

Received 9 December 2024 Accepted 20 January 2025

Edited by S. Parkin, University of Kentucky, USA

Keywords: noncovalent interactions; hydrogen bonding; crystal structure.

CCDC reference: 2418168

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Synthesis and crystal structure analysis of 1-ethyl-1,3-dihydro-2*H*-benzo[*d*]imidazole-2-thione

Atash V. Gurbanov,^{a,b} Firudin I. Guseinov,^{b,c} Aida I. Samigullina,^c Tuncer Hökelek,^d Khudayar I. Hasanov,^{e,f} Tahir A. Javadzade^g and Alebel N. Belay^h*

^aExcellence Center, Baku State University, Z. Xalilov Str. 23, AZ 1148 Baku, Azerbaijan, ^bKosygin State University of Russia, 117997 Moscow, Russian Federation, ^cN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, ^dHacettepe University, Department of Physics, 06800 Beytepe-Ankara, Türkiye, ^eWestern Caspian University, Istiglaliyyat Str. 31, AZ 1001 Baku, Azerbaijan, ^fAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade Str. 14, AZ 1022 Baku, Azerbaijan, ^aDepartment of Chemistry and Chemical Engineering, Khazar University, Mahzati Str. 41, AZ 1096 Baku, Azerbaijan, and ^hDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia. *Correspondence e-mail: alebel.nibret@bdu.edu.et

The asymmetric unit of the title compound, $C_9H_{10}N_2S$, contains two crystallographically independent, almost planar, molecules. In the crystal, intermolecular N-H···S hydrogen bonds link the molecules into pseudocentrosymmetric dimers, enclosing $R_2^2(8)$ ring motifs. There are mutual π - π interactions between the five- and six-membered rings of each independent molecule in the chosen asymmetric unit, with ring centroid-to-centroid distances of 3.6685 (12) and 3.7062 (12) Å. A weak C-H··· π (ring) interaction is also observed. The N-H···S hydrogen bonds, the π - π interactions and the weak C-H··· π (ring) interaction are effective in the stabilization of the crystal structure. The structure was refined as an inversion twin with a component occupancy ratio of 0.546 (15):0.454 (16).

1. Chemical context

Benzimidazoles are defined as a class of heterocyclic aromatic organic compounds characterized by a benzene ring fused to an imidazole ring at specific positions, exhibiting both acidic and weakly basic properties (Gaba et al., 2014). Benzimidazole and its derivatives have attracted considerable interest in recent years for their versatile properties in chemistry and pharmacology (Akhtar et al., 2017; Khalilov et al., 2024). They are used as auxilliary ligands in the synthesis of coordination compounds (Jlassi et al., 2014; Mizar et al., 2012). Thus, benzimidazole compounds have been an interesting resource for researchers for more than a century (Guseinov et al., 2006, 2017, 2020; Rzayev & Khalilov, 2024). For instance, 2-mercaptobenzimidazole was successfully built into zeolitic imidazolate framework-8 on graphene oxide nanosheets and then embedded into an epoxy coating to prepare a composite coating with pH-responsive and self-healing performance (Li et al., 2021). The attachment of noncovalent halogen-bond donor or acceptor site(s) to benzimidazole can be used as a synthetic strategy in the design of catalysts, materials and drugs (Ma et al., 2021; Mahmoudi et al., 2017a,b; Shixaliyev et al., 2014). Herein, we have synthesized 1-ethyl-1,3-dihydro-2H-benzo[d]imidazole-2-thione by the reaction of N^1 -ethylbenzene-1,2-diamine with carbon disulfide in the presence of pyridine (see Scheme) and studied its molecular and crystal structures.

research communications

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg3 is the centroid	l of	the	$C4A \cdot$	$\cdot \cdot C9A$	ring.
---------------------	------	-----	-------------	-------------------	-------

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1B - H1B \cdot \cdot \cdot S2A^{i}$	0.84 (3)	2.49 (3)	3.3258 (18)	171 (3)
$N1A - H1A \cdots S2B^{ii}$	0.88(3)	2.41 (3)	3.2654 (18)	165 (3)
$C6B - H6B \cdots Cg3^{iii}$	0.95	2.85	3.6470 (17)	143

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z; (iii) -x, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

