

ISSN 2056-9890

Received 9 September 2024 Accepted 4 November 2024

Edited by L. Suescun, Universidad de la República, Uruguay

Keywords: crystal structure; aroylbis(*N*,*N*-dialkylthioureas); Cu(II) complexes.

CCDC reference: 2400458

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Crystal structure of a solvated dinuclear Cu^{II} complex derived from 3,3,3',3'-tetraethyl-1,1'-(furan-2,5-dicarbonyl)bis(thiourea)

Canh Dinh Le,^a Hoang Phuc Nguyen^b and Chien Thang Pham^b*

^aDepartment of Chemistry, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Vietnam, and ^bDepartment of Inorganic Chemistry, VNU University of Science, Vietnam National, University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam. *Correspondence e-mail: phamchienthang@hus.edu.vn

Reaction between equimolar amounts of 3,3,3',3'-tetraethyl-1,1'-(furan-2,5dicarbonyl)bis(thiourea) (**H**₂**L**) and CuCl₂·2H₂O in methanol in the presence of the supporting base Et₃N gave rise to a neutral dinuclear complex bis[μ -3,3,3',3'tetraethyl-1,1'-(furan-2,5-dicarbonyl)bis(thioureato)]dicopper(II) dichloromethane disolvate, [Cu₂(C₁₆H₂₂N₄O₃S₂)₂]·2CH₂Cl₂ or [Cu₂(*L*)₂]·2CH₂Cl₂. The aroylbis(thioureas) are doubly deprotonated and the resulting anions { L^{2-} } bond to metal ions through (*S*,*O*)-chelating moieties. The copper atoms adopt a virtually *cis*-square-planar environment. In the crystal, adjacent [Cu₂(*L*)₂]·-2CH₂Cl₂ units are linked into polymeric chains along the *a*-axis direction by intermolecular coordinative Cu···S interactions. The co-crystallized solvent molecules play a vital role in the crystal packing. In particular, weak C-H_{fur}an^{···}·Cl and C-H_{ethyl}···Cl contacts consolidate the three-dimensional supramolecular architecture.

1. Chemical context

Benzoyl(N,N-dialkylthioureas) are versatile ligands forming stable complexes with a great number of transition-metal ions, in which the organic compounds mainly act as monoanionic and (S,O)-bidentate ligands (Fitzl et al., 1977; Knuuttila et al., 1982; Sieler et al., 1990; Bensch et al., 1995; Nguyen et al., 2007; Barnard et al., 2019; Pham et al., 2021). This coordination fashion also plays an important role in metal complexes of aroylbis(thioureas), such as homo-dinuclear complexes based on the bipodal iso-phthaloylbis(N,N-dialkylthioureas) (Koch et al., 2001; Rodenstein et al., 2008; Schwade et al., 2013; Schwade et al., 2020; Teixeira et al., 2020). The presence of potential donor atom(s) in the spacer between two aroylthiourea moieties, such as pyridine N or catechol O atoms, could enable the corresponding aroylbis(thioureas) to serve as building blocks for the construction of heteronuclear hostguest systems (Nguyen et al., 2016; Pham et al., 2017, 2020; Le et al., 2019; Jesudas et al., 2020). However, it seems such aroylbis(thioureas) are not appropriate for the production of homonuclear systems. Indeed, all efforts to produce related homonuclear complexes, as in the case of iso-phthaloylbis-(N,N-dialkylthioureas), have hitherto failed. Herein, we describe the synthesis and crystal structure of the first homonuclear complex derived from the novel 3,3,3',3'-tetraethyl-1,1'-(furan-2,5-dicarbonyl)bis(thiourea) (H₂L), referred to as furan-2,5-dicarbonylbis(N,N-diethylthiourea), which possesses a potential furan O donor atom in the molecular backbone. The compound, $[Cu_2(L)_2]$, potentially exhibits

interesting magnetic and catalytic properties (Pham et al., 2019; Nath et al., 2020).

