

Received 19 December 2024 Accepted 22 January 2025

Edited by Y. Ozawa, University of Hyogo, Japan

Keywords: crystal structure; transannulation; ethenyl sulfone; hydrogenation; tetrahydrodibenzopentalene.

CCDC reference: 2243325

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Synthesis and crystal structure of 5,10-bis(phenyl-sulfonyl)tetrahydrodibenzopentalene

Toshiki Sakami,^a Hikaru Watanabe,^a Takuma Sato,^a Yasuhiro Okuda,^b Kan Wakamatsu,^c Haruo Akashi^d and Akihiro Orita^b*

^aGraduate School of Science and Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan, ^bDepartment of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan, ^cDepartment of Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan, and ^dResearch Institute of Frontier Science and Technology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama Kita-ku, Okayama 700-0005, Japan, and ^dResearch Institute of Frontier Science and Technology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama Kita-ku, Okayama 700-0005, Japan, and ^dResearch Institute of Frontier Science and Technology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama Kita-ku, Okayama 700-0005, Japan, ^aCorrespondence e-mail: orita@ous.ac.jp

5,10-Bis(phenylsulfonyl)tetrahydrodibenzopentalene, $C_{28}H_{22}O_4S_2$, **1**, was successfully synthesized *via* the photocatalyst-promoted hydrogenative transannulation of disulfonylcyclooctatetraene, **2**, using perylene as the photocatalyst in the presence of $(i-Pr)_2NEt$ under UV-light irradiation (398 nm, 30 W). In this reaction, the cyclooctatetraene moiety of **2** underwent hydrogenative transannulation, yielding **1**. Single-crystal X-ray analysis revealed that both enantiomers of **1** are arranged alternately along the *a* axis of the unit cell. The structure features a wide V-shaped motif consisting of 6–5–5–6 fused rings, with a dihedral angle of approximately 97.2° between the planes of the terminal phenylene rings. Additionally, a pair of phenylsulfonyl groups were observed at the *exo* positions relative to the V-shaped array.

1. Chemical context

Acenes have garnered significant attention for their strong interactions with single-wall carbon nanotubes (SWCNTs), which led to the formation of acene-SWCNT composites. For example, ferrocenoyl-substituted acetylenic anthracene (Watanabe et al., 2023) and anthrvlene nano tweezers (Marquis et al., 2009) have been utilized to fabricate anthracene derivative-SWCNT composites. In both cases, multiadsorption effects on the SWCNT surface play a pivotal role; in the former, co-operative adsorption of ferrocenoyl and acetylenic anthrylene moieties is essential, while in the latter, dual adsorption of V-shaped anthrylenes drives composite formation. The nano tweezers consist of a pair of anthrylenes connected by methylene hinges. Inspired by this, we envisioned the synthesis of a new class of nano tweezer, *i.e.* 1 (see Scheme), featuring a pair of aromatic rings connected by a five-membered ring-fused hinge.

To synthesize compound **1**, we employed our photocatalystassisted hydrogenative reduction protocol on 5,11-bis(phenyl-

sulfonyl)dibenzo[a,e]cyclooctatetraene (2), using a perylene photocatalyst under UV/visible-light irradiation (Watanabe *et al.*, 2020, 2021, 2024) (Fig. 1). In this reaction, we anticipated that the *in-situ*-formed anion radical 2⁻⁻ would undergo transannulation to yield **1**. Notably, we have previously reported the anionic transannulation of 5,6,11,12-tetradehydrodibenzo [a,e]cyclooctatetraene, which afforded the corresponding 6–5– 5–6 cyclic product dibenzopentalene (Xu *et al.*, 2014). The photocatalyst-promoted hydrogenative transannulation of **2** proceeded successfully, yielding the nano tweezer 5,10-bis-(phenylsulfonyl)tetrahydrodibenzopentalene (**1**). In this reaction, the cyclooctatetraene moiety of **2** was transformed into the desired five-membered ring-fused hinge.

This study presents the synthesis of 5,10-bis(phenylsulfonyl)tetrahydrodibenzopentalene (1), a five-membered ringfused nano-tweezer compound, along with its single-crystal X-ray structure and a plausible mechanism for the perylene/ UV-light-promoted hydrogenative transannulation of **2**.

2. Structural commentary

The core structure of **1** is a fused 6–5–5–6-membered ring system, in which two phenylene rings are connected by a fivemembered-ring hinge array (Fig. 2). The dihedral angle between the planes of the terminal phenylene rings is ca 97.2°. Phenylsulfonyl groups are located at the outside of the V-shaped fused-ring motif, leaning over the five-membered rings. The C1–C5/C16 (C8–C12/C13) phenylene ring shows identical aromatic bond lengths (1.38–1.40 Å). In the hinge ring C6–C8/C13/C14, the C6–C7 and C6–C14 single bonds are somewhat longer than the C7–C8 and C13–C14 bonds, respectively: 1.547 (2) and 1.563 (2) Å *versus* 1.508 (3) and 1.514 (2) Å. The bond angles around the Csp² atoms in the hinge ring [C7–C8–C13 = 110.70 (15)° and C8–C13–C14 = 111.38 (15)°] are rather larger than those around the Csp³

Figure 2 The molecular structure of (E,E)-1, with displacement ellipsoids drawn at the 50% probability level.

research communications

Figure 3

A partial packing plot of $\mathbf{1}$, showing the linear alternating alignment of (S, S)S)- and (R,R)- isomers and the shortest intermolecular contacts (blue lines).

atoms $[C6-C7-C8 = 103.59 (14)^{\circ}, C7-C6-C14 =$ $106.00 (14)^{\circ}$ and $C6-C14-C13 = 102.05 (14)^{\circ}$].Similar features are observed in the other hinge ring C14-C16/C5/C6.

3. Supramolecular features

In the crystal, 1 forms a column diagonally in the *a*-axis direction with a molecular distance of 8.84 Å (Fig. 3). In the columnar structure of 1, a pair of [(S)-C7, (S)-C15] and [(R)-C7, (R)-C15] enantiomers are arranged alternately in the same direction, with the mid-points of the C6-C14 bonds aligned. The shortest intermolecular contact is between the C8-C13 phenylene ring and the C23'-C28' phenylsulfonyl ring. The intermolecular centroid-centroid distance between the two benzene rings is 3.86 Å, and this value is somewhat longer than conventional π - π stacking (Banerjee *et al.*, 2019).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.45, November 2023, with updates to March 2024; Groom et al., 2016) indicates that 5,10-bis(phenylsulfonyl)tetrahydrodibenzopentalene, 1, is unprecedented. However, a related 5,10-bis(sulfonimidoylmethyl)tetrahydrodibenzopentalene derivative has been reported (CSD refcode ATUHIJ; Hermann et al., 2021). The crystal structures of analogous 6-5-5-6 fused rings with carbon substituents at both the 5 and 10 positions are common, with more than 20 examples available, including the 5,10-diphenyl derivative (e.g. MAMYEI; Wössner et al., 2022).