2. Structural commentary

The asymmetric unit of the title structure contains two crystallographically independent molecules (Fig. 1). The planar A (atoms C4a-C9a), B (N1a/N3a/C2a/C4a/C9a), C (C4b-C9b) and D (N1b/N3b/C2b/C4b/C9b) rings are oriented at dihedral angles of $A/B = 0.75 (9)^{\circ}$ and $C/D = 1.64 (12)^{\circ}$. Thus, they are almost coplanar. On the other hand, atoms S2a/C10a and S2b/ C10b are 0.0061 (3)/-0.1824 (15) and 0.0864 (4)/-0.0278 (15) Å away from the best least-squares planes of the B and D rings, respectively. Thus, they are almost coplanar with the corresponding ring planes. The orientations of the ethyl groups relative to the benzimidazole fused rings may be described by the torsion angles $C2a-N3a-C10a-C11a = 91.4 (2)^{\circ}$, $C4a-N3a-C10a-C11a = -98.0 (2)^{\circ}, C2b-N3b-C10b C11b = 94.4 (2)^{\circ}$ and $C4b-N3b-C10b-C11b = -84.5 (2)^{\circ}$. There no unusual bond distances or interbond angles in the molecules. The structure was refined as an inversion twin with a component occupancy ratio of 0.546 (15):0.454 (16).

Figure 1 The title molecules with the atom-numbering scheme and 50% probability ellipsoids.

3. Supramolecular features

In the crystal, intermolecular N-H···S hydrogen bonds (Table 1) link the molecules into pseudocentrosymmetric dimers, enclosing $R_2^2(8)$ ring motifs, where the molecules are stacked along the *a*-axis direction (Fig. 2). There are π - π interactions between the *B* and *C* rings, and between the *A* and *D* rings, with centroid-to-centroid distances of 3.6685 (12) [dihedral = 11.02 (10)° and slippage = 0.413 Å] and 3.7062 (12) Å [dihedral = 11.26 (11)° and slippage = 0.405 Å], respectively. A weak C-H··· π (ring) interaction is also observed (Table 1). The N-H···S hydrogen bonds, the π - π interactions and the weak C-H··· π (ring) interaction are effective in the stabilization of the crystal structure.

4. Synthesis and crystallization

CS₂ (228 mg, 3.00 mmol) was added to a solution of N^1 ethylbenzene-1,2-diamine (136 mg, 1.00 mmol) in pyridine (10 ml) and the resulting solution refluxed for 8 h. The reaction mixture was then evaporated in a vacuum and the residue crystallized from ethanol. The title compound was obtained in the form of orange crystals (yield: 146 mg, 82%; m.p. 120– 122 °C) which were soluble in methanol, ethanol and dimethyl sulfoxide (DMSO). Analysis calculated (%) for C₉H₁₀N₂S: C 60.64, H 5.65, N 15.72; found: C 60.61, H 5.65, N 15.69. ¹H NMR (300 MHz, DMSO- d_6): δ 1.19 (3H, CH₃), 3.82 (2H, CH₂), 6.83–7.08 (4H, Ar-H), 10.87 (1H, NH). ¹³C NMR

Crystal data	
Chemical formula	$C_9H_{10}N_2S$
M _r	178.25
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	100
a, b, c (Å)	7.4512 (5), 14.77990 (12), 15.89120 (11)
$V(Å^3)$	1750.06 (12)
Z	8
Radiation type	Cu Ka
$\mu (\text{mm}^{-1})$	2.80
Crystal size (mm)	$0.41 \times 0.24 \times 0.17$
Data collection	
Diffractometer	Rigaku XtaLAB Synergy Dualfle: diffractometer with a HyPix detector
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2023)
T_{\min}, T_{\max}	0.405, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	23801, 3799, 3779
R _{int}	0.035
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.638
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.026, 0.069, 1.06
No. of reflections	3799
No. of parameters	229
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.25, -0.21
Absolute structure	Refined as an inversion twin.
Absolute structure parameter	0.454 (16)

(75 MHz, DMSO-*d*₆): δ 13.8, 34.8, 107.9, 108.8, 120.4, 120.6, 128.3, 129.8, 153.9.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH hydrogens were located in a difference Fourier map and refined freely. The C-bound H-atom positions were calculated geometrically at distances of 0.95 (for aromatic CH), 0.99 (for CH₂) and 0.98 Å (for CH₃), and refined using a riding model by applying the constraint $U_{iso}(H) = kU_{eq}(C)$, where k = 1.5 for methyl H atoms and 1.2 for the other H atoms. The title compound was refined as an inversion twin with component ratio occupancies of 0.546 (15):0.454 (16).