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C30-H30A···O10	0.99	2.41	3.388 (3)	171
$C30-H30B\cdotsO10^{i}$	0.99	2.45	3.428 (3)	171
$C14 - H14B \cdots Cl1^{ii}$	0.99	2.83	3.627 (2)	138
$C4-H4\cdots Cl2A^{iii}$	0.95	2.68	3.506 (8)	145
$C4-H4\cdots Cl2B^{iii}$	0.95	2.60	3.446 (12)	149
Symmetry codes: (i)	-x + 1, $-y$	+1, -7 + 1	(ii) $x + \frac{1}{2} - y = \frac{1}{2}$	$+\frac{1}{2}, z - \frac{1}{2};$ (iii)

O)-chelating aroylthiourea moieties. The Cu1-O bond

 $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}.$

2. Structural commentary

The complex $[Cu_2(L)_2]$ crystallizes as a solvated form in the centrosymmetric monoclinic space group $P2_1/n$ with half of $[Cu_2(L)_2]\cdot 2CH_2Cl_2$ in the asymmetric unit. The molecular structure, including solvent molecules, is shown in Fig. 1. The complex consists of two Cu^{II} ions and two doubly deprotonated ligands $\{L\}^{2^-}$, which bond to the metal ions through (S, S)

Figure 1

The molecular structure of the title compound $[Cu_2(L)_2]\cdot 2CH_2Cl_2$. (*a*) Top view with complete labeling of non-hydrogen atoms within the complex molecule. (*b*) Side view. Hydrogen atoms of the complex are omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. The red dotted lines indicate the C-H···O hydrogen bonds. Symmetry code: (i) -x + 1, -y + 1, -z + 1.

lengths are $Cu1 - O10 = 1.9406 (15) \text{ Å}$ and $Cu1 - O20 =$
1.9431 (14) Å, while the Cu1-S10 and Cu1-S20 bond
lengths are 2.2624 (6) and 2.2612 (6) Å, respectively. These
bond distances fall in the same ranges for those observed in
several copper(II) complexes with aroylmono(thioureas) (Wu
et al., 2015; Selvakumaran et al., 2016; Binzet et al., 2018; Pham
et al., 2021) and aroylbis(thioureas) (Rodenstein et al., 2008;
Schwade et al., 2013; Teixeira et al., 2020). The metalmetal
distance is 7.762 (3) Å and the midpoint between the two
copper atoms is on the inversion center of the molecule. The
two chelate planes Cu1/O10–S10 (r.m.s.d. = 0.075 Å) and Cu1/
$O20^{i}$ -S10 ⁱ (r.m.s.d. = 0.156 Å) form a dihedral angle of
15.32 (2) $^{\circ}$. Thus, the four-coordinate Cu ^{II} atoms adopt a flat
isosceles trapezoid geometry due to the cis arrangement of the
donor atoms. The atoms within the furan-2,5-dicarboxamide
moieties and the copper atoms are nearly coplanar with a
largest deviation of 0.298 (2) Å from the mean least-squares
plane for the furan oxygen atoms. Two CH2Cl2 molecules are
located on either side of the plane at a distance of 1.991 (5) Å
from the plane to the solvent carbon atoms. One chlorine
atom of the solvent molecule is disordered over two positions
with occupancy factor of 0.6163 (9) for the atom labelled A. In
addition, the solvent interacts with the complex through
hydrogen bonds formed with the carbonyl oxygen atoms O10
(Table 1).

3. Supramolecular features

Each $[Cu_2(L)_2]$ ·2CH₂Cl₂ unit interacts with two adjacent ones by long bonding interactions between the Cu^{II} ions and S20 atoms of adjacent blocks (Fig. 2*a*). These bonds, with a distance of 2.9884 (6) Å, are considerably longer than the coordinative Cu–S bonds within the $[Cu_2(L)_2]$ unit. Such interactions between the units results in polymeric chains along the *a*-axis direction (Fig. 2*b*).

Furthermore, intermolecular hydrogen bonds (Table 1) involving the solvent molecules and the C-H bonds of the furan rings and ethyl groups are responsible for aggregation of the polymeric chains (Fig. 3).

4. Database survey

The crystal structures of neither the ligand nor its metal complexes are found in the Cambridge Structure Database (CSD version 5.45, update of June 2024; Groom *et al.*, 2016). A search of the CSD for dinuclear copper(II) complexes derived

Figure 2

(a) Molecular packing of $[Cu_2(L)_2]$ ·2CH₂Cl₂ units by coordinative Cu···S interactions (dashed lines). Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (I) x + 1, y, z; (II) -x + 2, -y + 1, -z + 1; (III) -x, -y + 1, -z + 1; (IV) x - 1, y, z. Ethyl groups are omitted for clarity. (b) Polymeric chains along the *a*-axis direction. Hydrogen atoms of ethyl groups are omitted for clarity.

from aroylbis(thioureas) reveals only five hits involving isophthaloyl derivatives: DIZTEM and DIZTEM1 (Rodenstein *et al.*, 2008), BEWKAR (Schwade *et al.*, 2013), DOMNIE (Selvakumaran *et al.*, 2014) and YUFNUL (Teixeira *et al.*, 2020). Across the series of metrics for these structures, all values regarding the coordination of copper(II) ions and

Figure 3

Crystal packing of the title compound shown in projection down the *a*-axis illustrating the aggregation of chains by $C-H\cdots Cl$ hydrogen bonding (green dotted lines). The central units are highlighted for clarity.

aroylthiourea moieties are in accordance with those reported herein.

