

Received 20 September 2024 Accepted 4 November 2024

Edited by S.-L. Zheng, Harvard University, USA

‡ Contributed equally.

Keywords: crystal structure; aluminium phosphorus chloride; aluminium(III) chloride; phosphorus(V) chloride; single-crystal.

CCDC reference: 2400746

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of AlPCl₈

Hyeonjin Seo,^a[‡] Seungyong Shin^a[‡] and Seung-Tae Hong^{a,b,c}*

^aDaegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea, ^bDepartment of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA, and ^cNexeriaTek Inc., Daejeon 34016, Republic of Korea. *Correspondence e-mail: st.hong@dgist.ac.kr

The crystal structure of aluminium phosphorus chloride (systematic name: phosphorus tetrachloride tetrachloridoaluminate), $(PCl_4)[AlCl_4]$ or $AlPCl_8$, was determined and refined using single-crystal X-ray diffraction data. The compound crystallizes in the orthorhombic space group *Pbcm*. The asymmetric unit comprises one Al atom, one P atom, and five Cl atoms. The structure is characterized by isolated $AlCl_4$ and PCl_4 tetrahedra, isostructural with FePCl₈ and GaPCl₈.

1. Chemical context

During our exploratory synthesis in the Mg–Al–P–Cl system, aimed at discovering new magnesium-ion conductors, we initially observed the AlPCl₈ phase. Magnesium-ion conductors, such as MgAl₂Cl₈, exhibit Mg-ion conductivity of approximately 10^{-7} S cm⁻¹ at 400 K (Tomita *et al.*, 2021). To enhance this ionic conductivity, we introduced an aliovalent substitution of Al with P to create magnesium-ion vacancies within the structure, following the general formula Mg_{1-x}Al_{2-x}P_xCl₈.

Across a wide range of x values (0.1 to 1), we identified a new phase through powder X-ray diffraction (XRD) patterns, which differed significantly from that of MgAl₂Cl₈. Subsequent analysis revealed that this new phase matched the XRD pattern of AlPCl₈ (Fischer & Jübermann, 1938). Since the crystal structure of AlPCl₈ was previously unknown, we proceeded to grow single crystals without Mg to determine its structure. The resulting analysis confirmed that its crystal structure is isostructural with FePCl₈ (Kistenmacher & Stucky, 1968) and GaPCl₈ (Weigand *et al.*, 2009).

2. Structural commentary

Anhydrous aluminium phosphorus chloride (AlPCl₈) crystallizes in the orthorhombic space group *Pbcm* (Fig. 1), with a structure consisting of isolated AlCl₄ and PCl₄ tetrahedra, and one Al, one P, and five Cl sites in the asymmetric unit. Al³⁺ is tetrahedrally coordinated by four Cl atoms, with an average Al–Cl bond distance of 2.127 (2) Å, while P⁵⁺ is similarly coordinated, but a shorter average P–Cl bond distance of 1.899 (2) Å. These bond lengths (Table 1) are consistent with the sums of the ionic radii for Al, P, and Cl (Shannon, 1976). The local environment of each tetrahedron is shown in Fig. 2. The crystal structure was determined to be isostructural with (FeCl₄)(PCl₄) (Kistenmacher & Stucky, 1968).

To validate the refined crystal structure, bond-valence sums (BVSs) were calculated using the *softBV* (Chen *et al.*, 2019) program (V1.3.1). The calculated BVS values closely match

Figure 1

The local environments of the $AlCl_4$ (blue) and PCl_4 tetrahedra (purple) are shown. Symmetry codes correspond to those in Table 1.

the expected ionic charges, further supporting the reliability of the structural model: Al 3.04, P 5.05, Cl1 - 0.77, Cl2 - 0.78, Cl3 - 0.78, Cl4 - 1.25, and Cl5 - 1.24.

