

CRYSTALLOGRAPHIC COMMUNICATIONS

Received 14 June 2024 Accepted 11 December 2024

Edited by A. S. Batsanov, University of Durham, United Kingdom

Keywords: crystal structure; iridium; 2phenylpyridine; 2-(4-methylphenyl)pyridine; 2,9-dimethyl-1,10-phenanthroline.

CCDC references: 2409519; 2409518

Supporting information: this article has supporting information at journals.iucr.org/e

Trevor J. Gienau,^a Malachi Clay,^a William W. Brennessel^b and Carly R. Reed^a*

^aDepartment of Chemistry and Biochemistry, State University of New York at Brockport, Brockport, NY 14420, USA, and ^bDepartment of Chemistry, 120 Trustee Road, University of Rochester, Rochester, NY 14627, USA. *Correspondence e-mail: creed@brockport.edu

The title compounds, $[Ir(C_{14}H_{12}N_2)(C_{11}H_8N)_2]PF_6$ (1) and $[Ir(C_{14}H_{12}N_2)-(C_{12}H_{10}N)_2]PF_6 \cdot 0.61C_2H_{10}O \cdot 0.78CH_3CN$ (2), crystallize in the space groups *Pbca* and *P*1, respectively, each structure containing one monocationic Ir complex and one PF₆⁻ anion in the asymmetric unit. The anion and solvent in compound 2 are disordered. The Ir-N(phenanthroline) bond lengths of *ca*. 2.21 Å indicate a greater steric effect of the 2,9-dimethyl-1,10-phenanthroline ligand compared to 1,10-phenanthroline. Both structures show offset parallel intermolecular π - π interactions between the pyridine rings of the phenanthroline ligands, and that of 1 also exhibits similar interactions between the phenyl and pyridine rings of the phenylpyridine ligands.

1. Chemical context

Cvclometallated iridium complexes of the form $[Ir(C^N)_2(N^N)](PF_6)$, where C^N and N^N are aromatic chelating ligands, have gained interest due to their long-lived luminescence and high photostability. These lumiphores have found application in optoelectronics, bioimaging, biosensing, and cancer treatments (Mills et al., 2018; Xu et al., 2021; Berrones Reyes et al., 2021; Ho et al., 2020; Jing et al., 2024). Understanding how changes to the coordination environment around the iridium metal center impact the structure of the molecule is crucial, as structural changes influence the properties of these complexes. Modifications to iridium complexes have been shown to affect: emission energy, emission quantum yield, excited state lifetime, solubility, biomolecule selectivity, the strength of the interaction with a biomolecule, and luminescence enhancement in the presence of a biomolecule (Mills et al., 2018; Ma et al., 2015; Lin et al., 2014; He et al., 2013; Castor et al., 2015).

In this study, we examine the structures of compounds **1** and **2**, whose iridium cations were previously investigated for their application in light-emitting electrochemical cells and G-quadruplex luminescent turn-on detection platforms (Moon & Choe, 2013; Ma *et al.*, 2014). Compound **1** was previously crystallized in the $P2_1/c$ space group as a deuterated chloroform solvate, **3** (Batsanov, 2017*a*). The cation of **1** was also crystallized with a different counter-ion (Ma *et al.*, 2016).

research communications

2. Structural commentary

The molecular structures of 1 and 2 are shown in Figs. 1 and 2, while Tables 1 and 2 list bond lengths and angles involving the Ir atoms, for 1 and 2, respectively, and Table 3 compares these with the corresponding ones in 3 and in the fully unmethylated

Figure 1

Anisotropic displacement ellipsoid plot of 1 drawn at the 50% probability level, with H atoms omitted. The $\mathrm{PF_6}^-$ anion has been shifted with symmetry operation $-\frac{1}{2} + x$, $y, \frac{1}{2} - z$.

Selected geometric parameters (Å, $^{\circ}$) for 1.

Ir1-N1	2.050 (2)	Ir1-N4	2.212 (2)
Ir1-N2	2.044 (2)	Ir1-C1	2.017 (2)
Ir1-N3	2.194 (2)	Ir1-C12	2.012 (2)
N1-Ir1-N3	84.45 (8)	C1-Ir1-N3	99.31 (9)
N1-Ir1-N4	95.28 (8)	C1-Ir1-N4	174.88 (9)
N2-Ir1-N1	174.13 (8)	C12-Ir1-N1	96.20 (10)
N2-Ir1-N3	99.10 (8)	C12-Ir1-N2	80.36 (10)
N2-Ir1-N4	90.07 (8)	C12-Ir1-N3	178.62 (9)
N3-Ir1-N4	77.38 (8)	C12-Ir1-N4	101.33 (9)
C1-Ir1-N1	80.44 (9)	C12-Ir1-C1	82.01 (10)
C1-Ir1-N2	94.33 (9)		

Table 2		
Selected	geometric parameters	(

i uoic 1			-			
Selected	geometric	parameters	(Å,	°)	for	2.

Ir1-N1	2.050 (2)	Ir1-N4	2.222 (2)
Ir1-N2	2.051 (2)	Ir1-C1	2.018 (3)
Ir1-N3	2.226 (2)	Ir1-C13	2.017 (3)
N1-Ir1-N2	171.61 (9)	C1–Ir1–N3	101.51 (10)
N1-Ir1-N3	89.41 (9)	C1-Ir1-N4	176.54 (10)
N1-Ir1-N4	96.50 (9)	C13-Ir1-N1	93.12 (11)
N2-Ir1-N3	97.19 (9)	C13-Ir1-N2	80.39 (11)
N2-Ir1-N4	90.07 (9)	C13-Ir1-N3	177.26 (10)
N4-Ir1-N3	76.79 (9)	C13-Ir1-N4	101.85 (10)
C1-Ir1-N1	80.42 (11)	C13-Ir1-C1	79.97 (11)
C1-Ir1-N2	93.13 (11)		

analog, 4 (Batsanov, 2017b). The Ir-C (ca. 2.02 Å) and $Ir - N_{(CN)}$ (ca. 2.05 Å) bond lengths are similar across all four compounds, indicating methylation at the 5-position of the phenylpyridine ligand does not have a steric impact. However, the Ir-N_(NN) distances increase with methylation at the

Figure 2

Anisotropic displacement ellipsoid plot of 2 drawn at the 50% probability level. The minor component of the anion disorder, the solvent molecules and all H atoms are omitted. The PF6- anion has been shifted with symmetry operation 1 - x, 1 - y, 1 - z.

Selected Solid	lengths and angles (,).				
Complex	Ir-C	$Ir - N_{(CN)}$	$Ir - N_{(NN)}$	$N_{(NN)}$ -Ir- $N_{(NN)}$	C-Ir-N _(NN)	C-Ir-C
1	2.017 (2)	2.050 (2)	2.194 (2)	77.38 (8)	99.31 (9)	82.01 (10)
	2.012 (2)	2.044 (2)	2.212 (2)		101.33 (9)	
2	2.018 (3)	2.050 (2)	2.226 (2)	76.79 (9)	101.51 (10)	79.97 (11)
	2.017 (3)	2.051 (2)	2.222 (2)		101.85 (10)	
3 ^{<i>a</i>}	2.010 (3)	2.032 (3)	2.193 (3)	76.99 (10)	102.86 (12)	83.22 (13)
	2.016 (3)	2.053 (3)	2.197 (3)		97.10 (12)	
4 ^b	2.020 (3)	2.045 (3)	2.135 (2)	77.47 (9)	96.0 (1)	89.7 (1)
	2.008 (3)	2.041 (3)	2.150 (2)		96.8 (1)	

Table 3 Selected bond lengths and angles (Å, $^\circ).$

Notes: (a) Batsanov, 2017a; (b) Batsanov, 2017b.

2- and 9-positions of the phenanthroline ligand, to *ca.* 2.21 Å in compounds **1–3**, compared to *ca.* 2.14 Å in the unmethylated reference compound **4**. This is similar to other previously published compounds methylated in the 2- and 9-positions (Graf *et al.*, 2014; Graf, Böttcher *et al.*, 2021). The steric impact of the methyl groups on $Ir-N_{(NN)}$ bond distances is unique to the 2- and 9-positions. Methylation at any other position of the phenanthroline ligand results in $Ir-N_{(NN)}$ bond distances similar to those of **4** (Graf *et al.*, 2020; Graf, Czerwieniec *et al.*, 2021). The steric impact of methylation is also reflected in the bond angles displayed in Table 3: the $C-Ir-N_{(NN)}$ bond angles are narrower, than those in **4**.

3. Supramolecular features

In the structures of **1** and **2** there are a number of $C-H\cdots F-P$ contacts (Tables 4 and 5). Those with $H\cdots F$ distances shorter than the sum of the van der Waals radii (2.56 Å; Rowland & Taylor, 1996) are listed in Tables 4 and 5, respectively, for **1** and **2**. These attractions are likely very weak, of the same order of energies as in van der Waals complexes (Howard *et al.*, 1996).

As might be expected for molecules containing multiple arene rings, there are a number of intermolecular π - π and C-H··· π interactions. In **1**, the pyridine ring N4/C29–C33 and its inversion (1 - x, 1 - y, 1 - z) equivalent display an offset parallel π - π interaction, with a centroid–centroid distance of 3.903 (2) Å and a shift of 1.601 (5) Å (Fig. 3). An

Figure 3

Intermolecular π - π and C-H··· π interactions between cations of **1**, related by symmetry operations $-\frac{1}{2} + x$, y, $\frac{1}{2} - z$ and 1 - x, 1 - y, 1 - z. Other H atoms are omitted.

approximately parallel $[13.83 (9)^{\circ}$ angle between planes] offset $\pi - \pi$ interaction occurs between the arene ring C1–C6 and the symmetry equivalent $(-\frac{1}{2} + x, y, \frac{1}{2} - z)$ of the pyridine ring N1/C7–C11, with a centroid–centroid distance of 3.8490 (16) Å and a shift of 1.525 (5) Å. These interactions continue in two dimensions, forming sheets parallel to the (010) plane. There are also C–H··· π interactions between these cations at H···ring distances of 2.8–3.0 Å.

In 2, there is also a combination of offset parallel π - π and C-H··· π interactions that link the cations in one dimension along the [010] direction (Fig. 4). The pyridine ring N3/C25-C36 and its inversion (1 - x, 1 - y, 1 - z) equivalent have a centroid-centroid distance of 3.702 (2) Å and a shift of 1.515 (5) Å. The pyridine ring N4/C31-C35 and its inversion (1 - x, -y, 1 - z) equivalent have a centroid-centroid distance of 3.676 (2) Å and a shift of 1.478 (5) Å. Each pair of rings is exactly parallel due to symmetry. The C-H··· π interactions are at H···ring distances of approximately 2.9 Å.

4. Database survey

A survey of the Cambridge Structural Database (CSD, version 5.45, Nov. 2023; Groom *et al.*, 2016) shows that there are 129

Table 4					
Hydrogen-bond	geometry	(Å,	°)	for	1.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C10-H10\cdots F1^{i}$	0.95	2.39	3.243 (3)	150
$C11 - H11 \cdots F3^{i}$	0.95	2.46	3.229 (3)	138
$C22 - H22 \cdot \cdot \cdot F1$	0.95	2.45	3.311 (3)	150
$C27 - H27 \cdot \cdot \cdot F2^{ii}$	0.95	2.36	3.192 (3)	146
$C31 - H31 \cdots F4^{iii}$	0.95	2.55	3.463 (3)	160
Symmetry codes:	(i) $-x + \frac{3}{2}$	$y + \frac{1}{2}, z;$ (i	i) $x + \frac{1}{2}, -y + \frac{1}{2}$	-z + 1; (iii)

Symmetry codes. (i) $-x + \frac{1}{2}, y + \frac{1}{2}, z$, (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$, (iii) -x + 1, -y + 1, -z + 1.

Table 5

Hydrogen-bond geometry (Å, $^{\circ}$) for 2.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C10-H10···F2'	0.95	2.54	3.270 (9)	134
$C10-H10\cdots F2$	0.95	2.53	3.329 (5)	142
$C11 - H11 \cdots F6'$	0.95	2.53	3.373 (9)	149
C11-H11···F3	0.95	2.37	3.140 (5)	138
$C22-H22\cdot\cdot\cdot F6'^{i}$	0.95	2.51	3.272 (8)	138
$C23-H23\cdots F2^{i}$	0.95	2.32	3.194 (5)	152
C26-H26···F3 ⁱⁱ	0.95	2.52	3.455 (5)	168
C33-H33···F5' ⁱⁱⁱ	0.95	2.45	3.372 (8)	163
$C37 - H37B \cdot \cdot \cdot F3'^{ii}$	0.98	2.37	3.330 (7)	165
$C38-H38B\cdots F5^{iii}$	0.98	2.42	3.393 (5)	171

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 2, -y, -z + 1.

Table 6

Experimental details.