Table 1	
Experiment	al details.

Crystal data	
Chemical formula	$C_{28}H_{22}O_4S_2$
M _r	486.57
Crystal system, space group	Orthorhombic, $Pna2_1$
Temperature (K)	293
a, b, c (Å)	17.2598 (3), 10.0898 (1), 13.1810 (2)
$V(Å^3)$	2295.44 (6)
Z	4
Radiation type	Μο Κα
$\mu (\rm{mm}^{-1})$	0.27
Crystal size (mm)	$0.15 \times 0.1 \times 0.05$
Data collection	
Diffractometer	Rigaku VariMax Saturn724
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku
	OD, 2019)
T_{\min}, T_{\max}	0.830, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	42446, 7150, 6863
Rint	0.036
$(\sin \theta / \lambda)_{max} (Å^{-1})$	0.736
()max ()	
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.031, 0.088, 1.13
No. of reflections	7150
No. of parameters	307
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.46, -0.39
Absolute structure	Flack x determined using 3042 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.048 (15)

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT2018 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

5. Synthesis and crystallization

5.10-Bis(phenylsulfonyl)tetrahydrodibenzopentalene, 1, was successfully synthesized via photocatalyst perylene-promoted hydrogenative transannulation of disulfonylcyclooctatetraene, 2, in the presence of $(i-Pr)_2NEt$ under irradiation of UV light (398 nm, 30 W). Starting compound 2 was synthesized from the cyclic dimerization of 2-formylphenylmethyl phenyl sulfone according to the reported procedure of Xu et al. (2014).

To a round-bottomed flask charged with a magnetic stirrer bar were added 2 (121 mg, 0.25 mmol), perylene (3.15 mg, 12.5 µmol), (*i*-Pr)₂NEt (0.35 ml, 2.0 mmol) and MeCN (2.5 ml). The flask was placed in a glass water bath surrounded by UV LED strip lighting, and the mixture was irradiated with UV light for 9 h. During the photoreaction, the temperature of the bath was kept at 50-55 °C because of heat radiation from the photoreactor. After completion of the reaction, the mixture was evaporated and the crude product was purified by flash chromatography on silica gel (hexane/EtOAc, 7:3 v/v) to afford the desired product 1 (vield: 104 mg, 0.215 mmol, 86%).

Analysis for 1: white powder; m.p. 237–238 °C; ¹H NMR (CDCl₃, 400 MHz, room temperature): δ 3.67 (s, 2H), 4.62 (s, 2H), 7.15 (*d*, 2H, *J* = 7.8 Hz), 7.23–7.27 (*m*, 2H), 7.33 (*t*, 2H, *J* = 7.4 Hz), 7.40 (d, 2H, J = 7.8 Hz), 7.44–7.49 (m, 8H), 7.66–7.70 (m, 2H); ¹³C{¹H} NMR (CDCl₃, 101 MHz, room temperature): δ 50.4, 77.1, 124.4, 127.8, 128.5, 129.0, 129.4, 130.5, 133.5, 134.2,

Figure 4

Mechanistic pathways for the transformation of $\mathbf{2}$ to $\mathbf{1}$.

136.6, 145.0. HRMS (MALDI–TOF) $m/z [M + Na]^+$ calculated for C₂₈H₂₂NaO₄S₂ 509.0857; found 509.0807.

A crystal of **1** suitable for X-ray diffraction was obtained from the slow evaporation of an AcOEt solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were refined using a riding model, with d(C-H) = 0.93 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H, and 0.98 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for CH.

7. Reaction mechanism

7.1. Mechanistic insights into hydrogenative transannulation *via* DFT calculations

Density functional theory (DFT) calculations [B3LYP/6-31 +G(d) with the IEFPCM solvent model in MeCN] were performed to elucidate the mechanism of hydrogenative transannulation. The results suggest that the reaction proceeds primarily *via* the anion radical 2^- through an anion radical-mediated mechanism (Fig. 4, route 1).

The process begins with photoexcitation of the perylene photocatalyst upon UV LED irradiation (Fig. 5). The excited-

perylene perylene* *i*-Pr₂N

UV light

state perylene accepts an electron from the sacrificial reduc-

tant (*i*-Pr)₂NEt, generating the anion radical (perylene)⁻.

This highly reductive species transfers an electron to 2,

forming the anion radical 2^{-} , which subsequently undergoes

Mechanism of the generation of the anion radical 2^- by a photoexcited perylene photocatalyst.

transannulation to yield **1**. This occurs *via* consecutive double protonation and one-electron reduction of the intermediate anion radical 3^{-} (Fig. 4, route 1). Although an alternative pathway involving the formation of the anion radical (4 + PhSO₂)⁻ *via* S-C bond elongation (route 1') is also possible, its relatively high activation energy renders it less favourable.

Another proposed pathway involves the radical intermediate **5**, generated by protonation of $2^{\cdot-}$. This radical could theoretically lead to **1** via the intermediate **6** through radical transannulation, protonation and single-electron reduction (route 2). However, DFT calculations indicate that rapid elimination of PhSO₂[•] from **5** is more likely, yielding the elimination product **7**. Similarly, the anion **5**⁻, another potential precursor to **6**⁻, likely undergoes rapid elimination of PhSO₂⁻, also forming **7**.

Acknowledgements

This work was supported by Okayama University of Science Research Instruments Center for the measurements by 400 MHz NMR spectroscopy (JNM-ECS400 and JNM-ECZ400S), MALDI-TOF MS (autoflex speed) and singlecrystal X-ray analysis (Rigaku VariMax Saturn724 diffractometer).

Funding information

Funding for this research was provided by: the Grants-in-Aid for Scientific Research (JP23K04741 to AO; JP23K13755 to YO; 22J14995 to HW); OUS Research Project (OUS-RP-23-2 to AO; OUS-RP-24-7 to YO).

