = C_3 I$	100.5(2) 104 31(17)
N2_C22_H22B	108.8	113 55 651	104.51 (17)
N2 022 1122D	100.0		
C6-C1-C2-C3	1.0.(6)	C_{32} C_{33} C_{34} C_{35}	-0.7(9)
N1 - C1 - C2 - C3	-1763(4)	C_{33} C_{34} C_{35} C_{35} C_{36}	22(9)
C1 - C2 - C3 - C4	-0.3(8)	C_{32} C_{31} C_{36} C_{35}	-0.6(7)
$C_{1}^{2} - C_{2}^{3} - C_{4}^{4} - C_{5}^{5}$	0.3(0)	S3_C31_C36_C35	-1794(4)
$C_2 = C_3 = C_4 = C_5 = C_6$	-0.9(8)	C_{34} C_{35} C_{36} C_{31}	-16(8)
C_{2}^{-} C_{1}^{-} C_{2}^{-} C_{2	-1.7(6)	C7 - C8 - N1 - C1	1.0(0) 1.3(4)
$N_1 - C_1 - C_6 - C_5$	1.7(0) 1761(3)	$C_{15} - C_{8} - N_{1} - C_{1}$	-1703(3)
$C_{2}-C_{1}-C_{6}-C_{7}$	-1781(3)	C7 - C8 - N1 - S1	-1387(3)
$N_1 - C_1 - C_6 - C_7$	-0.4(4)	$C_{15} = C_{8} = N_{1} = S_{1}$	497(4)
C4 - C5 - C6 - C1	16(6)	C6-C1-N1-C8	-0.5(4)
$C_{4} = C_{5} = C_{6} = C_{7}$	1.0(0) 1769(4)	C_{2} C_{1} N_{1} C_{3}	177.0(4)
$C_{1} - C_{6} - C_{7} - C_{8}$	170.9(4) 1 2 (4)	C_{6} C_{1} N_{1} C_{6}	1409(3)
$C_{5} - C_{6} - C_{7} - C_{8}$	-174.6(4)	C_{2} C_{1} N_{1} S_{1}	-41.6(5)
$C_{1} - C_{6} - C_{7} - Br^{2}$	179.2 (3)	C_{8} C_{15} N_{2} C_{22}	-80.9(4)
$C_{5} - C_{6} - C_{7} - Br^{2}$	34(6)	$C_{8} = C_{15} = N_{2} = S_{2}^{2}$	146 3 (3)
C6 - C7 - C8 - N1	-1.6(4)	$C_{2} = C_{1} = N_{2} = S_{2}$	551(4)
$Br^2 - C^7 - C^8 - N1$	-1794(3)	C_{23} C_{22} N_{2} C_{13}	-1715(3)
C6-C7-C8-C15	169.0(4)	$C_{23} = C_{22} = N_2 = S_2$ $C_{25} = C_{30} = N_3 = C_{23}$	0.3(4)
$Br^2 = C^7 = C^8 = C^{15}$	-88(6)	$C_{29} = C_{30} = N_3 = C_{23}$	176.2(4)
$C_{14} = C_{10} = C_{10} = C_{11}$	0.3(0)	$C_{23} = C_{30} = N_3 = C_{23}$	1/0.2(4) 1/6.2(3)
$S_{1} = C_{9} = C_{10} = C_{11}$	-179.8(3)	$C_{29} = C_{30} = N_3 = S_3$	-37.7(5)
C_{0} C_{10} C_{11} C_{12}	-0.4(7)	$C_{24} C_{23} N_3 C_{30}$	0.2(4)
C_{10} C_{11} C_{12} C_{10} C_{11} C_{12} C_{13}	0.7(7)	$C_{2} = C_{2} = N_{3} = C_{30}$	-176.6(3)
C_{11} C_{12} C_{13} C_{14}	0.2(0)	$C_{22} = C_{23} = 103 = C_{30}$	-145 A (3)
$C_{11} = C_{12} = C_{13} = C_{14}$	0.2(0)	$C_{2} - C_{2} - N_{3} - S_{3}$	37 8 (5)
$S1_0_0_1_4_0_1_3$	$-179 \ 8 \ (3)$	$C_{22} = C_{23} = 103 = 53$	-168.6(3)
$C_{12} C_{13} C_{14} C_{15}$	-0.5(7)	$C1_N1_S1_01$	55 0 (3)
012 - 013 - 017 - 09	0.5(7)	01 - 101 - 01 - 01	55.9 (5)