5. Synthesis and crystallization

H₂L (38.5 mg, 0.1 mmol) was added into a solution of $CuCl_2 \cdot 2H_2O$ (17.1 mg, 0.1 mmol) in 1 mL of MeOH. The reaction mixture was stirred at 313 K for 30 min before adding the supporting base Et_3N (0.03 mL, 0.2 mmol). A brown precipitate deposited immediately. After stirring for additional 1 h at 313 K, the product was filtered off, washed with MeOH, and dried under reduced pressure. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the complex in a mixture of CH_2Cl_2 and MeOH. Under ambient conditions, the crystals slowly turned to powder due to the evaporation of the co-crystalized solvent.

IR (KBr, cm⁻¹): 2974 (*w*), 2931 (*w*), 1536 (*s*), 1492 (*s*), 1455 (*m*), 1399 (*s*), 1373 (*s*), 1348 (*s*), 1304 (*s*), 1262 (*s*), 1219 (*m*), 1148 (*m*), 1111 (*m*), 1074 (*m*), 1008 (*s*), 9722 (*m*), 880 (*s*), 813 (*s*), 767 (*s*), 665 (*m*), 6155 (*w*), 548 (*w*), 455 (*m*).

+ESI MS (m/z): 893.19 (calculated 893.09), 50% [Cu₂(L)₂ + H]⁺; 931.24 (calculated 931.05), 100% [Cu₂(L)₂ + K]⁺.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were placed at calculated positions and refined in riding mode, with C-H

distances of 0.95 Å (aromatic), 0.99 Å (CH₂) and 0.98 Å (CH₃), and isotropic displacement parameters equal to $1.2U_{eq}$ of the parent atoms ($1.5U_{eq}$ for CH₃).

Funding information

Funding for this research was provided by: The Asia Research Center at Vietnam National University, Hanoi (grant No. CA.22.06A to Chien Thang Pham).

References

- Barnard, I. & Koch, K. R. (2019). Inorg. Chim. Acta, 495, 119019.
- Bensch, W. & Schuster, M. (1995). Z. Kristallogr. Cryst. Mater. 210, 68–68.
- Binzet, G., Gumus, I., Dogen, A., Flörke, U., Kulcu, N. & Arslan, H. (2018). J. Mol. Struct. **1161**, 519–529.
- Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fitzl, G., Beyer, L., Sieler, J., Richter, R., Kaiser, J. & Hoyer, E. (1977). Z. Anorg. Allg. Chem. 433, 237–241.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Jesudas, J. J., Pham, C. T., Hagenbach, A., Abram, U. & Nguyen, H. H. (2020). *Inorg. Chem.* 59, 386–395.
- Knuuttila, P., Knuuttila, H., Hennig, H. & Beyer, L. (1982). Acta Chem. Scand. A, 36, 541–545.
- Koch, K. R., Hallale, O., Bourne, S. A., Miller, J. & Bacsa, J. (2001). J. Mol. Struct. 561, 185–196.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Le, C. D., Pham, C. T. & Nguyen, H. H. (2019). *Polyhedron*, **173**, 114143–114147.
- Nath, B. D., Takaishi, K. & Ema, T. (2020). *Catal. Sci. Technol.* **10**, 12–34.
- Nguyen, H. H. & Abram, U. (2007). Inorg. Chem. 46, 5310-5319.
- Nguyen, H. H., Jegathesh, J. J., Takiden, A., Hauenstein, D., Pham, C. T., Le, C. D. & Abram, U. (2016). *Dalton Trans.* **45**, 10771–10779.
- Pham, C. T., Barnard, I., Nguyen, H. H., Abram, U. & Koch, K. R. (2020). *Inorg. Chem.* 59, 1183–1192.
- Pham, C. T., Nguyen, H. H., Hagenbach, A. & Abram, U. (2017). *Inorg. Chem.* 56, 11406–11416.
- Pham, C. T., Nguyen, T. H., Matsumoto, K. & Nguyen, H. H. (2019). *Eur. J. Inorg. Chem.* 2019, 4142–4146.
- Pham, C. T., Pham, T. T., Nguyen, V. H., Trieu, T. N. & Nguyen, H. H. (2021). Z. Anorg. Allg. Chem. 647, 1383–1391.
- Rodenstein, A., Griebel, J., Richter, R. & Kirmse, R. (2008). Z. Anorg. Allg. Chem. 634, 867–874.