	1	2
Crystal data		
Chemical formula	$[\mathrm{Ir}(\mathrm{C}_{14}\mathrm{H}_{12}\mathrm{N}_2)(\mathrm{C}_{11}\mathrm{H}_8\mathrm{N})_2]\mathrm{PF}_6$	$[Ir(C_{14}H_{12}N_2)(C_{12}H_{10}N)_2]PF_6-0.61C_4H_{10}O\cdot 0.78C_2H_3N$
$M_{ m r}$	853.79	959.08
Crystal system, space group	Orthorhombic, Pbca	Triclinic, $P\overline{1}$
Temperature (K)	100	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.4130 (1), 17.1627 (1), 31.7109 (2)	9.17379 (7), 13.10065 (9), 16.55352 (14)
α, β, γ (°)	90, 90, 90	74.8888 (6), 78.9993 (7), 88.7599 (6)
$V(\text{\AA}^3)$	6211.46 (8)	1884.53 (3)
Ζ	8	2
Radiation type	Cu Kα	Cu Ka
$\mu \text{ (mm}^{-1})$	9.43	7.86
Crystal size (mm)	$0.27 \times 0.25 \times 0.14$	$0.16 \times 0.13 \times 0.02$
Data collection		
Diffractometer	XtaLAB Synergy, Dualflex, HyPix	XtaLAB Synergy, Dualflex, HyPix
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD, 2023)	Multi-scan (CrysAlis PRO; Rigaku OD, 2023)
T_{\min}, T_{\max}	0.558, 1.000	0.509, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	101540, 6757, 6668	62414, 8074, 7770
R _{int}	0.042	0.058
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.640	0.639
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.024, 0.060, 1.16	0.026, 0.067, 1.04
No. of reflections	6757	8074
No. of parameters	436	624
No. of restraints	0	441
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm A}^{-3})$	1.12, -0.68	1.25, -1.04

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2019/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

entries for cations containing either Ir (121) or Rh (8) with one 1,10-phenanthroline and two phenylpyridine ligands, without regard to substitution of the ligands. If the phenanthroline ligand is restricted to having methyl groups in the 2and 0-positions and no additional substitutions, then the number of hits drops to two: CSD refcodes IDAKUW (Ma *et al.*, 2016) and SAWKAF (**3**, Batsanov, 2017*a*). While both have

Figure 4

Intermolecular π - π and C-H··· π interactions between cations of **2**, related by symmetry operations 1 - x, 1 - y, 1 - z and 1 - x, -y, 1 - z. Other H atoms are omitted.

the same cation as that of **1**, the former has a different counterion, and the latter is a deuterochloroform solvate. If both phenylpyridine ligands are restricted to having methyl groups in the five position of the phenyl ring and no additional substitutions (as in **2**), the number of hits is eight, which includes two Rh structures: CSD refcodes EFUVIM, EFUVOS (Graf *et al.*, 2014), ETUXAU (Tripathy *et al.*, 2016), GUVRAT, GUVREX (Graf *et al.*, 2020), UNEZAR (Graf, Böttcher *et al.*, 2021), XEYPOK (Graf *et al.*, 2022), and CAZVEI (Fu *et al.*, 2022).

5. Synthesis and crystallization

The syntheses of compounds 1 and 2 followed previously reported methods (Moon & Choe, 2013; Ma *et al.*, 2014). Orange block-shaped crystals of 1 were grown from a 5:1 mixture of dichloromethane and methanol layered with diethyl ether. Yellow plate-shaped crystals of 2 were obtained by vapor diffusion of diethyl ether into an acetonitrile solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6. In **2**, the PF_6^- anion was modeled as disordered over two positions with occupancies of 0.645 (6) and 0.355 (6). The disordered solvent was modeled as an overlap of a Et₂O molecule with a 0.610 (7) occupancy and two acetonitrile molecules with 0.390 (7) occupancies.

Analogous bond lengths and angles among the disordered species were restrained to be similar. Bond lengths for the acetonitriles molecules were restrained toward ideal values. Anisotropic displacement parameters for proximal atoms were restrained to be similar.

All H atoms were placed in calculated positions with d(C-H) = 0.95 Å for aromatic/sp², 0.99 Å for methylene and 0.98 Å for methyl C atoms, and refined in a riding model with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for the rest.

Acknowledgements

The authors would like to thank SUNY Brockport and the Brockport Foundation for financial support. We gratefully acknowledge the X-ray Crystallographic Facility of the Department of Chemistry at the University of Rochester for the XRD data. Instrument upgrade and local outreach was made possible through NSF grant CHE-0342508.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-0342508).

References

- Batsanov, A. S. (2017*a*). *CSD Communication* (CCDC 1559136). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd. cc1pbdq4
- Batsanov, A. S. (2017b). CSD Communication (CCDC 1559153). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd. cc1pbf8q
- Berrones Reyes, J., Kuimova, M. K. & Vilar, R. (2021). Curr. Opin. Chem. Biol. 61, 179–190.
- Castor, K. J., Metera, K. L., Tefashe, U. M., Serpell, C. J., Mauzeroll, J. & Sleiman, H. F. (2015). *Inorg. Chem.* **54**, 6958–6967.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

- Fu, C., Lv, Q., Fan, J., Wu, S., Lei, M., Zhang, X., Li, X., Zhou, W., Yu, Y., Ren, W., Zhao, C. & Liao, G. (2022). *Eur. J. Med. Chem.* 233, 114250.
- Graf, M., Böttcher, H.-C., Metzler–Nolte, N., Thavalingam, S. & Mayer, P. (2022). Z. Anorg. Allge Chem. 648, e202200206.
- Graf, M., Böttcher, H.-C., Sünkel, K., Thavalingam, S., Metzler-Nolte, N. & Czerwieniec, R. (2021). Z. Anorg. Allge Chem. 647, 306–311.
- Graf, M., Czerwieniec, R., Mayer, P. & Böttcher, H.-C. (2021). *Inorg. Chim. Acta*, **527**, 120554.
- Graf, M., Gothe, Y., Metzler-Nolte, N., Czerwieniec, R. & Sünkel, K. (2014). J. Organomet. Chem. 765, 46–52.
- Graf, M., Siegmund, D., Gothe, Y., Metzler–Nolte, N. & Sünkel, K. (2020). Z. Anorg. Allge Chem. 646, 665–669.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- He, H.-Z., Wang, M., Chan, D. S.-H., Leung, C.-H., Lin, X., Lin, J.-M. & Ma, D.-L. (2013). *Methods*, **64**, 212–217.
- Ho, P.-Y., Ho, C.-L. & Wong, W.-Y. (2020). Coord. Chem. Rev. 413, 213267.
- Howard, J. A. K., Hoy, V. J., O'Hagan, D. & Smith, G. T. (1996). *Tetrahedron*, **52**, 12613–12622.
- Jing, S., Wu, X., Niu, D., Wang, J., Leung, C.-H. & Wang, W. (2024). *Molecules*, 29, 256.
- Lin, S., He, B., Shiu-Hin Chan, D., Hong Chan, P. W., Leung, C.-H. & Ma, D.-L. (2014). *RSC Adv.* **4**, 54826–54831.
- Ma, D. L., Zhang, Z., Wang, M., Lu, L., Zhong, H. J. & Leung, C. H. (2015). *Chem. Biol.* 22, 812–828.
- Ma, D., Zhang, C., Qiu, Y. & Duan, L. (2016). *Chem. A Eur. J.* 22, 15888–15895.
- Ma, D.-L., Lin, S., Leung, K.-H., Zhong, H.-J., Liu, L.-J., Chan, D. S.-H., Bourdoncle, A., Mergny, J.-L., Wang, H.-M. D. & Leung, C.-H. (2014). *Nanoscale* 6, 8489–8494. https://doi. org/10.1039/ C4NR00541D.
- Mills, I. N., Porras, J. A. & Bernhard, S. (2018). Acc. Chem. Res. 51, 352–364.
- Moon, D. B. & Choe, Y. S. (2013). Mol. Cryst. Liq. Cryst. 584, 60-68.
- Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Tripathy, S. K., De, U., Dehury, N., Laha, P., Panda, M. K., Kim, H. S. & Patra, S. (2016). *Dalton Trans.* **45**, 15122–15136.
- Xu, J., Jiang, R., He, H., Ma, C. & Tang, Z. (2021). *TrAC Trends Anal. Chem.* **139**, 116257.

Acta Cryst. (2025). E81, 127-131 [https://doi.org/10.1107/S2056989024012039]

(2,9-Dimethyl-1,10-phenanthroline)bis[2-(pyridin-2-yl)phenyl]iridium(III) hexafluorophosphate and (2,9-dimethyl-1,10-phenanthroline)bis[5methyl-2-(pyridin-2-yl)phenyl]iridium(III) hexafluorophosphate-diethyl etheracetonitrile (1/0.61/0.78)

Trevor J. Gienau, Malachi Clay, William W. Brennessel and Carly R. Reed

Computing details

(2,9-Dimethyl-1,10-phenanthroline)bis[2-(pyridin-2-yl)phenyl]iridium(III) hexafluorophosphate (1)

