

ISSN 2056-9890

Received 30 October 2024 Accepted 11 February 2025

Edited by F. F. Ferreira, Universidade Federal do ABC, Brazil

Keywords: crystal structure; diphenidine; novel psychoactive substances.

CCDC references: 2423059; 2423058; 2423057; 2423056; 2423055

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis and crystal structures of five fluorinated diphenidine derivatives

Ryan E. Mewis,^a* Matthew C. Hulme,^a Jack Marron,^a Stuart K. Langley,^a Oliver B. Sutcliffe^a* and Sophie L. Benjamin^b

^aDepartment of Natural Sciences, Manchester Metropolitan University, John Dalton Building, Chester St., Manchester, M1 5GD, United Kingdom, and ^bSchool of Science and Technology, Nottingham Trent University, Nottingham NG11, 8NS, United Kingdom. *Correspondence e-mail: r.mewis@mmu.ac.uk, o.sutcliffe@mmu.ac.uk

Diphenidine (1a), a dissociative anaesthetic, was first reported in 2013. Since then, a number of derivatives e.g. 2-methoxphenidine (1b) have been produced by clandestine laboratories and sold as research chemicals. Fluorinated diphenidines, namely, [1-(2,6-difluorophenyl)-2-phenylethyl]dimethylazanium chloride, $C_{16}H_{18}F_2N^+ \cdot Cl^-$, (I), [1-(2,6-difluorophenyl)-2-phenylethyl](ethyl)azanium chloride dichloromethane hemisolvate, $2C_{16}H_{18}F_2N^+ \cdot 2Cl^- \cdot CH_2Cl_2$, (II), tertbutyl[1-(2,6-difluorophenyl)-2-phenylethyl]azanium chloride, $C_{18}H_{22}F_2N^+ \cdot Cl^-$, (III), 1-[1-(2,6-difluorophenyl)-2-phenylethyl]pyrrolidin-1-ium chloride, $C_{18}H_{20}F_2N^+ \cdot Cl^-$, (IV), and 1-[1-(2,3,4,5,6-pentafluorophenyl)-2-phenylethyl]piperidin-1-ium chloride, $C_{19}H_{19}F_5N^+ \cdot Cl^-$, (V), were synthesized and structurally characterized by ¹H, ¹³C and ¹⁹F NMR spectroscopy, and single-crystal X-ray diffraction. All five structures exhibit hydrogen bonding between the quaternary amine hydrogen atoms and the chlorine. The N-H···Cl distances for (II) and (III) range from 2.21 to 2.31 Å, whereas (I), (IV) and (V) exhibit shorter N-H···Cl distances (2.07–2.20 Å). Compounds (IV) and (V) include pyrrolidine and piperidine rings, respectively; the pyrrolidine ring adopts an envelope conformation whereas the piperidine ring adopts a chair conformation. The crystal packing in compounds (I)–(V) is characterized by C–H··· π interactions; no π - π interactions are observed.

1. Chemical context

Over the past two decades, there has been a significant increase in the number of new psychoactive substances (NPS) seized by law enforcement agencies globally (King, 2013; UNODC, 2024). Current convention uses a functional 'effect group' categorization to define NPS within six broad overlapping groups: (i) synthetic cannabinoid receptor agonists; (ii) classic hallucinogens; (iii) stimulants; (iv) opioid receptor agonists; (v) sedatives/hypnotics and (vi) dissociatives (UNODC, 2024; Tettey et al., 2018; Shafi et al., 2020). NPS are assigned to a specific 'effect group' based on their chemical structure and psychopharmacological effects (UNODC, 2024; Tettey et al., 2018). 1,2-Diarylethamines are dissociative, psychoactive substances, which distort perceptions, produce feelings of detachment, and induce a state of anaesthesia by antagonizing ionotropic N-methyl-D-aspartate receptors (NMDAR) in the central nervous system (UNODC, 2024; Morris & Wallach, 2014).

The first of these dissociative anaesthetics was 1-(1,2-diphenylethyl)piperidine (diphenidine, **1a**) (Wallach *et al.*, 2015) reported in 2013 (Morris & Wallach, 2014), followed by 1-[1-(2-methoxyphenyl)-2-phenylethyl]piperidine (2-methoxphenidine, **1b**) (McLaughlin *et al.*, 2016), which have both been marketed as '*research chemicals*' and encountered in tablet or

research communications

powder forms (UNODC, 2024; Wallach et al., 2015; McLaughlin et al., 2016: Odoardi et al., 2016: Strano Rossi et al., 2014) or in combination with synthetic cannabinoids such as AB-CHMINACA, 5F-AMB (Hasegawa et al., 2015) and 5F-AB-PINACA (Wurita et al., 2014). Though both the supply and production of 1a, 1b and the recently disclosed 1-[1-(2chlorophenyl)-2-phenylethyl]piperidine (2-chlorodiphenidine, 1c) (Wallach et al., 2016; Sahai et al., 2018), are now controlled in the United Kingdom by the 2016 Psychoactive Substances Act (Reuter & Pardo, 2017), the emergence of novel 1,2-diarylethylamine derivatives, such as the fluorinated compounds, (I)-(V), still raises considerable legal and analytical challenges in both the forensic identification and discrimination of these materials. This is due to the inference of diphenidine-based NPS in several fatalities in Europe (Morris & Wallach, 2014; Wallach et al., 2015, 2016; McLaughlin et al., 2016; Strano Rossi et al., 2014; Hasegawa et al., 2015; Wurita et al., 2014; Sahai et al., 2018; Reuter & Pardo, 2017; Elliott et al., 2015; Helander et al., 2015; Hofer et al., 2014), Asia (Hasegawa et al., 2015; Minakata et al., 2016; Kudo et al., 2015) and **1a** being placed under international control, within schedule II of the United Nations Convention on Psychotropic Substances (1971), on 14th April 2021 (UNODC, 2021).

2. Structural commentary

Compound (I) (Fig. 1) crystallizes in the monoclinic space group $P2_1/c$ with a single molecule in the asymmetric unit. The torsion angle between the two quaternary carbons of the phenyl rings and the bridging ethyl chain is 53.4 (2)°.

Compound (II) (Fig. 2) crystallizes in the I2/a space group. It consists of one molecule in the asymmetric unit, as well as half of a single molecule of dichloromethane (DCM). The terminal carbon of the ethyl group (C15, C15A) is disordered over two positions [0.707 (5):0.293 (5) occupancy]. The closest contact between one of the fluorine atoms of the 2,6-difluorophenyl ring and a hydrogen atom of DCM is 2.335 Å. The torsion angle for (II), as defined previously for (I), is $-55.9 (2)^{\circ}$. The final non-cyclic aliphatic analogue, (III) (Fig. 3), crystallizes in the monoclinic space group $P2_1/c$ with a single formula unit in the asymmetric unit cell. The torsion angle is the largest of all the structures presented herein at 63.8 (2)°.

Compound (IV) (Fig. 4) crystallizes in the triclinic space group $P\overline{1}$ with two molecules in the asymmetric unit. Torsion

The molecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

angles of -54.6 (3) and 58.9 (3)° are very similar to (I) and (III). The pyrrolidine ring present in the structure adopts an envelope conformation.

Compound (V) (Fig. 5) crystallizes in the monoclinic space group $P2_1/c$ with a single molecule in the asymmetric unit. The torsion angle defined is the smallest of the crystal structures presented at 47.3 (2)°. The piperidine ring is in the chair conformation. All five structures exhibit hydrogen bonding between the quaternary amine and the chlorine (Tables 1–5). The five structures can be split in to two groups; (II) and (III) both have two *R* groups attached to the amine whereas the

Figure 2

The molecular structure of (II), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The half molecule of DCM present has been omitted.

Table 1Hydrogen-bond geometry (Å, $^{\circ}$) for (I).

<i></i>		/ . (/ .		
$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N1 - H1N1 \cdots Cl1$	0.93 (2)	2.08 (2)	3.0006 (17)	167.3 (19)

remainder all possess three. The N-H···Cl distance for the former grouping range from 2.21 to 2.31 Å, with N-H-Cl angles of 151–168° (Tables 2 and 3). Interestingly, in (II), a shorter N-H1A···Cl distance of 2.11 Å (compared to 2.30 Å for N-H1B···Cl) is observed to a symmetry-related [symmetry code: (i) $\frac{1}{2} - x$, $\frac{3}{2} - y$, $\frac{1}{2} - z$] Cl atom. The latter group, consisting of (I), (IV) and (V) exhibit shorter

Figure 3

The molecular structure of (III), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 4

The molecular structure of (IV), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only one molecule present in the asymmetric unit is shown.

Table 2

Hydrogen-bond geometry (Å, $^\circ)$ for (II).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1 - H1B \cdots Cl1$	0.89 (2)	2.30 (2)	3.1417 (14)	156.0 (16)

Table 3

Hydrogen-bond geometry (Å, °) for (III).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$N1-H1A\cdots Cl1$	0.92 (2)	2.21 (3)	3.115 (2)	167.7 (19)
$N1-H1B\cdots Cl1^{i}$	0.95 (2)	2.31 (2)	3.1684 (19)	151 (2)

Symmetry code: (i) -x + 1, -y + 2, -z.

Table 4

Hydrogen-bond geometry (Å, $^{\circ}$) for (IV).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1'\cdots Cl1$	0.99(1)	2.07 (2)	3.021 (5)	163 (6)
$N2-H2\cdots Cl2$	0.98 (1)	2.08 (2)	3.052 (5)	169 (6)

Table 5

Hydrogen-bond g	geometry (A,	(\mathbf{v}) for (\mathbf{v}) .		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdots Cl1$	0.85 (3)	2.20 (3)	3.051 (3)	178 (3)

N-H···Cl distances (2.07–2.20 Å, Tables 1, 4 and 5) as well as N-H-Cl angles that are all greater than 163° .

Figure 5

The molecular structure of (V), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

3. Supramolecular features

Molecules of (I) exhibit no π - π interactions, as despite the unsubstituted phenyl rings being aligned when viewed along the *c*-axis direction, the shortest centroid–centroid distance is 7.947 Å [symmetry operation 1 + x, y, z]. Molecules are linked together by C-H··· π interactions; the distance of the centroid of the unsubstituted phenyl ring to the nearest aromatic protons of a substituted aromatic ring are 3.274 and 3.951 Å [Cg1···H4ⁱ = 3.274 Å and Cg1···H5ⁱ = 3.951 Å; Cg1 is the centroid of C9-C14 ring; symmetry code: (i) 1 + x, y, z]. Another C-H··· π interaction exists between the centroid of the difluorinated ring and a phenyl ring proton of a neighbouring molecule [Cg2···H11ⁱⁱ = 2.982 Å; Cg2 is the centroid of the C2-C7 ring; symmetry code: (ii) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$].

Analysis of (II)–(V) reveals that these also exhibit no π – π interactions. Similarly to (I), they do exhibit weak $C-H\cdots\pi$ interactions with distances of 3.244-3.425, 3.427-3.744 and 2.929–3.459 Å for (II), (III) and (IV), respectively. between the nearest ring hydrogen of the difluorinated ring and that of the centroid of the nearest neighbouring phenyl ring. (II) also exhibits a $C-H\cdots\pi$ interaction between the non-fluorinated phenyl rings of neighbouring molecules $[Cg3 \cdots H4^{iii}]$ = 2.969 Å; Cg3 is the centroid of ring C3–C8; symmetry code: (iii) $-x, y - \frac{1}{2}, \frac{1}{2} - z$]. Similarly, (III) has the same interaction $[Cg4\cdots H17^{iv} = 3.785 \text{ Å} \text{ and } Cg4\cdots H18^{iv} = 4.105 \text{ Å}; Cg4 \text{ is the}$ centroid of ring C13–C18; symmetry code: (iv) -x, $y = \frac{1}{2}$, $z = \frac{1}{2}$]. For (IV), the pyrrolidine ring exhibits two sets of $C - H \cdot \cdot \pi$ interactions to the phenyl [Cg5 · · · H17A^v = 3.349 Å and $Cg5 \cdots H18A^{v} = 3.417$ Å; Cg5 is the centroid of ring C27– C32; symmetry code: (v) 1 - x, 2 - y, 1 - z] and diffuorinated rings $[Cg6 \cdots H33A^{vi} = 4.179 \text{ Å and } Cg6 \cdots H33B^{vi} = 4.068 \text{ Å};$ Cg6 is the centroid of ring C27-C32; symmetry code: (vi) 1 - x, 1 - y, 1 - z. For **V**, there is a C-H··· π interaction between a hydrogen atom of the piperidine ring and the pentafluorophenyl ring $[Cg7 \cdots H4A^{vii}] = 2.865$ Å; Cg7 is the centroid of ring C14–C19; symmetry code: (vii) (x) -x, 1 -y, 1-z]. This C-H··· π interaction is the shortest identified of the crystal structures presented. $C-H\cdots\pi$ interactions also exist between the two non-fluorinated phenyl rings of neighbouring molecules $[Cg8 \cdots H12^{viii} = 3.550 \text{ Å and } Cg8 \cdots H11^{viii}]$ = 3.748 Å; Cg8 is the centroid of ring C8–C13; symmetry code: (viii) -x, y, z] and between piperidine ring hydrogen atoms and non-fluorinated phenyl rings $[Cg9 \cdot \cdot \cdot H1B^{ix} = 3.220 \text{ Å} and$ $Cg9 \cdot \cdot \cdot H3B^{ix} = 3.426 \text{ Å}; Cg9 \text{ is the centroid of ring C8-C13};$ symmetry code: (ix) 1 - x, 1 - y, -z].

4. Database survey

A search of the Cambridge Structural Database (version 5.45, update in June 2024; Groom *et al.*; 2016) for phenidine derivatives resulted in four hits. All four hits are 2-methoxphenidine (**1b**) with a variety of solvates, some unknown (REBKOC; Jurásek *et al.*, 2022), and bromo- and chlorozincate ions (REBLOD and REBLIX; Jurásek *et al.*, 2022). Entry FIDHIN (Jurásek *et al.*, 2023) is the hydrochloride salt of the *R*-isomer of **1b** and as such is comparable to (**V**) due to the presence of a piperidine ring. Similar to (**V**), it has $N-H\cdots Cl$ distances of 2.120 and 2.123 Å (two molecules in the asymmetric unit). The piperidine ring is the chair conformation, which is again directly comparable to (**V**). Entry REBKOC, mirrors that of FIDHIN except a chloroform solvent molecule is present in the asymmetric unit. It has an N-H-Cl distance of 2.209 Å and a $Cl_3C-H\cdots A$ distance of 2.387 Å; the presence of this solvent molecule has elongated the distance. The remaining two entries REBLOD and REBLIX (Jurásek *et al.*, 2022) both possess $ZnCl_2Br_4^{2-}$ and $ZnCl_2Br_4^{2-}$ ions in the asymmetric unit cell. Again, the piperidine ring is in the chair conformation for both REBLOD and REBLIX.

5. Synthesis and crystallization

General method for diarylethylamine synthesis

All diphenidine derivatives and analogues were synthesized using an adaptation of the published method (Le Gall et al., 2009). The following modifications were applied to the published method: To zinc dust (2.0 g, 30 mmol) suspended in acetonitrile (40 mL), was added benzyl bromide (0.4 mL, 3.4 mmol) and trifluoroacetic acid (0.2 mL). The resulting solution was stirred for 5 minutes and then benzyl bromide (3.0 mL, 25 mmol), the required amine (0.99 mL, 10 mmol) followed by the pre-requisite benzaldehyde (11 mmol), were introduced to the mixture, and the solution was stirred at room temperature for an additional 1 h. The resulting solution was poured into a saturated aqueous NH₄Cl solution (150 mL) and extracted with dichloromethane (2×100 mL). The combined organic layers were dried (MgSO₄) and concentrated in vacuo to give a crude vellowish oil. The oil was then dissolved in diethyl ether (150 mL) and concentrated sulfuric acid (0.75 mL) was added dropwise to the vigorously stirred solution. After five minutes, the precipitated ammonium salt was filtered, washed with diethyl ether $(2 \times 50 \text{ mL})$ and air dried for 5-10 minutes. The ammonium salt was re-dissolved in aqueous sodium hydroxide (5% w/v, 150 mL) and then extracted with dichloromethane $(2 \times 100 \text{ mL})$. The combined organic fractions were again dried (MgSO₄) and concentrated in vacuo to give a yellow oil. The oil was dissolved in diethyl ether (200 mL), treated with hydrogen chloride (4 M in dioxane, 3.0 mL, 12 mmol) and left to stand for 5 minutes. The crystallized products were filtered and washed sequentially with the minimum amount of ice-cold acetone and if necessary an ice-cold mixture of ethyl acetate-diethyl ether (1:5) to afford the corresponding hydrochloride salts as colourless to off-white powders.

(I) afforded 0.40 g (15%) of a white powder. Colourless crystals suitable for X-ray diffraction were grown from EtOAc/diethyl ether. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.4–7.5 (*m*, 1 H), 7.1–7.2 (*m*, 5 H), 7.0 (*br. s*, 1 H), 6.9 (*br. s*, 1 H), 4.9 (*dd*, *J* = 12.36, 2.75 Hz, 1 H), 4.0 (*dd*, *J* = 12.82, 3.66 Hz, 1 H), 3.6–3.7 (*m*, 1 H), 2.8 (*br. s*, 3 H), 2.7 (*br. s.*, 3 H). ¹³C[¹H] NMR (101 MHz, CD₂Cl₂): δ 162.5 (*dd*, *J* = 251.12, 7.67 Hz, C-F), 135.8, 133.6, 133.5, 133.4, 129.3, 129.1, 127.7, 113.5, 112.7, 107.0, 61.8, 43.0, 38.4, 34.7. ¹⁹F NMR (56 MHz, CD₂Cl₂): δ –111.21

Table 6

Experimental details.

	(I)	(II)	(III)	(IV)	(v)
Crystal data					
Chemical formula	$C_{16}H_{18}F_2N^{+}{\cdot}Cl^{-}$	$2C_{16}H_{18}F_{2}N$ + $\cdot 2Cl^{-}\cdot CH_{2}Cl_{2}$	$C_{18}H_{22}F_2N^+ \cdot Cl^-$	$C_{18}H_{20}F_2N^{+}{\cdot}Cl^{-}$	$C_{19}H_{19}F_5N^{+}\!\cdot\!Cl^{-}$
$M_{\rm r}$	297.76	680.45	325.81	323.80	391.80
Crystal system, space group	Monoclinic, P2 ₁ /c	Monoclinic, I2/a	Monoclinic, $P2_1/c$	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/c$
Temperature (K)	123	123	123	123	123
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.9474 (3), 12.7652 (5), 15.3998 (7)	22.9963 (14), 7.8729 (5), 19.033 (1)	11.3115 (6), 10.5400 (5), 14.8039 (7)	8.1365 (4), 12.7421 (10), 16.0451 (8)	9.3155 (5), 22.2529 (13), 8.2699 (3)
α, β, γ (°)	90, 99.368 (4), 90	90, 92.130 (5), 90	90, 105.044 (5), 90	88.059 (5), 82.349 (4), 86.140 (5)	90, 90.165 (5), 90
$V(\text{\AA}^3)$	1541.48 (11) 4	3443.5 (4) 4	1704.48 (15) 4	1644.42 (17) 4	1714.32 (15) 4
Radiation type	Μο Κα				
$\mu ({\rm mm}^{-1})$	0.26	0.39	0.24	0.25	0.28
Crystal size (mm)	$0.5 \times 0.4 \times 0.2$	$0.3 \times 0.2 \times 0.1$	$0.4 \times 0.2 \times 0.1$	$0.5 \times 0.4 \times 0.3$	$0.2\times0.1\times0.05$
Data collection					
Diffractometer	Oxford Diffraction Xcalibur				
Absorption correction	Analytical (<i>CrysAlis</i> <i>PRO</i> ; Agilent 2014)	Analytical (SADABS; Krause et al., 2015)			
T_{\min}, T_{\max}	0.884, 0.950	0.911, 0.962	0.944, 0.976	0.888, 0.928	0.967, 0.986
No. of measured, inde- pendent and observed $[I > 2\sigma(I)]$ reflections	6424, 2715, 2305	12738, 3034, 2813	7223, 3008, 2343	13277, 5775, 4892	5523, 2896, 2117
R _{int}	0.027	0.021	0.036	0.032	0.049
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.595	0.595	0.595	0.595	0.595
Refinement					
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.040, 0.088, 1.06	0.031, 0.077, 1.07	0.049, 0.095, 1.06	0.090, 0.206, 1.19	0.056, 0.123, 1.01
No. of reflections	2715	3034	3008	5775	2896
No. of parameters	186	224	210	403	239
No. of restraints	1	0	0	2	0
H-atom treatment	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ A^{-3})$	0.20, -0.26	0.25, -0.22	0.22, -0.25	0.59, -0.34	0.30, -0.25

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and X-SEED (Barbour, 2020).