Table 2

Experimental details.

Crystal data	
Chemical formula	$[Cu_2(C_{16}H_{22}N_4O_3S_2)_2] \cdot 2CH_2Cl_2$
M _r	1061.92
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	140
a, b, c (Å)	10.2290 (9), 13.0681 (10), 16.9601 (15)
β (°)	98.377 (3)
$V(Å^3)$	2242.9 (3)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.42
Crystal size (mm)	$0.14\times0.08\times0.05$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.686, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	29179, 5809, 4232
R _{int}	0.062
$(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$	0.677
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.076, 1.03
No. of reflections	5809
No. of parameters	276
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.50, -0.45

Computer programs: APEX2 ans SAINT (Bruker, 2014), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

- Schwade, V. D., Kirsten, L., Hagenbach, A., Schulz Lang, E. & Abram, U. (2013). Polyhedron, 55, 155–161.
- Schwade, V. D., Teixeira, E. I., dos Santos, F. A., Bortolotto, T., Tirloni, B. & Abram, U. (2020). New J. Chem. 44, 19598–19611.
- Selvakumaran, N., Bhuvanesh, N. S. P. & Karvembu, R. (2014). *Dalton Trans.* 43, 16395–16410.
- Selvakumaran, N., Sandhiya, L., Bhuvanesh, N. S. P., Senthilkumar, K. & Karvembu, R. (2016). New J. Chem. 40, 5401–5413.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sieler, J., Richter, R., Hoyer, E., Beyer, L., Lindqvist, O. & Andersen, L. (1990). Z. Anorg. Allg. Chem. 580, 167–174.
- Teixeira, E. I., Schwalm, C. S., Casagrande, G. A., Tirloni, B. & Schwade, V. D. (2020). *J. Mol. Struct.* **1210**, 127999.
- Wu, S.-Y., Zhao, X.-Y., Li, H.-P., Yang, Y. & Roesky, H. W. (2015). Z. Anorg. Allg. Chem. 641, 883–889.

supporting information

Acta Cryst. (2024). E80 [https://doi.org/10.1107/S2056989024010703]

Crystal structure of a solvated dinuclear Cu^{II} complex derived from 3,3,3',3'tetraethyl-1,1'-(furan-2,5-dicarbonyl)bis(thiourea)

Canh Dinh Le, Hoang Phuc Nguyen and Chien Thang Pham

Computing details

 $Bis[\mu-3,3,3',3'-tetraethyl-1,1'-(furan-2,5-dicarbonyl) bis(thioureato)] dicopper(II) \ dichloromethane \ disolvate$

Crystal data

 $[Cu_{2}(C_{16}H_{22}N_{4}O_{3}S_{2})_{2}] \cdot 2CH_{2}Cl_{2}$ $M_{r} = 1061.92$ Monoclinic, $P2_{1}/n$ a = 10.2290 (9) Å b = 13.0681 (10) Å c = 16.9601 (15) Å $\beta = 98.377$ (3)° V = 2242.9 (3) Å³ Z = 2

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\min} = 0.686, T_{\max} = 0.746$
29179 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.076$ S = 1.035809 reflections 276 parameters 0 restraints Primary atom site location: dual F(000) = 1092 $D_x = 1.572 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8429 reflections $\theta = 2.9-28.6^{\circ}$ $\mu = 1.42 \text{ mm}^{-1}$ T = 140 KPlate, red $0.14 \times 0.08 \times 0.05 \text{ mm}$

5809 independent reflections 4232 reflections with $I > 2\sigma(I)$ $R_{int} = 0.062$ $\theta_{max} = 28.8^\circ, \ \theta_{min} = 2.9^\circ$ $h = -13 \rightarrow 12$ $k = -16 \rightarrow 17$ $l = -22 \rightarrow 22$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0292P)^2 + 0.9669P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.50$ e Å⁻³ $\Delta\rho_{min} = -0.44$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