References

- Banerjee, A., Saha, A. & Saha, B. K. (2019). Cryst. Growth Des. 19, 2245–2252.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hermann, M., Wassy, D., Kohn, J., Seitz, P., Betschart, M. U., Grimme, S. & Esser, B. (2021). *Angew. Chem. Int. Ed.* **60**, 10680–10689.
- Marquis, R., Kulikiewicz, K., Lebedkin, S., Kappes, M. M., Mioskowski, C., Meunier, S. & Wagner, A. (2009). *Chem. Eur. J.* 15, 11187–11196.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Watanabe, H., Ekuni, K., Okuda, Y., Nakayama, R., Kawano, K., Iwanaga, T., Yamaguchi, A., Kiyomura, T., Miyake, H., Yamagami, M., Tajima, T., Kitai, T., Hayashi, T., Nishiyama, N., Kusano, Y., Kurata, H., Takaguchi, Y. & Orita, A. (2023). *Bull. Chem. Soc. Jpn*, 96, 57–64.
- Watanabe, H., Nakajima, K., Ekuni, K., Edagawa, R., Akagi, Y., Okuda, Y., Wakamatsu, K. & Orita, A. (2021). *Synthesis*, **53**, 2984–2994.
- Watanabe, H., Sato, T., Sumita, M., Shiroyama, M., Sugawara, D., Tokuyama, T., Okuda, Y., Wakamatsu, K. & Orita, A. (2024). Bull. Chem. Soc. Jpn, 97, uoad013.
- Watanabe, H., Takemoto, M., Adachi, K., Okuda, Y., Dakegata, A., Fukuyama, T., Ryu, I., Wakamatsu, K. & Orita, A. (2020). *Chem. Lett.* 49, 409–412.
- Wössner, J. S., Kohn, J., Wassy, D., Hermann, M., Grimme, S. & Esser, B. (2022). Org. Lett. 24, 983–988.
- Xu, F., Peng, L., Shinohara, K., Morita, T., Yoshida, S., Hosoya, T., Orita, A. & Otera, J. (2014). *J. Org. Chem.* **79**, 11592–11608.

supporting information

Acta Cryst. (2025). E81, 172-176 [https://doi.org/10.1107/S205698902500060X]

Synthesis and crystal structure of 5,10-bis(phenylsulfonyl)tetrahydro-

dibenzopentalene

Toshiki Sakami, Hikaru Watanabe, Takuma Sato, Yasuhiro Okuda, Kan Wakamatsu, Haruo Akashi and Akihiro Orita

Computing details

8,16-Bis(benzenesulfonyl)tetracyclo[7.7.0.0^{2,7}.0^{10,15}]hexadeca-2,4,6,10(15),11,13-hexaene

Crystal data

 $C_{28}H_{22}O_4S_2$ $M_r = 486.57$ Orthorhombic, $Pna2_1$ a = 17.2598 (3) Å b = 10.0898 (1) Å c = 13.1810 (2) Å V = 2295.44 (6) Å³ Z = 4F(000) = 1016

```
Data collection
```

Rigaku VariMax Saturn724 diffractometer Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2019) $T_{\min} = 0.830, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.088$ S = 1.137150 reflections 307 parameters 1 restraint Primary atom site location: dual Hydrogen site location: inferred from neighbouring sites $D_x = 1.408 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 35175 reflections $\theta = 2.3-31.6^{\circ}$ $\mu = 0.27 \text{ mm}^{-1}$ T = 293 KPlate, yellow $0.15 \times 0.1 \times 0.05 \text{ mm}$

42446 measured reflections 7150 independent reflections 6863 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 31.5^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -24 \rightarrow 25$ $k = -14 \rightarrow 14$ $l = -18 \rightarrow 18$