3. Synthesis and crystallization

Anhydrous aluminium chloride (AlCl₃, Alfa Aesar, anhydrous, reagent grade) and phosphorus(V) chloride (PCl₅, Sigma-Aldrich, 95%) were used in the experiment. A stoichiometric mixture of AlCl₃ and PCl₅ was ground using a mortar and pestle and then pressed into a pellet. The pellet was placed in a dry fused-silica ampoule, which was sealed under vacuum and heated in a furnace. The temperature was increased from 303 K to 573 K at a rate of 5 K min⁻¹, then gradually lowered to 373 K at a rate of 0.0694 K min⁻¹. The sample was then allowed to cool naturally to room temperature. Single crystals were collected at 293 K using an optical microscope in a dry room with a dew point of 223 K. A crystal,

Figure 2

The displacement of ellipsoids of AlPCl₈ drawn at the 50% probability level viewed from two different orientations: (*a*) approximately along the [111] direction and (*b*) along the [001] direction. The AlCl₄ tetrahedra are represented in blue, and the PCl₄ tetrahedra in purple.

I able 1 Selected geometric parameters (Å, °).						
Al1-Cl2 ⁱ	2.1223 (12)	P1-Cl5 ⁱⁱ	1.9018 (12)			
Al1-Cl1	2.1343 (16)	$P1-Cl4^{ii}$	1.8959 (12)			
Al1-Cl2	2.1223 (12)	P1-Cl4	1.8959 (12)			
Al1-Cl3	2.128 (2)	P1-Cl5	1.9018 (12)			
Cl2 ⁱ -Al1-Cl1	108.79 (6)	Cl5 ⁱⁱ -P1-Cl4 ⁱⁱ	109.31 (6)			
Cl2 ⁱ -Al1-Cl2	112.83 (10)	Cl5 ⁱⁱ -P1-Cl4	110.49 (6)			
Cl1-Al1-Cl2	108.79 (6)	$Cl4^{ii}-P1-Cl4$	108.26 (9)			
Cl2 ⁱ -Al1-Cl3	108.77 (6)	Cl5 ⁱⁱ -P1-Cl5	108.97 (8)			
Cl1-Al1-Cl3	108.82 (8)	Cl4 ⁱⁱ -P1-Cl5	110.49 (6)			
Cl2-Al1-Cl3	108.77 (6)	Cl4-P1-Cl5	109.31 (6)			
	1	2				

Symmetry codes: (i) $x, y, -z + \frac{1}{2}$; (ii) $x, -y + \frac{3}{2}, -z + 1$.

approximately 0.1 mm in size, was placed into a 0.5 mm diameter glass capillary and sealed with capillary wax (Hampton Research). The same sample was subsequently used for powder analysis.

4. Refinement

Details of the data collection and structure refinement are summarized in Table 2. Single-crystal X-ray diffraction data for AlPCl₈ were collected and processed using *APEX2* (Bruker, 2006), with absorption corrections applied through *SAINT* (Bruker, 2006). The structure was solved using *SUPERFLIP* (Palatinus & Chapuis, 2007) and refined using *CRYSTALS* (Betteridge *et al.*, 2003). Three-dimensional Fourier electron-density maps were visualized using *MCE* (Rohlíček & Hušák, 2007), and structural visualizations were generated using *VESTA* (Momma & Izumi, 2011).

 Table 2

 Experimental details.

1	
Crystal data	
Chemical formula	$PCl_4^+ \cdot AlCl_4^-$
M _r	341.55
Crystal system, space group	Orthorhombic, Pbcm
Temperature (K)	293
a, b, c (Å)	6.2653 (6), 13.5033 (12), 14.0112 (13)
$V(Å^3)$	1185.38 (19)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	2.05
Crystal size (mm)	$0.2 \times 0.2 \times 0.2$
Data collection	
Diffractometer	Bruker D8 Venture
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.664, 0.671
No. of measured, independent and observed $[I > 2.0\sigma(I)]$ reflections	38491, 1399, 1061
R _{int}	0.130
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.647
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.093, 0.056, 1.17
No. of reflections	1061
No. of parameters	51
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.79, -1.04

Computer programs: *APEX2* and *SAINT* (Bruker, 2006), *SUPERFLIP* (Palatinus & Chapuis, 2007), *CRYSTALS* (Betteridge *et al.*, 2003) and *VESTA* (Momma & Izumi, 2011).