supporting information

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cu1	0.84517 (2)	0.55425 (2)	0.43977 (2)	0.01612 (8)	
S20	-0.02763 (5)	0.36002 (4)	0.50470 (3)	0.01813 (12)	
S10	0.92190 (5)	0.55137 (4)	0.32124 (3)	0.02175 (13)	
Cl1	0.51955 (6)	0.24405 (4)	0.50494 (4)	0.02871 (14)	
Cl2A	0.6845 (12)	0.3546 (8)	0.6351 (5)	0.0389 (13)	0.62 (6)
01	0.43749 (13)	0.41530 (10)	0.37590 (8)	0.0148 (3)	
O20	0.24820 (14)	0.42489 (11)	0.46961 (9)	0.0201 (3)	
O10	0.67999 (14)	0.49014 (12)	0.39462 (9)	0.0234 (4)	
N20	0.12097 (16)	0.30601 (13)	0.38549 (10)	0.0161 (4)	
N10	0.72045 (17)	0.41079 (13)	0.27587 (11)	0.0171 (4)	
N21	-0.06963 (17)	0.22096 (13)	0.39037 (11)	0.0174 (4)	
N11	0.90007 (17)	0.40368 (13)	0.21277 (11)	0.0181 (4)	
C20	0.2228 (2)	0.36677 (15)	0.40972 (12)	0.0155 (4)	
C21	0.01399 (19)	0.29379 (15)	0.42245 (12)	0.0149 (4)	
C10	0.6509(2)	0.43597 (15)	0.33275 (12)	0.0146 (4)	
C5	0.3243 (2)	0.35962 (15)	0.35652 (13)	0.0156 (4)	
C2	0.5189 (2)	0.38896 (16)	0.32183 (12)	0.0150 (4)	
C11	0.8417 (2)	0.44890 (16)	0.26910 (12)	0.0165 (4)	
C4	0.3331 (2)	0.29970 (17)	0.29214 (14)	0.0226 (5)	
H4	0.267641	0.253875	0.267244	0.027*	
C12	1.0320 (2)	0.43485 (17)	0.19544 (14)	0.0221 (5)	
H12A	1.076331	0.374578	0.175901	0.026*	
H12B	1.085855	0.457912	0.245532	0.026*	
C14	0.8325 (2)	0.31971 (17)	0.16420 (13)	0.0229 (5)	
H14A	0.784256	0.276870	0.198538	0.027*	
H14B	0.899900	0.276039	0.144445	0.027*	
C3	0.4587 (2)	0.31868 (17)	0.26922 (13)	0.0218 (5)	
H3	0.493828	0.288489	0.225885	0.026*	
C22	-0.1906 (2)	0.19430 (17)	0.42337 (14)	0.0237 (5)	
H22A	-0.255015	0.163290	0.380844	0.028*	
H22B	-0.230516	0.257583	0.441381	0.028*	
C30	0.5687 (2)	0.36547 (17)	0.54694 (14)	0.0244 (5)	
H30A	0.608215	0.406292	0.507265	0.029*	0.62 (6)
H30B	0.489631	0.402474	0.559208	0.029*	0.62 (6)
H30C	0.620516	0.402930	0.511272	0.029*	0.38 (6)
H30D	0.489701	0.406736	0.553233	0.029*	0.38 (6)
C24	-0.0367 (2)	0.15816 (17)	0.32306 (14)	0.0233 (5)	
H24A	-0.002603	0.203498	0.283944	0.028*	
H24B	-0.118227	0.125169	0.296061	0.028*	
C23	-0.1646 (3)	0.12006 (18)	0.49296 (16)	0.0324 (6)	
H23A	-0.122811	0.057995	0.475893	0.049*	
H23B	-0.248397	0.102117	0.511037	0.049*	
H23C	-0.105823	0.152244	0.536775	0.049*	
C15	0.7365 (3)	0.3571 (2)	0.09391 (15)	0.0333 (6)	
H15A	0.784371	0.396006	0.057839	0.050*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H15B	0.670058	0.401186	0.112873	0.050*	
H15C	0.692659	0.298337	0.065448	0.050*	
C13	1.0272 (3)	0.5201 (2)	0.13398 (16)	0.0336 (6)	
H13A	0.975577	0.497390	0.083784	0.050*	
H13B	1.117258	0.536891	0.125049	0.050*	