Acknowledgements

Crystal structure determination was performed in the Department of Structural Studies of the Zelinsky Institute of Organic Chemistry, Moscow. This work was supported by Baku State University, Western Caspian University, Azerbaijan Medical University and Khazar University in Azerbaijan. TH is also grateful to Hacettepe University Scientific Research Project Unit. The contributions of the author are as follows: conceptualization AVG, TH and ANB; synthesis AVG and FIG; X-ray analysis AIS; writing (review and editing of the manuscript) AVG and TH; funding acquisition AVG, KIH and TAJ; supervision AVG, TH and ANB.

Funding information

Funding for this research was provided by: Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004 to T. Hökelek).

References

- Akhtar, W., Khan, M. F., Verma, G., Shaquiquzzaman, M., Rizvi, M. A., Mehdi, S. H., Akhter, M. & Alam, M. M. (2017). *Eur. J. Med. Chem.* 126, 705–753.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Gaba, M., Singh, S. & Mohan, C. (2014). Eur. J. Med. Chem. 76, 494– 505.
- Guseinov, F. I., Pistsov, M. F., Malinnikov, V. M., Lavrova, O. M., Movsumzade, E. M. & Kustov, L. M. (2020). *Mendeleev Commun.* 30, 674–675.
- Guseinov, F. I., Pistsov, M. F., Movsumzade, E. M., Kustov, L. M., Tafeenko, V. A., Chernyshev, V. V., Gurbanov, A. V., Mahmudov, K. T. & Pombeiro, A. (2017). *Crystals*, **7**, 327.
- Guseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). *Chem. Heterocycl. Compd.* 42, 943–947.
- Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). *Eur. J. Inorg. Chem.* **2014**, 4541–4550.
- Khalilov, A. N., Cisterna, J., Cárdenas, A., Tuzun, B., Erkan, S., Gurbanov, A. V. & Brito, I. (2024). J. Mol. Struct. 1313, 138652.
- Li, H., Qiang, Y., Zhao, W. & Zhang, S. (2021). Corros. Sci. 191, 109715.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). *Coord. Chem. Rev.* 437, 213859.
- Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017*a*). *Inorg. Chim. Acta*, **461**, 192–205.
- Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. 2017, 4763–4772.
- Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). *Eur. J. Inorg. Chem.* 2012, 2305–2313.
- Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Rzayev, R. & Khalilov, A. (2024). Chem. Rev. Lett. 7, 479-490.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). *New J. Chem.* 38, 4807–4815.

supporting information

Acta Cryst. (2025). E81, 169-171 [https://doi.org/10.1107/S2056989025000519]

Synthesis and crystal structure analysis of 1-ethyl-1,3-dihydro-2*H*-benzo[*d*]imidazole-2-thione

Atash V. Gurbanov, Firudin I. Guseinov, Aida I. Samigullina, Tuncer Hökelek, Khudayar I. Hasanov, Tahir A. Javadzade and Alebel N. Belay

Computing details

1-Ethyl-1,3-dihydro-2H-benzo[d]imidazole-2-thione

Crystal data

C₉H₁₀N₂S $M_r = 178.25$ Orthorhombic, $P2_12_12_1$ a = 7.4512 (5) Å b = 14.77990 (12) Å c = 15.89120 (11) Å V = 1750.06 (12) Å³ Z = 8F(000) = 752

Data collection

Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: gaussian (*CrysAlis PRO*; Rigaku OD, 2023)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.069$ S = 1.063799 reflections 229 parameters 0 restraints Primary atom site location: dual Secondary atom site location: dual Secondary atom site location: difference Fourier map Hydrogen site location: mixed $D_x = 1.353 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 18990 reflections $\theta = 4.1-79.0^{\circ}$ $\mu = 2.80 \text{ mm}^{-1}$ T = 100 KBlock, colorless $0.41 \times 0.24 \times 0.17 \text{ mm}$