H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0578P)^{2} + 0.1545P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.46 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.39 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 3042 quotients $[(I^{+})-(I^{-})]/[(I^{+})+(I^{-})]$ (Parsons *et al.*, 2013) Absolute structure parameter: -0.048 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.65385 (3)	0.57943 (4)	0.64924 (4)	0.01544 (10)	
S2	0.63855 (3)	0.13233 (5)	0.35409 (3)	0.01764 (10)	
01	0.69190 (9)	0.70159 (14)	0.67785 (11)	0.0215 (3)	
O2	0.60389 (9)	0.51442 (16)	0.72176 (12)	0.0228 (3)	
O3	0.60283 (9)	0.21632 (17)	0.27880 (12)	0.0243 (3)	
O4	0.66469 (9)	0.00191 (15)	0.32373 (13)	0.0242 (3)	
C1	0.80081 (11)	0.02918 (18)	0.49055 (17)	0.0204 (4)	
H1	0.810443	-0.015390	0.430098	0.024*	
C2	0.82842 (13)	-0.01963 (19)	0.58237 (19)	0.0236 (4)	
H2	0.857029	-0.097732	0.583286	0.028*	
C3	0.81388 (12)	0.0466 (2)	0.67250 (17)	0.0227 (4)	
H3	0.832998	0.012462	0.733082	0.027*	
C4	0.77070 (11)	0.16425 (19)	0.67352 (15)	0.0187 (4)	
H4	0.760981	0.208656	0.734024	0.022*	
C5	0.74280 (10)	0.21293 (17)	0.58196 (14)	0.0145 (3)	
C6	0.69361 (10)	0.33572 (18)	0.56404 (13)	0.0135 (3)	
H6	0.639491	0.321598	0.583770	0.016*	
C7	0.72795 (10)	0.46170 (18)	0.61359 (14)	0.0134 (3)	
H7	0.757931	0.436692	0.673761	0.016*	
C8	0.78194 (10)	0.51514 (17)	0.53349 (14)	0.0136 (3)	
C9	0.83936 (11)	0.61022 (19)	0.54509 (15)	0.0172 (3)	
H9	0.847046	0.652213	0.607083	0.021*	
C10	0.88527 (12)	0.64112 (19)	0.46118 (16)	0.0205 (4)	
H10	0.923416	0.705802	0.466837	0.025*	
C11	0.87461 (12)	0.57648 (19)	0.36968 (16)	0.0211 (4)	
H11	0.906375	0.597215	0.314948	0.025*	
C12	0.81676 (11)	0.48033 (18)	0.35813 (15)	0.0172 (3)	
H12	0.810090	0.436702	0.296592	0.021*	
C13	0.76950 (10)	0.45154 (17)	0.44072 (13)	0.0131 (3)	
C14	0.70237 (10)	0.35534 (17)	0.44694 (13)	0.0133 (3)	
H14	0.655202	0.391959	0.416477	0.016*	
C15	0.72236 (10)	0.21799 (17)	0.40319 (14)	0.0149 (3)	
H15	0.760873	0.227967	0.349097	0.018*	
C16	0.75839 (10)	0.14641 (18)	0.49152 (15)	0.0156 (3)	
C17	0.60164 (10)	0.60785 (18)	0.53663 (14)	0.0153 (3)	
C18	0.53457 (11)	0.53499 (19)	0.51733 (15)	0.0181 (3)	
H18	0.514311	0.478352	0.566271	0.022*	
C19	0.49848 (11)	0.5487 (2)	0.42331 (17)	0.0203 (4)	
H19	0.454400	0.499324	0.408476	0.024*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C20	0.52824 (11)	0.63586 (19)	0.35179 (17)	0.0211 (4)
H20	0.504127	0.644075	0.289013	0.025*
C21	0.59374 (12)	0.71103 (19)	0.37309 (16)	0.0213 (4)
H21	0.612296	0.771159	0.325449	0.026*
C22	0.63150 (11)	0.69642 (18)	0.46544 (15)	0.0180 (3)
H22	0.676009	0.744952	0.479594	0.022*
C23	0.57343 (11)	0.11531 (19)	0.45694 (15)	0.0181 (4)
C24	0.58859 (11)	0.02218 (19)	0.53314 (16)	0.0209 (4)
H24	0.632003	-0.032214	0.529645	0.025*
C25	0.53722 (13)	0.0128 (2)	0.61426 (17)	0.0257 (4)
H25	0.545787	-0.049515	0.665012	0.031*
C26	0.47331 (13)	0.0959 (2)	0.61982 (19)	0.0279 (5)
H26	0.439990	0.090482	0.675119	0.033*
C27	0.45880 (12)	0.1873 (2)	0.5432 (2)	0.0272 (4)
H27	0.415572	0.242099	0.547105	0.033*
C28	0.50857 (11)	0.1971 (2)	0.46074 (17)	0.0228 (4)
H28	0.498734	0.257398	0.408924	0.027*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01851 (18)	0.01647 (19)	0.01135 (19)	0.00111 (15)	0.00189 (16)	-0.00361 (16)
S2	0.01760 (18)	0.0206 (2)	0.0147 (2)	-0.00383 (15)	0.00205 (17)	-0.00729 (18)
01	0.0270 (7)	0.0187 (6)	0.0190 (7)	0.0009 (5)	-0.0016 (6)	-0.0079 (5)
O2	0.0245 (7)	0.0286 (7)	0.0152 (7)	0.0023 (6)	0.0086 (5)	0.0005 (6)
O3	0.0242 (7)	0.0331 (8)	0.0156 (7)	-0.0028 (6)	-0.0030 (5)	-0.0040 (6)
O4	0.0249 (7)	0.0230 (7)	0.0248 (8)	-0.0052 (6)	0.0073 (6)	-0.0135 (6)
C1	0.0180 (8)	0.0162 (8)	0.0270 (10)	-0.0014 (6)	0.0045 (7)	-0.0050 (7)
C2	0.0224 (9)	0.0150 (8)	0.0334 (11)	0.0013 (7)	0.0025 (8)	0.0015 (8)
C3	0.0241 (9)	0.0195 (8)	0.0245 (10)	-0.0002 (7)	-0.0006 (8)	0.0059 (7)
C4	0.0229 (8)	0.0173 (8)	0.0159 (9)	-0.0018 (7)	0.0019 (7)	0.0029 (6)
C5	0.0154 (7)	0.0134 (7)	0.0148 (8)	-0.0015 (6)	0.0020 (6)	0.0002 (6)
C6	0.0147 (7)	0.0146 (7)	0.0112 (8)	-0.0007 (6)	0.0015 (6)	-0.0016 (6)
C7	0.0153 (7)	0.0143 (7)	0.0105 (7)	-0.0005 (6)	0.0002 (6)	-0.0018 (6)
C8	0.0150 (7)	0.0132 (7)	0.0125 (8)	0.0009 (6)	0.0012 (6)	0.0000 (6)
C9	0.0207 (8)	0.0146 (7)	0.0163 (8)	-0.0025 (6)	0.0002 (7)	-0.0017 (7)
C10	0.0226 (8)	0.0168 (8)	0.0220 (9)	-0.0062 (7)	0.0030 (7)	0.0011 (7)
C11	0.0236 (9)	0.0220 (9)	0.0177 (9)	-0.0036 (7)	0.0056 (7)	0.0033 (7)
C12	0.0218 (8)	0.0183 (7)	0.0114 (7)	-0.0007 (6)	0.0018 (7)	0.0012 (7)
C13	0.0149 (7)	0.0129 (7)	0.0115 (8)	0.0002 (6)	0.0005 (6)	-0.0006 (6)
C14	0.0147 (7)	0.0147 (7)	0.0106 (7)	-0.0006 (6)	0.0000 (6)	-0.0028 (6)
C15	0.0157 (7)	0.0162 (8)	0.0128 (8)	-0.0027 (6)	0.0020 (6)	-0.0042 (6)
C16	0.0140 (7)	0.0149 (7)	0.0179 (9)	-0.0018 (6)	0.0017 (6)	-0.0023 (6)
C17	0.0158 (7)	0.0152 (7)	0.0150 (8)	0.0023 (6)	0.0000 (6)	-0.0029 (6)
C18	0.0167 (8)	0.0180 (8)	0.0194 (9)	-0.0002 (6)	0.0036 (7)	-0.0009 (7)
C19	0.0166 (8)	0.0200 (8)	0.0243 (10)	0.0013 (7)	-0.0022 (7)	-0.0030 (7)
C20	0.0211 (8)	0.0229 (9)	0.0193 (9)	0.0056 (7)	-0.0028 (8)	-0.0006 (7)
C21	0.0249 (9)	0.0188 (8)	0.0202 (9)	0.0010 (7)	0.0012 (7)	0.0034 (7)

supporting information

C22	0.0189 (8)	0.0138 (7)	0.0212 (9)	0.0004 (6)	0.0011 (7)	-0.0008 (7)
C23	0.0164 (8)	0.0199 (8)	0.0181 (9)	-0.0052 (6)	0.0037 (7)	-0.0080 (7)
C24	0.0198 (8)	0.0201 (8)	0.0227 (10)	-0.0032 (7)	0.0031 (7)	-0.0071 (7)
C25	0.0282 (10)	0.0283 (10)	0.0205 (9)	-0.0095 (8)	0.0044 (8)	-0.0046 (8)
C26	0.0241 (9)	0.0334 (11)	0.0262 (10)	-0.0104 (8)	0.0101 (8)	-0.0128 (9)
C26	0.0241 (9)	0.0334 (11)	0.0262 (10)	-0.0104 (8)	0.0101 (8)	-0.0128 (9)
C27	0.0187 (8)	0.0280 (10)	0.0348 (11)	-0.0027 (7)	0.0058 (8)	-0.0116 (9)
C28	0.0180 (8)	0.0216 (8)	0.0288 (11)	-0.0032 (7)	0.0007 (8)	-0.0065 (8)

Geometric parameters (Å, °)