H13C	0.985739	0.580787	0.153507	0.050*	
C25	0.0658 (3)	0.07585 (18)	0.34959 (17)	0.0336 (6)	
H25A	0.087206	0.038988	0.302800	0.050*	
H25B	0.030115	0.027765	0.385352	0.050*	
H25C	0.145957	0.107842	0.377676	0.050*	
Cl2B	0.6656 (19)	0.3460 (10)	0.6407 (9)	0.044 (2)	0.38 (6)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.01290 (13)	0.02103 (14)	0.01530 (14)	-0.00403 (10)	0.00497 (10)	-0.00410 (11)
S20	0.0141 (3)	0.0184 (3)	0.0231 (3)	-0.0034 (2)	0.0069 (2)	-0.0044 (2)
S10	0.0214 (3)	0.0267 (3)	0.0191 (3)	-0.0083 (2)	0.0096 (2)	-0.0042 (2)
C11	0.0350 (3)	0.0237 (3)	0.0301 (3)	0.0012 (2)	0.0136 (3)	0.0036 (2)
Cl2A	0.041 (2)	0.045 (2)	0.0275 (12)	0.006 (2)	-0.0045 (13)	0.0173 (14)
01	0.0119 (7)	0.0207 (7)	0.0127 (8)	-0.0033 (6)	0.0046 (6)	-0.0045 (6)
O20	0.0158 (7)	0.0274 (8)	0.0184 (8)	-0.0086 (6)	0.0074 (6)	-0.0106 (6)
O10	0.0135 (8)	0.0379 (9)	0.0199 (9)	-0.0081 (7)	0.0067 (6)	-0.0118 (7)
N20	0.0125 (9)	0.0177 (9)	0.0181 (10)	-0.0029 (7)	0.0023 (7)	-0.0029 (7)
N10	0.0156 (9)	0.0200 (9)	0.0168 (10)	-0.0010 (7)	0.0063 (8)	-0.0021 (7)
N21	0.0133 (9)	0.0172 (9)	0.0217 (10)	-0.0030 (7)	0.0022 (7)	-0.0021 (7)
N11	0.0150 (9)	0.0240 (9)	0.0166 (10)	0.0002 (7)	0.0068 (8)	-0.0021 (8)
C20	0.0142 (10)	0.0174 (10)	0.0146 (11)	-0.0015 (8)	0.0014 (9)	-0.0008(8)
C21	0.0124 (10)	0.0134 (10)	0.0184 (11)	0.0005 (8)	0.0010 (9)	0.0019 (8)
C10	0.0144 (10)	0.0163 (10)	0.0129 (11)	0.0013 (8)	0.0018 (8)	0.0019 (8)
C5	0.0124 (10)	0.0177 (10)	0.0165 (11)	-0.0032 (8)	0.0010 (8)	-0.0025 (8)
C2	0.0141 (10)	0.0204 (11)	0.0114 (11)	0.0029 (8)	0.0046 (8)	-0.0012 (8)
C11	0.0156 (10)	0.0199 (10)	0.0141 (11)	0.0012 (9)	0.0022 (8)	0.0026 (9)
C4	0.0173 (11)	0.0275 (12)	0.0232 (13)	-0.0066 (9)	0.0036 (10)	-0.0097 (10)
C12	0.0134 (11)	0.0320 (12)	0.0224 (12)	0.0028 (9)	0.0078 (9)	-0.0027 (10)
C14	0.0230 (12)	0.0251 (12)	0.0222 (13)	0.0030 (10)	0.0084 (10)	-0.0045 (9)
C3	0.0201 (11)	0.0279 (12)	0.0189 (12)	-0.0038 (9)	0.0079 (10)	-0.0092 (9)
C22	0.0142 (11)	0.0241 (12)	0.0331 (14)	-0.0086 (9)	0.0044 (10)	-0.0022 (10)
C30	0.0273 (13)	0.0233 (12)	0.0222 (13)	0.0032 (10)	0.0028 (10)	0.0042 (9)
C24	0.0221 (12)	0.0257 (12)	0.0215 (12)	-0.0086 (10)	0.0013 (10)	-0.0080(9)
C23	0.0313 (14)	0.0234 (13)	0.0458 (17)	-0.0043 (11)	0.0165 (12)	0.0046 (11)
C15	0.0300 (14)	0.0382 (15)	0.0303 (15)	-0.0026 (11)	-0.0004 (11)	-0.0064 (11)
C13	0.0251 (13)	0.0474 (16)	0.0303 (15)	-0.0067 (12)	0.0108 (11)	0.0089 (12)
C25	0.0389 (15)	0.0242 (13)	0.0392 (16)	0.0012 (11)	0.0106 (13)	-0.0070 (11)
Cl2B	0.056 (4)	0.043 (2)	0.027 (3)	-0.021 (3)	-0.016 (3)	0.0175 (18)