Crystal data

$[Ir(C_{14}H_{12}N_2)(C_{11}H_8N)_2]PF_6$ $M_r = 853.79$ Orthorhombic, <i>Pbca</i> a = 11.4130 (1) Å b = 17.1627 (1) Å c = 31.7109 (2) Å V = 6211.46 (8) Å ³ Z = 8 F(000) = 3344	$D_x = 1.826 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 61784 reflections $\theta = 4.8-80.1^{\circ}$ $\mu = 9.43 \text{ mm}^{-1}$ T = 100 K Block, orange $0.27 \times 0.25 \times 0.14 \text{ mm}$
Data collection	
 XtaLAB Synergy, Dualflex, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) 	$T_{\min} = 0.558, T_{\max} = 1.000$ 101540 measured reflections 6757 independent reflections 6668 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.042$ $\theta_{\text{max}} = 80.5^{\circ}, \theta_{\text{min}} = 4.8^{\circ}$ $h = -14 \rightarrow 14$ $k = -21 \rightarrow 20$ $l = -39 \rightarrow 40$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.060$ S = 1.16 6757 reflections 436 parameters 0 restraints Primary atom site location: dual Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0229P)^2 + 11.8694P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.004$ $\Delta\rho_{max} = 1.12$ e Å ⁻³ $\Delta\rho_{min} = -0.68$ e Å ⁻³ Extinction correction: <i>SHELXL2019/3</i> (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc ² \lambda ³ /sin(2\theta)]^{-1/4} Extinction coefficient: 0.000151 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Ir1	0.51064 (2)	0.49405 (2)	0.35682 (2)	0.01242 (5)	
N1	0.64998 (18)	0.54667 (12)	0.32760 (6)	0.0139 (4)	
N2	0.36244 (18)	0.44319 (13)	0.38033 (6)	0.0159 (4)	
N3	0.63668 (18)	0.40108 (12)	0.37084 (6)	0.0146 (4)	
N4	0.56784 (19)	0.52297 (13)	0.42162 (6)	0.0162 (4)	
C1	0.4738 (2)	0.46697 (15)	0.29637 (7)	0.0152 (5)	
C2	0.3806 (2)	0.42257 (15)	0.28099 (8)	0.0180 (5)	
H2	0.320529	0.406073	0.299715	0.022*	
C3	0.3746 (2)	0.40217 (16)	0.23856 (8)	0.0215 (5)	
H3	0.311915	0.370417	0.228920	0.026*	
C4	0.4589(3)	0.42752 (16)	0.21007 (8)	0.0229 (5)	
H4	0.454588	0.412515	0.181280	0.027*	
C5	0.5493 (2)	0.47488 (16)	0.22401 (8)	0.0208 (5)	
Н5	0.606228	0.493618	0.204648	0.025*	
C6	0.5565 (2)	0.49509 (13)	0.26687 (8)	0.0160 (5)	
C7	0.6527 (2)	0.54057 (14)	0.28459 (8)	0.0157 (5)	
C8	0.7438 (2)	0.57419 (15)	0.26173 (8)	0.0187 (5)	
H8	0.743229	0.572399	0.231788	0.022*	
C9	0.8353 (2)	0.61024 (15)	0.28279 (8)	0.0200 (5)	
H9	0.898527	0.632459	0.267446	0.024*	
C10	0.8337 (2)	0.61356 (15)	0.32644 (8)	0.0201 (5)	
H10	0.896565	0.636951	0.341467	0.024*	
C11	0.7391 (2)	0.58224 (15)	0.34773 (8)	0.0170 (5)	
H11	0.736895	0.585921	0.377606	0.020*	
C12	0.3946 (2)	0.57973 (15)	0.34547 (8)	0.0175 (5)	
C13	0.4154 (2)	0.65210 (16)	0.32684 (8)	0.0210 (5)	
H13	0.492169	0.664552	0.317475	0.025*	
C14	0.3253 (3)	0.70679 (17)	0.32166 (9)	0.0278 (6)	
H14	0.341283	0.755710	0.308878	0.033*	
C15	0.2124 (3)	0.68921 (18)	0.33530 (9)	0.0301 (7)	
H15	0.151613	0.726569	0.332250	0.036*	
C16	0.1886 (3)	0.61752 (18)	0.35329 (8)	0.0251 (6)	
H16	0.111499	0.605614	0.362596	0.030*	
C17	0.2786 (2)	0.56242 (16)	0.35773 (7)	0.0190 (5)	
C18	0.2621 (2)	0.48607 (16)	0.37700 (8)	0.0190 (5)	
C19	0.1564 (2)	0.45492 (18)	0.39137 (8)	0.0253 (6)	
H19	0.086445	0.484707	0.389581	0.030*	
C20	0.1538 (2)	0.38064 (19)	0.40823 (9)	0.0275 (6)	
H20	0.081877	0.359062	0.417796	0.033*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C21	0.2567 (3)	0.33762 (17)	0.41112 (8)	0.0244 (6)
H21	0.256365	0.286435	0.422525	0.029*
C22	0.3596 (2)	0.37113 (15)	0.39702 (8)	0.0195 (5)
H22	0.430497	0.342410	0.399172	0.023*
C23	0.6701 (2)	0.34073 (14)	0.34655 (8)	0.0172 (5)
C24	0.7709 (2)	0.29651 (16)	0.35595 (8)	0.0208 (5)
H24	0.795756	0.256781	0.337108	0.025*
C25	0.8328 (2)	0.31040 (16)	0.39189 (9)	0.0227 (5)
H25	0.900264	0.280176	0.398306	0.027*
C26	0.7964 (2)	0.36956 (16)	0.41930 (8)	0.0210 (5)
C27	0.8525 (2)	0.38278 (19)	0.45890 (9)	0.0274 (6)
H27	0.917596	0.351582	0.466879	0.033*
C28	0.8140 (3)	0.4390 (2)	0.48504 (9)	0.0299 (7)
H28	0.851634	0.446614	0.511451	0.036*
C29	0.7176 (2)	0.48733 (17)	0.47356 (8)	0.0229 (6)
C30	0.6761 (3)	0.54628 (19)	0.50012 (8)	0.0270 (6)
H30	0.712731	0.555431	0.526566	0.032*
C31	0.5832 (2)	0.59043 (17)	0.48793 (8)	0.0233 (5)
H31	0.553931	0.629698	0.506237	0.028*
C32	0.5299 (2)	0.57849 (16)	0.44842 (8)	0.0194 (5)
C33	0.6595 (2)	0.47651 (16)	0.43452 (8)	0.0179 (5)
C34	0.6989 (2)	0.41516 (15)	0.40718 (8)	0.0167 (5)
C35	0.5974 (2)	0.31599 (15)	0.30974 (9)	0.0221 (5)
H35A	0.514957	0.312952	0.318246	0.033*
H35B	0.623651	0.264746	0.299921	0.033*
H35C	0.605828	0.354052	0.286903	0.033*
C36	0.4290 (3)	0.63030 (17)	0.43709 (9)	0.0258 (6)
H36A	0.447145	0.658624	0.411067	0.039*
H36B	0.415152	0.667579	0.459963	0.039*
H36C	0.358563	0.598554	0.432826	0.039*
P1	0.56252 (6)	0.18708 (4)	0.44462 (2)	0.02319 (15)
F1	0.53641 (16)	0.21821 (10)	0.39759 (5)	0.0289 (4)
F2	0.58804 (17)	0.15683 (15)	0.49122 (6)	0.0459 (5)
F3	0.69740 (15)	0.17593 (10)	0.43303 (5)	0.0294 (4)
F4	0.58775 (18)	0.27491 (12)	0.45889 (6)	0.0415 (5)
F5	0.42699 (16)	0.19877 (14)	0.45578 (6)	0.0463 (5)
F6	0.5363 (2)	0.10019 (11)	0.42921 (8)	0.0502 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ir1	0.01142 (7)	0.01540 (7)	0.01044 (7)	0.00033 (3)	-0.00051 (3)	-0.00022 (3)
N1	0.0134 (9)	0.0143 (9)	0.0139 (9)	0.0014 (7)	0.0006 (7)	-0.0008 (7)
N2	0.0120 (9)	0.0239 (11)	0.0118 (9)	-0.0019 (8)	-0.0007 (7)	-0.0020 (8)
N3	0.0134 (9)	0.0158 (10)	0.0147 (10)	-0.0004 (8)	0.0010 (8)	0.0031 (8)
N4	0.0146 (10)	0.0222 (10)	0.0118 (9)	-0.0024 (8)	-0.0004 (8)	0.0003 (8)
C1	0.0164 (11)	0.0182 (12)	0.0109 (11)	0.0027 (9)	-0.0016 (9)	-0.0009 (9)
C2	0.0144 (11)	0.0220 (12)	0.0175 (12)	0.0006 (9)	-0.0006 (9)	-0.0021 (10)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C 2	0.0102 (12)	0.02(1.(12))	0.0102(12)	0.0007(10)	0.0049 (10)	0.0052 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	0.0192(12)	0.0201(13)	0.0195(13)	-0.0007(10)	-0.0048(10)	-0.0052(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	0.0274(14) 0.0252(12)	0.0200(13)	0.0140(12)	0.0004(11)	-0.0033(10)	-0.0030(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05	0.0232 (13)	0.0245 (15)	0.0150 (12)	-0.0011 (11)	0.0020 (10)	-0.0029 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6	0.0181 (13)	0.0146 (11)	0.0152 (12)	0.0021 (9)	-0.0004 (10)	-0.0003 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7	0.0169 (11)	0.0164 (11)	0.0140 (11)	0.0024 (9)	0.0005 (9)	0.0004 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8	0.0228 (12)	0.0183 (12)	0.0150 (11)	-0.0008 (10)	0.0018 (10)	-0.0005 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	0.0216 (13)	0.0176 (12)	0.0209 (12)	-0.0020 (10)	0.0053 (10)	-0.0010 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10	0.0190 (12)	0.0181 (12)	0.0231 (13)	-0.0022 (10)	-0.0018 (10)	0.0003 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	0.0185 (12)	0.0166 (12)	0.0160 (11)	0.0003 (9)	-0.0018 (10)	-0.0002 (9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	0.0181 (12)	0.0200 (12)	0.0145 (11)	0.0087 (10)	-0.0044 (9)	-0.0038 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	0.0238 (13)	0.0218 (13)	0.0176 (12)	0.0043 (10)	-0.0026 (10)	-0.0007 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14	0.0379 (16)	0.0220 (13)	0.0235 (13)	0.0091 (12)	-0.0062 (12)	-0.0017 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	0.0314 (15)	0.0313 (15)	0.0275 (15)	0.0146 (12)	-0.0060 (12)	-0.0081 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	0.0216 (14)	0.0331 (15)	0.0206 (13)	0.0089 (12)	-0.0036 (10)	-0.0076 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17	0.0182 (13)	0.0261 (14)	0.0128 (11)	0.0049 (10)	-0.0024 (9)	-0.0055 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18	0.0154 (12)	0.0294 (14)	0.0121 (11)	0.0028 (10)	-0.0009(9)	-0.0067 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19	0.0157 (12)	0.0396 (16)	0.0205 (13)	-0.0008 (11)	0.0003 (10)	-0.0081 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C20	0.0169 (13)	0.0457 (17)	0.0199 (13)	-0.0104 (12)	0.0022 (10)	-0.0047 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	0.0267 (14)	0.0282 (14)	0.0181 (12)	-0.0081 (11)	0.0046 (11)	-0.0022 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	0.0204 (12)	0.0226 (13)	0.0154 (12)	-0.0022 (10)	-0.0003 (10)	-0.0014 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23	0.0179 (12)	0.0158 (11)	0.0180 (11)	-0.0011 (9)	0.0017 (10)	0.0043 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C24	0.0174 (12)	0.0174 (12)	0.0275 (14)	0.0008 (10)	0.0021 (10)	0.0024 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C25	0.0144 (12)	0.0247 (13)	0.0291 (14)	0.0001 (10)	0.0000 (10)	0.0089 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C26	0.0145 (12)	0.0287 (14)	0.0197 (12)	-0.0004 (10)	-0.0002 (10)	0.0078 (10)
C28 $0.0217(14)$ $0.0507(19)$ $0.0175(13)$ $0.0022(13)$ $-0.0072(11)$ $0.0046(12)$ C29 $0.0192(13)$ $0.0350(15)$ $0.0143(12)$ $-0.0020(11)$ $-0.0019(10)$ $0.0022(10)$ C30 $0.0265(14)$ $0.0389(17)$ $0.0155(13)$ $-0.0024(13)$ $-0.0041(10)$ $-0.0029(11)$ C31 $0.0242(13)$ $0.0312(14)$ $0.0145(12)$ $-0.0029(11)$ $0.0007(10)$ $-0.0049(10)$ C32 $0.0191(12)$ $0.0249(13)$ $0.0142(11)$ $-0.0039(10)$ $0.0018(10)$ $-0.0014(10)$ C33 $0.0147(11)$ $0.0258(13)$ $0.0131(11)$ $-0.0025(10)$ $-0.0016(9)$ $0.0032(10)$ C34 $0.0102(11)$ $0.0237(12)$ $0.0160(11)$ $-0.0018(9)$ $-0.0004(9)$ $0.0052(9)$ C35 $0.0252(13)$ $0.0159(12)$ $0.0253(13)$ $0.0000(10)$ $-0.0014(11)$ $-0.0024(10)$ C36 $0.0312(15)$ $0.0284(14)$ $0.0180(13)$ $0.0064(12)$ $-0.0014(11)$ $-0.0024(10)$ C36 $0.0312(15)$ $0.0297(4)$ $0.0191(3)$ $-0.0029(3)$ $0.0052(3)$ $0.0051(3)$ F1 $0.0373(9)$ $0.0296(9)$ $0.0199(8)$ $0.0045(8)$ $0.0034(7)$ $0.0022(7)$ F2 $0.0260(9)$ $0.0344(9)$ $0.0273(8)$ $0.0024(7)$ $0.0088(7)$ $0.0029(7)$ F4 $0.0410(11)$ $0.0407(11)$ $0.0429(11)$ $0.0032(9)$ $-0.0139(9)$ $-0.0189(9)$ F5 $0.0208(9)$ $0.0781(15)$ $0.0399(11)$ $0.0010(9)$ $-0.0235(12)$ $0.01287($	C27	0.0159 (12)	0.0434 (17)	0.0229 (14)	0.0043 (12)	-0.0032 (10)	0.0086 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C28	0.0217 (14)	0.0507 (19)	0.0175 (13)	0.0022 (13)	-0.0072 (11)	0.0046 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C29	0.0192 (13)	0.0350 (15)	0.0143 (12)	-0.0020 (11)	-0.0019 (10)	0.0022 (10)
C31 $0.0242(13)$ $0.0312(14)$ $0.0145(12)$ $-0.0029(11)$ $0.0007(10)$ $-0.0049(10)$ C32 $0.0191(12)$ $0.0249(13)$ $0.0142(11)$ $-0.0039(10)$ $0.0018(10)$ $-0.0014(10)$ C33 $0.0147(11)$ $0.0258(13)$ $0.0131(11)$ $-0.0025(10)$ $-0.0016(9)$ $0.0032(10)$ C34 $0.0102(11)$ $0.0237(12)$ $0.0160(11)$ $-0.0018(9)$ $-0.0004(9)$ $0.0052(9)$ C35 $0.0252(13)$ $0.0159(12)$ $0.0253(13)$ $0.0000(10)$ $-0.0033(11)$ $-0.0024(10)$ C36 $0.0312(15)$ $0.0284(14)$ $0.0180(13)$ $0.0064(12)$ $-0.0014(11)$ $-0.0069(11)$ P1 $0.0207(3)$ $0.0297(4)$ $0.0191(3)$ $-0.0029(3)$ $0.0029(3)$ $0.0051(3)$ F1 $0.0373(9)$ $0.0296(9)$ $0.0199(8)$ $0.0045(8)$ $0.0034(7)$ $0.0220(10)$ F2 $0.0260(9)$ $0.0344(9)$ $0.0273(8)$ $0.0024(7)$ $0.0088(7)$ $0.0220(10)$ F3 $0.0265(8)$ $0.0344(9)$ $0.0273(8)$ $0.0024(7)$ $0.0038(7)$ $0.0220(10)$ F4 $0.0410(11)$ $0.0407(11)$ $0.0429(11)$ $0.0010(9)$ $0.0053(8)$ $0.0287(10)$ F5 $0.0208(9)$ $0.0781(15)$ $0.0399(11)$ $0.0010(9)$ $-0.0256(12)$ $0.0134(10)$	C30	0.0265 (14)	0.0389 (17)	0.0155 (13)	-0.0024 (13)	-0.0041 (10)	-0.0029 (11)
C32 $0.0191(12)$ $0.0249(13)$ $0.0142(11)$ $-0.0039(10)$ $0.0018(10)$ $-0.0014(10)$ C33 $0.0147(11)$ $0.0258(13)$ $0.0131(11)$ $-0.0025(10)$ $-0.0016(9)$ $0.0032(10)$ C34 $0.0102(11)$ $0.0237(12)$ $0.0160(11)$ $-0.0018(9)$ $-0.0004(9)$ $0.0052(9)$ C35 $0.0252(13)$ $0.0159(12)$ $0.0253(13)$ $0.0000(10)$ $-0.0033(11)$ $-0.0024(10)$ C36 $0.0312(15)$ $0.0297(4)$ $0.0191(3)$ $-0.0029(3)$ $0.0029(3)$ $0.0051(3)$ F1 $0.0373(9)$ $0.0296(9)$ $0.0199(8)$ $0.0045(8)$ $0.0034(7)$ $0.0042(7)$ F2 $0.0260(9)$ $0.0344(9)$ $0.0273(8)$ $0.0024(7)$ $0.0088(7)$ $0.0029(7)$ F4 $0.0410(11)$ $0.0407(11)$ $0.0429(11)$ $0.0032(9)$ $0.0030(9)$ $-0.0189(9)$ F5 $0.0208(9)$ $0.0781(15)$ $0.0399(11)$ $0.0010(9)$ $0.0053(8)$ $0.0287(10)$	C31	0.0242 (13)	0.0312 (14)	0.0145 (12)	-0.0029(11)	0.0007 (10)	-0.0049 (10)
C33 $0.0147(11)$ $0.0258(13)$ $0.0131(11)$ $-0.0025(10)$ $-0.0016(9)$ $0.0032(10)$ C34 $0.0102(11)$ $0.0237(12)$ $0.0160(11)$ $-0.0018(9)$ $-0.0004(9)$ $0.0052(9)$ C35 $0.0252(13)$ $0.0159(12)$ $0.0253(13)$ $0.0000(10)$ $-0.0033(11)$ $-0.0024(10)$ C36 $0.0312(15)$ $0.0284(14)$ $0.0180(13)$ $0.0064(12)$ $-0.0014(11)$ $-0.0069(11)$ P1 $0.0207(3)$ $0.0297(4)$ $0.0191(3)$ $-0.0029(3)$ $0.0029(3)$ $0.0051(3)$ F1 $0.0373(9)$ $0.0296(9)$ $0.0199(8)$ $0.0045(8)$ $0.0034(7)$ $0.0042(7)$ F2 $0.0260(9)$ $0.0344(9)$ $0.0273(8)$ $0.0024(7)$ $0.0088(7)$ $0.0029(7)$ F3 $0.0265(8)$ $0.0344(9)$ $0.0273(8)$ $0.0024(7)$ $0.0030(9)$ $-0.0189(9)$ F4 $0.0410(11)$ $0.0407(11)$ $0.0429(11)$ $0.0010(9)$ $0.0053(8)$ $0.0287(10)$ F6 $0.0563(13)$ $0.0248(10)$ $0.0696(15)$ $-0.0129(9)$ $-0.0256(12)$ $0.0134(10)$	C32	0.0191 (12)	0.0249 (13)	0.0142 (11)	-0.0039 (10)	0.0018 (10)	-0.0014 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C33	0.0147 (11)	0.0258 (13)	0.0131 (11)	-0.0025 (10)	-0.0016 (9)	0.0032 (10)
C35 $0.0252(13)$ $0.0159(12)$ $0.0253(13)$ $0.0000(10)$ $-0.0033(11)$ $-0.0024(10)$ C36 $0.0312(15)$ $0.0284(14)$ $0.0180(13)$ $0.0064(12)$ $-0.0014(11)$ $-0.0069(11)$ P1 $0.0207(3)$ $0.0297(4)$ $0.0191(3)$ $-0.0029(3)$ $0.0029(3)$ $0.0051(3)$ F1 $0.0373(9)$ $0.0296(9)$ $0.0199(8)$ $0.0045(8)$ $0.0034(7)$ $0.0042(7)$ F2 $0.0260(9)$ $0.0885(17)$ $0.0234(9)$ $0.0076(10)$ $0.0055(7)$ $0.0220(10)$ F3 $0.0265(8)$ $0.0344(9)$ $0.0273(8)$ $0.0024(7)$ $0.0088(7)$ $0.0029(7)$ F4 $0.0410(11)$ $0.0407(11)$ $0.0429(11)$ $0.0032(9)$ $0.0030(9)$ $-0.0189(9)$ F5 $0.0208(9)$ $0.0781(15)$ $0.0399(11)$ $0.0010(9)$ $0.0053(8)$ $0.0287(10)$	C34	0.0102 (11)	0.0237 (12)	0.0160 (11)	-0.0018 (9)	-0.0004 (9)	0.0052 (9)
C36 $0.0312 (15)$ $0.0284 (14)$ $0.0180 (13)$ $0.0064 (12)$ $-0.0014 (11)$ $-0.0069 (11)$ P1 $0.0207 (3)$ $0.0297 (4)$ $0.0191 (3)$ $-0.0029 (3)$ $0.0029 (3)$ $0.0051 (3)$ F1 $0.0373 (9)$ $0.0296 (9)$ $0.0199 (8)$ $0.0045 (8)$ $0.0034 (7)$ $0.0042 (7)$ F2 $0.0260 (9)$ $0.0885 (17)$ $0.0234 (9)$ $0.0076 (10)$ $0.0055 (7)$ $0.0220 (10)$ F3 $0.0265 (8)$ $0.0344 (9)$ $0.0273 (8)$ $0.0024 (7)$ $0.0088 (7)$ $0.0029 (7)$ F4 $0.0410 (11)$ $0.0407 (11)$ $0.0429 (11)$ $0.0032 (9)$ $0.0030 (9)$ $-0.0189 (9)$ F5 $0.0208 (9)$ $0.0781 (15)$ $0.0399 (11)$ $0.0010 (9)$ $0.0053 (8)$ $0.0287 (10)$ F6 $0.0563 (13)$ $0.0248 (10)$ $0.0696 (15)$ $-0.0129 (0)$ $-0.0256 (12)$ $0.0134 (10)$	C35	0.0252 (13)	0.0159 (12)	0.0253 (13)	0.0000 (10)	-0.0033 (11)	-0.0024 (10)
P1 0.0207 (3) 0.0297 (4) 0.0191 (3) -0.0029 (3) 0.0029 (3) 0.0051 (3)F1 0.0373 (9) 0.0296 (9) 0.0199 (8) 0.0045 (8) 0.0034 (7) 0.0042 (7)F2 0.0260 (9) 0.0885 (17) 0.0234 (9) 0.0076 (10) 0.0055 (7) 0.0220 (10)F3 0.0265 (8) 0.0344 (9) 0.0273 (8) 0.0024 (7) 0.0088 (7) 0.0029 (7)F4 0.0410 (11) 0.0407 (11) 0.0429 (11) 0.0032 (9) 0.0030 (9) -0.0189 (9)F5 0.0208 (9) 0.0781 (15) 0.0399 (11) 0.0010 (9) 0.0053 (8) 0.0287 (10)F6 0.0563 (13) 0.0248 (10) 0.0696 (15) -0.0129 (9) -0.0256 (12) 0.0134 (10)	C36	0.0312 (15)	0.0284 (14)	0.0180 (13)	0.0064 (12)	-0.0014 (11)	-0.0069 (11)
F1 0.0373 (9) 0.0296 (9) 0.0199 (8) 0.0045 (8) 0.0034 (7) 0.0042 (7)F2 0.0260 (9) 0.0885 (17) 0.0234 (9) 0.0076 (10) 0.0055 (7) 0.0220 (10)F3 0.0265 (8) 0.0344 (9) 0.0273 (8) 0.0024 (7) 0.0088 (7) 0.0029 (7)F4 0.0410 (11) 0.0407 (11) 0.0429 (11) 0.0032 (9) 0.0030 (9) -0.0189 (9)F5 0.0208 (9) 0.0781 (15) 0.0399 (11) 0.0010 (9) 0.0053 (8) 0.0287 (10)F6 0.0563 (13) 0.0248 (10) 0.0696 (15) -0.0129 (9) -0.0256 (12) 0.0134 (10)	P1	0.0207 (3)	0.0297 (4)	0.0191 (3)	-0.0029(3)	0.0029 (3)	0.0051 (3)
F2 0.0260 (9) 0.0885 (17) 0.0234 (9) 0.0076 (10) 0.0055 (7) 0.0220 (10)F3 0.0265 (8) 0.0344 (9) 0.0273 (8) 0.0024 (7) 0.0088 (7) 0.0029 (7)F4 0.0410 (11) 0.0407 (11) 0.0429 (11) 0.0032 (9) 0.0030 (9) -0.0189 (9)F5 0.0208 (9) 0.0781 (15) 0.0399 (11) 0.0010 (9) 0.0053 (8) 0.0287 (10)F6 0.0563 (13) 0.0248 (10) 0.0696 (15) -0.0129 (9) -0.0256 (12) 0.0134 (10)	F1	0.0373 (9)	0.0296 (9)	0.0199 (8)	0.0045 (8)	0.0034 (7)	0.0042 (7)
F3 0.0265 (8) 0.0344 (9) 0.0273 (8) 0.0024 (7) 0.0088 (7) 0.0029 (7) F4 0.0410 (11) 0.0407 (11) 0.0429 (11) 0.0032 (9) 0.0030 (9) -0.0189 (9) F5 0.0208 (9) 0.0781 (15) 0.0399 (11) 0.0010 (9) 0.0053 (8) 0.0287 (10) F6 0.0563 (13) 0.0248 (10) 0.0696 (15) -0.0129 (9) -0.0256 (12) 0.0134 (10)	F2	0.0260 (9)	0.0885 (17)	0.0234 (9)	0.0076 (10)	0.0055 (7)	0.0220 (10)
F4 $0.0410(11)$ $0.0407(11)$ $0.0429(11)$ $0.0032(9)$ $0.0030(9)$ $-0.0189(9)$ F5 $0.0208(9)$ $0.0781(15)$ $0.0399(11)$ $0.0010(9)$ $0.0053(8)$ $0.0287(10)$ F6 $0.0563(13)$ $0.0248(10)$ $0.0696(15)$ $-0.0129(9)$ $-0.0256(12)$ $0.0134(10)$	F3	0.0265 (8)	0.0344 (9)	0.0273 (8)	0.0024 (7)	0.0088 (7)	0.0029 (7)
F5 $0.0208 (9)$ $0.0781 (15)$ $0.0399 (11)$ $0.0010 (9)$ $0.0053 (8)$ $0.0287 (10)$ F6 $0.0563 (13)$ $0.0248 (10)$ $0.0696 (15)$ $-0.0129 (9)$ $-0.0256 (12)$ $0.0134 (10)$	F4	0.0410 (11)	0.0407 (11)	0.0429 (11)	0.0032 (9)	0.0030 (9)	-0.0189 (9)
$E_{6} = 0.0563(13) = 0.0248(10) = 0.0696(15) = -0.0120(0) = -0.0256(12) = 0.0134(10)$	F5	0.0208 (9)	0.0781 (15)	0.0399 (11)	0.0010 (9)	0.0053 (8)	0.0287 (10)
10 0.0505(15) 0.0246(10) 0.0090(15) 0.0129(9) 0.0250(12) 0.0154(10)	F6	0.0563 (13)	0.0248 (10)	0.0696 (15)	-0.0129 (9)	-0.0256 (12)	0.0134 (10)