S1—O1	1.4467 (15)	C11—C12	1.400 (3)
S1—O2	1.4448 (15)	C12—H12	0.9300
S1—C7	1.8077 (18)	C12—C13	1.391 (2)
S1—C17	1.7600 (19)	C13—C14	1.514 (2)
S2—O3	1.4433 (17)	C14—H14	0.9800
S2—O4	1.4475 (15)	C14—C15	1.540 (2)
S2—C15	1.8051 (18)	C15—H15	0.9800
S2—C23	1.7693 (19)	C15—C16	1.505 (3)
C1—H1	0.9300	C17—C18	1.395 (3)
C1—C2	1.391 (3)	C17—C22	1.394 (3)
C1—C16	1.391 (3)	C18—H18	0.9300
C2—H2	0.9300	C18—C19	1.394 (3)
C2—C3	1.386 (3)	C19—H19	0.9300
С3—Н3	0.9300	C19—C20	1.388 (3)
C3—C4	1.402 (3)	C20—H20	0.9300
C4—H4	0.9300	C20—C21	1.390 (3)
C4—C5	1.389 (3)	C21—H21	0.9300
C5—C6	1.520 (2)	C21—C22	1.388 (3)
C5—C16	1.394 (2)	C22—H22	0.9300
С6—Н6	0.9800	C23—C24	1.400 (3)
C6—C7	1.547 (2)	C23—C28	1.392 (3)
C6—C14	1.563 (2)	C24—H24	0.9300
С7—Н7	0.9800	C24—C25	1.392 (3)
С7—С8	1.508 (3)	С25—Н25	0.9300
C8—C9	1.388 (2)	C25—C26	1.388 (3)
C8—C13	1.398 (2)	С26—Н26	0.9300
С9—Н9	0.9300	C26—C27	1.391 (4)
C9—C10	1.396 (3)	С27—Н27	0.9300
C10—H10	0.9300	C27—C28	1.388 (3)
C10—C11	1.383 (3)	C28—H28	0.9300
C11—H11	0.9300		
O1—S1—C7	107.84 (9)	C8—C13—C14	111.38 (15)
01—S1—C17	108.27 (9)	C12—C13—C8	119.92 (16)
O2—S1—O1	119.03 (9)	C12—C13—C14	128.70 (16)
O2—S1—C7	107.21 (9)	C6—C14—H14	111.8
O2—S1—C17	109.05 (9)	C13—C14—C6	102.05 (14)
C17—S1—C7	104.48 (9)	C13—C14—H14	111.8