(*br. s*, 2F). FT-IR (ATR, cm⁻¹) 2306[RM1], 1624 (C=O), 1457 (C=C). M.p. = 385–387 K.

(II) afforded 2.24 g (64%) of a white powder. Colourless crystals suitable for X-ray diffraction were grown from DCM/ diethyl ether. ¹H NMR (400 MHz, DMSO- d_6) δ 10.26 (*br. s*, 1H, NH), 9.18 (*br. s*, 1 H, NH), 7.02–7.20 (*m*, 7H, Ar-H), 7.50 (*dd*, 1H, *J* = 11.2, 4.2 Hz, Ar-H), 4.75 (*m*, 1H, NHCHCH₂), 3.65 (*dd*, 1 H, *J* = 12.8, 4.8 Hz, NHCHCH₂), 3.18 (*m*, 1 H, NHCHCH₂), 2.95 (*m*, 2 H, NHCH₂CH₃), 1.28 (*t*, 3 H, *J* = 7.0 Hz, NHCH₂CH₃). ¹⁹F{¹H} NMR (400 MHz, DMSO- d_6) δ –113.68 (*s*, 2F); IR (ATR, cm⁻¹): 2944 (C–H), 2670 (C–H), 1475 (C=C), 1202 (C–F). M.p. = 478 K.

(III) afforded 1.93 g (67%) of a white powder. Colourless crystals suitable for X-ray diffraction were grown from CHCl₃/ diethyl ether. ¹H NMR (400 MHz, DMSO- d_6) δ 10.3 (d, J = 9.16 Hz, 1 H), 8.9 (dd, J = 11.91, 5.04 Hz, 1 H), 7.4–7.5 (m, 1 H), 7.1–7.3 (m, 4 H), 7.0 (dd, J = 7.56, 2.06 Hz, 2 H), 6.9 (s, 1 H), 4.7 (dd, J = 11.68, 4.35 Hz, 1 H), 3.7 (dd, J = 12.82, 4.12 Hz, 1 H), 3.3–3.4 (m, 1 H), 1.4 (s, 9 H). ¹³C{¹H} NMR

(101 MHz, $(CD_3)_2SO$) δ 135.4, 132.2, 132.1, 132.0, 128.7, 128.2, 126.9, 112.5, 112.3, 111.8, 111.6, 111.4, 58.8, 49.4, 38.1, 25.3. ¹⁹F NMR (56 MHz, $(CD_3)_2SO$) δ –109.94 (*br. s*, 1F), –116.79 (*br. s*, 1F). FT-IR (ATR, cm⁻¹) 2612, 1625, 1565, 1467; M.p. = 535–538 K.

(IV) afforded 2.22 g (77%) of a white powder. Colourless crystals suitable for X-ray diffraction were grown from DCM/ diethyl ether. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.4 (*tt*, *J* = 8.47, 6.41 Hz, 1 H), 7.1–7.2 (*m*, 5 H), 7.0 (*br. s.*, 1 H), 6.8 (*br. s.*, 1 H), 4.9 (*dd*, *J* = 12.14, 3.89 Hz, 1 H), 3.9 (*dd*, *J* = 13.28, 4.58 Hz, 2 H), 3.6 (*t*, *J* = 12.59 Hz, 2 H), 2.9 (*br. s.*, 1 H), 2.8 (*br. s.*, 1 H), 2.2 (*br. s.*, 5 H), 1.9 (*br. s.*, 2 H). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 161.6 (*dd*, *J* = 250.16, 7.67 Hz) C–F, 136.0, 133.3, 133.2, 133.1, 129.2, 129.1, 127.6, 113.4, 112.5, 109.0, 108.8, 108.7, 59.9, 50.6, 35.9, 23.4, 23.2. ¹⁹F NMR (56 MHz, CD₂Cl₂) δ –108.10 (*br. s.*, 1F), –114.18 (*br. s.*, 1F). FT-IR (ATR, cm⁻¹) 2352, 1623, 1460. M.p. = 486–488 K.

(V) afforded 1.55 g (52%) of a white powder. Colourless crystals suitable for X-ray diffraction were grown from $CHCl_3/$

diethyl ether. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.11–7.28 (*m*, 5 H), 4.90 (*d*, *J* = 12.36 Hz, 1 H), 4.23 (*dd*, *J* = 12.82, 3.66 Hz, 1 H), 3.80 (*d*, *J* = 11.45 Hz, 1 H), 3.44–3.55 (*m*, 2 H), 2.57–2.70 (*m*, 1 H), 2.48 (*d*, *J* = 9.62 Hz, 1 H), 2.24–2.38 (*m*, 1 H), 1.91 (*t*, *J* = 14.88 Hz, 2 H), 1.80 (*d*, *J* = 13.74 Hz, 1 H), 1.22–1.37 (*m*, 1 H). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 120.9, 115.0, 114.6, 113.5, 91.0, 48.2, 34.5, 19.2, 9.0, 8.9, 8.1. ¹⁹F NMR (56 MHz, CD₂Cl₂) δ –134.86, –139.28, –152.81 (*t*, *J* = 22.4 Hz), –162.69. FT-IR (ATR, cm⁻¹) 2309, 1503, 1459. M.p. = 502–504 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included as riding contributions in idealized positions with isotropic displacement parameters $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$ (1.5 for methyl groups). All structures were solved by direct methods. For (II) the terminal carbon of the ethyl group (C15, C15*A*), is disordered over two positions [0.707 (5):0.293 (5) occupancy]. All non H-atoms were refined anisotropically. The H atoms were placed in calculated positions, except for H1*N*1 (I), H1*A* and H1*B* (II), H1' and H2 (IV) and H2 (V), which were all found. For (V), a DFIX instruction was applied to N1-H1' and N2-H2 (fixed at 0.98 Å).

Acknowledgements

We thank Manchester knowledge and drug exchange (MANDRAKE) for the preparation of the reference compounds, which were produced under Home Office licence (in accordance with Manchester Metropolitan University's Home Office license, Ref. No. 423023) requirements and agreed procedures.

References

- Agilent (2014). CrysAlis PRO., Agilent Technologies, Yarnton, England.
- Barbour, L. J. (2020). J. Appl. Cryst. 53, 1141-1146.
- Elliott, S. P., Brandt, S. D., Wallach, J., Morris, H. & Kavanagh, P. V. (2015). J. Anal. Toxicol. **39**, 287–293.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hasegawa, K., Wurita, A., Minakata, K., Gonmori, K., Nozawa, H., Yamagishi, I., Watanabe, K. & Suzuki, O. (2015). *Forensic Toxicol.* **33**, 380-387, doi: 10.1007/s11419-015-0272-y.
- Helander, A., Beck, O. & Bäckberg, M. (2015). *Clin. Toxicol.* **53**, 446–453.
- Hofer, K. E., Degrandi, C., Müller, D. M., Zürrer-Härdi, U., Wahl, S., Rauber-Lüthy, C. & Ceschi, A. (2014). *Clin. Toxicol.* **52**, 1288–1291.

- Jurásek, B., Fagan, P., Dolenský, B., Paškanová, N., Dobšíková, K., Raich, I., Jurok, R., Setnička, V., Kohout, M., Čejka, J. & Kuchař, M. (2023). New J. Chem. 47, 4543–4551.
- Jurásek, B., Rimpelová, S., Babor, M., Čejka, J., Bartůněk, V. & Kuchař, M. (2022). Int. J. Mol. Sci. 23, 2083.
- King, L. A. (2013). Novel Psychoactive Substances, edited by P. I. Dargan and D. M. Wood, pp. 3-27. Academic Press, Boston: Academic Press. doi: 10.1016/B978-0-12-415816-0.00001-8.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Kudo, K., Usumoto, Y., Kikura-Hanajiri, R., Sameshima, N., Tsuji, A. & Ikeda, N. (2015). *Leg. Med.* 17, 421–426.
- Le Gall, E., Haurena, C., Sengmany, S., Martens, T. & Troupel, M. (2009). J. Org. Chem. 74, 7970–7973.
- McLaughlin, G., Morris, N., Kavanagh, P. V., Power, J. D., O'Brien, J., Talbot, B., Elliott, S. P., Wallach, J., Hoang, K., Morris, H. & Brandt, S. D. (2016). Drug Test. Anal. 8, 98–109.
- Minakata, K., Yamagishi, I., Nozawa, H., Hasegawa, K., Gonmori, K., Suzuki, M., Wurita, A., Suzuki, O. & Watanabe, K. (2016). *Forensic Toxicol.* **34**, 151–157.
- Morris, H. & Wallach, J. (2014). Drug Test. Anal. 6, 614-632.
- Odoardi, S., Romolo, F. S. & Strano-Rossi, S. (2016). *Forensic Sci. Int.* **265**, 116–120.
- Reuter, P. & Pardo, B. (2017). Addiction, 112, 25-31.
- Sahai, M. A., Davidson, C. N., Dutta, C. & Opacka-Juffry, J. (2018). *Brain Sci.* pp. 8.
- Shafi A., Berry, A. J., Sumnall, H., Wood, D. M. & Tracy, D. K. (2020). *Ther. Adv. Psychopharmacol*, **10**, 2045125320967197. https:// doi.org/10.1177/2045125320967197.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Strano Rossi, S., Odoardi, S., Gregori, A., Peluso, G., Ripani, L., Ortar, G., Serpelloni, G. & Romolo, F. S. (2014). *Rapid Commun. Mass Spectrom.* 28, 1904–1916.
- Tettey, J. N. A., Crean, C., Ifeagwu, S. C. & Raithelhuber, M. (2018). New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology, edited by H. H. Maurer & S. D. Brandt. pp. 51–67. Cham: Springer International Publishing. https://doi.org/ 10.1007/164_2018_127
- UNODC (2021). Resolution adopted by the Commission on 14th April 2021 – Inclusion of diphenidine in Schedule II of the Convention on Psychotropic Substances of 1971. Decision 64/6., 2021, https://www.unodcorg/documents/commissions/CND/ Drug_Resolutions/2020-2029/2021/decision_64_6.pdf
- UNODC (2024). The Challenge of New Psychoactive Substances A Technical Update. A Report from the Global *SMART* programme (Laboratory and Scientific Section), https://www.unodc.org/unodc/ en/scientists/the-challenge-of-new-psychoactive-substances.html
- Wallach, J., Kang, H., Colestock, T., Morris, H., Bortolotto, Z. A., Collingridge, G. L., Lodge, D., Halberstadt, A. L., Brandt, S. D. & Adejare, A. (2016). *PLoS One*, **11**, e0157021.
- Wallach, J., Kavanagh, P. V., McLaughlin, G., Morris, N., Power, J. D., Elliott, S. P., Mercier, M. S., Lodge, D., Morris, H., Dempster, N. M. & Brandt, S. D. (2015). *Drug Test. Anal.* 7, 358–367.
- Wurita, A., Hasegawa, K., Minakata, K., Watanabe, K. & Suzuki, O. (2014). Forensic Toxicol. 32, 331–337.

Acta Cryst. (2025). E81 [https://doi.org/10.1107/S2056989025001288]

Synthesis and crystal structures of five fluorinated diphenidine derivatives

Ryan E. Mewis, Matthew C. Hulme, Jack Marron, Stuart K. Langley, Oliver B. Sutcliffe and Sophie L. Benjamin

Computing details

1-[1-(2,3,4,5,6-Pentafluorophenyl)-2-phenylethyl]piperidin-1-ium chloride (V)

Crystal data

 $C_{19}H_{19}F_5N^+ \cdot Cl^ M_r = 391.80$ Monoclinic, $P2_1/c$ a = 9.3155 (5) Å b = 22.2529 (13) Å c = 8.2699 (3) Å $\beta = 90.165$ (5)° V = 1714.32 (15) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer Radiation source: fine-focus sealed tube scans in phi and ω Absorption correction: analytical (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.967, T_{\max} = 0.986$ 5523 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.123$ S = 1.012896 reflections 239 parameters 0 restraints

F(000) = 808 $D_x = 1.518 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9843 reflections $\theta = 3.0-26.5^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$ T = 123 KBlock, colourless $0.2 \times 0.1 \times 0.05 \text{ mm}$

2896 independent reflections 2117 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -10 \rightarrow 11$ $k = -18 \rightarrow 26$ $l = -8 \rightarrow 9$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0452P)^2 + 0.3121P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.25 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