-41.2(5)	C8—N1—S1—O2	-39.6(3)
128.3 (3)	C1—N1—S1—O2	-175.2(3)
0.7 (7)	C8—N1—S1—C9	76.1 (3)
-173.8(4)	C1—N1—S1—C9	-59.4 (3)
0.4 (8)	C14—C9—S1—O1	163.0 (3)
-1.0(9)	C10—C9—S1—O1	-17.0 (4)
0.5 (10)	C14—C9—S1—O2	30.0 (4)
0.6 (9)	C10—C9—S1—O2	-150.0(3)
-1.2 (7)	C14—C9—S1—N1	-84.3 (3)
173.2 (4)	C10—C9—S1—N1	95.7 (3)
-103.1 (4)	C15—N2—S2—O3	-45.1 (3)
73.1 (5)	C22—N2—S2—O3	-179.5 (3)
-0.6 (4)	C15—N2—S2—O4	-174.9 (3)
176.1 (3)	C22—N2—S2—O4	50.7 (3)
-174.8 (3)	C15—N2—S2—C16	70.8 (3)
1.9 (6)	C22—N2—S2—C16	-63.6 (3)
0.7 (4)	C21—C16—S2—O3	39.1 (4)
175.1 (3)	C17—C16—S2—O3	-146.4 (3)
-176.4 (4)	C21—C16—S2—O4	170.9 (4)
-2.0 (6)	C17—C16—S2—O4	-14.6 (4)
0.3 (6)	C21—C16—S2—N2	-75.3 (4)
177.2 (4)	C17—C16—S2—N2	99.2 (4)
-0.1 (7)	C30—N3—S3—O5	40.2 (3)
-1.0 (8)	C23—N3—S3—O5	-178.7 (3)
1.8 (7)	C30—N3—S3—O6	169.8 (3)
0.6 (6)	C23—N3—S3—O6	-49.1 (3)
-177.0 (4)	C30—N3—S3—C31	-75.2 (3)
177.0 (3)	C23—N3—S3—C31	65.8 (3)
-0.6 (4)	C36—C31—S3—O5	134.2 (3)
-1.6 (6)	C32—C31—S3—O5	-44.7 (4)
-177.1 (4)	C36—C31—S3—O6	1.1 (4)
2.0 (7)	C32—C31—S3—O6	-177.8 (3)
-179.1 (4)	C36—C31—S3—N3	-112.9 (3)
-1.4 (8)	C32—C31—S3—N3	68.2 (4)
	$\begin{array}{c} -41.2 (5) \\ 128.3 (3) \\ 0.7 (7) \\ -173.8 (4) \\ 0.4 (8) \\ -1.0 (9) \\ 0.5 (10) \\ 0.6 (9) \\ -1.2 (7) \\ 173.2 (4) \\ -103.1 (4) \\ 73.1 (5) \\ -0.6 (4) \\ 176.1 (3) \\ -174.8 (3) \\ 1.9 (6) \\ 0.7 (4) \\ 175.1 (3) \\ -176.4 (4) \\ -2.0 (6) \\ 0.3 (6) \\ 177.2 (4) \\ -0.1 (7) \\ -1.0 (8) \\ 1.8 (7) \\ 0.6 (6) \\ -177.0 (4) \\ 177.0 (3) \\ -0.6 (4) \\ -1.6 (6) \\ -177.1 (4) \\ 2.0 (7) \\ -1.9 (14) \\ -1.4 (8) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
С2—Н2…О1	0.93	2.43	2.993 (7)	119
C13—H13…O3 ⁱ	0.93	2.80	3.324 (6)	117
C14—H14…O4 ⁱ	0.93	2.78	3.558 (5)	142
C15—H15 <i>B</i> ···O2	0.97	2.25	2.850 (5)	119
C18—H18…O3 ⁱⁱ	0.93	2.73	3.575 (6)	151
C19—H19…O4 ⁱⁱⁱ	0.93	2.59	3.443 (6)	152
C19—H19…O6 ⁱⁱⁱ	0.93	2.81	3.467 (6)	129
C20—H20····Br2 ⁱⁱⁱ	0.93	3.02	3.536 (5)	117
C22—H22A···O6	0.97	2.39	2.950 (5)	116
C27—H27…O1 ^{iv}	0.93	2.48	3.389 (6)	164

C28—H28····O5 ^v	0.93	2.63	3.547 (6)	170
С29—Н29…О5	0.93	2.35	2.907 (5)	118
C34—H34…O5 ⁱⁱ	0.93	2.62	3.360 (6)	137
C35—H35··· <i>Cg</i> (C16–C21) ^{vi}	0.93	2.91	3.729 (7)	147

Symmetry codes: (i) x-1/2, -y+1/2, z-1/2; (ii) x+1, y, z; (iii) x+1/2, -y+1/2, z-1/2; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y+1, -z+2; (vi) x-1/2, -y-1/2, z-1/2.