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—S2—O4	118.48 (10)	C13—C14—C15	112.65 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—S2—C15	107.92 (9)	C15—C14—C6	106.10 (14)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O3—S2—C23	108.21 (10)	C15—C14—H14	111.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4—S2—C15	106.53 (9)	S2—C15—H15	109.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4—S2—C23	108.76 (9)	C14—C15—S2	112.68 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23—S2—C15	106.31 (9)	C14—C15—H15	109.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-H1	120.9	C16-C15-S2	112.26 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C^{2}-C^{1}-C^{1}6$	118 26 (19)	C16-C15-C14	103 58 (14)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C16—C1—H1	120.9	C16—C15—H15	109.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1 - C2 - H2	119.6	C1 - C16 - C5	121 24 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{3} C_{2} C_{1}	120.88 (18)	C1 - C16 - C15	121.21(10) 128.22(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{3} C_{2} H_{2}	119.6	C_{5} C_{16} C_{15}	120.22(10) 110.53(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_2 C_3 H_3$	119.6	C_{18} C_{17} S_{1}	110.55 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_2 = C_3 = C_4$	119.0	$C_{13} - C_{17} - S_{1}$	119.33(13) 118.87(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_2 = C_3 = C_4$	120.6 (2)	$C_{22} = C_{17} = C_{18}$	110.07(14) 121.45(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_4 - C_5 - H_4$	119.0	$C_{22} - C_{17} - C_{18}$	121.45 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{5} = C_{4} = C_{14}^{2}$	120.8	$C_{1}^{}C_{18}^{}C_{17}^{}C_{18}^{}C_{17}^{}C_{18}^{}C_{17}^{}C_{18}^{}C_{17}^{}C_{18}^{}C_{18}^{}C_{18}^{}C_{18}^{}C_{18}^{}C_{18}^{}C_{18}^{}C_{18}^{}C_{18}^{}C_{18}^{}C_{18}^{}C_{18}^{}C_{18}^{}C_{18}^{}C_{18}^{}C_{18}^{$	120.0 119.74(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{5} = C_{4} = C_{5}$	110.30 (10)	C19 - C18 - C17	110.74 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{3} C_{4} H_{4}	120.8	C19 - C18 - H18	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4 - C5 - C6	128.07 (17)	C18—C19—H19	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4 - C5 - C16	120.38 (17)	C_{20} C_{19} C_{18}	120.08 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—C5—C6	111.55 (16)	C20—C19—H19	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—С6—Н6	111.9	C19—C20—H20	119.7
CS=C6=C14101.69 (14)C21=C20=H20119.7C7=C6=H6111.9C20=C21=H21120.0C7=C6=C14106.00 (14)C22=C21=C20120.0C14=C6=H6111.9C22=C21=H21120.0S1=C7=H7109.4C17=C22=H22120.5C6=C7=S1112.24 (12)C21=C22=C17118.9C6=C7=H7109.4C21=C22=H22120.5C8=C7=S1112.60 (12)C24=C23=S2119.7C8=C7=H7109.4C28=C23=C24121.5C9=C8=C13121.56 (17)C23=C24=H24120.7C9=C8=C13121.56 (17)C25=C24=H24120.7C8=C9=H9120.9C24=C25=H25119.8C8=C9=C10118.20 (18)C26=C25=C24120.4C10=C9=H9120.9C26=C25=H25119.8C11=C10=H10119.7C25=C26=H26119.8C11=C10=H10119.7C25=C26=H26119.8C11=C11=H11119.5C26=C27=H27119.9C10=C11=H11119.5C26=C27=H27119.9C10=C11=H11119.5C26=C27=H27119.9C10=C11=H11119.5C26=C27=H27119.9C11=C12=H12120.7C23=C28=H28120.5C13=C12=C11118.53 (18)C27=C28=C23118.9C13=C12=C11118.53 (18)C27=C28=C23118.9	C5—C6—C7	112.95 (14)	C19—C20—C21	120.6 (2)
C7-C6-H6111.9 $C20-C21-H21$ 120.0 $C7-C6-C14$ 106.00 (14) $C22-C21-C20$ 120.0 $C14-C6-H6$ 111.9 $C22-C21-H21$ 120.0 $S1-C7-H7$ 109.4 $C17-C22-H22$ 120.5 $C6-C7-S1$ 112.24 (12) $C21-C22-C17$ 118.9 $C6-C7-H7$ 109.4 $C21-C22-H22$ 120.5 $C8-C7-S1$ 112.60 (12) $C24-C23-S2$ 119.7 $C8-C7-C6$ 103.59 (14) $C28-C23-S2$ 118.7 $C9-C8-C7$ 127.69 (17) $C23-C24-H24$ 120.7 $C9-C8-C13$ 121.56 (17) $C25-C24-H24$ 120.7 $C8-C9-H9$ 120.9 $C24-C25-H25$ 119.8 $C8-C9-H9$ 120.9 $C26-C25-C24$ 120.4 $C10-C9-H9$ 120.9 $C26-C25-C24$ 120.4 $C10-C9-H9$ 120.9 $C26-C25-C24$ 120.4 $C10-C9-H9$ 120.9 $C26-C25-C24$ 120.4 $C10-C9-H9$ 120.9 $C26-C25-C24$ 120.4 $C11-C10-H10$ 119.7 $C25-C26-C27$ 120.4 $C11-C10-H10$ 119.7 $C27-C26-H26$ 119.8 $C10-C11-H11$ 119.5 $C26-C27-C26$ 120.3 $C12-C11-H11$ 119.5 $C28-C27-C26$ 120.3 $C12-C11-H11$ 119.5 $C28-C27-C26$ 120.3 $C12-C11-H11$ 119.5 $C28-C27-C26$ 120.3 $C12-C11-H11$ 119.5 $C28-C27-C26$ 120.3 $C12-C11-H11$ 118.53 (18) $C27-C28-C23$ 118.9 $C13-C12-C11$ 118.53 (18) $C27-C28-C23$ 118.9 <td>C5—C6—C14</td> <td>101.69 (14)</td> <td>C21—C20—H20</td> <td>119.7</td>	C5—C6—C14	101.69 (14)	C21—C20—H20	119.7
C7C6C14106.00 (14)C22C21C20120.0C14C6H6111.9C22C21H21120.0S1C7H7109.4C17C22H22120.5C6C7S1112.24 (12)C21C22C17118.9C6C7H7109.4C21C22H22120.5C8C7S1112.60 (12)C24C23S2119.7C8C7C6103.59 (14)C28C23S2118.7C9C8C7127.69 (17)C23C24H24120.7C9C8C7127.69 (17)C25C24C23118.5C13C8C7110.70 (15)C25C24H24120.7C8C9H9120.9C24C25H25119.8C8C9H9120.9C26C25C24120.4C10C9H9120.9C26C25C24120.4C11C10C9120.66 (18)C25C26H26119.8C11C10H10119.7C25C26H26119.8C11C11H11119.5C26C27H27119.9C10C11H11119.5C26C27H27119.9C11C12H12120.8 (19)C28C27H27119.9C11C12H12120.7C23C28H28120.5C13C12C11118.53 (18)C27C28C23118.59C13C12C11118.53 (18)C27C28C23118.9C13C12C11118.53 (18)C27C28C23118.9C13C12C11118.53 (18)C27C28C23118.9C13C12C11118.53 (18)C27C28C23118.9C13C12C11118.53 (18)<	С7—С6—Н6	111.9	C20—C21—H21	120.0
C14—C6—H6111.9C22—C21—H21120.0S1—C7—H7109.4C17—C22—H22120.5C6—C7—S1112.24 (12)C21—C22—C17118.9C6—C7—H7109.4C21—C22—H22120.5C8—C7—S1112.60 (12)C24—C23—S2119.7C8—C7—C6103.59 (14)C28—C23—S2118.7C9—C8—C7127.69 (17)C23—C24—H24120.7C9—C8—C13121.56 (17)C25—C24—C23118.5C13—C8—C7110.70 (15)C25—C24—H24120.7C8—C9—H9120.9C24—C25—H25119.8C8—C9—H9120.9C26—C25—C24120.4C10—C9—H9120.9C26—C25—H25119.8C11—C10—C9120.66 (18)C25—C26—H26119.8C11—C10—H10119.7C25—C26—H26119.8C11—C10—H10119.7C25—C26—H26119.8C11—C11—H11119.5C26—C27—H27119.9C11—C12121.08 (19)C28—C27—C26120.3C12—C11—H11119.5C26—C27—H27119.9C11—C12—H12120.7C23—C28—H28120.5C13—C12—C11118.53 (18)C27—C28—C23118.59C13—C12—H12120.7C23—C28—H28120.5C13—C12—H12120.7C23—C28—H28120.5C13—C12—H12120.7C23—C28—H28120.5C13—C12—H12120.7C23—C28—H28120.5C13—C12—H12120.7C23—C28—H28120.5C13—C12—H12120.7C23—C28—H28120.5C14—H12 <td>C7—C6—C14</td> <td>106.00 (14)</td> <td>C22—C21—C20</td> <td>120.05 (19)</td>	C7—C6—C14	106.00 (14)	C22—C21—C20	120.05 (19)