x y z L_{un}^{un}/L_{un}^{un} C11 0.24269 (9) 0.51019 (4) 0.68922 (9) 0.0315 (2) F1 0.07331 (19) 0.42667 (8) 0.0555 (2) 0.0327 (5) F5 0.31205 (19) 0.36912 (8) 0.53597 (19) 0.0307 (5) F4 0.1190 (2) 0.26613 (9) 0.3625 (2) 0.0494 (5) F3 -0.0977 (2) 0.26613 (9) 0.3255 (2) 0.0492 (6) C14 0.1989 (3) 0.40279 (14) 0.42497 (4) 0.02218 (7) C6 0.3167 (3) 0.4932 (13) 0.2723 (3) 0.0218 (7) C6 0.3167 (3) 0.4932 (13) 0.2723 (3) 0.0218 (7) C6 0.3167 (3) 0.53480 (14) 0.2445 (4) 0.0226 (8) H5A 0.055204 0.260780 0.031* C4 0.0922 (3) 0.5416 (15) 0.3182 (4) 0.0326 (8) H4B 0.003969 0.609188 0.244765 0.037* H4B 0.003969 0.609188 0.62476 (5) 0.037* </th <th></th> <th></th> <th></th> <th></th> <th>TT +/TT</th> <th></th>					TT +/TT	
C11 0.24269 (9) 0.51019 (4) 0.68922 (9) 0.0315 (2)F1 0.07311 (19) 0.36912 (8) 0.5555 (2) 0.0327 (5)F2 0.1190 (2) 0.28212 (8) 0.5851 (2) 0.0404 (5)F2 -0.01166 (2) 0.33964 (10) 0.1010 (2) 0.0474 (6)F3 -0.0977 (2) 0.26613 (9) 0.3625 (2) 0.0492 (6)C14 0.1989 (3) 0.40279 (14) 0.2966 (3) 0.0218 (7)C18 0.1081 (4) 0.31807 (14) 0.2496 (4) 0.02218 (7)H6 0.395738 0.44932 (13) 0.2723 (3) 0.0215 (7)H6 0.395538 0.438117 0.348882 $0.026*$ C5 0.1354 (3) 0.53669 (14) 0.2445 (4) 0.0256 (8)H5A 0.055024 0.505280 0.260780 $0.031*$ C4 0.0922 (3) 0.59416 (15) 0.3182 (4) 0.0308 (8)H4A 0.070518 0.588238 0.34277 $0.037*$ C8 0.4205 (3) 0.3395 (14) 0.0529 (3) 0.0246 (8)C1 0.3883 (3) 0.55697 (14) 0.3002 (4) 0.0227 (7)C10 0.5654 (4) 0.274303 0.183476 $0.032*$ H18 0.407412 0.562601 0.18476 $0.032*$ C110 0.5654 (4) 0.29493 (5) 0.02946 (8)C2 0.3466 (3) 0.36364 (14) 0.4273 (3) 0.0229 (7)C10 0.5654 (4) 0.29493 (5) 0.03444 0.0327		x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
F1 $0.07331 (19)$ $0.4267 (8)$ $0.0555 (2)$ $0.0327 (5)$ F5 $0.31205 (19)$ $0.23212 (8)$ $0.53597 (19)$ $0.0307 (5)$ F4 $0.1190 (2)$ $0.28212 (8)$ $0.53597 (10)$ $0.0404 (5)$ F2 $-0.0977 (2)$ $0.26613 (9)$ $0.3625 (2)$ $0.0492 (6)$ C14 $0.1989 (3)$ $0.40279 (14)$ $0.2969 (3)$ $0.0218 (7)$ C18 $0.1081 (4)$ $0.31807 (14)$ $0.4497 (4)$ $0.0281 (8)$ C6 $0.3167 (3)$ $0.4492 (13)$ $0.2723 (3)$ $0.0215 (7)$ H6 0.395538 0.438117 0.34882 $0.026*$ C5 $0.1334 (3)$ $0.53469 (14)$ $0.2457 (6)$ $0.031*$ H5N 0.148162 0.50280 0.240780 $0.031*$ H5N 0.148162 0.50280 $0.2467 (6)$ $0.031*$ H4B $0.00926 (3)$ $0.5395 (14)$ $0.1267 (6)$ $0.031*$ H4B 0.009969 0.609188 0.247465 $0.037*$ H4B $0.00396 (3)$ $0.35897 (14)$ $0.3002 (4)$ $0.0267 (8)$ H1A 0.47022 0.541589 0.351631 $0.032*$ C14 $0.3883 (3)$ $0.55697 (14)$ $0.3002 (4)$ $0.0226 (8)$ C15 $0.3883 (3)$ $0.55697 (14)$ $0.3002 (4)$ $0.0226 (8)$ C14 $0.3883 (3)$ $0.3654 (14)$ $0.4273 (3)$ $0.032*$ C15 $0.36346 (3)$ $0.13846 (3)$ 0.0324 C16 $-0.0118 (4)$ $0.3274 (3)$ $0.0326 (8)$ C17 0	C11	0.24269 (9)	0.51019 (4)	0.68922 (9)	0.0315 (2)	
F5 $0.31205 (19)$ $0.36912 (8)$ $0.53597 (19)$ $0.0337 (5)$ F4 $0.1190 (2)$ $0.28212 (8)$ $0.5801 (2)$ $0.0404 (5)$ F2 $-0.0166 (2)$ $0.33964 (10)$ $0.1010 (2)$ $0.0474 (6)$ F3 $-0.0977 (2)$ $0.26613 (9)$ $0.3625 (2)$ $0.0492 (6)$ C14 $0.1989 (3)$ $0.4229 (14)$ $0.2696 (3)$ $0.0218 (7)$ C18 $0.1081 (4)$ $0.31807 (14)$ $0.4497 (4)$ $0.0281 (8)$ C6 $0.3167 (3)$ $0.44932 (13)$ $0.2723 (3)$ $0.0216 (7)$ H6 0.395538 0.438117 0.34882 $0.026*$ C5 $0.1334 (3)$ $0.53469 (14)$ $0.2467 (6)$ $0.31*$ H5 0.148162 0.539641 0.126760 $0.31*$ C4 $0.0922 (3)$ $0.59416 (15)$ $0.3182 (4)$ $0.0308 (8)$ H4A 0.070518 0.58238 0.424775 $0.037*$ C8 $0.4205 (3)$ $0.38395 (14)$ $0.629 (3)$ $0.0246 (8)$ C1 $0.3383 (3)$ $0.55697 (14)$ $0.3002 (4)$ 0.0267 C18 $0.4205 (3)$ $0.36564 (14)$ $0.4273 (3)$ $0.0229 (7)$ C19 $0.2066 (3)$ $0.36564 (14)$ $0.4273 (3)$ $0.0229 (7)$ C10 $0.5654 (4)$ $0.2949 (15)$ $0.3846 (4)$ 0.3318 C19 $0.2066 (3)$ $0.36564 (14)$ $0.4273 (3)$ $0.0229 (7)$ C10 $0.5654 (4)$ $0.2949 (15)$ $0.3846 (16)$ 0.338 C110 $0.5654 (4)$ $0.2949 (15)$ $0.3846 $	F1	0.07331 (19)	0.42667 (8)	0.0555 (2)	0.0327 (5)	
F4 $0.1190(2)$ $0.28212(8)$ $0.5801(2)$ $0.0474(5)$ F2 $-0.1166(2)$ $0.33964(10)$ $0.1010(2)$ $0.0474(6)$ F3 $-0.0977(2)$ $0.26613(9)$ $0.3625(2)$ $0.0492(6)$ C14 $0.1989(3)$ $0.40279(14)$ $0.2969(3)$ $0.0218(7)$ C18 $0.1081(4)$ $0.31807(14)$ $0.4497(4)$ $0.0281(8)$ C6 $0.3167(3)$ $0.44932(13)$ $0.2723(3)$ $0.0215(7)$ H6 0.395538 0.438117 0.348882 $0.0256(8)$ H5A 0.055024 0.505280 0.260780 $0.031*$ H5B 0.148162 0.539641 0.126760 $0.31*$ H4B 0.003969 0.609188 0.244765 $0.037*$ H4B 0.003969 0.609188 0.244765 $0.037*$ H4B 0.039369 0.609188 0.244765 $0.037*$ H4B 0.039369 0.609188 0.244765 $0.037*$ H4B 0.039369 $0.55697(14)$ $0.3002(4)$ $0.0226(8)$ C1 $0.3883(3)$ $0.55697(14)$ $0.3002(4)$ $0.0226(8)$ H1A 0.477032 0.541589 0.351631 $0.032*$ C19 $0.2066(3)$ $0.36364(14)$ $0.4273(3)$ $0.0229(7)$ C10 $0.5564(4)$ $0.29493(15)$ $0.849(4)$ $0.0320(8)$ H1B 0.407412 0.562601 0.183476 $0.038*$ C19 $0.2066(3)$ $0.3616(39(15))$ $0.3748(4)$ $0.0228(8)$ H10 0.64115 0.274303 <td>F5</td> <td>0.31205 (19)</td> <td>0.36912 (8)</td> <td>0.53597 (19)</td> <td>0.0307 (5)</td> <td></td>	F5	0.31205 (19)	0.36912 (8)	0.53597 (19)	0.0307 (5)	
$F2$ $-0.1166 (2)$ $0.33964 (10)$ $0.1010 (2)$ $0.04474 (6)$ $F3$ $-0.0977 (2)$ $0.26613 (9)$ $0.3625 (2)$ $0.0492 (6)$ $C14$ $0.1989 (3)$ $0.40279 (14)$ $0.2969 (3)$ $0.0218 (7)$ $C18$ $0.1081 (4)$ $0.31807 (14)$ $0.4497 (4)$ $0.0221 (7)$ $H6$ 0.395538 0.443817 0.348882 0.026^{*} $C5$ $0.1334 (3)$ $0.53469 (14)$ $0.2445 (4)$ $0.0226 (8)$ $H5A$ 0.055024 0.505280 0.260780 0.31^{*} $H5B$ 0.148162 0.539641 0.126760 0.031^{*} $C4$ $0.0222 (3)$ $0.59416 (15)$ $0.3182 (4)$ $0.0308 (8)$ $H4A$ 0.07518 0.588238 0.434277 0.037^{*} $H4B$ 0.003969 0.609188 0.264765 0.037^{*} $C1$ $0.3833 (3)$ $0.55697 (14)$ $0.302 (4)$ $0.0226 (8)$ $H1A$ 0.477032 0.541589 0.351631 0.032^{*} $H1A$ 0.477032 0.541589 0.351631 0.032^{*} $H1B$ 0.407412 0.562601 0.183476 0.032^{*} $H1B$ 0.407412 0.562601 0.183476 0.0324^{*} $H1B$ 0.47742 0.562601 0.183476 0.0324^{*} $H1B$ 0.47742 0.562601 0.183476 0.0324^{*} $H1B$ 0.47742 0.562601 0.183476 0.0324^{*} $H1B$ 0.477132 0.514733 $0.0228 (8)$ <td>F4</td> <td>0.1190 (2)</td> <td>0.28212 (8)</td> <td>0.5801 (2)</td> <td>0.0404 (5)</td> <td></td>	F4	0.1190 (2)	0.28212 (8)	0.5801 (2)	0.0404 (5)	
F3 $-0.0977(2)$ $0.26613(9)$ $0.3625(2)$ $0.0422(6)$ C14 $0.1989(3)$ $0.40279(14)$ $0.2969(3)$ $0.0218(7)$ C18 $0.1081(4)$ $0.31807(14)$ $0.2497(4)$ $0.0281(8)$ C6 $0.3167(3)$ $0.44932(13)$ $0.2723(3)$ $0.0215(7)$ H6 0.395538 $0.44932(13)$ $0.2723(3)$ $0.0215(7)$ H6 0.395538 $0.44931(1)$ $0.2445(4)$ $0.0256(8)$ L5 $0.1334(3)$ $0.53469(14)$ $0.2445(4)$ $0.0226(8)$ H5B 0.148162 0.59641 0.126760 $0.031*$ L64 $0.0922(3)$ $0.59416(15)$ $0.3182(4)$ $0.0308(8)$ H4A 0.070518 0.588238 0.434277 $0.037*$ H4B 0.003969 0.609188 0.264765 $0.37*$ L78 $0.4205(3)$ $0.33395(14)$ $0.0529(3)$ $0.0246(8)$ C1 $0.3883(3)$ $0.55697(14)$ $0.3002(4)$ $0.0227(8)$ H1A 0.477022 0.541589 0.351631 $0.032*$ H1B 0.407412 0.562001 0.183476 $0.032*$ C19 $0.2066(3)$ $0.36364(14)$ $0.4273(3)$ $0.0229(7)$ C10 $0.5654(4)$ $0.29493(15)$ 0.34814 $0.0310(8)$ C2 $0.3486(3)$ $0.61639(15)$ $0.3748(4)$ $0.0326(8)$ L70 $0.544(4)$ $0.29493(15)$ $0.3748(4)$ 0.0324 L82 0.336184 0.611273 0.492819 $0.0344*$ L92 $0.3486(3)$ 0	F2	-0.1166 (2)	0.33964 (10)	0.1010 (2)	0.0474 (6)	
C140.1989 (3)0.40279 (14)0.2969 (3)0.0218 (7)C180.1081 (4)0.31807 (14)0.4497 (4)0.0281 (8)C60.3167 (3)0.44932 (13)0.2723 (3)0.0215 (7)H60.3955380.4381170.3488820.026*C50.1334 (3)0.53469 (14)0.2445 (4)0.0256 (8)H5A0.0550240.5052800.2607800.031*C40.0250240.59416 (15)0.3182 (4)0.0308 (8)H4A0.0705180.5882380.4342770.037*H4B0.0039690.6091880.2647650.37*C80.4205 (3)0.38395 (14)0.0529 (3)0.0246 (8)C10.3883 (3)0.55697 (14)0.3002 (4)0.0227 (8)H1A0.4770320.5415890.3516310.032*C190.2666 (3)0.36364 (14)0.4273 (3)0.0229 (7)C100.5654 (4)0.29493 (15)0.849 (4)0.0320 (8)H1A0.477120.5626010.1385040.0318C16-0.0118 (4)0.34743 (16)0.2098 (4)0.0310 (8)C20.3486 (3)0.61639 (15)0.3748 (4)0.0220 (7)C100.56540.3571030.034*H2A0.4272500.6455490.3571030.034*H2A0.427500.6455490.3571030.0248 (6)C70.3833 (3)0.44745 (14)0.1024 (3)0.0258 (8)H7A0.3146390.446620.0234080.031*	F3	-0.0977 (2)	0.26613 (9)	0.3625 (2)	0.0492 (6)	
C180.1081 (4)0.31807 (14)0.4497 (4)0.0218 (8)C60.3167 (3)0.44932 (13)0.2723 (3)0.0215 (7)H60.3955380.4381170.3488820.026*C50.1334 (3)0.53469 (14)0.2445 (4)0.0256 (8)H5A0.050240.5052800.2607800.031*C40.9922 (3)0.59461 (15)0.3182 (4)0.0308 (8)H4A0.0795180.5882380.4342770.037*C80.4205 (3)0.38395 (14)0.529 (3)0.0246 (8)C10.3883 (3)0.55697 (14)0.3002 (4)0.0267 (8)H1A0.4770320.5415890.3516310.032*C190.2666 (3)0.36364 (14)0.4273 (3)0.0229 (7)C100.5654 (1)0.2743030.1385040.038*C16-0.0118 (4)0.3473 (16)0.2098 (4)0.010 (8)C120.3486 (3)0.61639 (15)0.3748 (4)0.0226 (8)H2A0.422500.6455490.3571030.034*H2B0.3361840.6112730.4928190.034*N10.2689 (3)0.51174 (11)0.216 (3)0.0228 (8)H7A0.314330.39271 (14)0.1886 (3)0.0223 (9)C150.0873 (3)0.3271 (14)0.1886 (3)0.0223 (9)C160.0137 (4)0.3099 (15)0.3412 (4)0.0323 (9)C17-0.0007 (4)0.3099 (15)0.3412 (4)0.0323 (9)C180.4712390.464620.03	C14	0.1989 (3)	0.40279 (14)	0.2969 (3)	0.0218 (7)	
C6 $0.3167 (3)$ $0.44932 (13)$ $0.2723 (3)$ $0.0215 (7)$ H6 0.395538 0.438117 0.348882 0.0226^* C5 $0.1334 (3)$ $0.53469 (14)$ $0.2445 (4)$ $0.0226 (8)$ H5A 0.055024 0.505280 0.260780 0.031^* H5B 0.148162 0.539641 0.126760 0.031^* C4 $0.0922 (3)$ $0.59416 (15)$ $0.3182 (4)$ $0.0308 (8)$ H4A 0.070518 0.588238 0.434277 0.037^* C8 $0.4205 (3)$ $0.38395 (14)$ $0.0529 (3)$ $0.0246 (8)$ C1 $0.3883 (3)$ $0.55697 (14)$ $0.3002 (4)$ $0.0267 (8)$ H1A 0.47032 0.541589 0.351631 0.032^* C19 $0.2666 (3)$ $0.36364 (14)$ $0.4273 (3)$ $0.0229 (7)$ C10 $0.5654 (4)$ $0.29493 (15)$ $0.849 (4)$ $0.0320 (8)$ H1B 0.407412 0.562601 0.813743 0.038^* C16 $-0.0118 (4)$ $0.34743 (16)$ $0.2098 (4)$ $0.0310 (8)$ C2 $0.3486 (3)$ $0.61639 (15)$ $0.3748 (4)$ $0.0286 (8)$ H2B 0.336144 0.611273 0.492819 0.034^* N1 $0.2689 (3)$ $0.51174 (11)$ $0.3216 (3)$ $0.0228 (6)$ C7 $0.3333 (3)$ $0.44745 (14)$ $0.1024 (3)$ $0.0258 (8)$ H7A 0.314639 0.464662 0.023408 0.031^* C15 $0.873 (3)$ $0.39271 (14)$ $0.188 (3)$ $0.0228 (8)$ <	C18	0.1081 (4)	0.31807 (14)	0.4497 (4)	0.0281 (8)	
H6 0.395538 0.438117 0.34882 0.026^{*} C5 0.1334 (3) 0.53469 (14) 0.2445 (4) 0.0256 (8)H5A 0.05524 0.505280 0.260780 0.031^{*} H5B 0.148162 0.539641 0.126760 0.031^{*} C4 0.0922 (3) 0.59416 (15) 0.3182 (4) 0.0308 (8)H4A 0.070518 0.588238 0.434277 0.037^{*} C8 0.4205 (3) 0.38395 (14) 0.6529 (3) 0.0246 (8)C1 0.3883 (3) 0.55697 (14) 0.3002 (4) 0.02267 (8)H1A 0.477032 0.541589 0.351631 0.032^{*} C10 0.58833 0.55697 (14) 0.3002 (4) 0.0320 (8)H1B 0.407412 0.562601 0.183476 0.032^{*} C19 0.2066 (3) 0.36364 (14) 0.4273 (3) 0.0229 (7)C10 0.5654 (4) 0.29493 (15) 0.318504 0.038^{*} C16 -0.0118 (4) 0.34743 (16) 0.2098 (4) 0.0310 (8)C2 0.3486 (3) 0.611273 0.492819 0.034^{*} H2B 0.336184 0.611273 0.492819 0.034^{*} N1 0.2689 (3) 0.51174 (11) 0.3216 (3) 0.0228 (6)C7 0.3333 (3) 0.44745 (14) 0.0327 (9)C12 0.37115 0.277949 -0.19197 0.031^{*} C13 0.42866 0.678299 0.358033 0.038^{*} C14 0	C6	0.3167 (3)	0.44932 (13)	0.2723 (3)	0.0215 (7)	
C5 $0.1334 (3)$ $0.53469 (14)$ $0.2445 (4)$ $0.0236 (8)$ H5A 0.055024 0.505280 0.260780 $0.031*$ H5B 0.148162 0.539641 0.126760 $0.031*$ C4 $0.0922 (3)$ $0.59416 (15)$ $0.3182 (4)$ $0.0308 (8)$ H4A 0.070518 0.588238 0.434277 $0.037*$ C8 $0.4205 (3)$ $0.38395 (14)$ $0.0529 (3)$ $0.0246 (8)$ C1 $0.3883 (3)$ $0.55697 (14)$ $0.302 (4)$ $0.0267 (8)$ H1A 0.477032 0.541589 0.351631 $0.0229 (7)$ C19 $0.2066 (3)$ $0.36364 (14)$ $0.4273 (3)$ $0.0229 (7)$ C10 $0.5654 (4)$ $0.29493 (15)$ $0.849 (4)$ $0.0310 (8)$ C2 $0.348 (3)$ $0.61639 (15)$ $0.3748 (4)$ $0.0320 (8)$ H10 0.64115 0.274303 0.138504 $0.0328 (8)$ C16 $-0.0118 (4)$ $0.34743 (16)$ $0.2098 (4)$ $0.0310 (8)$ C2 $0.348 (3)$ $0.61539 (15)$ $0.3748 (4)$ $0.0286 (8)$ H2A 0.327250 0.645549 0.357103 $0.0248 (8)$ N1 $0.2689 (3)$ $0.51174 (11)$ $0.3216 (3)$ $0.0228 (8)$ C17 0.03314 $0.0327 (9)$ 0.0314^* H7B 0.472407 0.101079 0.031^* C18 0.337115 0.277949 0.19197 0.039^* C19 0.237115 0.277949 $0.0316 (4)$ $0.0327 (9)$ H12 0.327115 0.26	H6	0.395538	0.438117	0.348882	0.026*	
H5A 0.058024 0.508200 0.260780 0.031* H5B 0.148162 0.539641 0.126760 0.031* C4 0.0922 (3) 0.59416 (15) 0.3182 (4) 0.0308 (8) H4A 0.070518 0.588238 0.434277 0.037* C8 0.4205 (3) 0.38395 (14) 0.529 (3) 0.0246 (8) C1 0.3883 (3) 0.55697 (14) 0.3002 (4) 0.0267 (8) H1A 0.477032 0.541589 0.351631 0.032* C19 0.2066 (3) 0.36364 (14) 0.4273 (3) 0.0229 (7) C10 0.5654 (4) 0.29493 (15) 0.0849 (4) 0.0320 (8) H10 0.641115 0.274303 0.138504 0.038* C16 -0.0118 (4) 0.34743 (16) 0.0208 (4) 0.0310 (8) C2 0.3486 (3) 0.51174 (11) 0.3216 (3) 0.034* H2A 0.427250 0.645549 0.357103 0.034* H2B 0.336184 0.611273 0.492819 0.	C5	0.1334 (3)	0.53469 (14)	0.2445 (4)	0.0256 (8)	
H5B 0.148162 0.539641 0.126760 0.031* C4 0.0922 (3) 0.59416 (15) 0.3182 (4) 0.0308 (8) H4A 0.070518 0.588238 0.434277 0.037* H4B 0.003969 0.609188 0.264765 0.037* C8 0.4205 (3) 0.38395 (14) 0.3022 (3) 0.0246 (8) C1 0.3883 (3) 0.55697 (14) 0.3002 (4) 0.0267 (8) H1A 0.477032 0.541589 0.351631 0.032* H1B 0.407412 0.562601 0.18476 0.032* C19 0.2066 (3) 0.36364 (14) 0.4273 (3) 0.0229 (7) C10 0.5654 (4) 0.29430 (5) 0.0849 (4) 0.0310 (8) C2 0.3486 (3) 0.61639 (15) 0.3748 (4) 0.0286 (8) H2A 0.427250 0.645549 0.357103 0.034* N1 0.2689 (3) 0.51174 (11) 0.3216 (3) 0.0228 (8) C7 0.3833 (3) 0.444662 0.023408	H5A	0.055024	0.505280	0.260780	0.031*	
C4 0.0922 (3) 0.59416 (15) 0.3182 (4) 0.0308 (8)H4A 0.070518 0.588238 0.434277 $0.037*$ C8 0.4205 (3) 0.38395 (14) 0.0529 (3) 0.0246 (8)C1 0.3883 (3) 0.55697 (14) 0.3002 (4) 0.0267 (8)H1A 0.477032 0.541589 0.351631 $0.032*$ C19 0.2066 (3) 0.36364 (14) 0.4273 (3) 0.0229 (7)C10 0.5654 (4) 0.29493 (15) 0.0849 (4) 0.0320 (8)H10 0.641115 0.27303 0.138504 $0.038*$ C16 -0.0118 (4) 0.34743 (16) 0.2098 (4) 0.0310 (8)C2 0.3486 (3) 0.61639 (15) 0.3748 (4) 0.0286 (8)H2B 0.336184 0.611273 0.492819 $0.034*$ H2B 0.336184 0.611273 0.492819 $0.031*$ C15 0.0873 (3) 0.44745 (14) 0.1024 (3) 0.0258 (8)H7A 0.314639 0.44745 (14) 0.1024 (3) 0.0258 (8)C17 -0.007 (4) 0.3090 (15) 0.3412 (4) 0.0327 (9)C18 0.9371 (4) 0.29713 (16) -0.1148 (4) 0.0327 (9)C19 0.237115 0.27949 -0.199197 $0.039*$ C3 0.2103 (4) 0.6676 (15) -0.06540 $0.038*$ C14 0.4883 (4) 0.26676 (15) -0.06540 $0.038*$ C15 0.03714 0.226484 -0.055800 $0.038*$ <	H5B	0.148162	0.539641	0.126760	0.031*	
H4A 0.070518 0.588238 0.434277 0.037* H4B 0.003969 0.609188 0.264765 0.037* C8 0.4205 (3) 0.38395 (14) 0.0529 (3) 0.0246 (8) C1 0.3883 (3) 0.55697 (14) 0.3002 (4) 0.0267 (8) H1A 0.477032 0.541589 0.351631 0.032* C19 0.2066 (3) 0.36364 (14) 0.4273 (3) 0.0229 (7) C10 0.5654 (4) 0.29493 (15) 0.849 (4) 0.0320 (8) H10 0.641115 0.274303 0.138504 0.038* C16 -0.0118 (4) 0.34743 (16) 0.2098 (4) 0.0310 (8) C2 0.3486 (3) 0.61639 (15) 0.3748 (4) 0.0228 (8) H2A 0.427250 0.645549 0.357103 0.034* H2B 0.336184 0.611273 0.492819 0.031* N1 0.2689 (3) 0.51174 (11) 0.3216 (3) 0.0228 (8) H7A 0.314639 0.46462 0.023408 0.031* C15 0.873 (3) 0.39271 (14) 0.1886 (3)	C4	0.0922 (3)	0.59416 (15)	0.3182 (4)	0.0308 (8)	
H4B 0.003969 0.609188 0.264765 0.037* C8 0.4205 (3) 0.38395 (14) 0.0529 (3) 0.0246 (8) C1 0.3883 (3) 0.55697 (14) 0.3002 (4) 0.0267 (8) H1A 0.477032 0.541589 0.351631 0.032* C19 0.2066 (3) 0.36364 (14) 0.4273 (3) 0.0229 (7) C10 0.5654 (4) 0.29493 (15) 0.0849 (4) 0.0320 (8) H10 0.641115 0.274303 0.138504 0.0310 (8) C16 -0.0118 (4) 0.34743 (16) 0.2098 (4) 0.0310 (8) C22 0.3486 (3) 0.61639 (15) 0.3748 (4) 0.0228 (8) H2A 0.427250 0.645549 0.357103 0.034* H2B 0.3316184 0.611273 0.492819 0.0328 (8) N1 0.2689 (3) 0.51174 (11) 0.3216 (3) 0.0258 (8) H7A 0.314639 0.464662 0.023408 0.031* C15 0.873 (3) 0.39271 (14) 0.1886 (3) 0.0224 (8) C17 -0.0007 (4) 0.30990 (15)	H4A	0.070518	0.588238	0.434277	0.037*	