Geometric parameters (Å, °)

Ir1—N1	2.050 (2)	C16—C17	1.404 (4)	
Ir1—N2	2.044 (2)	C17—C18	1.458 (4)	
Ir1—N3	2.194 (2)	C18—C19	1.396 (4)	
Ir1—N4	2.212 (2)	С19—Н19	0.9500	

Ir1—C1	2.017 (2)	C19—C20	1.383 (4)
Ir1—C12	2.012 (2)	C20—H20	0.9500
N1—C7	1.368 (3)	C20—C21	1.391 (4)
N1-C11	1.347 (3)	C21—H21	0.9500
N2-C18	1.365 (3)	C21—C22	1.381 (4)
N2—C22	1.346 (3)	C22—H22	0.9500
N3—C23	1.346 (3)	C23—C24	1.410 (4)
N3—C34	1.375 (3)	C23—C35	1.494 (4)
N4—C32	1.348 (3)	C24—H24	0.9500
N4—C33	1.378 (3)	C24—C25	1.362 (4)
C1-C2	1 396 (3)	C25—H25	0.9500
C1 - C6	1.530(5) 1 414 (4)	$C_{25} - C_{26}$	1 400 (4)
С?—Н?	0.9500	$C_{26} - C_{27}$	1 428 (4)
$C_2 = C_3$	1 392 (4)	$C_{26} - C_{34}$	1.120(1) 1 413(3)
C3—H3	0.9500	C27—H27	0.9500
$C_3 - C_4$	1 389 (4)	C27 - C28	1 346 (4)
C4—H4	0.9500	C28—H28	0.9500
C4 - C5	1 386 (4)	C_{28} C_{29}	1 426 (4)
Ст 65	0.9500	C_{29} C_{29} C_{30}	1 309 (4)
C5-C6	1,405(3)	C_{29} C_{33}	1.355 (1)
$C_{6} = C_{7}$	1.460(4)	C_{30} H30	0.9500
C7 - C8	1 393 (4)	C_{30} C_{31}	1 360 (4)
C8—H8	0.9500	C31—H31	0.9500
C8-C9	1 385 (4)	C31-C32	1 408 (4)
С9—Н9	0.9500	$C_{32} - C_{36}$	1.100 (1)
C9-C10	1.385(4)	$C_{33} - C_{34}$	1.436 (4)
C10—H10	0.9500	C35—H35A	0.9800
C10-C11	1 382 (4)	C35—H35B	0.9800
C11—H11	0.9500	C35—H35C	0.9800
C12-C13	1 396 (4)	C36—H36A	0.9800
C12—C17	1.330(1) 1 411 (4)	C36—H36B	0.9800
C13—H13	0.9500	C36—H36C	0.9800
C13-C14	1 401 (4)	P1—F1	1 6118 (17)
C14—H14	0.9500	P1—F2	1 5932 (19)
C14-C15	1 392 (5)	P1—F3	1 5943 (18)
C15—H15	0.9500	P1—F4	1 600 (2)
C15-C16	1 383 (5)	P1—F5	1.500(2)
C16—H16	0.9500	P1—F6	1.597 (2)
	04.45 (0)		114.1.(2)
NI— IrI — $N3$	84.45 (8)	N2 - C18 - C17	114.1 (2)
NI - IrI - N4	95.28 (8)	N2—C18—C19	119.5 (3)
N2— $Ir1$ — $N1$	174.13 (8)	C19—C18—C17	126.3 (3)
N2— $Ir1$ — $N3$	99.10 (8)	C18—C19—H19	120.1
N2—IrI—N4	90.07 (8)	C_{20} C_{19} C_{18}	119.9 (3)
N_{3} —IrI—N4	77.38 (8)	C20—C19—H19	120.1
CI—IrI—NI	80.44 (9)	C19—C20—H20	120.1
CI—IrI—N2	94.33 (9)	C19—C20—C21	119.8 (3)
C1—Ir1—N3	99.31 (9)	C21—C20—H20	120.1