S1C7H7109.4C17C22H22120.5C6C7S1112.24 (12)C21C22C17118.9C6C7H7109.4C21C22H22120.5C8C7S1112.60 (12)C24C23S2119.7C8C7C6103.59 (14)C28C23S2118.7C8C7H7109.4C28C23C24121.5C9C8C7127.69 (17)C23C24H24120.7C9C8C13121.56 (17)C25C24C23118.5C13C8C7110.70 (15)C25C24H24120.7C8C9H9120.9C24C25H25119.8C8C9C10118.20 (18)C26C25C24120.4C10C9H9120.9C26C25H26119.8C11C10C9120.66 (18)C25C26H26119.8C11C10C12121.08 (19)C28C27H27119.9C10C11H11119.5C26C27H27119.9C12C11H11119.5C28C27H27119.9C11C12H12120.7C23C28H28120.5C13C12H12120.7C23C28H28120.5C13C12H12120.7C23C28H23118.5C13C12H12120.7C23C28H23118.5C13C12H12120.7C23C28H23118.5C13C12H12120.7C23C28H23118.5C13C12H12120.7C23C28H23118.5C13C12H12120.7C23C28H23118.5C13C12H12120.7C23C28H23118.5 <td>С14—С6—Н6</td> <td>111.9</td> <td>C22—C21—H21</td> <td>120.0</td>	С14—С6—Н6	111.9	C22—C21—H21	120.0
C6C7S1112.24 (12)C21C22C17118.9C6C7H7109.4C21C22H22120.5C8C7S1112.60 (12)C24C23S2119.7C8C7C6103.59 (14)C28C23S2118.7C8C7H7109.4C28C23C24121.5C9C8C7127.69 (17)C23C24H24120.7C9C8C13121.56 (17)C25C24C23118.5C13C8C7110.70 (15)C25C24H24120.7C8C9H9120.9C24C25H25119.8C8C9C10118.20 (18)C26C25C24120.4C10C9H9120.9C26C25H25119.8C11C10H10119.7C25C26H26119.8C11C10H10119.7C27C26H26119.8C10C11H11119.5C26C27H27119.9C10C11H11119.5C28C27C26120.3C12C11H11119.5C28C27H27119.9C11C12H12120.7C23C28H28120.5C13C12H12120.7C23C28H28120.5C13C12H12120.7C23C28H28120.5C13C12H12120.7C23C28H28120.5C13C12H12120.7C23C28H28120.5C13C12H12120.7C23C28H28120.5C13C12H12120.7C23C28C23118.9C13C12H12120.7C23C28C23118.9C13C12H12120.7C23C28C23118.9<	S1—C7—H7	109.4	C17—C22—H22	120.5
C6—C7—H7109.4C21—C22—H22120.5C8—C7—S1112.60 (12)C24—C23—S2119.7C8—C7—C6103.59 (14)C28—C23—S2118.7C8—C7—H7109.4C28—C23—C24121.5C9—C8—C7127.69 (17)C23—C24—H24120.7C9—C8—C13121.56 (17)C25—C24—C23118.5C13—C8—C7110.70 (15)C25—C24—H24120.7C8—C9—H9120.9C24—C25—H25119.8C8—C9—C10118.20 (18)C26—C25—C24120.4C10—C9—H9120.9C26—C25—H25119.8C11—C10—H10119.7C25—C26—H26119.8C11—C10—H10119.7C25—C26—H26119.8C10—C11—H11119.5C26—C27120.4C11—C10—H10119.7C27—C26—H26119.8C12—C11—H11119.5C28—C27—C26120.3C12—C11—H11119.5C28—C27—H27119.9C11—C12—H12120.7C23—C28—H28120.5C13—C12—C11118.53 (18)C27—C28—C23118.9C13—C12—C11118.53 (18)C27—C28—C23118.9	C6—C7—S1	112.24 (12)	C21—C22—C17	118.98 (17)
C8-C7-S1 $112.60(12)$ $C24-C23-S2$ 119.7 $C8-C7-C6$ $103.59(14)$ $C28-C23-S2$ 118.7 $C8-C7-H7$ 109.4 $C28-C23-C24$ 121.5 $C9-C8-C7$ $127.69(17)$ $C23-C24-H24$ 120.7 $C9-C8-C13$ $121.56(17)$ $C25-C24-C23$ 118.5 $C13-C8-C7$ $110.70(15)$ $C25-C24-H24$ 120.7 $C8-C9-H9$ 120.9 $C24-C25-H25$ 119.8 $C8-C9-C10$ $118.20(18)$ $C26-C25-C24$ 120.4 $C10-C9-H9$ 120.9 $C26-C25-H25$ 119.8 $C9-C10-H10$ 119.7 $C25-C26-H26$ 119.8 $C11-C10-C9$ $120.66(18)$ $C25-C26-C27$ 120.4 $C11-C10-H10$ 119.7 $C27-C26-H26$ 119.8 $C10-C11-H11$ 119.5 $C28-C27-H27$ 119.9 $C12-C11-H11$ 119.5 $C28-C27-H27$ 119.9 $C12-C11-H11$ 119.5 $C28-C27-H27$ 119.9 $C13-C12-C11$ $118.53(18)$ $C27-C28-H28$ 120.5 $C13-C12-C11$ $118.53(18)$ $C27-C28-C23$ 118.5	С6—С7—Н7	109.4	C21—C22—H22	120.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C7—S1	112.60 (12)	C24—C23—S2	119.74 (15)
C8-C7-H7 109.4 $C28-C23-C24$ 121.5 $C9-C8-C7$ $127.69 (17)$ $C23-C24-H24$ 120.7 $C9-C8-C13$ $121.56 (17)$ $C25-C24-C23$ 118.5 $C13-C8-C7$ $110.70 (15)$ $C25-C24-H24$ 120.7 $C8-C9-H9$ 120.9 $C24-C25-H25$ 119.8 $C8-C9-C10$ $118.20 (18)$ $C26-C25-C24$ 120.4 $C10-C9-H9$ 120.9 $C26-C25-H25$ 119.8 $C9-C10-H10$ 119.7 $C25-C26-H26$ 119.8 $C11-C10-C9$ $120.66 (18)$ $C25-C26-C27$ 120.4 $C11-C10-H10$ 119.7 $C27-C26-H26$ 119.8 $C10-C11-H11$ 119.5 $C26-C27-H27$ 119.9 $C12-C11-H11$ 119.5 $C28-C27-C26$ 120.3 $C12-C11-H11$ 119.5 $C28-C27-H27$ 119.9 $C12-C11-H11$ 119.5 $C28-C27-H27$ 119.9 $C13-C12-C11$ $118.53 (18)$ $C27-C28-C23$ 118.9 $C13-C12-C11$ $118.53 (18)$ $C27-C28-C23$ 118.9	C8—C7—C6	103.59 (14)	C28—C23—S2	118.75 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С8—С7—Н7	109.4	C28—C23—C24	121.51 (19)
C9—C8—C13121.56 (17)C25—C24—C23118.5C13—C8—C7110.70 (15)C25—C24—H24120.7C8—C9—H9120.9C24—C25—H25119.8C8—C9—C10118.20 (18)C26—C25—C24120.4C10—C9—H9120.9C26—C25—H25119.8C9—C10—H10119.7C25—C26—H26119.8C11—C10—C9120.66 (18)C25—C26—C27120.4C10—C11—H11119.7C27—C26—H26119.8C10—C11—H11119.5C26—C27—H27119.9C10—C11—H11119.5C26—C27—H27119.9C10—C11—H11119.5C28—C27—C26120.3C12—C11—H11119.5C28—C27—H27119.9C11—C12—H12120.7C23—C28—H28120.5C13—C12—C11118.53 (18)C27—C28—C23118.9C13—C12120.7C23—C28—H28120.5C13—C12—C11118.53 (18)C27—C28—C23118.9	C9—C8—C7	127.69 (17)	C23—C24—H24	120.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C8—C13	121.56 (17)	C25—C24—C23	118.52 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C8—C7	110.70 (15)	C25—C24—H24	120.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С8—С9—Н9	120.9	C24—C25—H25	119.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C9—C10	118.20 (18)	C26—C25—C24	120.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С10—С9—Н9	120.9	C26—C25—H25	119.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—H10	119.7	C25—C26—H26	119.8
C11—C10—H10 119.7 C27—C26—H26 119.8 C10—C11—H11 119.5 C26—C27—H27 119.9 C10—C11—C12 121.08 (19) C28—C27—C26 120.3 C12—C11—H11 119.5 C28—C27—H27 119.9 C11—C12—H12 120.7 C23—C28—H28 120.5 C13—C12—C11 118.53 (18) C27—C28—C23 118.9	C11—C10—C9	120.66 (18)	C25—C26—C27	120.4 (2)
C10—C11—H11119.5C26—C27—H27119.9C10—C11—C12121.08 (19)C28—C27—C26120.3C12—C11—H11119.5C28—C27—H27119.9C11—C12—H12120.7C23—C28—H28120.5C13—C12—C11118.53 (18)C27—C28—C23118.9	C11—C10—H10	119.7	C27—C26—H26	119.8
C10—C11—C12 121.08 (19) C28—C27—C26 120.3 C12—C11—H11 119.5 C28—C27—H27 119.9 C11—C12—H12 120.7 C23—C28—H28 120.5 C13—C12—C11 118.53 (18) C27—C28—C23 118.9 C12 G12 G12 G27 C28—C27 120.5	C10—C11—H11	119.5	C26—C27—H27	119.9
C12—C11—H11 119.5 C28—C27—H27 119.9 C11—C12—H12 120.7 C23—C28—H28 120.5 C13—C12—C11 118.53 (18) C27—C28—C23 118.9 C12 C12 L20.7 C23—C28—H28 120.5	C10-C11-C12	121.08 (19)	C28—C27—C26	120.3 (2)
C11—C12—H12 120.7 C23—C28—H28 120.5 C13—C12—C11 118.53 (18) C27—C28—C23 118.9 C12 C12 H12 120.7 C23—C28—H28	C12—C11—H11	119.5	C28—C27—H27	119.9
C13—C12—C11 118.53 (18) C27—C28—C23 118.9	C11—C12—H12	120.7	C23—C28—H28	120.5
	C13—C12—C11	118.53 (18)	C27—C28—C23	118.9 (2)
C13-C12-H12 120.7 $C27-C28-H28$ 120.5	С13—С12—Н12	120.7	C27—C28—H28	120.5