The structure of AlPCl₈ was further confirmed using the powder X-ray Rietveld refinement technique. Data were collected with a Bruker AXS D8 Advance powder X-ray diffractometer, equipped with Cu $K\alpha_1$ radiation in Debye-Scherrer geometry, a focusing primary Ge (111) monochromator, and a Vantec position-sensitive detector with a 6° detector slit. The powder sample was homogeneously mixed with carbon (Super C, TIMCAL) at a 1:1 weight ratio to reduce preferred orientation effects, lower effective packing density, and mitigate absorption effects. The sample was placed in a 0.5 mm glass capillary and sealed with wax to prevent air exposure. Measurements were taken over an angular range of $10^{\circ} \le 2\theta \le 130^{\circ}$, with a step size of 0.016693°, conducted over 13 h at room temperature. Powder profile refinement was performed using GSAS-II software (Toby & Von Dreele, 2013). The final Rietveld plot is shown in Fig. 3.

Funding information

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (grant No. 2020R1A2C2007070) and by the BK21 FOUR program funded by the Ministry of Education of Korea.

References

- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). *J. Appl. Cryst.* **36**, 1487.
- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, H., Wong, L. L. & Adams, S. (2019). Acta Cryst. B75, 18-33.

Powder X-ray Rietveld refinement profile of AIPCl₈. Black dots indicate the observed pattern, the red line represents the calculated pattern, the blue line shows the difference between the observed and calculated patterns, and the pink tick marks correspond to the Bragg reflections positions.

- Fischer, W. & Jübermann, O. (1938). Z. Anorg. Allg. Chem. 235, 337–351.
- Kistenmacher, T. J. & Stucky, G. D. (1968). *Inorg. Chem.* 7, 2150–2155. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). *J.*
- Appl. Cryst. 48, 3–10.
- Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
- Rohlíček, J. & Hušák, M. (2007). J. Appl. Cryst. 40, 600-601.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.
- Tomita, Y., Saito, R., Morishita, M., Yamane, Y. & Kohno, Y. (2021). *Solid State Ionics*, **361**, 115566–115566.
- Weigand, J. J., Burford, N., Davidson, R. J., Cameron, T. S. & Seelheim, P. (2009). J. Am. Chem. Soc. 131, 17943–17953.

supporting information

Acta Cryst. (2024). E80 [https://doi.org/10.1107/S2056989024010661]

Crystal structure of AIPCI₈

Hyeonjin Seo, Seungyong Shin and Seung-Tae Hong

Computing details

Phosphorus tetrachloride tetrachloridoaluminate

Crystal data

PCl₄⁺·AlCl₄⁻ $M_r = 341.55$ Orthorhombic, *Pbcm* Hall symbol: -P 2c 2b a = 6.2653 (6) Å b = 13.5033 (12) Å c = 14.0112 (13) Å V = 1185.38 (19) Å³ Z = 4F(000) = 656

Data collection

Bruker D8 Venture diffractometer Graphite monochromator $\omega/2\theta$ scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.664, T_{\max} = 0.671$ 38491 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.093$ $wR(F^2) = 0.056$ S = 1.171061 reflections 51 parameters 0 restraints $D_{\rm x} = 1.914 \text{ Mg m}^{-3}$ $D_{\rm m} = 1.914 \text{ Mg m}^{-3}$ $D_{\rm m} \text{ measured by not measured}$ Mo K\alpha radiation, \lambda = 0.71073 \rangle A Cell parameters from 38491 reflections \theta = 3.4-27.4^\circ \mu = 2.05 mm^{-1} T = 293 K Block, white 0.2 \times 0.2 \times 0.2 mm