C1—Ir1—N4	174.88 (9)	C20—C21—H21	120.8
C12—Ir1—N1	96.20 (10)	C22—C21—C20	118.4 (3)
C12—Ir1—N2	80.36 (10)	C22—C21—H21	120.8
C12—Ir1—N3	178.62 (9)	N2—C22—C21	122.0 (3)
C12—Ir1—N4	101.33 (9)	N2—C22—H22	119.0
C12—Ir1—C1	82.01 (10)	C21—C22—H22	119.0
C7—N1—Ir1	115.75 (16)	N3—C23—C24	121.6 (2)
C11-N1-Ir1	124.85 (17)	N3-C23-C35	120.6(2)
C11—N1—C7	119.3 (2)	C_{24} C_{23} C_{35}	117.7 (2)
C18 = N2 = Ir1	115.82 (18)	C23—C24—H24	119.8
$C^{22} = N^2 = Ir^1$	123 77 (18)	$C_{25} - C_{24} - C_{23}$	1204(3)
$C_{22} = N_2 = C_{18}$	120.4(2)	$C_{25} = C_{24} = H_{24}$	119.8
$C_{23} N_{3} I_{r1}$	120.1(2) 129.02(17)	C_{24} C_{25} H_{25}	120.3
$C_{23} = N_3 = C_{34}$	127.02(17) 117.9(2)	$C_{24} = C_{25} = C_{26}$	120.5 1195(2)
$C_{23} = N_3 = U_{13}$	117.3 (2)	$C_{24} = C_{25} = C_{26}$	120.3
C_{32} N/2 Ir1	130.48 (18)	$C_{20} = C_{20} = 1125$	120.3 121.9(3)
$C_{32} = N_4 = M_1$	117.8(2)	$C_{25} = C_{20} = C_{21}$	121.9(3) 1178(2)
$C_{32} = N_4 = C_{33}$	117.0(2) 111.72(16)	$C_{23} = C_{20} = C_{34}$	117.0(2) 120.2(2)
C_{33} N_{4} I_{11}	111.72(10) 128.08(10)	$C_{20} = C_{20} = C_{27}$	120.5 (5)
$C_2 = C_1 = C_1$	128.08(19)	$C_{20} = C_{27} = H_{27}$	119.7
$C_2 = C_1 = C_0$	11/.0(2) 114.25(19)	$C_{28} = C_{27} = C_{26}$	120.0 (3)
	114.25 (18)	$C_{28} = C_{27} = H_{27}$	119./
C1 - C2 - H2	119.6	$C_2/-C_28-H_28$	119.0
$C_3 = C_2 = C_1$	120.8 (2)	$C_2/-C_{28}-C_{29}$	120.8 (3)
$C_3 = C_2 = H_2$	119.6	C29—C28—H28	119.6
С2—С3—Н3	119.5	C30—C29—C28	121.9 (3)
C4—C3—C2	121.0 (2)	C30—C29—C33	117.6 (3)
C4—C3—H3	119.5	C33—C29—C28	120.5 (3)
C3—C4—H4	120.3	С29—С30—Н30	120.1
C5—C4—C3	119.5 (2)	C31—C30—C29	119.7 (2)
C5—C4—H4	120.3	С31—С30—Н30	120.1
C4—C5—H5	120.1	С30—С31—Н31	119.7
C4—C5—C6	119.8 (2)	C30—C31—C32	120.6 (3)
С6—С5—Н5	120.1	С32—С31—Н31	119.7
C1—C6—C7	115.5 (2)	N4—C32—C31	121.7 (3)
C5—C6—C1	121.1 (2)	N4—C32—C36	121.0 (2)
C5—C6—C7	123.2 (2)	C31—C32—C36	117.3 (2)
N1—C7—C6	114.0 (2)	N4—C33—C29	122.6 (2)
N1—C7—C8	120.3 (2)	N4—C33—C34	118.9 (2)
C8—C7—C6	125.7 (2)	C29—C33—C34	118.5 (2)
С7—С8—Н8	120.1	N3—C34—C26	122.5 (2)
C9—C8—C7	119.8 (2)	N3—C34—C33	118.2 (2)
С9—С8—Н8	120.1	C26—C34—C33	119.3 (2)
С8—С9—Н9	120.3	С23—С35—Н35А	109.5
C10—C9—C8	119.3 (2)	С23—С35—Н35В	109.5
С10—С9—Н9	120.3	С23—С35—Н35С	109.5
С9—С10—Н10	120.6	H35A—C35—H35B	109.5
C11—C10—C9	118.8 (2)	H35A—C35—H35C	109.5
C11—C10—H10	120.6	H35B—C35—H35C	109.5

N1-C11-C10	122.3 (2)	С32—С36—Н36А	109.5
N1—C11—H11	118.8	С32—С36—Н36В	109.5
C10-C11-H11	118.8	С32—С36—Н36С	109.5
C_{13} — C_{12} —Ir1	1279(2)	H36A—C36—H36B	109 5
C_{13} C_{12} C_{17}	127.5(2) 117.6(2)	H_{36A} C_{36} H_{36C}	109.5
C17 - C12 - C17	117.0(2)		109.5
	114.48 (19)	H30B-C30-H30C	109.5
С12—С13—Н13	119.3	F2—P1—F1	179.64 (13)
C12—C13—C14	121.4 (3)	F2—P1—F3	89.89 (10)
C14—C13—H13	119.3	F2—P1—F4	90.67 (13)
C13—C14—H14	120.1	F2—P1—F5	90.71 (10)
C15—C14—C13	119.8 (3)	F2—P1—F6	90.78 (13)
C15-C14-H14	120.1	F3—P1—F1	90.29 (9)
C14 - C15 - H15	119.9	F3F4	90.26 (10)
$C_{14} C_{15} C_{14}$	119.9 120.2(3)	$F_2 D_1 F_5$	170.38(11)
C1(-C15-U15)	120.2 (5)	$F_{2} = D_{1} = C_{2}$	179.30(11)
	119.9	F3—P1—F0	89.88 (12)
C15-C16-H16	120.1	F4F1	89.01 (11)
C15—C16—C17	119.8 (3)	F5—P1—F1	89.11 (10)
C17—C16—H16	120.1	F5—P1—F4	89.62 (12)
C12—C17—C18	115.2 (2)	F6—P1—F1	89.53 (11)
C16—C17—C12	121.1 (3)	F6—P1—F4	178.54 (12)
C16—C17—C18	123.6 (3)	F6—P1—F5	90.23 (13)
L_{r1} N1 C7 C6	1.7(2)	C12 C12 C17 C18	190.0.(2)
$\frac{1}{1} - \frac{1}{1} - \frac{1}$	-1.7(3)		180.0 (2)
IrI-NI-C/-C8	-1/9.89 (18)	C13 - C14 - C15 - C16	-1.1 (4)
Ir1—N1—C11—C10	176.85 (19)	C14—C15—C16—C17	0.0 (4)
Ir1—N2—C18—C17	-1.2 (3)	C15—C16—C17—C12	2.2 (4)
Ir1—N2—C18—C19	178.51 (18)	C15—C16—C17—C18	178.8 (2)
Ir1—N2—C22—C21	-177.47 (19)	C16-C17-C18-N2	-176.5(2)
Ir1—N3—C23—C24	165.04 (18)	C16—C17—C18—C19	3.8 (4)
Ir1 - N3 - C23 - C35	-181(3)	C17—C12—C13—C14	2.0(4)
$Ir1_N3_C34_C26$	-17057(19)	C_{17} C_{18} C_{19} C_{20}	1786(2)
111 103 C34 C20	170.37(17)	C18 N2 $C22$ $C21$	170.0(2)
111 - 103 - 034 - 035	12.2(3)	$C_{18} = N_2 = C_{22} = C_{21}$	0.3(4)
Ir1—N4—C32—C31	-1/6.1/(19)		0.6 (4)
lr1—N4—C32—C36	3.6 (4)	C19—C20—C21—C22	0.2 (4)
Ir1—N4—C33—C29	175.2 (2)	C20—C21—C22—N2	-0.7 (4)
Ir1—N4—C33—C34	-4.1 (3)	C22—N2—C18—C17	-179.1 (2)
Ir1—C1—C2—C3	-173.0(2)	C22-N2-C18-C19	0.6 (4)
Ir1—C1—C6—C5	173.9 (2)	C23—N3—C34—C26	0.9 (3)
Ir1—C1—C6—C7	-1.6(3)	C23—N3—C34—C33	-176.3(2)
$Ir1_C12_C13_C14$	-1788(2)	C_{23} C_{24} C_{25} C_{26}	-0.6(4)
	170.0(2)	$C_{23} = C_{24} = C_{23} = C_{20}$	175 1 (2)
	1//.00(19)	$C_{24} = C_{25} = C_{26} = C_{27}$	1/5.1 (5)
Ir1—C12—C17—C18	0.7 (3)	C24—C25—C26—C34	-3.0 (4)
N1—C7—C8—C9	3.5 (4)	C25—C26—C27—C28	-178.6 (3)
N2-C18-C19-C20	-1.0 (4)	C25—C26—C34—N3	3.0 (4)
N3—C23—C24—C25	4.8 (4)	C25—C26—C34—C33	-179.8 (2)
N4—C33—C34—N3	-5.6 (3)	C26—C27—C28—C29	-0.9 (5)
N4—C33—C34—C26	177.1 (2)	C27—C26—C34—N3	-175.2(2)
C1 - C2 - C3 - C4	-22(4)	C_{27} C_{26} C_{34} C_{33}	20(4)
01 - 02 - 03 - 04	2.2 (7)	027 - 020 - 034 - 033	2.0 (7)

C1 C6 C7 N1	22(3)	C27 $C28$ $C20$ $C30$	-170.0(3)
$C_1 = C_0 = C_7 = C_1^{0}$	2.2(3)	$C_{27} = C_{28} = C_{29} = C_{30}$	1/9.9(3)
$C_1 = C_0 = C_7 = C_8$	-179.8 (2)	$C_2/-C_{20}-C_{20}-C_{33}$	0.0(3)
C2C1C6C5	-4.0 (4)	C28—C29—C30—C31	-179.5 (3)
C2-C1-C6-C7	-179.5 (2)	C28—C29—C33—N4	-178.3 (3)
C2—C3—C4—C5	-1.0 (4)	C28—C29—C33—C34	0.9 (4)
C3—C4—C5—C6	1.6 (4)	C29—C30—C31—C32	-1.4 (4)
C4—C5—C6—C1	0.9 (4)	C29—C33—C34—N3	175.1 (2)
C4—C5—C6—C7	176.0 (2)	C29—C33—C34—C26	-2.2 (4)
C5-C6-C7-N1	-173.2 (2)	C30—C29—C33—N4	2.1 (4)
C5—C6—C7—C8	4.8 (4)	C30—C29—C33—C34	-178.6 (3)
C6—C1—C2—C3	4.6 (4)	C30-C31-C32-N4	0.6 (4)
C6—C7—C8—C9	-174.4 (2)	C30—C31—C32—C36	-179.2 (3)
C7—N1—C11—C10	0.4 (4)	C32—N4—C33—C29	-2.9 (4)
C7—C8—C9—C10	-1.2 (4)	C32—N4—C33—C34	177.8 (2)
C8—C9—C10—C11	-1.5 (4)	C33—N4—C32—C31	1.5 (4)
C9-C10-C11-N1	1.9 (4)	C33—N4—C32—C36	-178.7 (2)
C11—N1—C7—C6	175.0 (2)	C33—C29—C30—C31	0.1 (4)
C11—N1—C7—C8	-3.2 (4)	C34—N3—C23—C24	-4.8 (3)
C12—C13—C14—C15	0.1 (4)	C34—N3—C23—C35	172.1 (2)
C12—C17—C18—N2	0.3 (3)	C34—C26—C27—C28	-0.5 (4)
C12—C17—C18—C19	-179.4 (2)	C35—C23—C24—C25	-172.2 (2)
C13—C12—C17—C16	-3.1 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H··· A
C10—H10…F1 ⁱ	0.95	2.39	3.243 (3)	150
C11—H11…F3 ⁱ	0.95	2.46	3.229 (3)	138
C22—H22…F1	0.95	2.45	3.311 (3)	150
C27—H27…F2 ⁱⁱ	0.95	2.36	3.192 (3)	146
C31—H31…F4 ⁱⁱⁱ	0.95	2.55	3.463 (3)	160

Symmetry codes: (i) -*x*+3/2, *y*+1/2, *z*; (ii) *x*+1/2, -*y*+1/2, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1.