Geometric parameters (Å, °)

Cu1—S20 ⁱ	2.2612 (6)	C12—H12B	0.9900
Cu1—S10	2.2624 (6)	C12—C13	1.521 (3)
Cu1—O20 ⁱ	1.9431 (14)	C14—H14A	0.9900
Cu1—O10	1.9406 (15)	C14—H14B	0.9900
S20—C21	1.746 (2)	C14—C15	1.511 (3)
S10-C11	1.743 (2)	С3—Н3	0.9500
Cl1—C30	1.781 (2)	C22—H22A	0.9900
Cl2A—C30	1.773 (8)	C22—H22B	0.9900
O1—C5	1.366 (2)	C22—C23	1.521 (3)
O1—C2	1.369 (2)	C30—H30A	0.9900
O20—C20	1.265 (2)	С30—Н30В	0.9900
O10—C10	1.265 (2)	С30—Н30С	0.9900
N20—C20	1.326 (3)	C30—H30D	0.9900
N20—C21	1.347 (3)	C30—Cl2B	1.766 (13)
N10-C10	1.321 (3)	C24—H24A	0.9900
N10-C11	1.357 (3)	C24—H24B	0.9900
N21—C21	1.341 (3)	C24—C25	1.523 (3)
N21—C22	1.472 (3)	C23—H23A	0.9800
N21—C24	1.484 (3)	С23—Н23В	0.9800
N11—C11	1.336 (3)	C23—H23C	0.9800
N11—C12	1.479 (3)	C15—H15A	0.9800
N11—C14	1.481 (3)	C15—H15B	0.9800
C20—C5	1.475 (3)	C15—H15C	0.9800
C10—C2	1.471 (3)	C13—H13A	0.9800
C5—C4	1.357 (3)	C13—H13B	0.9800
C2—C3	1.363 (3)	C13—H13C	0.9800
C4—H4	0.9500	C25—H25A	0.9800
C4—C3	1.417 (3)	C25—H25B	0.9800
C12—H12A	0.9900	C25—H25C	0.9800
S20 ⁱ —Cu1—S10	90.35 (2)	C2—C3—C4	106.24 (19)
O20 ⁱ —Cu1—S20 ⁱ	94.14 (4)	С2—С3—Н3	126.9
O20 ⁱ —Cu1—S10	168.29 (5)	С4—С3—Н3	126.9
O10-Cu1-S20 ⁱ	175.25 (5)	N21—C22—H22A	109.1
O10-Cu1-S10	92.12 (5)	N21—C22—H22B	109.1
O10-Cu1-O20 ⁱ	82.68 (6)	N21—C22—C23	112.59 (19)
C21—S20—Cu1 ⁱ	107.20 (7)	H22A—C22—H22B	107.8
C11—S10—Cu1	105.37 (7)	C23—C22—H22A	109.1
C5—O1—C2	106.35 (15)	C23—C22—H22B	109.1
C20	130.70 (13)	Cl1—C30—H30A	109.1
C10—O10—Cu1	130.91 (13)	Cl1—C30—H30B	109.1
C20—N20—C21	125.52 (18)	Cl1—C30—H30C	110.0
C10—N10—C11	124.50 (18)	Cl1—C30—H30D	110.0
C21—N21—C22	122.38 (18)	Cl2A—C30—Cl1	112.4 (4)
C21—N21—C24	120.11 (17)	Cl2A—C30—H30A	109.1
C22—N21—C24	117.34 (17)	Cl2A—C30—H30B	109.1