1399 independent reflections 1061 reflections with $I > 2.0\sigma(I)$ $R_{int} = 0.130$ $\theta_{max} = 27.4^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -8 \rightarrow 8$ $k = -17 \rightarrow 17$ $l = -18 \rightarrow 18$

Primary atom site location: other Weighting scheme based on measured s.u.'s Method = SQRT(W) = 1/(Data with the key SIGMA(/FO/) in list 6) $(\Delta/\sigma)_{max} = 0.0003$ $\Delta\rho_{max} = 0.79 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -1.04 \text{ e} \text{ Å}^{-3}$

F 1		1	1	• • •		• 1 /	• , •	1. 1			18	21
Fractional	atomic	coordinates	and	isofronic	or	eauwalent	isofronic	displ	acement	narameters	1 A	-1
1 / actionat	aronne	coordinates	cirici	isonopie	01	equivalent	isonopie	cuspr	accincin	parameters	(**	/

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
All	0.2214 (2)	0.47461 (11)	0.2500	0.0427	
P1	0.45745 (17)	0.7500	0.5000	0.0479	
Cl1	0.55881 (16)	0.49641 (12)	0.2500	0.0638	

supporting information

Cl2	0.09231 (14)	0.53762 (10)	0.37618 (9)	0.0859
C13	0.1572 (3)	0.31987 (12)	0.2500	0.0839
Cl4	0.28015 (19)	0.80367 (9)	0.40331 (8)	0.0952
C15	0.63379 (17)	0.85187 (8)	0.55069 (10)	0.0984

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
All	0.0338 (6)	0.0499 (9)	0.0445 (8)	-0.0005 (6)	0.0000	0.0000
P1	0.0443 (6)	0.0493 (7)	0.0501 (7)	0.0000	0.0000	0.0041 (7)
Cl1	0.0288 (6)	0.0861 (10)	0.0764 (8)	-0.0026 (6)	0.0000	0.0000
Cl2	0.0579 (6)	0.1250 (12)	0.0746 (7)	-0.0020 (5)	0.0154 (5)	-0.0428 (8)
Cl3	0.0807 (10)	0.0571 (9)	0.1140 (13)	-0.0146 (8)	0.0000	0.0000
Cl4	0.0936 (9)	0.1129 (12)	0.0791 (9)	0.0081 (7)	-0.0211 (7)	0.0365 (7)
C15	0.0842 (8)	0.0780 (9)	0.1329 (12)	-0.0163 (7)	-0.0074 (6)	-0.0404 (7)

Geometric parameters (Å, °)

Al1—Cl2 ⁱ	2.1223 (12)	P1—Cl5 ⁱⁱ	1.9018 (12)
Al1—Cl1	2.1343 (16)	P1—Cl4 ⁱⁱ	1.8959 (12)
Al1—Cl2	2.1223 (12)	P1—Cl4	1.8959 (12)
Al1—Cl3	2.128 (2)	P1—C15	1.9018 (12)
Cl2 ⁱ —Al1—Cl1	108.79 (6)	Cl5 ⁱⁱ —P1—Cl4 ⁱⁱ	109.31 (6)
Cl2 ⁱ —Al1—Cl2	112.83 (10)	Cl5 ⁱⁱ —P1—Cl4	110.49 (6)
Cl1—Al1—Cl2	108.79 (6)	Cl4 ⁱⁱ —P1—Cl4	108.26 (9)
Cl2 ⁱ —Al1—Cl3	108.77 (6)	Cl5 ⁱⁱ —P1—Cl5	108.97 (8)
Cl1—Al1—Cl3	108.82 (8)	Cl4 ⁱⁱ —P1—Cl5	110.49 (6)
Cl2—Al1—Cl3	108.77 (6)	Cl4—P1—Cl5	109.31 (6)

Symmetry codes: (i) x, y, -z+1/2; (ii) x, -y+3/2, -z+1.