 $T_{\min} = 0.405, T_{\max} = 1.000$ 23801 measured reflections 3799 independent reflections 3779 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.035$ $\theta_{\text{max}} = 79.5^{\circ}, \theta_{\text{min}} = 4.1^{\circ}$ $h = -9 \rightarrow 9$ $k = -18 \rightarrow 18$ $l = -15 \rightarrow 20$

```
H atoms treated by a mixture of independent
and constrained refinement
w = 1/[\sigma^2(F_o^2) + (0.0359P)^2 + 0.5853P]
where P = (F_o^2 + 2F_c^2)/3
(\Delta/\sigma)_{max} = 0.001
\Delta\rho_{max} = 0.25 \text{ e } \text{Å}^{-3}
\Delta\rho_{min} = -0.21 \text{ e } \text{Å}^{-3}
Extinction correction: SHELXL2018 (Sheldrick
2015b), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}
Extinction coefficient: 0.0010 (2)
Absolute structure: Refined as an inversion
twin.
Absolute structure parameter: 0.454 (16)
```

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S2A	-0.22204 (7)	0.21363 (3)	0.89250 (3)	0.02146 (13)
N1A	-0.0479 (2)	0.19722 (11)	0.74247 (10)	0.0187 (3)
N3A	0.1123 (2)	0.15428 (11)	0.85066 (10)	0.0173 (3)
C2A	-0.0506 (3)	0.18841 (13)	0.82739 (12)	0.0182 (4)
C4A	0.2181 (3)	0.14132 (12)	0.77941 (12)	0.0177 (4)
C5A	0.3909 (3)	0.10730 (14)	0.76978 (14)	0.0218 (4)
H5A	0.459639	0.087262	0.816552	0.026*
C6A	0.4579 (3)	0.10412 (14)	0.68818 (15)	0.0250 (4)
H6A	0.575684	0.081670	0.678910	0.030*
C7A	0.3556 (3)	0.13326 (14)	0.61921 (14)	0.0234 (4)
H7A	0.405983	0.130237	0.564370	0.028*
C8A	0.1826 (3)	0.16641 (14)	0.62913 (13)	0.0218 (4)
H8A	0.112969	0.185807	0.582421	0.026*
C9A	0.1164 (3)	0.16980 (13)	0.71074 (13)	0.0180 (4)
C10A	0.1735 (3)	0.14556 (14)	0.93791 (13)	0.0212 (4)
H10A	0.117518	0.193980	0.972037	0.025*
H10B	0.305098	0.154553	0.939713	0.025*
C11A	0.1290 (3)	0.05472 (14)	0.97697 (14)	0.0247 (4)
H11A	0.182860	0.006293	0.943261	0.037*
H11B	-0.001560	0.046798	0.978545	0.037*
H11C	0.176860	0.052327	1.034369	0.037*
S2B	0.71248 (7)	0.32708 (3)	0.61994 (3)	0.02249 (13)
N1B	0.5206 (2)	0.33699 (12)	0.76571 (11)	0.0201 (3)
N3B	0.3941 (2)	0.40686 (11)	0.65996 (11)	0.0188 (3)
C2B	0.5411 (3)	0.35762 (13)	0.68320 (13)	0.0189 (4)
C4B	0.2768 (3)	0.41420 (13)	0.72778 (12)	0.0189 (4)
C5B	0.1079 (3)	0.45342 (14)	0.73544 (14)	0.0229 (4)
H5B	0.051416	0.482733	0.689295	0.028*
C6B	0.0258 (3)	0.44772 (14)	0.81367 (15)	0.0259 (4)
H6B	-0.089939	0.473475	0.821187	0.031*
C7B	0.1094 (3)	0.40496 (14)	0.88166 (14)	0.0247 (4)
H7B	0.049496	0.402837	0.934396	0.030*
C8B	0.2777 (3)	0.36553 (13)	0.87409 (13)	0.0218 (4)
H8B	0.334784	0.336867	0.920438	0.026*
C9B	0.3587 (3)	0.37001 (13)	0.79548 (13)	0.0191 (4)
C10B	0.3654 (3)	0.44431 (14)	0.57602 (13)	0.0205 (4)
H10C	0.483111	0.454711	0.548751	0.025*
H10D	0.304031	0.503466	0.581024	0.025*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supporting information