C11—N11—C12	122.41 (18)	H30A—C30—H30B	107.9
C11—N11—C14	120.30 (17)	H30C—C30—H30D	108.3
C12—N11—C14	117.29 (17)	Cl2B—C30—Cl1	108.7 (5)
O20—C20—N20	131.98 (19)	Cl2B—C30—H30C	110.0
O20—C20—C5	116.66 (17)	Cl2B—C30—H30D	110.0
N20—C20—C5	111.33 (18)	N21—C24—H24A	109.0
N20—C21—S20	128.46 (16)	N21—C24—H24B	109.0
N21—C21—S20	117.42 (15)	N21—C24—C25	112.76 (19)
N21—C21—N20	114.12 (18)	H24A—C24—H24B	107.8
O10—C10—N10	131.22 (19)	C25—C24—H24A	109.0
010-010-02	116.03 (17)	C25—C24—H24B	109.0
N10-C10-C2	112.72 (18)	C22—C23—H23A	109.5
01-C5-C20	117.82 (17)	C22—C23—H23B	109.5
C4—C5—O1	110.36 (17)	$C_{22} = C_{23} = H_{23}C$	109.5
C4-C5-C20	131 58 (19)	$H_{23}A = C_{23} = H_{23}B$	109.5
01-C2-C10	116 58 (17)	H_{23A} C_{23} H_{23C}	109.5
C_{3} C_{2} C_{10}	110.28(17) 110.28(18)	$H_{23B} = C_{23} = H_{23C}$	109.5
C_{3} C_{2} C_{10}	133.07(19)	C14 - C15 - H15A	109.5
N10-C11-S10	127 42 (16)	C14 $C15$ $H15R$	109.5
N11-C11-S10	127.12(10) 118 44 (15)	C14— $C15$ — $H15C$	109.5
N11—C11—N10	114.05 (18)	H15A - C15 - H15B	109.5
C5-C4-H4	126.6	H15A - C15 - H15C	109.5
C_{5} C_{4} C_{3}	106 76 (19)	H15B-C15-H15C	109.5
$C_3 - C_4 - H_4$	126.6	C12— $C13$ — $H13A$	109.5
N11—C12—H12A	108.9	C12 $C13$ $H13R$	109.5
N11—C12—H12B	108.9	C12 $C13$ $H13C$	109.5
N11 - C12 - C13	113 50 (19)	H_{13A} $-C_{13}$ $-H_{13B}$	109.5
H12A— $C12$ — $H12B$	107.7	H13A—C13—H13C	109.5
C13—C12—H12A	108.9	H13B— $C13$ — $H13C$	109.5
C13—C12—H12B	108.9	C^{24} C^{25} H^{25A}	109.5
N11—C14—H14A	108.9	C24— $C25$ — $H25B$	109.5
N11—C14—H14B	108.9	C^{24} C^{25} $H^{25}C$	109.5
N11-C14-C15	113 34 (19)	H25A - C25 - H25B	109.5
H14A—C14—H14B	107.7	$H_{25A} - C_{25} - H_{25C}$	109.5
C15—C14—H14A	108.9	H25B-C25-H25C	109.5
C15—C14—H14B	108.9		10,10
	100.9		
Cu1 ⁱ —S20—C21—N20	-14.0(2)	C10-N10-C11-S10	-11.0(3)
$Cu1^{i}$ S20 C21 N21	166.21 (14)	C10-N10-C11-N11	172.43 (19)
Cu1—S10—C11—N10	29.0 (2)	C10—C2—C3—C4	176.6 (2)
Cu1—S10—C11—N11	-154.56(15)	C5-O1-C2-C10	-177.26(17)
$Cu1^{i}$ — $O20$ — $C20$ — $N20$	5.2 (4)	$C_{5} = 01 = 02 = 010$	0.3 (2)
Cu1 ⁱ	-172.26(14)	C5-C4-C3-C2	0.4(3)
Cu1—O10—C10—N10	-5.1 (3)	C2-O1-C5-C20	175.01 (18)
Cu1—O10—C10—C2	172.61 (14)	C2-01-C5-C4	0.0 (2)
01-C5-C4-C3	-0.2 (3)	C11—N10—C10—O10	-6.7 (4)
O1—C2—C3—C4	-0.4 (3)	C11—N10—C10—C2	175.57 (19)
O20-C20-C5-O1	0.3 (3)	C11—N11—C12—C13	-88.5 (3)
	× /		× /

O20—C20—C5—C4	174.1 (2)	C11—N11—C14—C15	83.8 (2)
O10-C10-C2-O1	5.2 (3)	C12—N11—C11—S10	2.4 (3)
O10-C10-C2-C3	-171.6 (2)	C12—N11—C11—N10	179.34 (18)
N20-C20-C5-O1	-177.58 (17)	C12—N11—C14—C15	-95.6 (2)
N20-C20-C5-C4	-3.8 (3)	C14—N11—C11—S10	-176.94 (15)
N10-C10-C2-O1	-176.69 (17)	C14—N11—C11—N10	0.0 (3)
N10-C10-C2-C3	6.5 (3)	C14—N11—C12—C13	90.9 (2)
C20-N20-C21-S20	6.1 (3)	C22—N21—C21—S20	-1.7 (3)
C20-N20-C21-N21	-174.10 (19)	C22—N21—C21—N20	178.48 (18)
C20—C5—C4—C3	-174.3 (2)	C22—N21—C24—C25	-98.7 (2)
C21—N20—C20—O20	0.9 (4)	C24—N21—C21—S20	-176.80 (15)
C21—N20—C20—C5	178.46 (19)	C24—N21—C21—N20	3.4 (3)
C21—N21—C22—C23	-82.9 (2)	C24—N21—C22—C23	92.4 (2)
C21—N21—C24—C25	76.7 (2)		

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	D—H···A
С30—Н30А…О10	0.99	2.41	3.388 (3)	171
C30—H30 <i>B</i> ···O10 ⁱ	0.99	2.45	3.428 (3)	171
C14—H14B····Cl1 ⁱⁱ	0.99	2.83	3.627 (2)	138
C4—H4···Cl2A ⁱⁱⁱ	0.95	2.68	3.506 (8)	145
C4—H4····Cl2 <i>B</i> ⁱⁱⁱ	0.95	2.60	3.446 (12)	149

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1/2, -y+1/2, z-1/2; (iii) x-1/2, -y+1/2, z-1/2.