C8 0.4205 (3) 0.38395 (14) 0.0529 (3) 0.0246 (8) C1 0.3883 (3) 0.55697 (14) 0.3002 (4) 0.0267 (8) H1A 0.477032 0.541589 0.351631 0.032* C19 0.2066 (3) 0.36364 (14) 0.4273 (3) 0.0229 (7) C10 0.5554 (4) 0.29493 (15) 0.0849 (4) 0.0320 (8) H10 0.641115 0.274303 0.138504 0.038* C16 -0.0118 (4) 0.34743 (16) 0.2098 (4) 0.0310 (8) C2 0.3486 (3) 0.61639 (15) 0.3748 (4) 0.0286 (8) H2A 0.427250 0.645549 0.357103 0.034* N1 0.2689 (3) 0.51174 (11) 0.3216 (3) 0.0228 (8) H7A 0.314639 0.464662 0.023408 0.031* H7B 0.471239 0.472407 0.10179 0.031* C17 -0.0007 (4) 0.39901 (15) 0.3412 (4) 0.0323 (9) C12 0.3714 0.492819 0.038*	H4B	0.003969	0.609188	0.264765	0.037*	
C1 0.3883 (3) 0.55697 (14) 0.3002 (4) 0.0267 (8) H1A 0.477032 0.541589 0.351631 0.032* H1B 0.407412 0.566201 0.183476 0.032* C19 0.2066 (3) 0.36364 (14) 0.4273 (3) 0.0229 (7) C10 0.5654 (4) 0.29493 (15) 0.0849 (4) 0.0310 (8) C16 -0.0118 (4) 0.34743 (16) 0.2098 (4) 0.0310 (8) C2 0.3486 (3) 0.61639 (15) 0.3748 (4) 0.0286 (8) H2A 0.427250 0.645549 0.357103 0.034* K1B 0.2689 (3) 0.51174 (11) 0.3216 (3) 0.0228 (6) C7 0.3833 (3) 0.44745 (14) 0.1024 (3) 0.0258 (8) H7A 0.314639 0.464662 0.023408 0.031* C15 0.0873 (3) 0.39271 (14) 0.186 (3) 0.0242 (8) C17 -0.0007 (4) 0.30990 (15) 0.341 (4) 0.0323 (9) C12 0.3791 (4) 0.29713 (16)	C8	0.4205 (3)	0.38395 (14)	0.0529 (3)	0.0246 (8)	
H1A 0.477032 0.541589 0.351631 0.032* H1B 0.407412 0.562601 0.183476 0.032* C19 0.2066 (3) 0.36364 (14) 0.4273 (3) 0.0229 (7) C10 0.5654 (4) 0.29493 (15) 0.0849 (4) 0.0320 (8) H10 0.64115 0.274303 0.138504 0.038* C16 -0.0118 (4) 0.34743 (16) 0.2098 (4) 0.0286 (8) C2 0.3486 (3) 0.61639 (15) 0.3748 (4) 0.0286 (8) H2A 0.427250 0.645549 0.357103 0.034* H2B 0.336184 0.611273 0.492819 0.0318* C7 0.3833 (3) 0.44745 (14) 0.1024 (3) 0.0258 (8) H7A 0.314639 0.464662 0.023408 0.031* C15 0.873 (3) 0.39271 (14) 0.1886 (3) 0.0224 (8) C17 -0.007 (4) 0.30990 (15) 0.3412 (4) 0.0327 (9) H12 0.327115 0.277949 -0.199197	C1	0.3883 (3)	0.55697 (14)	0.3002 (4)	0.0267 (8)	
H1B0.4074120.5626010.1834760.032*C190.2066 (3)0.36364 (14)0.4273 (3)0.0229 (7)C100.5654 (4)0.29493 (15)0.0849 (4)0.0320 (8)H100.6411150.2743030.1385040.038*C16-0.0118 (4)0.34743 (16)0.2098 (4)0.0310 (8)C20.3486 (3)0.61639 (15)0.3748 (4)0.0286 (8)H2A0.4272500.6455490.3571030.034*N10.2689 (3)0.51174 (11)0.3216 (3)0.0208 (6)C70.3833 (3)0.44745 (14)0.1024 (3)0.0258 (8)H7A0.3146390.44745 (14)0.1024 (3)0.0258 (8)H7B0.4712390.4724070.1010790.031*C150.0873 (3)0.39271 (14)0.1886 (3)0.0242 (8)C17-0.0007 (4)0.30990 (15)0.3412 (4)0.0323 (9)C120.3791 (4)0.29713 (16)-0.1148 (4)0.0327 (9)H120.3271150.277949-0.1991970.031*C30.2103 (4)0.64091 (15)0.3016 (4)0.0317 (8)H3A0.1820860.6782990.3580330.038*C110.4883 (4)0.26676 (15)-0.0364 (4)0.0315 (9)H110.5103870.226548-0.0658000.038*C130.3452 (4)0.35538 (15)0.1277 (4)0.0303 (8)H130.2700250.376141-0.1250340.036*H140.261 (4)0.35548 (15) <td>H1A</td> <td>0.477032</td> <td>0.541589</td> <td>0.351631</td> <td>0.032*</td> <td></td>	H1A	0.477032	0.541589	0.351631	0.032*	
C19 0.2066 (3) 0.36364 (14) 0.4273 (3) 0.0229 (7) C10 0.5654 (4) 0.29493 (15) 0.0849 (4) 0.0320 (8) H10 0.641115 0.274303 0.138504 0.038* C16 -0.0118 (4) 0.34743 (16) 0.2098 (4) 0.0310 (8) C2 0.3486 (3) 0.61639 (15) 0.3748 (4) 0.0208 (8) H2A 0.427250 0.645549 0.357103 0.034* H2B 0.336184 0.611273 0.492819 0.034* N1 0.2689 (3) 0.51174 (11) 0.3216 (3) 0.0208 (6) C7 0.3833 (3) 0.44745 (14) 0.1024 (3) 0.0258 (8) H7A 0.314639 0.464662 0.023408 0.031* H7B 0.471239 0.472407 0.101079 0.031* C15 0.0873 (3) 0.39271 (14) 0.1886 (3) 0.0224 (8) C17 -0.0007 (4) 0.30900 (15) 0.3412 (4) 0.0323 (9) C12 0.3791 (4) 0.29713 (16) -0.	H1B	0.407412	0.562601	0.183476	0.032*	
C10 0.5654 (4) 0.29493 (15) 0.0849 (4) 0.0320 (8) H10 0.641115 0.274303 0.138504 0.038* C16 -0.0118 (4) 0.34743 (16) 0.2098 (4) 0.0310 (8) C2 0.3486 (3) 0.61639 (15) 0.3748 (4) 0.0286 (8) H2A 0.427250 0.645549 0.357103 0.034* H2B 0.336184 0.611273 0.492819 0.034* N1 0.2689 (3) 0.51174 (11) 0.3216 (3) 0.0208 (6) C7 0.3833 (3) 0.44745 (14) 0.1024 (3) 0.0258 (8) H7A 0.314639 0.464662 0.023408 0.031* C15 0.0873 (3) 0.39271 (14) 0.1886 (3) 0.0242 (8) C17 -0.0007 (4) 0.30990 (15) 0.3412 (4) 0.0323 (9) C12 0.3791 (4) 0.29713 (16) -0.1148 (4) 0.0327 (9) H12 0.327115 0.277949 -0.199197 0.039* C3 0.2103 (4) 0.64091 (15) 0.	C19	0.2066 (3)	0.36364 (14)	0.4273 (3)	0.0229 (7)	
H100.6411150.2743030.1385040.038*C16-0.0118 (4)0.34743 (16)0.2098 (4)0.0310 (8)C20.3486 (3)0.61639 (15)0.3748 (4)0.0286 (8)H2A0.4272500.6455490.3571030.034*H2B0.3361840.6112730.4928190.034*N10.2689 (3)0.51174 (11)0.3216 (3)0.0208 (6)C70.3833 (3)0.44745 (14)0.1024 (3)0.0258 (8)H7A0.3146390.4646620.0234080.031*T7B0.4712390.4724070.1010790.031*C150.0873 (3)0.39271 (14)0.1886 (3)0.0222 (8)C17-0.0007 (4)0.30990 (15)0.3412 (4)0.0323 (9)C120.3791 (4)0.29713 (16)-0.1148 (4)0.0327 (9)H120.3271150.277949-0.1991970.039*C30.2103 (4)0.64091 (15)0.3016 (4)0.0317 (8)H3A0.1820860.6782990.3580330.038*C110.4883 (4)0.26676 (15)-0.0654000.038*C110.510370.226548-0.0658000.038*C90.5318 (3)0.35331 (15)0.1277 (4)0.0279 (8)H90.5860020.3727630.2098460.033*C130.3452 (4)0.35548 (15)-0.0706 (4)0.0303 (8)H130.2700250.376141-0.1250340.036*	C10	0.5654 (4)	0.29493 (15)	0.0849 (4)	0.0320 (8)	
C16 -0.0118 (4) 0.34743 (16) 0.2098 (4) 0.0310 (8) C2 0.3486 (3) 0.61639 (15) 0.3748 (4) 0.0286 (8) H2A 0.427250 0.645549 0.357103 0.034* H2B 0.336184 0.611273 0.492819 0.034* N1 0.2689 (3) 0.51174 (11) 0.3216 (3) 0.0208 (6) C7 0.3833 (3) 0.44745 (14) 0.1024 (3) 0.0258 (8) H7A 0.314639 0.464662 0.023408 0.031* C15 0.0873 (3) 0.39271 (14) 0.1886 (3) 0.0242 (8) C17 -0.0007 (4) 0.30990 (15) 0.3412 (4) 0.0323 (9) C12 0.3791 (4) 0.29713 (16) -0.1148 (4) 0.0327 (9) H12 0.327115 0.277949 -0.199197 0.039* C3 0.2103 (4) 0.64091 (15) 0.3016 (4) 0.0317 (8) H3A 0.182086 0.678299 0.358033 0.038* C11 0.4883 (4) 0.26676 (15) -0	H10	0.641115	0.274303	0.138504	0.038*	
C2 0.3486 (3) 0.61639 (15) 0.3748 (4) 0.0286 (8) H2A 0.427250 0.645549 0.357103 0.034* H2B 0.336184 0.611273 0.492819 0.034* N1 0.2689 (3) 0.51174 (11) 0.3216 (3) 0.0208 (6) C7 0.3833 (3) 0.44745 (14) 0.1024 (3) 0.0258 (8) H7A 0.314639 0.464662 0.023408 0.031* H7B 0.471239 0.472407 0.101079 0.031* C15 0.0873 (3) 0.39271 (14) 0.1886 (3) 0.0222 (8) C17 -0.0007 (4) 0.30990 (15) 0.3412 (4) 0.0327 (9) C12 0.3791 (4) 0.29713 (16) -0.1148 (4) 0.0327 (9) C3 0.2103 (4) 0.64091 (15) 0.316 (4) 0.0317 (8) H3A 0.182086 0.678299 0.358033 0.038* C11 0.4883 (4) 0.26676 (15) -0.0364 (4) 0.0315 (9) H3B 0.225342 0.650474 0.185948 </td <td>C16</td> <td>-0.0118 (4)</td> <td>0.34743 (16)</td> <td>0.2098 (4)</td> <td>0.0310 (8)</td> <td></td>	C16	-0.0118 (4)	0.34743 (16)	0.2098 (4)	0.0310 (8)	
H2A0.4272500.6455490.3571030.034*H2B0.3361840.6112730.4928190.034*N10.2689 (3)0.51174 (11)0.3216 (3)0.0208 (6)C70.3833 (3)0.44745 (14)0.1024 (3)0.0258 (8)H7A0.3146390.4646620.0234080.031*H7B0.4712390.4724070.1010790.031*C150.0873 (3)0.39271 (14)0.1886 (3)0.0242 (8)C17-0.0007 (4)0.30990 (15)0.3412 (4)0.0323 (9)C120.3791 (4)0.29713 (16)-0.1148 (4)0.0327 (9)H120.3271150.277949-0.1991970.039*C30.2103 (4)0.64091 (15)0.316 (4)0.0317 (8)H3B0.2253420.6504740.1859480.038*C110.4883 (4)0.26676 (15)-0.0364 (4)0.0315 (9)H110.5103870.226548-0.0658000.038*C90.5318 (3)0.35331 (15)0.1277 (4)0.0279 (8)H90.5860020.3727630.2098460.033*C130.3452 (4)0.35548 (15)-0.0706 (4)0.0303 (8)H130.2700250.376141-0.1250340.036*H10.261 (4)0.5105 (14)0.425 (4)0.38 (10)*	C2	0.3486 (3)	0.61639 (15)	0.3748 (4)	0.0286 (8)	
H2B0.3361840.6112730.4928190.034*N10.2689 (3)0.51174 (11)0.3216 (3)0.0208 (6)C70.3833 (3)0.44745 (14)0.1024 (3)0.0258 (8)H7A0.3146390.4646620.0234080.031*H7B0.4712390.4724070.1010790.031*C150.0873 (3)0.39271 (14)0.1886 (3)0.0242 (8)C17-0.0007 (4)0.30990 (15)0.3412 (4)0.0323 (9)C120.3791 (4)0.29713 (16)-0.1148 (4)0.0327 (9)H120.3271150.277949-0.1991970.039*C30.2103 (4)0.64091 (15)0.3016 (4)0.0317 (8)H3B0.2253420.6504740.1859480.038*C110.4883 (4)0.26676 (15)-0.0364 (4)0.0315 (9)H110.5103870.226548-0.0658000.038*C90.5318 (3)0.35331 (15)0.1277 (4)0.0279 (8)H90.5860020.3727630.2098460.033*C130.3452 (4)0.35548 (15)-0.0706 (4)0.0303 (8)H130.2700250.376141-0.1250340.036*H10.261 (4)0.5105 (14)0.425 (4)0.38 (10)*	H2A	0.427250	0.645549	0.357103	0.034*	
N10.2689 (3)0.51174 (11)0.3216 (3)0.0208 (6)C70.3833 (3)0.44745 (14)0.1024 (3)0.0258 (8)H7A0.3146390.4646620.0234080.031*H7B0.4712390.4724070.1010790.031*C150.0873 (3)0.39271 (14)0.1886 (3)0.0242 (8)C17-0.0007 (4)0.30990 (15)0.3412 (4)0.0323 (9)C120.3791 (4)0.29713 (16)-0.1148 (4)0.0327 (9)H120.3271150.277949-0.1991970.039*C30.2103 (4)0.64091 (15)0.3016 (4)0.0317 (8)H3B0.2253420.6504740.1859480.038*C110.4883 (4)0.26676 (15)-0.0364 (4)0.0315 (9)H110.5103870.226548-0.0658000.038*C90.5318 (3)0.35331 (15)0.1277 (4)0.0279 (8)H90.5860020.3727630.2098460.033*C130.3452 (4)0.35548 (15)-0.0706 (4)0.0303 (8)H130.2700250.376141-0.1250340.036*H10.261 (4)0.5105 (14)0.425 (4)0.038 (10)*	H2B	0.336184	0.611273	0.492819	0.034*	
C70.3833 (3)0.44745 (14)0.1024 (3)0.0258 (8)H7A0.3146390.4646620.0234080.031*H7B0.4712390.4724070.1010790.031*C150.0873 (3)0.39271 (14)0.1886 (3)0.0242 (8)C17-0.0007 (4)0.30990 (15)0.3412 (4)0.0323 (9)C120.3791 (4)0.29713 (16)-0.1148 (4)0.0327 (9)H120.3271150.277949-0.1991970.039*C30.2103 (4)0.64091 (15)0.3016 (4)0.0317 (8)H3A0.1820860.6782990.3580330.038*H3B0.2253420.6504740.1859480.038*C110.4883 (4)0.26676 (15)-0.0364 (4)0.0315 (9)H110.5103870.226548-0.0658000.038*C90.5318 (3)0.35331 (15)0.1277 (4)0.0279 (8)H90.5860020.3727630.2098460.033*C130.3452 (4)0.35548 (15)-0.0706 (4)0.0303 (8)H130.2700250.376141-0.1250340.036*H10.261 (4)0.5105 (14)0.425 (4)0.038 (10)*	N1	0.2689 (3)	0.51174 (11)	0.3216 (3)	0.0208 (6)	
H7A0.3146390.4646620.0234080.031*H7B0.4712390.4724070.1010790.031*C150.0873 (3)0.39271 (14)0.1886 (3)0.0242 (8)C17-0.0007 (4)0.30990 (15)0.3412 (4)0.0323 (9)C120.3791 (4)0.29713 (16)-0.1148 (4)0.0327 (9)H120.3271150.277949-0.1991970.039*C30.2103 (4)0.64091 (15)0.3016 (4)0.0317 (8)H3A0.1820860.6782990.3580330.038*C110.4883 (4)0.26676 (15)-0.0364 (4)0.0315 (9)H110.5103870.226548-0.0658000.038*C90.5318 (3)0.35331 (15)0.1277 (4)0.0279 (8)H90.5860020.3727630.2098460.033*C130.3452 (4)0.35548 (15)-0.0706 (4)0.0303 (8)H130.2700250.376141-0.1250340.036*H10.261 (4)0.5105 (14)0.425 (4)0.038 (10)*	C7	0.3833 (3)	0.44745 (14)	0.1024 (3)	0.0258 (8)	
H7B0.4712390.4724070.1010790.031*C150.0873 (3)0.39271 (14)0.1886 (3)0.0242 (8)C17-0.0007 (4)0.30990 (15)0.3412 (4)0.0323 (9)C120.3791 (4)0.29713 (16)-0.1148 (4)0.0327 (9)H120.3271150.277949-0.1991970.039*C30.2103 (4)0.64091 (15)0.3016 (4)0.0317 (8)H3A0.1820860.6782990.3580330.038*H3B0.2253420.6504740.1859480.038*C110.4883 (4)0.26676 (15)-0.0364 (4)0.0315 (9)H110.5103870.226548-0.0658000.038*C90.5318 (3)0.35331 (15)0.1277 (4)0.0279 (8)H90.5860020.3727630.2098460.033 (8)H130.2700250.376141-0.1250340.036*H10.261 (4)0.5105 (14)0.425 (4)0.036*	H7A	0.314639	0.464662	0.023408	0.031*	
C15 $0.0873 (3)$ $0.39271 (14)$ $0.1886 (3)$ $0.0242 (8)$ C17 $-0.0007 (4)$ $0.30990 (15)$ $0.3412 (4)$ $0.0323 (9)$ C12 $0.3791 (4)$ $0.29713 (16)$ $-0.1148 (4)$ $0.0327 (9)$ H12 0.327115 0.277949 -0.199197 $0.039*$ C3 $0.2103 (4)$ $0.64091 (15)$ $0.3016 (4)$ $0.0317 (8)$ H3A 0.182086 0.678299 0.358033 $0.038*$ C11 $0.4883 (4)$ $0.26676 (15)$ $-0.0364 (4)$ $0.0315 (9)$ H11 0.510387 0.226548 -0.065800 $0.038*$ C9 $0.5318 (3)$ $0.35331 (15)$ $0.1277 (4)$ $0.0279 (8)$ H9 0.586002 0.372763 0.209846 $0.033 (8)$ H13 0.270025 0.376141 -0.125034 $0.036*$ H1 $0.261 (4)$ $0.5105 (14)$ $0.425 (4)$ $0.038 (10)*$	H7B	0.471239	0.472407	0.101079	0.031*	
C17 $-0.0007 (4)$ $0.30990 (15)$ $0.3412 (4)$ $0.0323 (9)$ C12 $0.3791 (4)$ $0.29713 (16)$ $-0.1148 (4)$ $0.0327 (9)$ H12 0.327115 0.277949 -0.199197 $0.039*$ C3 $0.2103 (4)$ $0.64091 (15)$ $0.3016 (4)$ $0.0317 (8)$ H3A 0.182086 0.678299 0.358033 $0.038*$ H3B 0.225342 0.650474 0.185948 $0.0315 (9)$ H11 0.510387 0.226548 -0.065800 $0.038*$ C9 $0.5318 (3)$ $0.35331 (15)$ $0.1277 (4)$ $0.0279 (8)$ H9 0.586002 0.372763 0.209846 $0.0303 (8)$ H13 0.270025 0.376141 -0.125034 $0.036*$ H1 $0.261 (4)$ $0.5105 (14)$ $0.425 (4)$ $0.038 (10)*$	C15	0.0873 (3)	0.39271 (14)	0.1886 (3)	0.0242 (8)	
C12 $0.3791 (4)$ $0.29713 (16)$ $-0.1148 (4)$ $0.0327 (9)$ H12 0.327115 0.277949 -0.199197 $0.039*$ C3 $0.2103 (4)$ $0.64091 (15)$ $0.3016 (4)$ $0.0317 (8)$ H3A 0.182086 0.678299 0.358033 $0.038*$ H3B 0.225342 0.650474 0.185948 $0.0315 (9)$ C11 $0.4883 (4)$ $0.26676 (15)$ $-0.0364 (4)$ $0.0315 (9)$ H11 0.510387 0.226548 -0.065800 $0.038*$ C9 $0.5318 (3)$ $0.35331 (15)$ $0.1277 (4)$ $0.0279 (8)$ H9 0.586002 0.372763 0.209846 $0.0303 (8)$ C13 $0.3452 (4)$ $0.35548 (15)$ $-0.0706 (4)$ $0.0303 (8)$ H13 0.270025 0.376141 -0.125034 $0.038 (10)*$	C17	-0.0007 (4)	0.30990 (15)	0.3412 (4)	0.0323 (9)	
H120.3271150.277949-0.1991970.039*C30.2103 (4)0.64091 (15)0.3016 (4)0.0317 (8)H3A0.1820860.6782990.3580330.038*H3B0.2253420.6504740.1859480.038*C110.4883 (4)0.26676 (15)-0.0364 (4)0.0315 (9)H110.5103870.226548-0.0658000.038*C90.5318 (3)0.35331 (15)0.1277 (4)0.0279 (8)H90.5860020.3727630.2098460.033*C130.3452 (4)0.35548 (15)-0.0706 (4)0.0303 (8)H130.2700250.376141-0.1250340.036*H10.261 (4)0.5105 (14)0.425 (4)0.038 (10)*	C12	0.3791 (4)	0.29713 (16)	-0.1148 (4)	0.0327 (9)	
C30.2103 (4)0.64091 (15)0.3016 (4)0.0317 (8)H3A0.1820860.6782990.3580330.038*H3B0.2253420.6504740.1859480.038*C110.4883 (4)0.26676 (15)-0.0364 (4)0.0315 (9)H110.5103870.226548-0.0658000.038*C90.5318 (3)0.35331 (15)0.1277 (4)0.0279 (8)H90.5860020.3727630.2098460.033*C130.3452 (4)0.35548 (15)-0.0706 (4)0.0303 (8)H130.2700250.376141-0.1250340.036*H10.261 (4)0.5105 (14)0.425 (4)0.038 (10)*	H12	0.327115	0.277949	-0.199197	0.039*	
H3A0.1820860.6782990.3580330.038*H3B0.2253420.6504740.1859480.038*C110.4883 (4)0.26676 (15)-0.0364 (4)0.0315 (9)H110.5103870.226548-0.0658000.038*C90.5318 (3)0.35331 (15)0.1277 (4)0.0279 (8)H90.5860020.3727630.2098460.033*C130.3452 (4)0.35548 (15)-0.0706 (4)0.0303 (8)H130.2700250.376141-0.1250340.036*H10.261 (4)0.5105 (14)0.425 (4)0.038 (10)*	C3	0.2103 (4)	0.64091 (15)	0.3016 (4)	0.0317 (8)	
H3B0.2253420.6504740.1859480.038*C110.4883 (4)0.26676 (15)-0.0364 (4)0.0315 (9)H110.5103870.226548-0.0658000.038*C90.5318 (3)0.35331 (15)0.1277 (4)0.0279 (8)H90.5860020.3727630.2098460.033*C130.3452 (4)0.35548 (15)-0.0706 (4)0.0303 (8)H130.2700250.376141-0.1250340.036*H10.261 (4)0.5105 (14)0.425 (4)0.038 (10)*	H3A	0.182086	0.678299	0.358033	0.038*	
C110.4883 (4)0.26676 (15)-0.0364 (4)0.0315 (9)H110.5103870.226548-0.0658000.038*C90.5318 (3)0.35331 (15)0.1277 (4)0.0279 (8)H90.5860020.3727630.2098460.033*C130.3452 (4)0.35548 (15)-0.0706 (4)0.0303 (8)H130.2700250.376141-0.1250340.036*H10.261 (4)0.5105 (14)0.425 (4)0.038 (10)*	H3B	0.225342	0.650474	0.185948	0.038*	
H110.5103870.226548-0.0658000.038*C90.5318 (3)0.35331 (15)0.1277 (4)0.0279 (8)H90.5860020.3727630.2098460.033*C130.3452 (4)0.35548 (15)-0.0706 (4)0.0303 (8)H130.2700250.376141-0.1250340.036*H10.261 (4)0.5105 (14)0.425 (4)0.038 (10)*	C11	0.4883 (4)	0.26676 (15)	-0.0364 (4)	0.0315 (9)	
C90.5318 (3)0.35331 (15)0.1277 (4)0.0279 (8)H90.5860020.3727630.2098460.033*C130.3452 (4)0.35548 (15)-0.0706 (4)0.0303 (8)H130.2700250.376141-0.1250340.036*H10.261 (4)0.5105 (14)0.425 (4)0.038 (10)*	H11	0.510387	0.226548	-0.065800	0.038*	
H90.5860020.3727630.2098460.033*C130.3452 (4)0.35548 (15)-0.0706 (4)0.0303 (8)H130.2700250.376141-0.1250340.036*H10.261 (4)0.5105 (14)0.425 (4)0.038 (10)*	C9	0.5318 (3)	0.35331 (15)	0.1277 (4)	0.0279 (8)	
C130.3452 (4)0.35548 (15)-0.0706 (4)0.0303 (8)H130.2700250.376141-0.1250340.036*H10.261 (4)0.5105 (14)0.425 (4)0.038 (10)*	H9	0.586002	0.372763	0.209846	0.033*	
H130.2700250.376141-0.1250340.036*H10.261 (4)0.5105 (14)0.425 (4)0.038 (10)*	C13	0.3452 (4)	0.35548 (15)	-0.0706 (4)	0.0303 (8)	
H1 0.261 (4) 0.5105 (14) 0.425 (4) 0.038 (10)*	H13	0.270025	0.376141	-0.125034	0.036*	
	H1	0.261 (4)	0.5105 (14)	0.425 (4)	0.038 (10)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