C11B	0.2538 (3)	0.38201 (15)	0.52124 (13)	0.0262 (5)
H11D	0.238632	0.409231	0.465462	0.039*
H11E	0.135862	0.372960	0.547203	0.039*
H11F	0.314744	0.323560	0.515652	0.039*
H1B	0.596 (4)	0.308 (2)	0.7946 (19)	0.034 (8)*
H1A	-0.130 (4)	0.225 (2)	0.7125 (19)	0.032 (7)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S2A	0.0218 (2)	0.0243 (2)	0.0183 (2)	0.00626 (19)	0.00212 (18)	0.00069 (17)
N1A	0.0183 (8)	0.0205 (8)	0.0173 (8)	0.0042 (7)	-0.0001 (6)	0.0007 (6)
N3A	0.0185 (8)	0.0153 (7)	0.0181 (8)	0.0005 (6)	-0.0010 (6)	-0.0004 (6)
C2A	0.0201 (9)	0.0145 (8)	0.0198 (9)	0.0009 (7)	-0.0014 (8)	-0.0011 (7)
C4A	0.0185 (9)	0.0128 (8)	0.0217 (9)	-0.0010 (7)	-0.0005 (8)	-0.0008 (7)
C5A	0.0184 (9)	0.0187 (9)	0.0282 (10)	0.0007 (8)	-0.0021 (8)	0.0015 (8)
C6A	0.0193 (9)	0.0202 (10)	0.0354 (12)	0.0022 (8)	0.0051 (9)	-0.0005 (8)
C7A	0.0254 (10)	0.0195 (9)	0.0253 (10)	-0.0012 (8)	0.0066 (9)	-0.0002 (8)
C8A	0.0239 (10)	0.0193 (9)	0.0222 (9)	0.0004 (8)	0.0014 (8)	0.0012 (7)
C9A	0.0179 (9)	0.0143 (8)	0.0219 (9)	0.0005 (7)	0.0003 (7)	-0.0012 (7)
C10A	0.0232 (10)	0.0211 (9)	0.0193 (9)	-0.0003 (8)	-0.0058 (8)	-0.0004 (7)
C11A	0.0275 (11)	0.0226 (10)	0.0241 (10)	0.0020 (9)	-0.0021 (9)	0.0022 (8)
S2B	0.0200 (2)	0.0253 (2)	0.0222 (2)	0.00355 (19)	0.00136 (18)	0.00493 (18)
N1B	0.0196 (8)	0.0205 (8)	0.0203 (8)	0.0035 (7)	-0.0015 (7)	0.0033 (6)
N3B	0.0190 (7)	0.0164 (7)	0.0210 (8)	0.0012 (6)	-0.0031 (7)	0.0015 (6)
C2B	0.0185 (9)	0.0152 (8)	0.0229 (9)	0.0000 (7)	-0.0046 (8)	0.0017 (7)
C4B	0.0202 (9)	0.0144 (8)	0.0221 (9)	-0.0014 (8)	-0.0016 (8)	0.0007 (7)
C5B	0.0220 (10)	0.0174 (9)	0.0294 (11)	0.0027 (8)	-0.0034 (9)	0.0010 (8)
C6B	0.0235 (10)	0.0192 (9)	0.0351 (12)	0.0030 (8)	0.0034 (9)	-0.0019 (8)
C7B	0.0288 (10)	0.0191 (9)	0.0263 (10)	-0.0014 (8)	0.0046 (9)	-0.0025 (8)
C8B	0.0261 (10)	0.0174 (9)	0.0219 (9)	-0.0017 (8)	-0.0006 (8)	0.0009 (7)
C9B	0.0197 (9)	0.0144 (8)	0.0231 (9)	-0.0008 (7)	-0.0017 (8)	-0.0003 (7)
C10B	0.0220 (9)	0.0188 (9)	0.0206 (9)	-0.0005 (8)	-0.0037 (8)	0.0044 (7)
C11B	0.0286 (11)	0.0259 (10)	0.0241 (10)	-0.0033 (9)	-0.0066 (9)	0.0001 (8)

Geometric parameters (Å, °)

S2A—C2A	1.686 (2)	S2B—C2B	1.687 (2)	
N1A—C2A	1.356 (3)	N1B—C2B	1.355 (3)	
N1A—C9A	1.385 (3)	N1B—C9B	1.385 (3)	
N1A—H1A	0.88 (3)	N1B—H1B	0.84 (3)	
N3A—C2A	1.365 (3)	N3B—C2B	1.366 (3)	
N3A—C4A	1.393 (3)	N3B—C4B	1.392 (3)	
N3A—C10A	1.465 (2)	N3B—C10B	1.460 (2)	
C4A—C5A	1.391 (3)	C4B—C5B	1.391 (3)	
C4A—C9A	1.394 (3)	C4B—C9B	1.399 (3)	
C5A—H5A	0.9500	C5B—H5B	0.9500	
C5A—C6A	1.390 (3)	C5B—C6B	1.388 (3)	