(2,9-Dimethyl-1,10-phenanthroline)bis[5-methyl-2-(pyridin-2-yl)phenyl]iridium(III) hexafluorophosphatediethyl ether-acetonitrile (1/0.61/0.78) (2)

Crystal data

$[Ir(C_{14}H_{12}N_2)]$	Z = 2
$(C_{12}H_{10}N)_2]PF_6 \cdot 0.61C_4H_{10}O \cdot 0.78C_2H_3N$	F(000) = 954
$M_r = 959.08$	$D_{\rm x} = 1.690 {\rm ~Mg} {\rm ~m}^{-3}$
Triclinic, $P\overline{1}$	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
a = 9.17379 (7) Å	Cell parameters from 40596 reflections
b = 13.10065 (9) Å	$\theta = 2.8 - 79.7^{\circ}$
c = 16.55352 (14) Å	$\mu = 7.86 \text{ mm}^{-1}$
$\alpha = 74.8888~(6)^{\circ}$	T = 100 K
$\beta = 78.9993 \ (7)^{\circ}$	Plate, yellow
$\gamma = 88.7599 \ (6)^{\circ}$	$0.16 \times 0.13 \times 0.02 \text{ mm}$
V = 1884.53 (3) Å ³	

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023)	$T_{\min} = 0.509, T_{\max} = 1.000$ 62414 measured reflections 8074 independent reflections 7770 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.058$ $\theta_{\max} = 80.3^\circ, \theta_{\min} = 2.8^\circ$ $h = -11 \rightarrow 10$ $k = -16 \rightarrow 16$ $l = -21 \rightarrow 21$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.026$	H-atom parameters constrained
$wR(F^2) = 0.067$	$w = 1/[\sigma^2(F_o^2) + (0.0375P)^2 + 2.883P]$
S = 1.04	where $P = (F_0^2 + 2F_c^2)/3$
8074 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
624 parameters	$\Delta \rho_{\rm max} = 1.25 \text{ e } \text{\AA}^{-3}$
441 restraints	$\Delta \rho_{\rm min} = -1.04 \text{ e } \text{\AA}^{-3}$
Primary atom site location: dual	Extinction correction: SHELXT2018/2
Secondary atom site location: difference Fourier	(Sheldrick, 2015a),
map	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
-	Extinction coefficient: 0.00030 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The PF6 anion is modeled as disordered over two positions (0.645 (6):0.355 (6)). The solvent volume is modeled as a disordered mixture of one diethyl ether and two acetonitrile molecules (0.610 (7):0.390 (7)). Analogous bond lengths and angles among the disordered species were restrained to be similar. Bond lengths for the acetonitriles molecules were restrained to be similar to be similar atoms were restrained to be similar.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ir1	0.56177 (2)	0.31354 (2)	0.30009 (2)	0.01467 (5)	
N1	0.7427 (3)	0.40794 (19)	0.29079 (15)	0.0170 (5)	
N2	0.3871 (3)	0.22532 (18)	0.29027 (15)	0.0172 (4)	
N3	0.4473 (3)	0.36887 (19)	0.41150 (15)	0.0166 (4)	
N4	0.6041 (3)	0.18659 (19)	0.41092 (15)	0.0171 (4)	
C1	0.5299 (3)	0.4350 (2)	0.20191 (18)	0.0189 (5)	
C2	0.4143 (3)	0.4469 (2)	0.15642 (18)	0.0203 (6)	
H2	0.339988	0.392279	0.171112	0.024*	
C3	0.4044 (3)	0.5361 (2)	0.09024 (19)	0.0223 (6)	
C4	0.5159 (4)	0.6153 (2)	0.0673 (2)	0.0247 (6)	
H4	0.510492	0.676558	0.022253	0.030*	
C5	0.6338 (4)	0.6052 (2)	0.1094 (2)	0.0238 (6)	
Н5	0.709508	0.659043	0.093005	0.029*	

C6	0.6418 (3)	0.5157 (2)	0.17634 (18)	0.0197 (5)
C7	0.7605 (3)	0.4989 (2)	0.22573 (18)	0.0181 (5)
C8	0.8847 (3)	0.5650(2)	0.2112 (2)	0.0234 (6)
H8	0.897416	0.627800	0.165866	0.028*
C9	0.9894 (3)	0.5398 (3)	0.2625 (2)	0.0253 (6)
Н9	1.074258	0.584926	0.252567	0.030*
C10	0.9700 (3)	0.4479 (3)	0.3287 (2)	0.0247 (6)
H10	1.040461	0.429200	0.364984	0.030*
C11	0.8450 (3)	0.3842 (2)	0.34052 (19)	0.0208 (6)
H11	0.831069	0.321103	0.385616	0.025*
C12	0.2739(4)	0.5484(3)	0.0455(2)	0.0292(7)
H12A	0.216237	0 481534	0.062674	0.044*
H12R	0.309996	0 567350	-0.016366	0.044*
H12C	0.210703	0.604241	0.060979	0.044*
C13	0.6590 (3)	0.004241 0.2572(2)	0.000775 0.20116 (18)	0.0192(5)
C14	0.0550(3)	0.2372(2) 0.2745(2)	0.15654 (19)	0.0172(5)
U14	0.80055 (5)	0.2743(2) 0.318147	0.172460	0.0228 (0)
C15	0.870200	0.310147 0.2207 (2)	0.172409	0.027
C15 C16	0.0398(4) 0.7621(4)	0.2297(3)	0.0692(2)	0.0239(0)
	0.7031(4)	0.1081 (3)	0.0040(2)	0.0291 (7)
H10	0./9834/	0.15/0/9	0.018951	0.035*
C17	0.6154 (4)	0.1515(2)	0.1063 (2)	0.0258 (6)
HI/	0.550003	0.110025	0.088/89	0.031*
C18	0.5636 (3)	0.1960 (2)	0.17393 (18)	0.0205 (6)
C19	0.4123 (3)	0.1793 (2)	0.22387 (18)	0.0194 (5)
C20	0.2987 (4)	0.1216 (2)	0.2094 (2)	0.0248 (6)
H20	0.316023	0.089729	0.163159	0.030*
C21	0.1606 (4)	0.1108 (3)	0.2624 (2)	0.0282 (7)
H21	0.082658	0.071690	0.252696	0.034*
C22	0.1369 (3)	0.1574 (3)	0.3299 (2)	0.0260 (6)
H22	0.042962	0.150330	0.367156	0.031*
C23	0.2521 (3)	0.2142 (2)	0.34171 (19)	0.0204 (6)
H23	0.235959	0.246633	0.387628	0.024*
C24	1.0189 (4)	0.2508 (3)	0.0432 (2)	0.0366 (8)
H24A	1.031319	0.324148	0.008388	0.055*
H24B	1.044498	0.202773	0.006432	0.055*
H24C	1.084347	0.239071	0.084967	0.055*
C25	0.3716 (3)	0.4571 (2)	0.41300 (19)	0.0188 (5)
C26	0.3083 (3)	0.4816 (2)	0.4900 (2)	0.0220 (6)
H26	0.254593	0.544557	0.488837	0.026*
C27	0.3240 (3)	0.4152 (2)	0.5661 (2)	0.0238 (6)
H27	0.281885	0.431971	0.617965	0.029*
C28	0.4026 (3)	0.3221 (2)	0.56737 (19)	0.0213 (6)
C29	0.4199(4)	0.2492(3)	0 64506 (19)	0.0257(6)
H29	0.378477	0.263902	0.697809	0.031*
C30	0.4945(4)	0 1593 (3)	0 64478 (19)	0.0252 (6)
H30	0 505359	0 111531	0 697244	0.030*
C31	0.5569 (3)	0 1356 (2)	0.56666 (19)	0.0211.(6)
C32	0.5507(3)	0.1330(2)	0.56000(19)	0.0211(0) 0.0225(6)
032	0.0574(5)	0.0434 (2)	0.3040 (2)	0.0255(0)

H32	0.649516	-0.005589	0.616406	0.028*	
C33	0.6974 (3)	0.0250(2)	0.4888 (2)	0.0214 (6)	
H33	0.752492	-0.036908	0.487234	0.026*	
C34	0.6789 (3)	0.0972 (2)	0.41185 (19)	0.0184 (5)	
C35	0.5433 (3)	0.2058 (2)	0.48826 (18)	0.0176 (5)	
C36	0.4628 (3)	0.3015 (2)	0.48812 (17)	0.0168 (5)	
C37	0.3491 (4)	0.5336 (2)	0.3321 (2)	0.0254 (6)	
H37A	0.445488	0.563933	0.298570	0.038*	
H37B	0.285437	0.590249	0.345523	0.038*	
H37C	0.301724	0.496575	0.299036	0.038*	
C38	0.7485 (4)	0.0714 (2)	0.3307(2)	0.0256 (6)	
H38A	0.671213	0.064410	0.298840	0.038*	
H38B	0.800504	0.004744	0.343638	0.038*	
H38C	0.819484	0.128252	0.296338	0.038*	
P1'	0 9795 (7)	0.2268(5)	0.5818(4)	0.0217(17)	0 355 (6)
F1'	0.9795(1) 0.9384(13)	0.1109(6)	0.6391(7)	0.0217(17) 0.073(3)	0.355 (6)
F2'	1.0224(12)	0.3426(7)	0.0391(7) 0.5227(7)	0.075(3)	0.355 (6)
F3'	0.8153 (6)	0.3420(7) 0.2633(7)	0.5227(7)	0.075(3)	0.355 (6)
F <i>1'</i>	1.0268(0)	0.2033(7)	0.6577(4)	0.071(3)	0.355 (6)
F5'	1.0208(9) 1.1447(7)	0.2023(7) 0.1057(8)	0.0577(4)	0.050(2)	0.355(0)
F5 F6'	1.1447(7)	0.1937(8) 0.1041(8)	0.5518(7)	0.003(3)	0.355(0)
C20	1.0653(17)	0.1941(0) 0.0604(15)	0.3040(4) 0.8577(14)	0.031(2)	0.555(0)
U20A	1.0055(17)	0.0094(13)	0.8377(14)	0.065 (4)	0.010(7)
П 39А	1.003309	0.021290	0.017(00	0.125*	0.610(7)
НЗЭВ	1.044449	0.028852	0.91/608	0.125*	0.610(7)
H39C	1.162689	0.105539	0.844568	0.125*	0.610(7)
C40	0.9449 (9)	0.1517(6)	0.8415 (5)	0.0510(19)	0.610(7)
H40A	0.952585	0.204385	0.873883	0.061*	0.610(7)
H40B	0.963505	0.189339	0.780110	0.061*	0.610(7)
01	0.7975 (7)	0.1062 (4)	0.8654 (3)	0.0537 (16)	0.610(7)
C41	0.6940 (18)	0.1884 (13)	0.8387 (14)	0.072 (3)	0.610 (7)
H41A	0.711661	0.214101	0.775799	0.087*	0.610 (7)
H41B	0.704928	0.248940	0.862746	0.087*	0.610 (7)
C42	0.5369 (11)	0.1352 (9)	0.8739 (7)	0.056 (2)	0.610 (7)
H42A	0.530344	0.072823	0.852377	0.083*	0.610 (7)
H42B	0.461848	0.185540	0.855091	0.083*	0.610 (7)
H42C	0.519384	0.113749	0.936317	0.083*	0.610 (7)
N5′	0.8946 (17)	0.0117 (13)	0.9021 (11)	0.096 (5)	0.390 (7)
N6′	0.693 (3)	0.205 (2)	0.831 (3)	0.105 (6)	0.390 (7)
C39′	1.0100 (19)	0.0516 (19)	0.8725 (15)	0.055 (4)	0.390 (7)
C40′	1.1573 (18)	0.1031 (13)	0.8375 (15)	0.103 (7)	0.390 (7)
H40C	1.150402	0.164271	0.789652	0.154*	0.390 (7)
H40D	1.226436	0.052786	0.817689	0.154*	0.390 (7)
H40E	1.193331	0.126654	0.881952	0.154*	0.390 (7)
C41′	0.600(3)	0.144 (2)	0.8690 (18)	0.086 (5)	0.390 (7)
C42′	0.447 (3)	0.1071 (19)	0.9099 (18)	0.129 (7)	0.390 (7)
H42D	0.379334	0.136728	0.870853	0.193*	0.390 (7)
H42E	0.417843	0.129945	0.962383	0.193*	0.390 (7)
H42F	0.440850	0.029678	0.923506	0.193*	0.390 (7)

P1	0.9720 (4)	0.2211 (3)	0.5773 (2)	0.0221 (9)	0.645 (6)	
F1	0.8599 (5)	0.1457 (3)	0.6530 (2)	0.0385 (10)	0.645 (6)	
F2	1.0832 (4)	0.2965 (4)	0.4991 (2)	0.0412 (10)	0.645 (6)	
F3	0.8362 (4)	0.2690 (3)	0.5333 (3)	0.0475 (12)	0.645 (6)	
F4	0.9609 (5)	0.3118 (3)	0.6251 (3)	0.0410 (10)	0.645 (6)	
F5	1.1101 (5)	0.1733 (3)	0.6173 (4)	0.0562 (15)	0.645 (6)	
F6	0.9824 (5)	0.1322 (4)	0.5268 (3)	0.0537 (13)	0.645 (6)	