-0.0007 (14)

0.0011 (15)

	1 1					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0238 (5)	0.0421 (5)	0.0286 (4)	0.0016 (4)	0.0007 (4)	0.0024 (4)
F1	0.0234 (11)	0.0457 (12)	0.0289 (9)	-0.0008 (10)	-0.0060(8)	0.0025 (8)
F5	0.0222 (11)	0.0387 (12)	0.0313 (9)	-0.0010 (9)	-0.0049 (8)	0.0063 (8)
F4	0.0404 (13)	0.0362 (12)	0.0446 (11)	-0.0041 (10)	0.0081 (10)	0.0109 (9)
F2	0.0290 (12)	0.0668 (15)	0.0464 (11)	-0.0172 (11)	-0.0084 (10)	-0.0126 (10)
F3	0.0418 (14)	0.0461 (13)	0.0596 (13)	-0.0280 (12)	0.0088 (11)	-0.0072 (10)
C14	0.0128 (17)	0.0257 (17)	0.0271 (16)	0.0031 (15)	0.0054 (14)	-0.0046 (13)
C18	0.030 (2)	0.0277 (19)	0.0271 (17)	0.0013 (17)	0.0061 (16)	0.0021 (14)
C6	0.0123 (17)	0.0248 (18)	0.0273 (16)	0.0005 (15)	0.0013 (14)	-0.0005 (13)
C5	0.0143 (18)	0.034 (2)	0.0285 (16)	0.0029 (16)	-0.0038 (14)	-0.0015 (14)
C4	0.0173 (19)	0.039 (2)	0.0362 (18)	0.0073 (17)	-0.0046 (16)	-0.0018 (15)
C8	0.0188 (18)	0.0282 (18)	0.0268 (16)	-0.0001 (16)	0.0079 (15)	0.0034 (14)
C1	0.0140 (18)	0.033 (2)	0.0329 (18)	-0.0044 (16)	0.0020 (15)	0.0030 (14)
C19	0.0171 (18)	0.0295 (19)	0.0222 (16)	0.0020 (16)	0.0003 (14)	-0.0027 (14)
C10	0.027 (2)	0.037 (2)	0.0325 (18)	0.0074 (18)	0.0072 (16)	0.0058 (16)
C16	0.0186 (19)	0.044 (2)	0.0302 (18)	-0.0056 (18)	0.0010 (16)	-0.0122 (16)
C2	0.0187 (19)	0.0299 (19)	0.0373 (18)	-0.0037 (16)	0.0022 (15)	0.0005 (15)
N1	0.0128 (15)	0.0278 (15)	0.0220 (14)	-0.0014 (13)	-0.0002 (12)	0.0023 (12)
C7	0.0196 (19)	0.0291 (19)	0.0288 (17)	0.0010 (16)	0.0056 (15)	0.0031 (14)
C15	0.0213 (19)	0.0306 (19)	0.0207 (16)	0.0004 (16)	0.0025 (14)	-0.0021 (14)
C17	0.025 (2)	0.0299 (19)	0.042 (2)	-0.0084 (17)	0.0106 (17)	-0.0100 (16)
C12	0.025 (2)	0.043 (2)	0.0299 (18)	-0.0082 (19)	0.0031 (16)	-0.0075 (16)
C3	0.030 (2)	0.0292 (19)	0.0355 (18)	0.0026 (17)	0.0013 (17)	0.0020 (15)
C11	0.035 (2)	0.0279 (19)	0.0321 (19)	0.0015 (18)	0.0110 (17)	-0.0003 (15)

0.0289 (17)

0.0284 (17)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

0.0194 (19)

0.0197 (19)

0.035 (2)

0.043 (2)

C9

C13

F1—C15	1.342 (3)	C1—C2	1.506 (4)
F5—C19	1.335 (3)	C1—N1	1.511 (4)
F4—C18	1.347 (3)	C1—H1A	0.9900
F2—C16	1.338 (4)	C1—H1B	0.9900
F3—C17	1.340 (4)	С10—С9	1.383 (5)
C14—C15	1.388 (4)	C10—C11	1.382 (5)
C14—C19	1.388 (4)	C10—H10	0.9500
C14—C6	1.523 (4)	C16—C17	1.374 (5)
C18—C17	1.364 (5)	C16—C15	1.378 (4)
C18—C19	1.380 (4)	C2—C3	1.523 (4)
C6—N1	1.515 (4)	C2—H2A	0.9900
C6—C7	1.538 (4)	C2—H2B	0.9900
С6—Н6	1.0000	N1—H1	0.85 (3)
C5—N1	1.502 (4)	C7—H7A	0.9900
C5—C4	1.507 (4)	C7—H7B	0.9900
С5—Н5А	0.9900	C12—C11	1.381 (5)

-0.0028 (16)

0.0030 (17)

0.0026 (15)

0.0048 (15)

С5—Н5В	0.9900	C12—C13	1.386 (5)
C4—C3	1.521 (4)	C12—H12	0.9500
C4—H4A	0.9900	С3—НЗА	0.9900
C4—H4B	0.9900	С3—Н3В	0.9900
C8—C9	1.385 (4)	C11—H11	0.9500
C8—C13	1.390 (4)	С9—Н9	0.9500
C8—C7	1.512 (4)	С13—Н13	0.9500
C15—C14—C19	115.9 (3)	C1—C2—C3	111.1 (3)
C15—C14—C6	124.2 (3)	C1—C2—H2A	109.4
C19—C14—C6	119.6 (3)	C3—C2—H2A	109.4
F4—C18—C17	120.1 (3)	C1—C2—H2B	109.4
F4	119.7 (3)	C3—C2—H2B	109.4
C17—C18—C19	120.2 (3)	H2A—C2—H2B	108.0
N1-C6-C14	112.0 (2)	C5—N1—C1	110.0 (2)
N1—C6—C7	113.0 (2)	C5—N1—C6	116.4 (2)
C14—C6—C7	113.3 (3)	C1—N1—C6	111.2 (2)
N1—C6—H6	105.9	C5—N1—H1	111 (2)
С14—С6—Н6	105.9	C1—N1—H1	102 (2)
С7—С6—Н6	105.9	C6—N1—H1	105 (2)
N1-C5-C4	110.0 (3)	C8—C7—C6	111.5 (2)
N1—C5—H5A	109.7	С8—С7—Н7А	109.3
С4—С5—Н5А	109.7	С6—С7—Н7А	109.3
N1—C5—H5B	109.7	С8—С7—Н7В	109.3
С4—С5—Н5В	109.7	С6—С7—Н7В	109.3
H5A—C5—H5B	108.2	H7A—C7—H7B	108.0
C5—C4—C3	112.2 (3)	F1—C15—C16	116.9 (3)
C5—C4—H4A	109.2	F1-C15-C14	120.6 (3)
C3—C4—H4A	109.2	C16—C15—C14	122.5 (3)
C5—C4—H4B	109.2	F3—C17—C18	120.7 (3)
C3—C4—H4B	109.2	F3—C17—C16	119.8 (3)
H4A—C4—H4B	107.9	C18—C17—C16	119.5 (3)
C9—C8—C13	118.6 (3)	C11—C12—C13	120.2 (3)
C9—C8—C7	120.7 (3)	C11—C12—H12	119.9
C13—C8—C7	120.6 (3)	C13—C12—H12	119.9
C2-C1-N1	110.8 (2)	C4—C3—C2	109.3 (3)
C2—C1—H1A	109.5	С4—С3—НЗА	109.8
N1—C1—H1A	109.5	С2—С3—НЗА	109.8
C2—C1—H1B	109.5	С4—С3—Н3В	109.8
N1—C1—H1B	109.5	С2—С3—Н3В	109.8
H1A—C1—H1B	108.1	H3A—C3—H3B	108.3
F5-C19-C18	117.7 (3)	C12—C11—C10	119.9 (3)
F5-C19-C14	120.2 (3)	C12—C11—H11	120.0
C18—C19—C14	122.1 (3)	C10—C11—H11	120.0
C9—C10—C11	119.6 (3)	С10—С9—С8	121.2 (3)
C9—C10—H10	120.2	С10—С9—Н9	119.4
C11—C10—H10	120.2	С8—С9—Н9	119.4
F2	120.4 (3)	C12—C13—C8	120.4 (3)

F2—C16—C15	119.8 (3)	С12—С13—Н13	119.8
C17—C16—C15	119.7 (3)	C8—C13—H13	119.8

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···Cl1	0.85 (3)	2.20 (3)	3.051 (3)	178 (3)

[1-(2,6-Difluorophenyl)-2-phenylethyl]dimethylazanium chloride (I)

Crystal data	
$C_{16}H_{18}F_2N^+ \cdot Cl^-$	F(000) = 624
$M_r = 297.76$	$D_{\rm x} = 1.283 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.9474 (3) Å	Cell parameters from 8632 reflections
b = 12.7652 (5) Å	$\theta = 3.0-26.6^{\circ}$
c = 15.3998 (7) Å	$\mu = 0.26 \text{ mm}^{-1}$
$\beta = 99.368 \ (4)^{\circ}$	T = 123 K
$V = 1541.48 (11) \text{ Å}^3$	Block, colourless
Z = 4	$0.5 \times 0.4 \times 0.2 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur	2715 independent reflections
diffractometer	2305 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.027$

scans in phi and ω	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: analytical	$h = -9 \rightarrow 9$
(CrysAlisPro; Agilent 2014)	$k = -14 \rightarrow 15$
$T_{\min} = 0.884, \ T_{\max} = 0.950$	$l = -18 \rightarrow 16$
6424 measured reflections	

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.040$	and constrained refinement
$wR(F^2) = 0.088$	$w = 1/[\sigma^2(F_o^2) + (0.0281P)^2 + 0.7459P]$
<i>S</i> = 1.06	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2715 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
186 parameters	$\Delta ho_{ m max} = 0.20$ e Å ⁻³
1 restraint	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

J	V	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
3942 (2)	0.41635 (15)	0.29692 (12)	0.0230 (4)
997147	0.441707	0.336303	0.028*
018077	0.345200	0.276392	0.028*
<u> </u>	942 (2) 97147 18077	<i>y</i> 942 (2) 0.41635 (15) 97147 0.441707 18077 0.345200	y z 942 (2) 0.41635 (15) 0.29692 (12) 97147 0.441707 0.336303 18077 0.345200 0.276392

C3	0.4368 (2)	0.45234 (14)	0.28669 (13)	0.0235 (4)
C7	0.5501 (2)	0.30531 (14)	0.22760 (13)	0.0234 (4)
C2	0.5752 (2)	0.38564 (13)	0.28907 (12)	0.0188 (4)
C14	0.8167 (2)	0.45121 (15)	0.13360 (13)	0.0286 (5)
H14	0.825573	0.378177	0.123370	0.034*
C6	0.4032 (2)	0.29047 (16)	0.16854 (13)	0.0295 (5)
H6	0.392555	0.233545	0.128282	0.035*
C10	0.8393 (2)	0.59657 (15)	0.23204 (13)	0.0251 (4)
H10	0.863656	0.624451	0.289921	0.030*
C5	0.2715 (2)	0.36051 (17)	0.16928 (14)	0.0346 (5)
Н5	0.168621	0.351866	0.128876	0.042*
C12	0.7556 (3)	0.62399 (16)	0.07667 (14)	0.0357 (5)
H12	0.722285	0.669788	0.028305	0.043*
C11	0.7913 (3)	0.66314 (15)	0.16121 (14)	0.0303 (5)
H11	0.782997	0.736312	0.170946	0.036*
C4	0.2871 (2)	0.44303 (17)	0.22793 (14)	0.0318 (5)
H4	0.197122	0.492047	0.227789	0.038*
C13	0.7688 (3)	0.51778 (16)	0.06310 (14)	0.0384 (5)
H13	0.744851	0.490217	0.005099	0.046*
F1	0.45166 (14)	0.53325 (8)	0.34416 (8)	0.0334 (3)
F2	0.68097 (14)	0.23779 (8)	0.22353 (8)	0.0329 (3)
C1	0.7428 (2)	0.41269 (14)	0.34703 (11)	0.0186 (4)
H1	0.729073	0.485786	0.368148	0.022*
C9	0.8521 (2)	0.48917 (14)	0.21896 (12)	0.0204 (4)
Cl1	1.14563 (7)	0.36912 (4)	0.51711 (4)	0.03725 (17)
N1	0.7819 (2)	0.34594 (12)	0.42918 (10)	0.0248 (4)
C15	0.6669 (3)	0.37192 (17)	0.49322 (14)	0.0363 (5)
H15A	0.703925	0.333884	0.548299	0.055*
H15B	0.549887	0.351557	0.468782	0.055*
H15C	0.671182	0.447444	0.504801	0.055*
C16	0.7872 (3)	0.23087 (15)	0.41449 (14)	0.0336 (5)
H16A	0.672229	0.205541	0.391314	0.050*
H16B	0.829292	0.195665	0.470357	0.050*
H16C	0.863511	0.215610	0.372127	0.050*
H1N1	0.893 (3)	0.3638 (16)	0.4538 (15)	0.039 (6)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C8	0.0196 (9)	0.0288 (10)	0.0196 (10)	-0.0001 (8)	-0.0003 (8)	-0.0001 (8)
C3	0.0274 (10)	0.0239 (10)	0.0210 (10)	-0.0010 (8)	0.0090 (8)	0.0012 (8)
C7	0.0241 (10)	0.0230 (9)	0.0234 (10)	-0.0028 (8)	0.0048 (8)	-0.0003 (8)
C2	0.0198 (9)	0.0210 (9)	0.0156 (9)	-0.0032 (7)	0.0033 (7)	0.0019 (8)
C14	0.0388 (12)	0.0233 (10)	0.0241 (11)	-0.0015 (9)	0.0064 (9)	-0.0025 (9)
C6	0.0299 (11)	0.0352 (11)	0.0219 (11)	-0.0117 (9)	-0.0004 (9)	-0.0028 (9)
C10	0.0257 (10)	0.0296 (10)	0.0205 (11)	-0.0053 (8)	0.0049 (8)	-0.0032 (9)
C5	0.0228 (10)	0.0516 (14)	0.0274 (12)	-0.0124 (10)	-0.0020 (9)	0.0082 (11)
C12	0.0502 (13)	0.0307 (11)	0.0262 (12)	-0.0007 (10)	0.0061 (10)	0.0109 (10)