supporting information

С6А—Н6А	0.9500	C6B—H6B	0.9500
C6A—C7A	1.403 (3)	C6B—C7B	1.398 (3)
C7A—H7A	0.9500	C7B—H7B	0.9500
C7A—C8A	1 388 (3)	C7B—C8B	1 388 (3)
C8A—H8A	0.9500	C8B—H8B	0.9500
	1 388 (3)	C8B-C9B	1 389 (3)
	0.9900	C10B-H10C	0.9900
C10A H10B	0.9900	Clob HloD	0.9900
	1.516(3)	C10B C11B	1.516(3)
	0.0800		0.0800
	0.9800		0.9800
	0.9800	C11B H11E	0.9800
CIIA—IIIC	0.9800	СПБ—ппг	0.9800
C2A—N1A—C9A	110.32 (17)	C2B—N1B—C9B	110.45 (17)
C2A—N1A—H1A	125.1 (19)	C2B—N1B—H1B	125 (2)
C9A—N1A—H1A	123.7 (19)	C9B—N1B—H1B	125 (2)
C2A—N3A—C4A	109.50 (16)	C2B—N3B—C4B	109.61 (16)
C2A—N3A—C10A	124.42 (16)	C2B—N3B—C10B	124.51 (18)
C4A—N3A—C10A	125.52 (17)	C4B—N3B—C10B	125.87 (17)
N1A—C2A—S2A	126.93 (16)	N1B—C2B—S2B	127.00 (15)
N1A—C2A—N3A	106.97 (17)	N1B—C2B—N3B	106.95 (18)
N3A—C2A—S2A	126.10(15)	N3B—C2B—S2B	126.05 (16)
N3A—C4A—C9A	106.69 (17)	N3B-C4B-C9B	106.57 (17)
C5A - C4A - N3A	131 55 (19)	C5B-C4B-N3B	131 94 (19)
C5A - C4A - C9A	121.76 (19)	C5B-C4B-C9B	121.5(2)
C4A - C5A - H5A	121.70 (19)	C4B-C5B-H5B	121.5 (2)
C6A - C5A - C4A	1166(2)	C6B-C5B-C4B	1169(2)
C6A - C5A - H5A	121 7	C6B - C5B - H5B	121.6
C_{5A} C_{6A} H_{6A}	110.2	C5B-C6B-H6B	110.2
C_{5A} C_{6A} C_{7A}	119.2 121.6 (2)	C5B-C6B-C7B	119.2 121 5 (2)
C7A - C6A - H6A	110 2	C7B-C6B-H6B	110.2
C6A $C7A$ $H7A$	119.2	C6B C7B H7B	119.2
$C_{A} C_{A} C_{A} C_{A}$	119.2 121.6 (2)	C_{0}^{0} C_{1}^{0} C_{1	119.2 121.7(2)
$C_{0A} = C_{1A} = C_{0A}$	121.0 (2)	C_{8B} C_{7B} H_{7B}	121.7(2)
C7A C8A H8A	119.2	$C_{0}D_{-}C_{0}D_{-}H_{0}D_{0}D_{0}D_{0}D_{0}D_{0}D_{0}D_{0}D$	119.2
C7A = C8A = C0A	121.7	C7B $C8B$ $C0B$	121.0 116.77(10)
$C_{A} C_{A} H_{A}$	121.7	C/D = C0D = C9D	121.6
C9A - C0A - C4A	121.7	$C_{9}D = C_{8}D = H_{8}D$	121.0 106.27(18)
NIA = C0A = C8A	100.30(17) 131.66(10)	NID-C9D-C4D NID-C0D-C9D	100.37(18) 121.00(10)
NIA = C9A = C6A	131.00(19)	N1D - C9D - C8D	131.99 (19)
C8A - C9A - C4A	121.84 (18)	$C_{8}B - C_{9}B - C_{4}B$	121.64 (19)
N3A—CI0A—HI0A	108.9	N3B-C10B-H10C	109.2
N3A—C10A—H10B	108.9	N3B-CI0B-HI0D	109.2
INDA-CIUA-CIIA	113.41 (17)		112.01 (17)
HIUA—UUA—HIUB	10/./	HI0C - CI0B - HI0D	107.9
CIIA—CIOA—HIOA	108.9	C11B - C10B - H10C	109.2
CIIA—CIUA—HIUB	108.9	CIIB—CIUB—HIUD	109.2
CIUA—CIIA—HIIA	109.5	CIUB—CIIB—HIID	109.5
CIUA—CIIA—H11B	109.5	CI0B—CIIB—HIIE	109.5