Atomic displacement parameters $(Å^2)$

	11	00		1.2	12	
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ir1	0.01239 (7)	0.01474 (7)	0.01579 (7)	0.00190 (4)	-0.00104 (4)	-0.00338 (4)
N1	0.0139 (11)	0.0181 (11)	0.0175 (11)	0.0000 (9)	0.0007 (9)	-0.0044 (9)
N2	0.0164 (11)	0.0158 (11)	0.0191 (11)	0.0020 (9)	-0.0037 (9)	-0.0039 (9)
N3	0.0124 (10)	0.0192 (11)	0.0183 (11)	0.0007 (9)	-0.0003 (9)	-0.0072 (9)
N4	0.0129 (11)	0.0177 (11)	0.0192 (11)	-0.0006 (9)	-0.0026 (9)	-0.0028 (9)
C1	0.0192 (13)	0.0199 (13)	0.0166 (12)	0.0037 (11)	-0.0003 (10)	-0.0056 (10)
C2	0.0196 (14)	0.0213 (14)	0.0194 (13)	0.0020 (11)	-0.0017 (11)	-0.0060 (11)
C3	0.0240 (15)	0.0257 (15)	0.0181 (13)	0.0087 (12)	-0.0056 (11)	-0.0067 (11)
C4	0.0269 (16)	0.0230 (14)	0.0211 (14)	0.0058 (12)	-0.0030 (12)	-0.0017 (11)
C5	0.0246 (15)	0.0206 (14)	0.0235 (14)	0.0007 (11)	-0.0006 (12)	-0.0039 (11)
C6	0.0187 (14)	0.0216 (14)	0.0182 (13)	0.0032 (11)	-0.0010 (11)	-0.0061 (11)
C7	0.0171 (13)	0.0196 (13)	0.0164 (12)	0.0031 (10)	0.0010 (10)	-0.0057 (10)
C8	0.0210 (14)	0.0219 (14)	0.0244 (14)	-0.0021 (11)	-0.0002 (11)	-0.0041 (11)
C9	0.0170 (14)	0.0272 (15)	0.0302 (16)	-0.0042 (11)	-0.0008 (12)	-0.0073 (13)
C10	0.0169 (14)	0.0284 (15)	0.0288 (15)	0.0017 (11)	-0.0063 (12)	-0.0064 (12)
C11	0.0168 (13)	0.0235 (14)	0.0207 (13)	0.0012 (11)	-0.0019 (11)	-0.0047 (11)
C12	0.0315 (17)	0.0307 (16)	0.0257 (15)	0.0075 (13)	-0.0094 (13)	-0.0056 (13)
C13	0.0216 (14)	0.0175 (13)	0.0167 (12)	0.0056 (11)	-0.0013 (11)	-0.0035 (10)
C14	0.0233 (15)	0.0206 (14)	0.0211 (14)	0.0036 (11)	-0.0018 (11)	-0.0016 (11)
C15	0.0232 (15)	0.0266 (15)	0.0215 (14)	0.0074 (12)	0.0049 (12)	-0.0025 (12)
C16	0.0341 (18)	0.0252 (15)	0.0258 (15)	0.0069 (13)	0.0028 (13)	-0.0095 (13)
C17	0.0306 (17)	0.0233 (14)	0.0230 (14)	0.0040 (12)	-0.0035 (12)	-0.0065 (12)
C18	0.0215 (14)	0.0202 (13)	0.0188 (13)	0.0036 (11)	-0.0027 (11)	-0.0043 (11)
C19	0.0209 (14)	0.0182 (13)	0.0184 (13)	0.0038 (11)	-0.0040 (11)	-0.0035 (10)
C20	0.0246 (15)	0.0245 (15)	0.0295 (15)	0.0046 (12)	-0.0089 (12)	-0.0118 (12)
C21	0.0203 (15)	0.0326 (17)	0.0363 (17)	-0.0006 (12)	-0.0095 (13)	-0.0138 (14)
C22	0.0162 (14)	0.0314 (16)	0.0306 (16)	0.0009 (12)	-0.0035 (12)	-0.0094 (13)
C23	0.0185 (14)	0.0211 (13)	0.0201 (13)	0.0024 (11)	-0.0026 (11)	-0.0038 (11)
C24	0.0290 (18)	0.045 (2)	0.0305 (17)	0.0073 (15)	0.0062 (14)	-0.0103 (15)
C25	0.0126 (12)	0.0208 (13)	0.0232 (14)	0.0013 (10)	-0.0026 (10)	-0.0066 (11)
C26	0.0155 (13)	0.0254 (14)	0.0273 (15)	0.0020 (11)	-0.0002 (11)	-0.0140 (12)
C27	0.0203 (14)	0.0283 (15)	0.0237 (14)	-0.0007 (12)	0.0013 (11)	-0.0121 (12)
C28	0.0178 (14)	0.0255 (15)	0.0212 (14)	-0.0012 (11)	-0.0012 (11)	-0.0085 (12)
C29	0.0283 (16)	0.0321 (16)	0.0160 (13)	-0.0029 (13)	0.0007 (12)	-0.0084 (12)
C30	0.0281 (16)	0.0278 (15)	0.0171 (13)	-0.0032 (12)	-0.0045 (12)	-0.0006 (11)
C31	0.0168 (13)	0.0226 (14)	0.0235 (14)	-0.0020 (11)	-0.0054 (11)	-0.0036 (11)
C32	0.0230 (15)	0.0209 (14)	0.0253 (15)	-0.0007 (11)	-0.0095 (12)	-0.0003 (11)

C33	0.0165 (13)	0.0168 (13)	0.0298 (15)	0.0014 (10)	-0.0076 (11)	-0.0021 (11)
C34	0.0131 (12)	0.0160 (12)	0.0245 (14)	0.0004 (10)	-0.0036 (10)	-0.0025 (11)
C35	0.0164 (13)	0.0188 (13)	0.0173 (13)	-0.0034 (10)	-0.0024 (10)	-0.0045 (10)
C36	0.0147 (12)	0.0175 (13)	0.0163 (12)	-0.0024 (10)	-0.0014 (10)	-0.0020 (10)
C37	0.0274 (16)	0.0254 (15)	0.0251 (15)	0.0117 (12)	-0.0066 (12)	-0.0095 (12)
C38	0.0254 (15)	0.0228 (14)	0.0254 (15)	0.0097 (12)	-0.0021 (12)	-0.0035 (12)
P1′	0.017 (3)	0.019 (3)	0.031 (3)	0.0037 (18)	-0.007 (2)	-0.008 (2)
F1′	0.073 (6)	0.034 (4)	0.101 (7)	-0.025 (4)	-0.053 (6)	0.030 (4)
F2′	0.076 (7)	0.051 (5)	0.087 (7)	-0.033 (5)	-0.045 (6)	0.024 (5)
F3′	0.019 (3)	0.077 (5)	0.140 (9)	0.010 (3)	-0.006 (4)	-0.076 (6)
F4′	0.044 (4)	0.075 (6)	0.040 (4)	-0.021 (4)	-0.004 (3)	-0.031 (4)
F5′	0.023 (3)	0.095 (6)	0.099 (7)	0.006 (4)	-0.004 (4)	-0.071 (6)
F6′	0.040 (4)	0.080 (6)	0.033 (3)	-0.020 (4)	-0.009 (3)	-0.014 (4)
C39	0.076 (11)	0.071 (9)	0.092 (11)	0.025 (8)	-0.012 (9)	-0.007 (8)
C40	0.066 (5)	0.050 (4)	0.036 (3)	-0.004 (4)	-0.009 (3)	-0.009 (3)
01	0.087 (4)	0.034 (3)	0.044 (3)	0.007 (2)	-0.018 (3)	-0.013 (2)
C41	0.072 (7)	0.085 (7)	0.075 (7)	0.012 (6)	-0.012 (6)	-0.052 (6)
C42	0.054 (6)	0.068 (5)	0.052 (5)	0.005 (5)	-0.005 (5)	-0.031 (4)
N5′	0.112 (12)	0.094 (10)	0.091 (10)	0.022 (9)	-0.031 (9)	-0.033 (8)
N6′	0.094 (10)	0.119 (12)	0.100 (11)	0.029 (10)	0.003 (9)	-0.043 (10)
C39′	0.058 (11)	0.057 (9)	0.049 (8)	0.018 (8)	0.001 (8)	-0.022 (7)
C40′	0.078 (11)	0.054 (9)	0.124 (13)	0.012 (8)	0.052 (10)	0.017 (9)
C41′	0.086 (9)	0.102 (9)	0.078 (8)	0.001 (9)	-0.005 (9)	-0.047 (7)
C42′	0.144 (16)	0.099 (13)	0.142 (16)	-0.027 (13)	0.007 (14)	-0.052 (12)
P1	0.0177 (15)	0.0212 (15)	0.0277 (15)	0.0012 (10)	-0.0015 (11)	-0.0088 (11)
F1	0.043 (2)	0.039 (2)	0.0278 (16)	-0.0170 (17)	-0.0064 (16)	0.0027 (15)
F2	0.030 (2)	0.056 (3)	0.0344 (18)	-0.0180 (18)	0.0032 (15)	-0.0114 (17)
F3	0.0315 (19)	0.044 (2)	0.059 (3)	-0.0056 (15)	-0.0176 (18)	0.0081 (19)
F4	0.041 (2)	0.0363 (19)	0.050 (2)	-0.0052 (16)	0.0051 (17)	-0.0285 (18)
F5	0.036 (2)	0.0312 (18)	0.103 (4)	0.0065 (15)	-0.041 (3)	-0.003 (2)
F6	0.042 (2)	0.057 (3)	0.073 (3)	-0.010 (2)	0.003 (2)	-0.046 (3)

Geometric parameters (Å, °)

Ir1—N1	2.050 (2)	C26—H26	0.9500
Ir1—N2	2.051 (2)	C26—C27	1.362 (5)
Ir1—N3	2.226 (2)	C27—H27	0.9500
Ir1—N4	2.222 (2)	C27—C28	1.401 (4)
Ir1—C1	2.018 (3)	C28—C29	1.422 (4)
Ir1—C13	2.017 (3)	C28—C36	1.414 (4)
N1C7	1.371 (4)	C29—H29	0.9500
N1-C11	1.343 (4)	C29—C30	1.349 (5)
N2-C19	1.366 (4)	C30—H30	0.9500
N2-C23	1.349 (4)	C30—C31	1.420 (4)
N3—C25	1.339 (4)	C31—C32	1.406 (4)
N3—C36	1.374 (4)	C31—C35	1.407 (4)
N4—C34	1.343 (4)	С32—Н32	0.9500
N4—C35	1.380 (4)	C32—C33	1.353 (5)

C1—C2	1.397 (4)	С33—Н33	0.9500
C1—C6	1.414 (4)	C33—C34	1.412 (4)
С2—Н2	0.9500	C34—C38	1.492 (4)
C2—C3	1.393 (4)	C35—C36	1.441 (4)
C3—C4	1.400 (5)	С37—Н37А	0.9800
C3—C12	1.509 (4)	С37—Н37В	0.9800
C4—H4	0.9500	С37—Н37С	0.9800
C4—C5	1.382 (5)	C38—H38A	0.9800
С5—Н5	0.9500	C38—H38B	0.9800
C5—C6	1.399 (4)	C38—H38C	0.9800
C6—C7	1.462 (4)	P1'—F1'	1.576 (6)
С7—С8	1.392 (4)	P1'—F2'	1.587 (6)
С8—Н8	0.9500	P1'—F3'	1.579 (6)
C8—C9	1.380 (5)	P1'—F4'	1.583 (6)
С9—Н9	0.9500	P1'—F5'	1.581 (6)
C9—C10	1.389 (4)	P1'—F6'	1.595 (6)
C10—H10	0.9500	С39—Н39А	0.9800
C10—C11	1.386 (4)	С39—Н39В	0.9800
C11—H11	0.9500	С39—Н39С	0.9800
C12—H12A	0.9800	C39—C40	1.538 (17)
C12—H12B	0.9800	C40—H40A	0.9900
C12—H12C	0.9800	C40—H40B	0.9900
C13—C14	1.396 (4)	C40—O1	1.431 (10)
C13—C18	1.408 (4)	O1—C41	1.457 (18)
C14—H14	0.9500	C41—H41A	0.9900
C14—C15	1.396 (4)	C41—H41B	0.9900
C15—C16	1.395 (5)	C41—C42	1.553 (17)
C15—C24	1.507 (5)	C42—H42A	0.9800
C16—H16	0.9500	C42—H42B	0.9800
C16—C17	1.392 (5)	C42—H42C	0.9800
С17—Н17	0.9500	N5′—C39′	1.152 (9)
C17—C18	1.394 (4)	N6′—C41′	1.154 (10)
C18—C19	1.462 (4)	C39′—C40′	1.468 (9)
C19—C20	1.393 (4)	C40′—H40C	0.9800
C20—H20	0.9500	C40′—H40D	0.9800
C20—C21	1.383 (5)	C40′—H40E	0.9800
C21—H21	0.9500	C41′—C42′	1.471 (10)
C21—C22	1.387 (5)	C42′—H42D	0.9800
С22—Н22	0.9500	C42′—H42E	0.9800
C22—C23	1.378 (4)	C42′—H42F	0.9800
С23—Н23	0.9500	P1—F1	1.585 (4)
C24—H24A	0.9800	P1—F2	1.600 (4)
C24—H24B	0.9800	P1—F3	1.597 (4)
C24—H24C	0.9800	P1—F4	1.582 (4)
C25—C26	1.409 (4)	P1—F5	1.583 (4)
C25—C37	1.496 (4)	P1—F6	1.593 (4)
N1 L-1 N2	171 (1 (0)	C2(C27 U27	120.2
IN1— $IIT1$ — $IN2$	1/1.01 (9)	$C_{20} - C_{2} - H_{2}$	120.2