C11	0.0386 (12)	0.0222 (10)	0.0317 (12)	-0.0025 (9)	0.0105 (9)	-0.0004 (9)
C4	0.0192 (10)	0.0413 (12)	0.0353 (13)	0.0027 (9)	0.0052 (9)	0.0120 (10)
C13	0.0638 (15)	0.0343 (12)	0.0167 (11)	-0.0026 (11)	0.0051 (10)	0.0008 (9)
F1	0.0348 (6)	0.0300 (6)	0.0367 (7)	0.0077 (5)	0.0094 (5)	-0.0057 (5)
F2	0.0351 (6)	0.0283 (6)	0.0339 (7)	0.0039 (5)	0.0018 (5)	-0.0116 (5)
C1	0.0219 (9)	0.0192 (9)	0.0141 (9)	0.0008 (7)	0.0010 (7)	0.0006 (8)
C9	0.0145 (9)	0.0260 (10)	0.0210 (10)	-0.0017 (7)	0.0042 (7)	0.0026 (8)
Cl1	0.0431 (3)	0.0269 (3)	0.0332 (3)	0.0104 (2)	-0.0191 (2)	-0.0082(2)
N1	0.0298 (9)	0.0277 (9)	0.0159 (8)	-0.0003 (7)	0.0008 (7)	0.0024 (7)
C15	0.0497 (13)	0.0419 (12)	0.0202 (11)	0.0030 (10)	0.0141 (10)	0.0049 (10)
C16	0.0461 (13)	0.0251 (10)	0.0282 (12)	0.0029 (9)	0.0019 (10)	0.0076 (9)

Geometric parameters (Å, °)

С8—С9	1.512 (3)	C5—C4	1.380 (3)
C8—C1	1.532 (3)	С5—Н5	0.9500
C8—H8A	0.9900	C12—C13	1.378 (3)
C8—H8B	0.9900	C12—C11	1.380 (3)
C3—F1	1.353 (2)	C12—H12	0.9500
C3—C4	1.378 (3)	C11—H11	0.9500
C3—C2	1.386 (3)	C4—H4	0.9500
C7—F2	1.360 (2)	C13—H13	0.9500
С7—С6	1.371 (3)	C1—N1	1.515 (2)
C7—C2	1.388 (3)	C1—H1	1.0000
C2—C1	1.518 (2)	N1—C15	1.487 (3)
C14—C13	1.382 (3)	N1—C16	1.488 (2)
C14—C9	1.386 (3)	N1—H1N1	0.93 (2)
C14—H14	0.9500	C15—H15A	0.9800
C6—C5	1.378 (3)	C15—H15B	0.9800
С6—Н6	0.9500	C15—H15C	0.9800
C10-C11	1.386 (3)	C16—H16A	0.9800
С10—С9	1.392 (3)	C16—H16B	0.9800
C10—H10	0.9500	C16—H16C	0.9800
C9—C8—C1	109.13 (14)	C3—C4—C5	118.14 (19)
С9—С8—Н8А	109.9	C3—C4—H4	120.9
C1—C8—H8A	109.9	C5—C4—H4	120.9
C9—C8—H8B	109.9	C12—C13—C14	120.2 (2)
C1—C8—H8B	109.9	C12—C13—H13	119.9
H8A—C8—H8B	108.3	C14—C13—H13	119.9
F1—C3—C4	118.01 (17)	N1—C1—C2	113.84 (14)
F1—C3—C2	117.86 (16)	N1—C1—C8	111.51 (14)
C4—C3—C2	124.11 (18)	C2—C1—C8	113.39 (15)
F2—C7—C6	117.17 (17)	N1—C1—H1	105.8
F2—C7—C2	118.28 (16)	C2—C1—H1	105.8
С6—С7—С2	124.53 (18)	C8—C1—H1	105.8
C3—C2—C7	114.24 (16)	C14—C9—C10	118.25 (17)
C3—C2—C1	119.49 (16)	C14—C9—C8	121.50 (17)

C7—C2—C1	125.73 (16)	С10—С9—С8	120.17 (17)
C13—C14—C9	121.15 (18)	C15—N1—C16	110.90 (16)
C13—C14—H14	119.4	C15—N1—C1	111.34 (14)
C9—C14—H14	119.4	C16—N1—C1	115.81 (15)
C7—C6—C5	118.07 (19)	C15—N1—H1N1	108.8 (14)
С7—С6—Н6	121.0	C16—N1—H1N1	104.7 (13)
С5—С6—Н6	121.0	C1—N1—H1N1	104.7 (14)
C11—C10—C9	120.47 (18)	N1—C15—H15A	109.5
C11—C10—H10	119.8	N1—C15—H15B	109.5
С9—С10—Н10	119.8	H15A—C15—H15B	109.5
C6—C5—C4	120.89 (18)	N1—C15—H15C	109.5
С6—С5—Н5	119.6	H15A—C15—H15C	109.5
С4—С5—Н5	119.6	H15B—C15—H15C	109.5
C13—C12—C11	119.35 (19)	N1—C16—H16A	109.5
C13—C12—H12	120.3	N1—C16—H16B	109.5
C11—C12—H12	120.3	H16A—C16—H16B	109.5
C12—C11—C10	120.54 (18)	N1—C16—H16C	109.5
C12—C11—H11	119.7	H16A—C16—H16C	109.5
C10-C11-H11	119.7	H16B—C16—H16C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H····A	D···A	D—H···A
N1—H1 <i>N</i> 1…Cl1	0.93 (2)	2.08 (2)	3.0006 (17)	167.3 (19)

1-[1-(2,6-Difluorophenyl)-2-phenylethyl]pyrrolidin-1-ium chloride (IV)