C10A—C11A—H11C	109.5	C10B—C11B—H11F	109.5
H11A—C11A—H11B	109.5	H11D—C11B—H11E	109.5
H11A—C11A—H11C	109.5	H11D—C11B—H11F	109.5
H11B—C11A—H11C	109.5	H11E—C11B—H11F	109.5
N3A—C4A—C5A—C6A	-179.6 (2)	N3B—C4B—C5B—C6B	179.4 (2)
N3A—C4A—C9A—N1A	-1.1 (2)	N3B—C4B—C9B—N1B	-0.7 (2)
N3A—C4A—C9A—C8A	179.75 (18)	N3B-C4B-C9B-C8B	179.23 (18)
C2A—N1A—C9A—C4A	1.1 (2)	C2B—N1B—C9B—C4B	-0.8 (2)
C2A—N1A—C9A—C8A	-179.9 (2)	C2B—N1B—C9B—C8B	179.3 (2)
C2A—N3A—C4A—C5A	-178.9 (2)	C2B—N3B—C4B—C5B	-176.8 (2)
C2A—N3A—C4A—C9A	0.8 (2)	C2B—N3B—C4B—C9B	1.9 (2)
C2A—N3A—C10A—C11A	91.4 (2)	C2B—N3B—C10B—C11B	94.4 (2)
C4A—N3A—C2A—S2A	179.34 (14)	C4B—N3B—C2B—S2B	176.59 (15)
C4A—N3A—C2A—N1A	-0.2 (2)	C4B—N3B—C2B—N1B	-2.3 (2)
C4A—N3A—C10A—C11A	-98.0 (2)	C4B—N3B—C10B—C11B	-84.5 (2)
C4A—C5A—C6A—C7A	-0.4 (3)	C4B—C5B—C6B—C7B	0.3 (3)
C5A—C4A—C9A—N1A	178.60 (17)	C5B—C4B—C9B—N1B	178.17 (18)
C5A—C4A—C9A—C8A	-0.5 (3)	C5B—C4B—C9B—C8B	-1.9 (3)
C5A—C6A—C7A—C8A	-0.2 (3)	C5B—C6B—C7B—C8B	-0.5 (3)
C6A—C7A—C8A—C9A	0.4 (3)	C6B—C7B—C8B—C9B	-0.5 (3)
C7A—C8A—C9A—N1A	-178.9 (2)	C7B—C8B—C9B—N1B	-178.5 (2)
C7A—C8A—C9A—C4A	-0.1 (3)	C7B—C8B—C9B—C4B	1.7 (3)
C9A—N1A—C2A—S2A	179.93 (14)	C9B—N1B—C2B—S2B	-176.99 (15)
C9A—N1A—C2A—N3A	-0.6 (2)	C9B—N1B—C2B—N3B	1.9 (2)
C9A—C4A—C5A—C6A	0.7 (3)	C9B—C4B—C5B—C6B	0.9 (3)
C10A—N3A—C2A—S2A	-8.8 (3)	C10B—N3B—C2B—S2B	-2.5 (3)
C10A—N3A—C2A—N1A	171.69 (17)	C10B—N3B—C2B—N1B	178.59 (18)
C10A—N3A—C4A—C5A	9.4 (3)	C10B—N3B—C4B—C5B	2.3 (3)
C10A—N3A—C4A—C9A	-170.92 (17)	C10B—N3B—C4B—C9B	-179.08 (18)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C4A…C9A ring.

D—H···A	D—H	H…A	$D \cdots A$	D—H···A
N1B—H1B····S2A ⁱ	0.84 (3)	2.49 (3)	3.3258 (18)	171 (3)
$N1A$ — $H1A$ ···· $S2B^{ii}$	0.88 (3)	2.41 (3)	3.2654 (18)	165 (3)
С6 <i>В</i> —Н6 <i>В</i> … <i>С</i> д3 ^{ііі}	0.95	2.85	3.6470 (17)	143

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*; (iii) *x*+3/2, -*y*-1/2, -*z*.