S1—C7—C8—C9	73.1 (2)	C7—S1—C17—C22	-80.77 (16)
S1—C7—C8—C13	-109.25 (15)	C7—C6—C14—C13	24.61 (17)
S1-C17-C18-C19	-173.37 (14)	C7—C6—C14—C15	142.74 (13)
S1—C17—C22—C21	174.87 (15)	C7—C8—C9—C10	177.19 (18)
S2-C15-C16-C1	72.1 (2)	C7—C8—C13—C12	-175.93 (16)
S2-C15-C16-C5	-106.73 (15)	C7—C8—C13—C14	3.8 (2)
S2—C23—C24—C25	178.68 (15)	C8—C9—C10—C11	-1.3(3)
S2—C23—C28—C27	-177.74 (15)	C8—C13—C14—C6	-17.84 (18)
O1—S1—C7—C6	-170.12 (12)	C8—C13—C14—C15	-131.19 (16)
O1—S1—C7—C8	-53.69 (15)	C9—C8—C13—C12	1.9 (3)
O1—S1—C17—C18	-150.48 (15)	C9—C8—C13—C14	-178.38 (16)
O1—S1—C17—C22	33.97 (17)	C9—C10—C11—C12	1.2 (3)
O2—S1—C7—C6	60.58 (15)	C10-C11-C12-C13	0.5 (3)
O2—S1—C7—C8	177.01 (13)	C11—C12—C13—C8	-2.0(3)
O2—S1—C17—C18	-19.58 (17)	C11—C12—C13—C14	178.35 (18)
O2—S1—C17—C22	164.87 (14)	C12—C13—C14—C6	161.85 (18)
O3—S2—C15—C14	56.45 (15)	C12—C13—C14—C15	48.5 (2)
O3—S2—C15—C16	172.94 (12)	C13—C8—C9—C10	-0.2(3)
O3—S2—C23—C24	169.95 (15)	C13—C14—C15—S2	-152.10(13)
O3—S2—C23—C28	-11.08 (18)	C13—C14—C15—C16	86.35 (17)
O4—S2—C15—C14	-175.33 (13)	C14—C6—C7—S1	98.89 (14)
O4—S2—C15—C16	-58.84 (15)	C14—C6—C7—C8	-22.85 (17)
O4—S2—C23—C24	40.02 (18)	C14—C15—C16—C1	-166.03 (18)
O4—S2—C23—C28	-141.01 (15)	C14—C15—C16—C5	15.10 (19)
C1—C2—C3—C4	0.2 (3)	C15—S2—C23—C24	-74.34 (17)
C2-C1-C16-C5	-0.9 (3)	C15—S2—C23—C28	104.63 (16)
C2-C1-C16-C15	-179.62 (18)	C16—C1—C2—C3	0.2 (3)
C2—C3—C4—C5	0.0 (3)	C16—C5—C6—C7	-129.03 (16)
C3—C4—C5—C6	178.56 (17)	C16—C5—C6—C14	-15.86 (18)
C3-C4-C5-C16	-0.7 (3)	C17—S1—C7—C6	-55.08 (14)
C4—C5—C6—C7	51.7 (2)	C17—S1—C7—C8	61.35 (14)
C4—C5—C6—C14	164.83 (18)	C17—C18—C19—C20	-1.5 (3)
C4—C5—C16—C1	1.1 (3)	C18—C17—C22—C21	-0.6 (3)
C4—C5—C16—C15	-179.91 (16)	C18—C19—C20—C21	-0.5(3)
C5—C6—C7—S1	-150.61 (13)	C19—C20—C21—C22	2.0 (3)
C5—C6—C7—C8	87.66 (17)	C20—C21—C22—C17	-1.4(3)
C5-C6-C14-C13	-93.66 (15)	C22—C17—C18—C19	2.1 (3)
C5—C6—C14—C15	24.47 (17)	C23—S2—C15—C14	-59.45 (15)
C6-C5-C16-C1	-178.24 (16)	C23—S2—C15—C16	57.04 (15)
C6—C5—C16—C15	0.7 (2)	C23—C24—C25—C26	-1.1 (3)
C6—C7—C8—C9	-165.41 (17)	C24—C23—C28—C27	1.2 (3)
C6—C7—C8—C13	12.25 (19)	C24—C25—C26—C27	1.6 (3)
C6-C14-C15-S2	97.06 (15)	C25—C26—C27—C28	-0.6 (3)
C6-C14-C15-C16	-24.50 (17)	C26—C27—C28—C23	-0.8 (3)
C7—S1—C17—C18	94.78 (16)	C28—C23—C24—C25	-0.3 (3)