Crystal data

$C_{18}H_{20}F_{2}N^{+}\cdot CI^{-}$ $M_{r} = 323.80$ Triclinic, <i>P</i> I <i>a</i> = 8.1365 (4) Å <i>b</i> = 12.7421 (10) Å <i>c</i> = 16.0451 (8) Å <i>a</i> = 88.059 (5)° <i>β</i> = 82.349 (4)° <i>γ</i> = 86.140 (5)° <i>V</i> = 1644.42 (17) Å ³	Z = 4 F(000) = 680 $D_x = 1.308 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9872 reflections $\theta = 3.0-25.4^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 123 K Block, colourless $0.5 \times 0.4 \times 0.3 \text{ mm}$
Data collection Oxford Diffraction Xcalibur diffractometer Radiation source: fine-focus sealed tube scans in phi and ω Absorption correction: analytical (SADABS; Krause <i>et al.</i> , 2015) $T_{min} = 0.888, T_{max} = 0.928$ 13277 measured reflections	5775 independent reflections 4892 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -9 \rightarrow 8$ $k = -15 \rightarrow 15$ $l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.090$	and constrained refinement
$wR(F^2) = 0.206$	$w = 1/[\sigma^2(F_o^2) + (0.0143P)^2 + 10.4102P]$
S = 1.19	where $P = (F_0^2 + 2F_c^2)/3$
5775 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
403 parameters	$\Delta \rho_{\rm max} = 0.59 \ { m e} \ { m \AA}^{-3}$
2 restraints	$\Delta \rho_{\min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl2	1.11424 (18)	0.86611 (11)	0.52129 (8)	0.0292 (3)	
C11	0.6097 (2)	0.63420 (11)	1.00579 (9)	0.0366 (4)	
F1	0.3393 (4)	0.7014 (3)	0.6933 (2)	0.0340 (8)	
F2	0.0752 (4)	0.4329 (3)	0.8568 (2)	0.0335 (8)	
F3	0.9182 (4)	0.7720 (3)	0.2168 (2)	0.0339 (8)	
F4	0.5878 (4)	1.0740 (3)	0.3087 (2)	0.0396 (9)	
N2	0.8306 (6)	0.8731 (4)	0.4140 (3)	0.0242 (10)	
N1	0.3190 (6)	0.6384 (4)	0.9063 (3)	0.0244 (10)	
C27	0.7599 (6)	0.9234 (4)	0.2683 (3)	0.0201 (11)	
C9	0.2164 (6)	0.5657 (4)	0.7790 (3)	0.0205 (11)	
C28	0.6271 (7)	0.9934 (4)	0.2546 (3)	0.0251 (12)	
C1	0.3471 (6)	0.5569 (4)	0.8386 (3)	0.0212 (11)	
H1	0.335348	0.487106	0.868486	0.025*	
C21	1.0944 (6)	1.0169 (4)	0.2351 (3)	0.0227 (11)	
C19	0.8667 (6)	0.9430 (4)	0.3359 (3)	0.0218 (11)	
H19	0.836336	1.016817	0.354039	0.026*	
C3	0.5585 (6)	0.4696 (4)	0.7320 (3)	0.0244 (12)	
C20	1.0529 (7)	0.9374 (4)	0.3056 (3)	0.0252 (12)	
H20A	1.113949	0.951212	0.353117	0.030*	
H20B	1.088997	0.865768	0.285632	0.030*	
C14	0.0907 (7)	0.4965 (4)	0.7874 (3)	0.0252 (12)	
C32	0.7907 (7)	0.8440 (4)	0.2094 (3)	0.0258 (12)	
C11	0.1145 (8)	0.6272 (5)	0.6475 (4)	0.0325 (14)	
H11	0.122464	0.673672	0.599757	0.039*	
C22	1.1007 (7)	1.1225 (5)	0.2533 (4)	0.0309 (13)	
H22	1.075832	1.144702	0.309803	0.037*	
C2	0.5263 (7)	0.5557 (4)	0.7956 (3)	0.0242 (12)	
H2A	0.546795	0.624627	0.767039	0.029*	
H2B	0.603436	0.544026	0.838268	0.029*	
C25	1.1662 (7)	1.0602 (5)	0.0882 (4)	0.0327 (14)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H251.1872921.0390350.0313900.039*C100.2208 (7)0.6305 (4)0.7666 (3)0.0239 (12)C80.5647 (7)0.3644 (5)0.7585 (4)0.0321 (13)H80.5463270.3467850.8168860.038*C360.6658 (7)0.8977 (5)0.4444 (4)0.0348 (14)H36A0.5756980.9004540.4223800.042*C150.1649 (8)0.6286 (5)0.9678 (4)0.0331 (14)H15A0.1743750.5648761.0042240.042*C330.8366 (8)0.7563 (5)0.4037 (4)0.0346 (14)H33A0.952370.7269240.3898660.042*C261.1204790.9149880.1384230.0226 (12)H261.1204890.9149880.1384230.031*C310.6991 (8)0.8323 (5)0.1447 (4)0.0346 (14)H31-0.1031750.4388790.7388460.041*C50.6256 (8)0.4184 (6)0.0359 (15)0.1896 (4)0.0359 (15)H170.1726250.8710720.9489400.047*C170.2484 (8)0.8997 (5)0.1896 (4)0.0359 (15)H17A0.1726250.8710720.9489400.047*C330.559160.1980 (10)0.1826900.047*C40.509370.9007380.893990.047*C170.2484 (8)0.897 (5)0.7600 (4)0.0338 (14)H17A0.1726250.8710720.9489400.047* <th></th> <th></th> <th></th> <th></th> <th></th>					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H25	1.187292	1.039035	0.031390	0.039*
C8 0.5647 (7) 0.3644 (5) 0.7585 (4) 0.0321 (13)H8 0.546327 0.346785 0.816886 $0.038*$ C36 0.6658 (7) 0.8977 (5) 0.6444 (4) 0.0348 (14)H36A 0.575698 0.900454 0.428380 $0.042*$ C15 0.1649 (8) 0.6286 (5) 0.9678 (4) 0.0351 (14)H15A 0.174375 0.564876 1.004224 $0.042*$ C33 0.8366 (8) 0.7553 (5) 0.4037 (4) $0.042*$ C33 0.8366 (8) 0.7563 (5) 0.4037 (4) $0.042*$ H33B 0.771135 0.738088 0.359065 $0.042*$ C26 1.1262 (7) 0.9866 (4) 0.1518 (3) 0.0256 (12)L26 1.120489 0.914988 0.138423 $0.031*$ C31 0.6991 (8) 0.8323 (5) 0.1447 (4) 0.0336 (14)H31 0.722886 0.774732 0.107981 $0.042*$ C13 -0.0197 (7) 0.4882 (5) 0.7300 (4) 0.0338 (14)H13 -0.103175 0.438879 0.738846 $0.041*$ C5 0.6205 (8) 0.4144 (6) 0.5880 (4) $0.042*$ C13 -0.0197 (7) 0.4882 (5) 0.7300 (4) 0.0338 (14)H13 -0.12375 0.8987 (5) 0.1896 (4) 0.0359 (15)H29 0.435057 1.039810 0.182690 $0.041*$ C5 0.6205 (8) 0.714732 0.963632 $0.047*$ C17 0.2484	C10	0.2208 (7)	0.6305 (4)	0.7066 (3)	0.0239 (12)
H8 0.546327 0.346785 0.816886 $0.038*$ C36 $0.6658(7)$ $0.8977(5)$ $0.4644(4)$ $0.0348(14)$ H36A 0.575598 0.900454 0.423830 $0.042*$ H36B 0.663620 0.965988 0.492346 $0.042*$ C15 $0.1649(8)$ $0.6286(5)$ $0.9678(4)$ $0.0311(14)$ H15A 0.174375 0.564876 1.004224 $0.042*$ C33 $0.8366(8)$ $0.7563(5)$ $0.4037(4)$ $0.0346(14)$ H33A 0.952397 0.726924 0.389866 $0.042*$ C26 $1.1262(7)$ $0.9866(4)$ $0.1518(3)$ $0.0256(12)$ H26 1.120489 0.914988 0.138423 $0.031*$ C31 $0.091(8)$ $0.8323(5)$ $0.1447(4)$ $0.0346(14)$ H31 0.722886 0.774732 0.107981 $0.042*$ C13 $-0.1017(7)$ $0.4882(5)$ $0.7300(4)$ $0.0338(14)$ H13 0.722886 0.74732 0.107981 $0.042*$ C25 $0.6205(8)$ $0.4144(6)$ $0.5880(4)$ $0.041*$ C5 $0.6205(8)$ $0.4144(6)$ $0.5880(4)$ $0.0498(16)$ H17A 0.172625 0.871072 0.948940 $0.047*$ C17 $0.2484(8)$ $0.8097(5)$ $0.9603(4)$ $0.0399(15)$ H17A 0.172625 0.871072 0.948940 $0.047*$ C30 $0.5719(8)$ 0.900738 $0.08797(4)$ $0.0329(16)$ H17B 0.32017 $0.9647(5)$ $0.06034($	C8	0.5647 (7)	0.3644 (5)	0.7585 (4)	0.0321 (13)
C36 0.6658 (7) 0.8977 (5) 0.4644 (4) 0.0348 (14)H36A 0.575698 0.900454 0.422380 $0.042*$ C15 0.1649 (8) 0.66286 (5) 0.9678 (4) $0.042*$ C15 0.1649 (8) 0.6286 (5) 0.9678 (4) $0.042*$ H15B 0.065945 0.625638 0.938275 $0.042*$ C33 0.8366 (8) 0.7563 (5) 0.4037 (4) 0.0346 (14)H33A 0.952397 0.726924 0.389866 $0.042*$ C26 1.1262 (7) 0.9866 (4) 0.1518 (3) 0.02256 (12)H26 1.120489 0.914988 0.138423 $0.031*$ C31 0.6991 (8) 0.8323 (5) 0.1447 (4) 0.0346 (14)H31 0.722866 0.774732 0.107981 $0.042*$ C13 -0.0197 (7) 0.4882 (5) 0.7300 (4) 0.0338 (14)H13 -0.103175 0.438879 0.738846 $0.041*$ C5 0.6205 (8) 0.4144 (6) 0.5880 (4) 0.0359 (15)H13 -0.103175 0.43877 0.529606 $0.051*$ C29 0.5330 (8) 0.9887 (5) 0.1896 (4) 0.0359 (15)H29 0.445057 1.039810 0.182690 $0.043*$ C17 0.2484 (8) 0.8097 (5) 0.9603 (4) 0.0394 (15)H29 0.445057 1.039810 0.182690 $0.047*$ C7 0.5979 (7) 0.2849 (5) 0.7000 (4) 0.0380 (15)H29	H8	0.546327	0.346785	0.816886	0.038*
H36A0.5756980.9004540.4283800.042*H36B0.6636200.9659880.4923460.042*C150.1649 (8)0.6286 (5)0.9678 (4)0.0351 (14)H15A0.1743750.5648761.0042240.042*H15B0.0659450.6226 (5)0.4037 (4)0.0346 (14)H33A0.9523970.7269240.3898660.042*H33B0.7711350.7380880.3590650.042*C261.1262 (7)0.9866 (4)0.1518 (3)0.0256 (12)H261.1204890.9149880.134230.031*C310.6991 (8)0.8323 (5)0.1447 (4)0.0346 (14)H310.7228860.7747320.1079810.042*C13-0.0197 (7)0.4882 (5)0.7300 (4)0.0338 (14)H130.7228860.747320.1079810.042*C50.6205 (8)0.4144 (6)0.5880 (4)0.0428 (16)H50.6385390.4319370.5296060.051*C290.5330 (8)0.987 (5)0.9603 (4)0.0394 (15)H17A0.1726250.8710720.9489400.047*C170.2484 (8)0.8097 (5)0.9603 (4)0.0380 (15)H17A0.1726250.8710720.9489400.047*C300.5719 (8)0.2132080.7184530.046*C411.05551.2672400.202070.043*C70.5979 (7)0.2849 (5)0.1092 (10)0.0380 (15)H17A0.	C36	0.6658 (7)	0.8977 (5)	0.4644 (4)	0.0348 (14)
H36B 0.663620 0.965988 0.492346 $0.042*$ C15 0.1649 (8) 0.6286 (5) 0.9678 (4) 0.0351 (14)H15A 0.174375 0.564876 1.004224 $0.042*$ C33 0.8366 (8) 0.7563 (5) 0.4037 (4) 0.0346 (14)H33A 0.952397 0.726924 0.389866 $0.042*$ C26 1.1262 (7) 0.9866 (4) 0.1518 (3) 0.0256 (12)H26 1.120489 0.914988 0.138423 $0.031*$ C31 0.6991 (8) 0.8323 (5) 0.1447 (4) 0.0346 (14)H31 0.72886 0.774732 0.107981 $0.042*$ C13 -0.0197 (7) 0.4882 (5) 0.7300 (4) 0.0338 (14)H13 -0.103175 0.438879 0.738846 $0.041*$ C5 0.6205 (8) 0.4144 (6) 0.5880 (4) 0.0428 (16)H5 0.638539 0.431937 0.529606 $0.051*$ C29 0.5330 (8) 0.9877 (5) 0.182690 $0.043*$ C17 0.2484 (8) 0.8097 (5) 0.9603 (4) 0.0339 (15)H17A 0.172625 0.871072 0.948940 $0.047*$ H17B 0.342017 0.81403 0.986302 $0.047*$ C30 0.5979 (7) 0.2849 (5) 0.7000 (4) 0.0338 (14)H17B 0.342017 0.94075 0.1348 (4) 0.0392 (16)H30 0.599337 0.900738 0.89399 $0.047*$ C3 1.1434 (8)	H36A	0.575698	0.900454	0.428380	0.042*
C15 $0.1649 (8)$ $0.6286 (5)$ $0.9678 (4)$ $0.0351 (14)$ H15A 0.174375 0.564876 1.004224 $0.042*$ H15B 0.065945 0.625638 0.938275 $0.042*$ C33 $0.8366 (8)$ $0.7563 (5)$ $0.4037 (4)$ $0.03346 (14)$ H33A 0.952397 0.726924 0.389866 $0.042*$ C26 $1.1262 (7)$ $0.9866 (4)$ $0.1518 (3)$ $0.02256 (12)$ L26 1.120489 0.914988 0.138423 $0.031*$ C31 $0.6991 (8)$ $0.8323 (5)$ $0.1447 (4)$ $0.0336 (14)$ H31 0.722886 0.774732 0.107981 $0.042*$ C13 $-0.0197 (7)$ $0.4882 (5)$ $0.7300 (4)$ $0.0338 (14)$ H13 -0.103175 0.438879 0.738846 $0.041*$ C5 $0.6205 (8)$ $0.4144 (6)$ $0.5880 (4)$ $0.0428 (16)$ H5 0.638539 0.431937 0.529606 $0.053*$ C29 $0.5330 (8)$ $0.9987 (5)$ $0.1896 (4)$ $0.0359 (15)$ H7 $0.2484 (8)$ $0.8097 (5)$ $0.9603 (4)$ $0.0394 (15)$ H17A 0.172625 0.871072 0.948940 $0.047*$ C17 $0.2484 (8)$ $0.9097 (5)$ $0.9603 (4)$ $0.0392 (16)$ H30 0.59937 $0.9062 (6)$ $0.1348 (4)$ $0.0392 (16)$ H30 0.59937 $0.9062 (6)$ $0.1892 (4)$ $0.047*$ C7 0.599135 0.213208 0.718453 $0.046*$ C23 $1.$	H36B	0.663620	0.965988	0.492346	0.042*
H15A 0.174375 0.564876 1.004224 $0.042*$ H15B 0.065945 0.625638 0.938275 $0.042*$ C33 0.8366 (8) 0.7563 (5) 0.4037 (4) 0.0346 (14)H33A 0.952397 0.726924 0.389866 $0.042*$ H33B 0.771135 0.738088 0.359065 $0.042*$ C26 1.1262 (7) 0.9866 (4) 0.1518 (3) 0.0256 (12)H26 1.120489 0.914988 0.138423 $0.031*$ C31 0.6991 (8) 0.8323 (5) 0.1447 (4) 0.0346 (14)H31 0.722886 0.774732 0.107981 $0.042*$ C13 -0.0197 (7) 0.4882 (5) 0.7300 (4) 0.0338 (14)H13 -0.103175 0.438879 0.738846 $0.041*$ C5 0.6205 (8) 0.4144 (6) 0.5880 (4) 0.0428 (16)H5 0.638539 0.431937 0.529606 $0.051*$ C29 0.5330 (8) 0.987 (5) 0.8603 (4) 0.0339 (15)H17A 0.172625 0.871072 0.948940 $0.047*$ C17 0.2384 (8) 0.9062 (6) 0.1348 (4) 0.0392 (16)H30 0.509337 0.900738 0.889399 $0.047*$ C7 0.5979 (7) 0.2849 (5) 0.7000 (4) 0.3386 (15)H7 0.599135 0.213208 0.718453 $0.046*$ C24 1.1755 (8) 1.1644 (5) 0.1071 (4) 0.0386 (15)H7 0.5999135 <	C15	0.1649 (8)	0.6286 (5)	0.9678 (4)	0.0351 (14)
H15B 0.665945 0.625638 0.938275 $0.042*$ C33 0.8366 (8) 0.7563 (5) 0.4037 (4) 0.0346 (14)H33A 0.952397 0.726924 0.389866 $0.042*$ C36 1.1262 (7) 0.9866 (4) 0.1518 (3) 0.0256 (12)H26 1.1262 (7) 0.9866 (4) 0.1518 (3) 0.0256 (12)H26 1.120489 0.914988 0.138423 $0.031*$ C31 0.6991 (8) 0.8323 (5) 0.1447 (4) 0.0346 (14)H31 0.722886 0.774732 0.107981 $0.42*$ C13 -0.0197 (7) 0.4882 (5) 0.7300 (4) 0.0338 (14)H13 -0.103175 0.438879 0.738846 $0.041*$ C5 0.6205 (8) 0.4144 (6) 0.5880 (4) 0.0428 (16)H5 0.638539 0.431937 0.529606 $0.051*$ C29 0.5330 (8) 0.9887 (5) 0.1896 (4) 0.0359 (15)H29 0.445057 1.039810 0.182690 $0.043*$ C17 0.2484 (8) 0.8097 (5) 0.9603 (4) 0.0392 (16)H30 0.509337 0.900738 0.083999 $0.047*$ H17B 0.342017 0.834403 0.986302 $0.047*$ C7 0.5979 (7) 0.2849 (5) 0.7000 (4) 0.0380 (15)H7 0.599135 0.213208 0.718453 $0.046*$ C24 1.1755 (8) 1.1644 (5) 0.171 (4) 0.0386 (15)H2 -0.0056	H15A	0.174375	0.564876	1.004224	0.042*
C33 0.8366 (8) 0.7563 (5) 0.4037 (4) 0.0346 (14)H33A 0.952397 0.726924 0.389866 0.042^* H33B 0.771135 0.738088 0.359065 0.042^* C26 1.1262 (7) 0.9866 (4) 0.1518 (3) 0.0256 (12)H26 1.120489 0.914988 0.138423 0.031^* C31 0.6991 (8) 0.8323 (5) 0.1447 (4) 0.0346 (14)H31 0.722886 0.774732 0.107981 0.042^* C13 -0.0197 (7) 0.4882 (5) 0.7300 (4) 0.0338 (14)H13 -0.103175 0.438879 0.738846 0.041^* C5 0.6205 (8) 0.4144 (6) 0.5880 (4) 0.0428 (16)H5 0.638539 0.431937 0.529606 0.051^* C29 0.5330 (8) 0.9887 (5) 0.1896 (4) 0.0359 (15)H29 0.445057 1.039810 0.182690 0.043^* C17 0.2484 (8) 0.8097 (5) 0.9603 (4) 0.0392 (16)H17A 0.172625 0.871072 0.948940 0.047^* H17B 0.342017 0.834403 0.986302 0.047^* C30 0.5719 (8) 0.900738 0.089399 0.047^* C7 0.5979 (7) 0.2849 (5) 0.7000 (4) 0.0380 (15)H7 0.599135 0.213208 0.718453 0.046^* C23 1.1454 (8) 1.1956 (5) 0.1892 (4) 0.0329 (14)H24 $1.$	H15B	0.065945	0.625638	0.938275	0.042*
H33A 0.952397 0.726924 0.389866 $0.042*$ H33B 0.771135 0.738088 0.359065 $0.042*$ C26 $1.1262(7)$ $0.9866(4)$ $0.1518(3)$ $0.0256(12)$ H26 1.120489 0.914988 0.138423 $0.031*$ C31 $0.6991(8)$ $0.8323(5)$ $0.1447(4)$ $0.0346(14)$ H31 0.722886 0.774732 0.107981 $0.042*$ C13 $-0.0197(7)$ $0.4882(5)$ $0.7300(4)$ $0.0338(14)$ H13 -0.103175 0.43879 0.738846 $0.041*$ C5 $0.6205(8)$ $0.4144(6)$ $0.5880(4)$ $0.0428(16)$ H5 0.638539 0.431937 0.529606 $0.051*$ C29 $0.5330(8)$ $0.9887(5)$ $0.1896(4)$ $0.0359(15)$ H29 0.445057 1.039810 0.182690 $0.043*$ C17 $0.2484(8)$ $0.8097(5)$ $0.9603(4)$ $0.0394(15)$ H17A 0.172625 0.871072 0.948940 $0.047*$ C30 $0.5719(8)$ $0.9062(6)$ $0.1348(4)$ $0.0392(16)$ H30 0.509337 0.900738 0.089399 $0.047*$ C7 $0.5979(7)$ $0.2849(5)$ $0.7000(4)$ $0.0386(15)$ H7 0.599135 0.212028 0.718453 $0.046*$ C24 $1.1755(8)$ $1.1644(5)$ $0.1071(4)$ $0.0386(15)$ H2 $-0.0056(8)$ $0.5735(5)$ $0.8877(4)$ $0.0329(14)$ H18B 0.423028 0.774539 0.85595	C33	0.8366 (8)	0.7563 (5)	0.4037 (4)	0.0346 (14)
H33B 0.771135 0.738088 0.359065 0.042* C26 1.1262 (7) 0.9866 (4) 0.1518 (3) 0.0256 (12) H26 1.120489 0.914988 0.138423 0.031* C31 0.6991 (8) 0.8323 (5) 0.1447 (4) 0.0346 (14) H31 0.722886 0.774732 0.107981 0.042* C13 -0.0197 (7) 0.4882 (5) 0.7300 (4) 0.0338 (14) H13 -0.103175 0.438879 0.738846 0.041* C5 0.6205 (8) 0.4144 (6) 0.5880 (4) 0.0428 (16) H5 0.638539 0.431937 0.529606 0.051* C29 0.5330 (8) 0.9887 (5) 0.1896 (4) 0.0359 (15) H7 0.444057 1.039810 0.182690 0.043* C17 0.2484 (8) 0.8097 (5) 0.968302 0.047* C30 0.5719 (8) 0.9062 (6) 0.1348 (4) 0.0392 (16) H30 0.509337 0.900738 0.0893999 0.047*<	H33A	0.952397	0.726924	0.389866	0.042*
C261.1262 (7)0.9866 (4)0.1518 (3)0.0256 (12)H261.1204890.9149880.1384230.031*C310.6991 (8)0.8323 (5)0.1447 (4)0.0346 (14)H310.7228860.7747320.1079810.042*C13-0.0197 (7)0.4882 (5)0.7300 (4)0.0338 (14)H13-0.1031750.4388790.7388460.041*C50.6205 (8)0.4144 (6)0.5880 (4)0.0428 (16)H50.6385390.4319370.5296060.051*C290.5330 (8)0.9887 (5)0.1896 (4)0.0359 (15)H290.4450571.0398100.1826900.043*C170.2484 (8)0.8097 (5)0.9603 (4)0.0394 (15)H17A0.1726250.8710720.9489400.047*C300.5719 (8)0.9062 (6)0.1348 (4)0.0392 (16)H300.5093370.9007380.0893990.047*C70.5979 (7)0.2849 (5)0.7000 (4)0.0380 (15)H70.5991350.2132080.7184530.046*C241.1755 (8)1.1644 (5)0.1071 (4)0.0361 (14)H231.1503551.2672400.2020270.043*C180.3116 (8)0.7526 (4)0.8797 (4)0.0329 (14)H18B0.4230280.7745390.8559500.040*C12-0.0056 (8)0.5101 (6)0.6188260.047*C40.5858 (7)0.4928 (5)0.6459 (4)0.0312 (13) <td>H33B</td> <td>0.771135</td> <td>0.738088</td> <td>0.359065</td> <td>0.042*</td>	H33B	0.771135	0.738088	0.359065	0.042*
H261.120489 0.914988 0.138423 $0.031*$ C31 0.6991 (8) 0.8323 (5) 0.1447 (4) 0.0346 (14)H31 0.722886 0.774732 0.107981 $0.042*$ C13 -0.0197 (7) 0.4882 (5) 0.7300 (4) 0.0338 (14)H13 -0.103175 0.438879 0.738846 $0.041*$ C5 0.6205 (8) 0.4144 (6) 0.5880 (4) 0.0428 (16)H5 0.638539 0.431937 0.529606 $0.051*$ C29 0.5330 (8) 0.9887 (5) 0.1896 (4) 0.0359 (15)H29 0.445057 1.039810 0.182690 $0.043*$ C17 0.2484 (8) 0.8097 (5) 0.9603 (4) 0.0394 (15)H17A 0.172625 0.871072 0.948940 $0.047*$ C30 0.5719 (8) 0.9062 (6) 0.1348 (4) 0.0392 (16)H30 0.50937 0.900738 0.89399 $0.047*$ C7 0.5979 (7) 0.2849 (5) 0.7000 (4) 0.0386 (15)H7 0.599135 0.213208 0.718453 $0.046*$ C24 1.1755 (8) 1.1644 (5) 0.1071 (4) 0.0386 (15)H24 1.204076 1.214593 0.063287 $0.046*$ C23 1.1434 (8) 1.1956 (5) 0.1892 (4) 0.0312 (14)H18 0.234606 0.766623 0.837207 $0.040*$ C18 0.3116 (8) 0.7526 (4) 0.8774 (4) 0.0390 (15)H18A 0.234606 <	C26	1.1262 (7)	0.9866 (4)	0.1518 (3)	0.0256 (12)