N1—Ir1—N3	89.41 (9)	C26—C27—C28	119.6 (3)
N1—Ir1—N4	96.50 (9)	C28—C27—H27	120.2
N2—Ir1—N3	97.19 (9)	C27—C28—C29	121.8 (3)
N2—Ir1—N4	90.07 (9)	C27—C28—C36	117.6 (3)
N4—Ir1—N3	76.79 (9)	C36—C28—C29	120.6 (3)
C1—Ir1—N1	80.42 (11)	С28—С29—Н29	119.6
C1—Ir1—N2	93.13 (11)	C30—C29—C28	120.8 (3)
C1—Ir1—N3	101.51 (10)	С30—С29—Н29	119.6
C1—Ir1—N4	176.54 (10)	С29—С30—Н30	119.8
C13—Ir1—N1	93.12 (11)	C29—C30—C31	120.5 (3)
C13—Ir1—N2	80.39 (11)	C31—C30—H30	119.8
C13—Ir1—N3	177.26 (10)	C_{32} — C_{31} — C_{30}	121.5 (3)
C13—Ir1—N4	101.85 (10)	C_{32} — C_{31} — C_{35}	117.9 (3)
C_{13} I_{r_1} C_{13}	79.97 (11)	C_{35} C_{31} C_{30}	120.6 (3)
C7—N1—Ir1	115.65 (19)	C31—C32—H32	120.3
C_{11} N1 I_{r1}	124.8 (2)	C_{33} C_{32} C_{31}	119.5 (3)
C11-N1-C7	1195(2)	C33—C32—H32	120.3
C19 - N2 - Ir1	115 46 (19)	C32—C33—H33	1197
C_{23} N2 III	124.8 (2)	C_{32} C_{33} C_{34}	120.5(3)
$C_{23} = N_{2} = C_{19}$	119.7 (2)	C34—C33—H33	1197
$C_{25} = N_{3} = Ir_{1}$	129.3 (2)	N4-C34-C33	121.8 (3)
C25 - N3 - C36	117.9 (2)	N4—C34—C38	120.8 (3)
C36 - N3 - Ir1	112.78 (18)	C33—C34—C38	117.3 (3)
C34—N4—Ir1	129.1 (2)	N4—C35—C31	122.5 (3)
C34—N4—C35	117.8 (2)	N4—C35—C36	118.4 (2)
C35—N4—Ir1	113.05 (18)	C31—C35—C36	119.2 (3)
C2—C1—Ir1	128.0 (2)	N3—C36—C28	122.7 (3)
C2—C1—C6	117.5 (3)	N3—C36—C35	119.0 (2)
C6—C1—Ir1	114.4 (2)	C28—C36—C35	118.3 (3)
C1—C2—H2	118.9	С25—С37—Н37А	109.5
C3—C2—C1	122.2 (3)	С25—С37—Н37В	109.5
С3—С2—Н2	118.9	С25—С37—Н37С	109.5
C2—C3—C4	118.8 (3)	H37A—C37—H37B	109.5
C2—C3—C12	120.6 (3)	Н37А—С37—Н37С	109.5
C4—C3—C12	120.6 (3)	Н37В—С37—Н37С	109.5
C3—C4—H4	119.7	C34—C38—H38A	109.5
C5—C4—C3	120.6 (3)	C34—C38—H38B	109.5
C5—C4—H4	119.7	C34—C38—H38C	109.5
С4—С5—Н5	120.0	H38A—C38—H38B	109.5
C4—C5—C6	120.0 (3)	H38A—C38—H38C	109.5
С6—С5—Н5	120.0	H38B—C38—H38C	109.5
C1—C6—C7	115.2 (3)	F1'—P1'—F2'	179.0 (8)
C5—C6—C1	120.8 (3)	F1'—P1'—F3'	91.8 (6)
C5—C6—C7	124.0 (3)	F1'—P1'—F4'	92.1 (6)
N1—C7—C6	114.2 (2)	F1'—P1'—F5'	91.4 (6)
N1—C7—C8	119.9 (3)	F1'—P1'—F6'	89.3 (6)
C8—C7—C6	126.0 (3)	F2'—P1'—F6'	89.9 (6)
С7—С8—Н8	119.9	F3'—P1'—F2'	88.9 (6)

C9—C8—C7	120.3 (3)	F3'—P1'—F4'	91.7 (5)
С9—С8—Н8	119.9	F3'—P1'—F5'	176.1 (7)
С8—С9—Н9	120.2	F3'—P1'—F6'	87.9 (5)
C8—C9—C10	119.5 (3)	F4'—P1'—F2'	88.7 (6)
С10—С9—Н9	120.2	F4'—P1'—F6'	178.6 (6)
С9—С10—Н10	120.9	F5'—P1'—F2'	87.8 (6)
C11—C10—C9	118.2 (3)	F5'—P1'—F4'	90.4 (5)
C11—C10—H10	120.9	F5'—P1'—F6'	90.0 (5)
N1—C11—C10	122.7 (3)	H39A—C39—H39B	109.5
N1—C11—H11	118.7	Н39А—С39—Н39С	109.5
C10—C11—H11	118.7	H39B—C39—H39C	109.5
C3—C12—H12A	109.5	С40—С39—Н39А	109.5
C3—C12—H12B	109.5	С40—С39—Н39В	109.5
C3—C12—H12C	109.5	С40—С39—Н39С	109.5
H12A—C12—H12B	109.5	C39—C40—H40A	108.9
H12A—C12—H12C	109.5	C39—C40—H40B	108.9
H12B—C12—H12C	109.5	H40A—C40—H40B	107.7
C14—C13—Ir1	127.8 (2)	O1—C40—C39	113.2 (9)
C14—C13—C18	117.8 (3)	O1—C40—H40A	108.9
C18—C13—Ir1	114.4 (2)	O1—C40—H40B	108.9
C13—C14—H14	119.0	C40—O1—C41	108.8 (7)
C13—C14—C15	122.1 (3)	O1—C41—H41A	110.7
C15—C14—H14	119.0	O1—C41—H41B	110.7
C14—C15—C24	120.0 (3)	O1—C41—C42	105.4 (11)
C16—C15—C14	118.7 (3)	H41A—C41—H41B	108.8
C16—C15—C24	121.3 (3)	C42—C41—H41A	110.7
C15—C16—H16	119.7	C42—C41—H41B	110.7
C17—C16—C15	120.6 (3)	C41—C42—H42A	109.5
C17—C16—H16	119.7	C41—C42—H42B	109.5
С16—С17—Н17	120.1	C41—C42—H42C	109.5
C16—C17—C18	119.8 (3)	H42A—C42—H42B	109.5
C18—C17—H17	120.1	H42A—C42—H42C	109.5
C13—C18—C19	115.3 (3)	H42B—C42—H42C	109.5
C17—C18—C13	120.9 (3)	N5'—C39'—C40'	178 (2)
C17—C18—C19	123.7 (3)	C39'—C40'—H40C	109.5
N2—C19—C18	114.3 (3)	C39'—C40'—H40D	109.5
N2-C19-C20	119.9 (3)	С39'—С40'—Н40Е	109.5
C20—C19—C18	125.8 (3)	H40C—C40′—H40D	109.5
C19—C20—H20	120.1	H40C—C40′—H40E	109.5
C21—C20—C19	119.9 (3)	H40D—C40′—H40E	109.5
C21—C20—H20	120.1	N6'—C41'—C42'	156 (3)
C20—C21—H21	120.2	C41'—C42'—H42D	109.5
C20—C21—C22	119.5 (3)	C41′—C42′—H42E	109.5
C22—C21—H21	120.2	C41'—C42'—H42F	109.5
C21—C22—H22	120.6	H42D—C42′—H42E	109.5
C23—C22—C21	118.7 (3)	H42D—C42′—H42F	109.5
C23—C22—H22	120.6	H42E—C42′—H42F	109.5
N2—C23—C22	122.2 (3)	F1—P1—F2	178.5 (3)

N2—C23—H23	118.9	F1—P1—F3	90.0 (3)
С22—С23—Н23	118.9	F1—P1—F6	88.8 (3)
C15—C24—H24A	109.5	F3—P1—F2	89.0 (3)
C15—C24—H24B	109.5	F4—P1—F1	92.2 (3)
C15—C24—H24C	109.5	F4—P1—F2	88.9 (3)
H24A—C24—H24B	109.5	F4—P1—F3	90.2 (3)
H24A—C24—H24C	109.5	F4—P1—F5	91.4 (3)
H24B—C24—H24C	109.5	F4—P1—F6	178.4 (4)
N3—C25—C26	122.0 (3)	F5—P1—F1	91.6 (3)
N3—C25—C37	120.8 (3)	F5—P1—F2	89.4 (3)
C26—C25—C37	117.2 (3)	F5—P1—F3	177.7 (4)
С25—С26—Н26	119.9	F5—P1—F6	89.8 (3)
C27—C26—C25	120.3 (3)	F6—P1—F2	90.1 (3)
C27—C26—H26	119.9	F6—P1—F3	88.6 (3)
Ir1—N1—C7—C6	3.0 (3)	C14—C13—C18—C19	179.1 (3)
Ir1—N1—C7—C8	-176.3 (2)	C14—C15—C16—C17	0.0 (5)
Ir1—N1—C11—C10	176.3 (2)	C15—C16—C17—C18	-0.6(5)
Ir1—N2—C19—C18	3.4 (3)	C16—C17—C18—C13	-0.4 (5)
Ir1—N2—C19—C20	-177.2 (2)	C16—C17—C18—C19	-177.3 (3)
Ir1—N2—C23—C22	177.2 (2)	C17—C18—C19—N2	176.5 (3)
Ir1—N3—C25—C26	-178.4 (2)	C17—C18—C19—C20	-2.8(5)
Ir1—N3—C25—C37	2.4 (4)	C18—C13—C14—C15	-2.7 (4)
Ir1—N3—C36—C28	178.3 (2)	C18—C19—C20—C21	179.1 (3)
Ir1—N3—C36—C35	-1.8(3)	C19—N2—C23—C22	0.1 (4)
Ir1—N4—C34—C33	179.0 (2)	C19—C20—C21—C22	-0.2(5)
Ir1—N4—C34—C38	0.2 (4)	C20—C21—C22—C23	0.5 (5)
Ir1—N4—C35—C31	-180.0 (2)	C21—C22—C23—N2	-0.4(5)
Ir1—N4—C35—C36	0.2 (3)	C23—N2—C19—C18	-179.1 (2)
Ir1—C1—C2—C3	179.1 (2)	C23—N2—C19—C20	0.2 (4)
Ir1—C1—C6—C5	-179.6 (2)	C24—C15—C16—C17	-178.4 (3)
Ir1—C1—C6—C7	-0.9(3)	C25—N3—C36—C28	-0.2 (4)
Ir1—C13—C14—C15	179.4 (2)	C25—N3—C36—C35	179.8 (2)
Ir1—C13—C18—C17	-179.8(2)	C25—C26—C27—C28	-0.4 (4)
Ir1—C13—C18—C19	-2.7 (3)	C26—C27—C28—C29	-178.8(3)
N1—C7—C8—C9	-0.5 (4)	C26—C27—C28—C36	0.0 (4)
N2-C19-C20-C21	-0.1 (5)	C27—C28—C29—C30	179.2 (3)
N3—C25—C26—C27	0.5 (4)	C27—C28—C36—N3	0.2 (4)
N4—C35—C36—N3	1.1 (4)	C27—C28—C36—C35	-179.7 (3)
N4—C35—C36—C28	-179.0(2)	C28—C29—C30—C31	-0.2(5)
C1—C2—C3—C4	1.6 (4)	C29—C28—C36—N3	179.1 (3)
C1—C2—C3—C12	-177.0(3)	C29—C28—C36—C35	-0.8(4)
C1—C6—C7—N1	-1.4 (4)	C29—C30—C31—C32	178.8 (3)
C1—C6—C7—C8	177.9 (3)	C29—C30—C31—C35	0.6 (5)
C2-C1-C6-C5	1.8 (4)	C30—C31—C32—C33	-178.7(3)
C2-C1-C6-C7	-179.6 (2)	C30—C31—C35—N4	179.0 (3)
C2-C3-C4-C5	0.0 (5)	C30—C31—C35—C36	-1.1 (4)
C3—C4—C5—C6	-0.6 (5)	C31—C32—C33—C34	-0.4(4)
	\~/		(- ,

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} -0.3 (4) \\ -178.8 (3) \\ 177.2 (3) \\ -3.5 (5) \\ -2.4 (4) \\ -179.7 (3) \\ -0.4 (4) \\ 0.0 (5) \\ 0.3 (5) \\ -0.1 (5) \\ 180.0 (2) \\ 0.7 (4) \\ 178.6 (3) \\ 1.7 (5) \\ -179.9 (3) \\ -0.5 (4) \\ -179.8 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.8 (2) 1.2 (4) 0.8 (4) -179.4 (3) 1.1 (4) 180.0 (3) -0.2 (4) 180.0 (2) -0.8 (4) -179.6 (3) -0.4 (4) -0.2 (4) -179.4 (3) 0.3 (5) 179.8 (3) -173.7 (13) -175.2 (10)
C13—C18—C19—C20 C14—C13—C18—C17	-179.8 (3) 2.0 (4)	C40—O1—C41—C42	-175.2 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C10—H10…F2′	0.95	2.54	3.270 (9)	134
C10—H10…F2	0.95	2.53	3.329 (5)	142
C11—H11…F6′	0.95	2.53	3.373 (9)	149
C11—H11…F3	0.95	2.37	3.140 (5)	138
C22—H22…F6' ⁱ	0.95	2.51	3.272 (8)	138
C23— $H23$ ···F2 ⁱ	0.95	2.32	3.194 (5)	152
C26—H26…F3 ⁱⁱ	0.95	2.52	3.455 (5)	168
C33—H33…F5′ ⁱⁱⁱ	0.95	2.45	3.372 (8)	163
C37—H37 <i>B</i> …F3′ ⁱⁱ	0.98	2.37	3.330 (7)	165
C38—H38 <i>B</i> …F5 ⁱⁱⁱ	0.98	2.42	3.393 (5)	171

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+2, -*y*, -*z*+1.