C31 $0.6991 (8)$ $0.8323 (5)$ $0.1447 (4)$ $0.0346 (14)$ H31 0.722886 0.774732 0.107981 0.042^* C13 $-0.0197 (7)$ $0.4882 (5)$ $0.7300 (4)$ $0.0338 (14)$ H13 -0.103175 0.438879 0.738846 0.041^* C5 $0.6205 (8)$ $0.4144 (6)$ $0.5880 (4)$ $0.0428 (16)$ H5 0.638539 0.431937 0.529606 0.051^* C29 $0.5330 (8)$ $0.9887 (5)$ $0.1896 (4)$ $0.0359 (15)$ H29 0.445057 1.039810 0.182690 0.043^* C17 $0.2484 (8)$ $0.8097 (5)$ $0.9603 (4)$ $0.0394 (15)$ H17A 0.172625 0.871072 0.948940 0.047^* C30 $0.5719 (8)$ $0.9062 (6)$ $0.1348 (4)$ $0.0322 (16)$ H30 0.509337 0.900738 0.089399 0.047^* C7 $0.5979 (7)$ $0.2849 (5)$ $0.7000 (4)$ $0.0386 (15)$ H7 0.599135 0.213208 0.718453 0.046^* C23 $1.1434 (8)$ $1.1956 (5)$ $0.1892 (4)$ $0.0361 (14)$ H23 1.150355 1.267240 0.202027 0.043^* C18 $0.3116 (8)$ $0.7526 (4)$ 0.877071 0.040^* C18 $0.3116 (8)$ $0.5533 (5)$ $0.6597 (4)$ $0.0329 (14)$ H18A 0.234606 0.76623 0.837207 0.040^* C12 $-0.0756 (8)$ $0.5533 (5)$ $0.6597 (4)$ $0.0392 (15)$ H12 </td <td>H26</td> <td>1.120489</td> <td>0.914988</td> <td>0.138423</td> <td>0.031*</td>	H26	1.120489	0.914988	0.138423	0.031*
H31 0.722886 0.774732 0.107981 $0.042*$ C13 -0.0197 (7) 0.4882 (5) 0.7300 (4) 0.0338 (14)H13 -0.103175 0.438879 0.738846 $0.041*$ C5 0.6205 (8) 0.4144 (6) 0.5880 (4) 0.0428 (16)H5 0.638539 0.431937 0.529606 $0.051*$ C29 0.5330 (8) 0.9887 (5) 0.1896 (4) 0.0359 (15)H29 0.445057 1.039810 0.182690 $0.043*$ C17 0.2484 (8) 0.8097 (5) 0.9603 (4) 0.0394 (15)H17A 0.172625 0.871072 0.948940 $0.047*$ C30 0.5719 (8) 0.9062 (6) 0.1348 (4) 0.0392 (16)H30 0.50937 0.900738 0.089399 $0.047*$ C7 0.5979 (7) 0.2849 (5) 0.7000 (4) 0.0386 (15)H7 0.599135 0.213208 0.718453 $0.046*$ C24 1.1755 (8) 1.1644 (5) 0.1071 (4) 0.0386 (15)H24 1.204076 1.214593 0.63287 $0.046*$ C23 1.1434 (8) 1.1956 (5) 0.1892 (4) 0.03161 (14)H23 1.50355 1.267240 0.202027 $0.043*$ C14 0.234606 0.766623 0.837207 $0.040*$ C15 0.5833 (5) 0.6597 (4) 0.0329 (14)H18B 0.423028 0.774539 0.855950 $0.040*$ C12 -0.0056 (8) 0.5533 (5) <t< td=""><td>C31</td><td>0.6991 (8)</td><td>0.8323 (5)</td><td>0.1447 (4)</td><td>0.0346 (14)</td></t<>	C31	0.6991 (8)	0.8323 (5)	0.1447 (4)	0.0346 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H31	0.722886	0.774732	0.107981	0.042*
H13 -0.103175 0.438879 0.738846 0.041^* C5 $0.6205(8)$ $0.4144(6)$ $0.5880(4)$ $0.0428(16)$ H5 0.638539 0.431937 0.529606 0.051^* C29 $0.5330(8)$ $0.9887(5)$ $0.1896(4)$ $0.0359(15)$ H29 0.445057 1.039810 0.182690 0.043^* C17 $0.2484(8)$ $0.8097(5)$ $0.9603(4)$ $0.0394(15)$ H17A 0.172625 0.871072 0.948940 0.047^* C30 $0.5719(8)$ $0.9062(6)$ $0.1348(4)$ $0.0392(16)$ H30 0.509337 0.900738 0.089399 0.047^* C7 $0.5979(7)$ $0.2849(5)$ $0.7000(4)$ $0.0380(15)$ H7 0.599135 0.213208 0.718453 0.046^* C24 $1.1755(8)$ $1.1644(5)$ $0.1071(4)$ $0.0386(15)$ H24 1.204076 1.214593 0.663287 0.046^* C23 $1.1434(8)$ $1.1956(5)$ $0.1892(4)$ $0.0351(14)$ H23 1.150355 1.267240 0.202027 0.043^* C18 $0.3116(8)$ $0.7526(4)$ $0.8770(4)$ $0.0390(15)$ H18 0.423028 0.774539 0.855950 0.040^* C12 $-0.056(8)$ $0.5533(5)$ $0.6459(4)$ $0.0312(13)$ H18 0.423028 0.774539 0.628644 0.037^* C6 $0.6290(8)$ $0.3101(6)$ 0.618826 0.047^* C6 $0.6290(8)$ $0.3101(6)$ 0.61	C13	-0.0197 (7)	0.4882 (5)	0.7300 (4)	0.0338 (14)
C5 0.6205 (8) 0.4144 (6) 0.5880 (4) 0.0428 (16)H5 0.638539 0.431937 0.529606 0.051^* C29 0.5330 (8) 0.9887 (5) 0.1896 (4) 0.0359 (15)H29 0.445057 1.039810 0.182690 0.043^* C17 0.2484 (8) 0.8097 (5) 0.9603 (4) 0.0394 (15)H17A 0.172625 0.871072 0.948940 0.047^* H17B 0.342017 0.834403 0.986302 0.047^* C30 0.5719 (8) 0.9062 (6) 0.1348 (4) 0.0392 (16)H30 0.509337 0.900738 0.089399 0.047^* C7 0.5979 (7) 0.2849 (5) 0.7000 (4) 0.0380 (15)H7 0.599135 0.213208 0.718453 0.046^* C24 1.1755 (8) 1.1644 (5) 0.1071 (4) 0.0386 (15)H24 1.204076 1.214593 0.663287 0.046^* C23 1.1434 (8) 1.1956 (5) 0.1892 (4) 0.0361 (14)H23 1.150355 1.267240 0.202027 0.043^* C18 0.3116 (8) 0.7526 (4) 0.8777 (4) 0.0329 (14)H18B 0.423028 0.774539 0.855950 0.040^* H18B 0.423028 0.774539 0.65877 (4) 0.0312 (13)H12 -0.078813 0.547876 0.618826 0.047^* C4 0.5585 (7) 0.4928 (5) 0.6459 (4) 0.0312 (13)H4	H13	-0.103175	0.438879	0.738846	0.041*
H5 0.638539 0.431937 0.529606 $0.051*$ C29 $0.5330(8)$ $0.9887(5)$ $0.1896(4)$ $0.0359(15)$ H29 0.445057 1.039810 0.182690 $0.043*$ C17 $0.2484(8)$ $0.8097(5)$ $0.9603(4)$ $0.0394(15)$ H17A 0.172625 0.871072 0.948940 $0.047*$ H17B 0.342017 0.834403 0.986302 $0.047*$ C30 $0.5719(8)$ $0.9062(6)$ $0.1348(4)$ $0.0392(16)$ H30 0.509337 0.900738 0.089399 $0.047*$ C7 $0.5979(7)$ $0.2849(5)$ $0.7000(4)$ $0.0380(15)$ H7 0.599135 0.213208 0.718453 $0.046*$ C24 $1.1755(8)$ $1.1644(5)$ $0.1071(4)$ $0.0386(15)$ H24 1.204076 1.214593 0.063287 $0.046*$ C23 $1.1434(8)$ $1.1956(5)$ $0.1892(4)$ $0.0361(14)$ H23 1.150355 1.267240 0.202027 $0.043*$ C18 $0.3116(8)$ $0.7526(4)$ $0.8797(4)$ $0.0329(14)$ H18B 0.423028 0.774539 0.857950 $0.040*$ C12 $-0.0056(8)$ $0.5533(5)$ $0.6459(4)$ $0.0312(13)$ H4 0.580421 0.564153 0.626864 $0.037*$ C6 $0.6290(8)$ $0.3101(6)$ $0.5486(4)$ $0.047*$ C4 0.580421 0.56025 0.575020 $0.058*$ C35 $0.6475(9)$ $0.8081(6)$ 0.539572 0	C5	0.6205 (8)	0.4144 (6)	0.5880 (4)	0.0428 (16)
C29 $0.5330 (8)$ $0.9887 (5)$ $0.1896 (4)$ $0.0359 (15)$ H29 0.445057 1.039810 0.182690 0.043^* C17 $0.2484 (8)$ $0.8097 (5)$ $0.9603 (4)$ $0.0394 (15)$ H17A 0.172625 0.871072 0.948940 0.047^* H17B 0.342017 0.834403 0.986302 0.047^* C30 $0.5719 (8)$ 0.900738 0.089399 0.047^* C7 0.59937 0.900738 0.089399 0.047^* C7 $0.5979 (7)$ $0.2849 (5)$ $0.7000 (4)$ $0.0380 (15)$ H7 0.599135 0.213208 0.718453 0.046^* C24 $1.1755 (8)$ $1.1644 (5)$ $0.1071 (4)$ $0.0386 (15)$ H24 1.204076 1.214593 0.663287 0.046^* C23 $1.1434 (8)$ $1.1956 (5)$ $0.1892 (4)$ $0.0361 (14)$ H23 1.150355 1.267240 0.202027 0.043^* C18 $0.3116 (8)$ $0.7526 (4)$ $0.8797 (4)$ $0.0329 (14)$ H18B 0.423028 0.774539 0.857950 0.040^* C12 $-0.0758 (13)$ 0.547876 0.618826 0.047^* C4 $0.5858 (7)$ $0.4928 (5)$ $0.6459 (4)$ $0.0312 (13)$ H4 0.580421 0.56025 0.575020 0.058^* C5 $0.6475 (9)$ $0.8081 (6)$ $0.5286 (4)$ $0.0473 (18)$ H35B 0.683247 0.827842 0.52805 0.057^* C16 $0.1547 (9)$ <td>Н5</td> <td>0.638539</td> <td>0.431937</td> <td>0.529606</td> <td>0.051*</td>	Н5	0.638539	0.431937	0.529606	0.051*
H29 0.445057 1.039810 0.182690 0.043^* C17 0.2484 (8) 0.8097 (5) 0.9603 (4) 0.0394 (15)H17A 0.172625 0.871072 0.948940 0.047^* H17B 0.342017 0.834403 0.986302 0.047^* C30 0.5719 (8) 0.900738 0.089399 0.047^* C7 0.5979 (7) 0.2849 (5) 0.7000 (4) 0.0380 (15)H7 0.599135 0.213208 0.718453 0.046^* C24 1.1755 (8) 1.1644 (5) 0.1071 (4) 0.0386 (15)H24 1.204076 1.214593 0.063287 0.046^* C23 1.1434 (8) 1.1956 (5) 0.1892 (4) 0.0361 (14)H23 1.150355 1.267240 0.20207 0.043^* C18 0.3116 (8) 0.7526 (4) 0.8797 (4) 0.0329 (14)H18A 0.234606 0.766623 0.837207 0.040^* H18B 0.423028 0.774539 0.855950 0.040^* C12 -0.056 (8) 0.5533 (5) 0.6459 (4) 0.0312 (13)H4 0.580421 0.564153 0.626864 0.037^* C4 0.656059 0.256025 0.575020 0.058^* C35 0.6475 (9) 0.8081 (6) 0.5286 (4) 0.0473 (18)H35B 0.683247 0.827842 0.58205 0.057^* H35B 0.683247 0.827842 0.58205 0.057^* C16 0.1547 (9) 0.72	C29	0.5330 (8)	0.9887 (5)	0.1896 (4)	0.0359 (15)
C17 $0.2484 (8)$ $0.8097 (5)$ $0.9603 (4)$ $0.0394 (15)$ H17A 0.172625 0.871072 0.948940 0.047^* H17B 0.342017 0.834403 0.986302 0.047^* C30 $0.5719 (8)$ $0.9062 (6)$ $0.1348 (4)$ $0.0392 (16)$ H30 0.509337 0.900738 0.089399 0.047^* C7 $0.5979 (7)$ $0.2849 (5)$ $0.7000 (4)$ $0.0380 (15)$ H7 0.599135 0.213208 0.718453 0.046^* C24 $1.1755 (8)$ $1.1644 (5)$ $0.1071 (4)$ $0.0386 (15)$ H24 1.204076 1.214593 0.063287 0.046^* C23 $1.1434 (8)$ $1.1956 (5)$ $0.1892 (4)$ $0.0361 (14)$ H23 1.150355 1.267240 0.202027 0.043^* C18 $0.3116 (8)$ $0.7526 (4)$ $0.8797 (4)$ $0.0329 (14)$ H18A 0.234606 0.766623 0.837207 0.040^* H18B 0.423028 0.774539 0.855950 0.040^* C12 $-0.0056 (8)$ $0.5533 (5)$ $0.6597 (4)$ $0.0312 (13)$ H4 0.580421 0.564153 0.626864 0.037^* C4 $0.5858 (7)$ $0.4928 (5)$ $0.6459 (4)$ $0.0312 (13)$ H4 0.580421 0.564153 0.626864 0.037^* C5 0.67509 0.256025 0.575020 0.058^* C35 $0.6475 (9)$ $0.8081 (6)$ $0.5286 (4)$ $0.0473 (18)$ H35B 0.68324	H29	0.445057	1.039810	0.182690	0.043*
H17A 0.172625 0.871072 0.948940 0.047^* H17B 0.342017 0.834403 0.986302 0.047^* C30 0.5719 (8) 0.9062 (6) 0.1348 (4) 0.0392 (16)H30 0.509337 0.900738 0.089399 0.047^* C7 0.5979 (7) 0.2849 (5) 0.7000 (4) 0.0380 (15)H7 0.599135 0.213208 0.718453 0.046^* C24 1.1755 (8) 1.1644 (5) 0.1071 (4) 0.0386 (15)H24 1.204076 1.214593 0.063287 0.046^* C23 1.1434 (8) 1.1956 (5) 0.1892 (4) 0.0361 (14)H23 1.150355 1.267240 0.202027 0.043^* C18 0.3116 (8) 0.7526 (4) 0.8797 (4) 0.0329 (14)H18A 0.234606 0.766623 0.837207 0.040^* H18B 0.423028 0.774539 0.855950 0.040^* C12 -0.056 (8) 0.5533 (5) 0.6597 (4) 0.0312 (13)H4 0.580421 0.564153 0.628644 0.037^* C4 0.658059 0.256025 0.575020 $0.058*$ C35 0.6475 (9) 0.8081 (6) 0.5286 (4) 0.0473 (18)H35A 0.530490 0.788934 0.539572 0.057^* H35B 0.683247 0.827842 0.582205 0.057^* C16 0.1547 (9) 0.7276 (5) 1.0185 (4) 0.0420 (16)	C17	0.2484 (8)	0.8097 (5)	0.9603 (4)	0.0394 (15)
H17B 0.342017 0.834403 0.986302 0.047^* C30 0.5719 (8) 0.9062 (6) 0.1348 (4) 0.0392 (16)H30 0.509337 0.900738 0.089399 0.047^* C7 0.5979 (7) 0.2849 (5) 0.7000 (4) 0.0380 (15)H7 0.599135 0.213208 0.718453 0.046^* C24 1.1755 (8) 1.1644 (5) 0.1071 (4) 0.0386 (15)H24 1.204076 1.214593 0.063287 0.046^* C23 1.1434 (8) 1.1956 (5) 0.1892 (4) 0.0361 (14)H23 1.150355 1.267240 0.202027 0.043^* C18 0.3116 (8) 0.7526 (4) 0.8797 (4) 0.0329 (14)H18A 0.234606 0.766623 0.837207 0.040^* H18B 0.423028 0.774539 0.855950 0.040^* C12 -0.0056 (8) 0.5533 (5) 0.6597 (4) 0.0390 (15)H12 -0.078813 0.547876 0.618826 0.047^* C4 0.5858 (7) 0.4928 (5) 0.6459 (4) 0.0312 (13)H4 0.56059 0.256025 0.575020 0.058^* C35 0.6475 (9) 0.8081 (6) 0.5286 (4) 0.0473 (18)H35B 0.683247 0.827842 0.582205 0.057^* C16 0.1547 (9) 0.7276 (5) 1.0185 (4) 0.0420 (16)H16A 0.207772 0.713990 1.070222 0.050^*	H17A	0.172625	0.871072	0.948940	0.047*
C30 0.5719 (8) 0.9062 (6) 0.1348 (4) 0.0392 (16)H30 0.509337 0.900738 0.089399 0.047^* C7 0.5979 (7) 0.2849 (5) 0.7000 (4) 0.0380 (15)H7 0.599135 0.213208 0.718453 0.046^* C24 1.1755 (8) 1.1644 (5) 0.1071 (4) 0.0386 (15)H24 1.204076 1.214593 0.063287 0.046^* C23 1.1434 (8) 1.1956 (5) 0.1892 (4) 0.0361 (14)H23 1.150355 1.267240 0.202027 0.043^* C18 0.3116 (8) 0.7526 (4) 0.8797 (4) 0.0329 (14)H18A 0.234606 0.766623 0.837207 0.040^* H18B 0.423028 0.774539 0.855950 0.040^* C12 -0.056 (8) 0.5533 (5) 0.6597 (4) 0.0390 (15)H12 -0.078813 0.547876 0.618826 0.047^* C4 0.5858 (7) 0.4928 (5) 0.6459 (4) 0.0312 (13)H4 0.580421 0.564153 0.626864 0.037^* C6 0.6290 (8) 0.3101 (6) 0.5148 (5) 0.0487 (19)H6 0.656059 0.256025 0.575020 0.058^* C35 0.6475 (9) 0.8081 (6) 0.5286 (4) 0.0473 (18)H35B 0.683247 0.827842 0.582205 0.057^* C16 0.1547 (9) 0.7276 (5) 1.0185 (4) 0.0420 (16)H16A <t< td=""><td>H17B</td><td>0.342017</td><td>0.834403</td><td>0.986302</td><td>0.047*</td></t<>	H17B	0.342017	0.834403	0.986302	0.047*
H30 0.509337 0.900738 0.089399 0.047^* C7 $0.5979(7)$ $0.2849(5)$ $0.7000(4)$ $0.0380(15)$ H7 0.599135 0.213208 0.718453 0.046^* C24 $1.1755(8)$ $1.1644(5)$ $0.1071(4)$ $0.0386(15)$ H24 1.204076 1.214593 0.063287 0.046^* C23 $1.1434(8)$ $1.1956(5)$ $0.1892(4)$ $0.0361(14)$ H23 1.150355 1.267240 0.202027 0.043^* C18 $0.3116(8)$ $0.7526(4)$ $0.8797(4)$ $0.0329(14)$ H18A 0.234606 0.766623 0.837207 0.040^* H18B 0.423028 0.774539 0.855950 0.040^* C12 $-0.0056(8)$ $0.5533(5)$ $0.6597(4)$ $0.0312(13)$ H12 -0.078813 0.547876 0.618826 0.047^* C4 $0.5858(7)$ $0.4928(5)$ $0.6459(4)$ $0.0312(13)$ H4 0.580421 0.564153 0.626864 0.037^* C6 $0.6290(8)$ $0.3101(6)$ $0.6148(5)$ $0.0487(19)$ H6 0.656059 0.256025 0.575020 0.058^* C35 $0.6475(9)$ $0.8081(6)$ $0.5286(4)$ $0.0473(18)$ H35B 0.683247 0.827842 0.582205 0.057^* C16 $0.1547(9)$ $0.7276(5)$ $1.0185(4)$ $0.0420(16)$ H16A 0.207772 0.713990 1.070222 0.50^*	C30	0.5719 (8)	0.9062 (6)	0.1348 (4)	0.0392 (16)
C7 $0.5979(7)$ $0.2849(5)$ $0.7000(4)$ $0.0380(15)$ H7 0.599135 0.213208 0.718453 $0.046*$ C24 $1.1755(8)$ $1.1644(5)$ $0.1071(4)$ $0.0386(15)$ H24 1.204076 1.214593 0.063287 $0.046*$ C23 $1.1434(8)$ $1.1956(5)$ $0.1892(4)$ $0.0361(14)$ H23 1.50355 1.267240 0.202027 $0.043*$ C18 $0.3116(8)$ $0.7526(4)$ $0.8797(4)$ $0.0329(14)$ H18A 0.234606 0.766623 0.837207 $0.040*$ H18B 0.423028 0.774539 0.855950 $0.040*$ C12 $-0.0056(8)$ $0.5533(5)$ $0.6597(4)$ $0.0312(13)$ H12 -0.078813 0.547876 0.618826 $0.047*$ C4 $0.5858(7)$ $0.4928(5)$ $0.6459(4)$ $0.0312(13)$ H4 0.580421 0.564153 0.626864 $0.037*$ C6 $0.6290(8)$ $0.3101(6)$ $0.6148(5)$ $0.0487(19)$ H6 0.656059 0.256025 0.575020 $0.58*$ C35 $0.6475(9)$ $0.8081(6)$ 0.539572 $0.057*$ H35B 0.683247 0.827842 0.582205 $0.057*$ H35B 0.683247 0.827842 0.582205 $0.057*$ C16 $0.1547(9)$ $0.7276(5)$ $1.0185(4)$ $0.0420(16)$ H16A 0.207772 0.713990 1.070222 $0.50*$	H30	0.509337	0.900738	0.089399	0.047*
H7 0.599135 0.213208 0.718453 $0.046*$ C24 1.1755 (8) 1.1644 (5) 0.1071 (4) 0.0386 (15)H24 1.204076 1.214593 0.063287 $0.046*$ C23 1.1434 (8) 1.1956 (5) 0.1892 (4) 0.0361 (14)H23 1.150355 1.267240 0.202027 $0.043*$ C18 0.3116 (8) 0.7526 (4) 0.8797 (4) 0.0329 (14)H18A 0.234606 0.766623 0.837207 $0.040*$ H18B 0.423028 0.774539 0.855950 $0.040*$ C12 -0.0056 (8) 0.5533 (5) 0.6597 (4) 0.0390 (15)H12 -0.078813 0.547876 0.618826 $0.047*$ C4 0.5858 (7) 0.4928 (5) 0.6459 (4) 0.0312 (13)H4 0.580421 0.564153 0.626864 $0.037*$ C6 0.6290 (8) 0.3101 (6) 0.5148 (5) 0.0487 (19)H6 0.656059 0.256025 0.575020 $0.058*$ C35 0.6475 (9) 0.8081 (6) 0.5286 (4) 0.0473 (18)H35B 0.683247 0.827842 0.582205 $0.057*$ H35B 0.683247 0.827842 0.582205 $0.057*$ C16 0.1547 (9) 0.7276 (5) 1.0185 (4) 0.0420 (16)H16A 0.207772 0.713990 1.070222 $0.050*$	C7	0.5979 (7)	0.2849 (5)	0.7000 (4)	0.0380 (15)
C24 $1.1755 (8)$ $1.1644 (5)$ $0.1071 (4)$ $0.0386 (15)$ H24 1.204076 1.214593 0.063287 $0.046*$ C23 $1.1434 (8)$ $1.1956 (5)$ $0.1892 (4)$ $0.0361 (14)$ H23 1.150355 1.267240 0.202027 $0.043*$ C18 $0.3116 (8)$ $0.7526 (4)$ $0.8797 (4)$ $0.0329 (14)$ H18A 0.234606 0.766623 0.837207 $0.040*$ H18B 0.423028 0.774539 0.855950 $0.040*$ C12 $-0.0056 (8)$ $0.5533 (5)$ $0.6597 (4)$ $0.0390 (15)$ H12 -0.078813 0.547876 0.618826 $0.047*$ C4 0.580421 0.564153 0.626864 $0.037*$ C6 $0.6290 (8)$ $0.3101 (6)$ $0.6148 (5)$ $0.0487 (19)$ H6 0.656059 0.256025 0.575020 $0.058*$ C35 $0.6475 (9)$ $0.8081 (6)$ 0.539572 $0.057*$ H35B 0.683247 0.827842 0.582205 $0.057*$ C16 $0.1547 (9)$ $0.7276 (5)$ $1.0185 (4)$ $0.0420 (16)$ H16A 0.207772 0.713990 1.070222 $0.050*$	H7	0.599135	0.213208	0.718453	0.046*
H241.2040761.2145930.0632870.046*C231.1434 (8)1.1956 (5)0.1892 (4)0.0361 (14)H231.1503551.2672400.2020270.043*C180.3116 (8)0.7526 (4)0.8797 (4)0.0329 (14)H18A0.2346060.7666230.8372070.040*H18B0.4230280.7745390.8559500.040*C12-0.0056 (8)0.5533 (5)0.6597 (4)0.0390 (15)H12-0.0788130.5478760.6188260.047*C40.5858 (7)0.4928 (5)0.6459 (4)0.0312 (13)H40.5804210.5641530.6268640.037*C60.6290 (8)0.3101 (6)0.6148 (5)0.0487 (19)H60.6560590.2560250.5750200.058*C350.6475 (9)0.8081 (6)0.5286 (4)0.0473 (18)H35B0.6832470.8278420.5822050.057*C160.1547 (9)0.7276 (5)1.0185 (4)0.0420 (16)H16A0.2077720.7139901.0702220.050*	C24	1.1755 (8)	1.1644 (5)	0.1071 (4)	0.0386 (15)
C23 1.1434 (8) 1.1956 (5) 0.1892 (4) 0.0361 (14)H23 1.150355 1.267240 0.202027 $0.043*$ C18 0.3116 (8) 0.7526 (4) 0.8797 (4) 0.0329 (14)H18A 0.234606 0.766623 0.837207 $0.040*$ H18B 0.423028 0.774539 0.855950 $0.040*$ C12 -0.0056 (8) 0.5533 (5) 0.6597 (4) 0.0390 (15)H12 -0.078813 0.547876 0.618826 $0.047*$ C4 0.5858 (7) 0.4928 (5) 0.6459 (4) 0.0312 (13)H4 0.580421 0.564153 0.626864 $0.037*$ C6 0.6290 (8) 0.3101 (6) 0.6148 (5) 0.0487 (19)H6 0.656059 0.256025 0.575020 $0.058*$ C35 0.6475 (9) 0.8081 (6) 0.5286 (4) 0.0473 (18)H35A 0.530490 0.788934 0.539572 $0.057*$ H35B 0.683247 0.827842 0.582205 $0.057*$ C16 0.1547 (9) 0.7276 (5) 1.0185 (4) 0.0420 (16)H16A 0.207772 0.713990 1.070222 $0.050*$	H24	1.204076	1.214593	0.063287	0.046*
H231.1503551.2672400.2020270.043*C180.3116 (8)0.7526 (4)0.8797 (4)0.0329 (14)H18A0.2346060.7666230.8372070.040*H18B0.4230280.7745390.8559500.040*C12-0.0056 (8)0.5533 (5)0.6597 (4)0.0390 (15)H12-0.0788130.5478760.6188260.047*C40.5858 (7)0.4928 (5)0.6459 (4)0.0312 (13)H40.5804210.5641530.6268640.037*C60.6290 (8)0.3101 (6)0.6148 (5)0.0487 (19)H60.6560590.2560250.5750200.058*C350.6475 (9)0.8081 (6)0.5286 (4)0.0473 (18)H35A0.5304900.7889340.5395720.057*H35B0.6832470.8278420.5822050.057*C160.1547 (9)0.7276 (5)1.0185 (4)0.0420 (16)H16A0.2077720.7139901.0702220.050*	C23	1.1434 (8)	1.1956 (5)	0.1892 (4)	0.0361 (14)
C180.3116 (8)0.7526 (4)0.8797 (4)0.0329 (14)H18A0.2346060.7666230.8372070.040*H18B0.4230280.7745390.8559500.040*C12-0.0056 (8)0.5533 (5)0.6597 (4)0.0390 (15)H12-0.0788130.5478760.6188260.047*C40.5858 (7)0.4928 (5)0.6459 (4)0.0312 (13)H40.5804210.5641530.6268640.037*C60.6290 (8)0.3101 (6)0.6148 (5)0.0487 (19)H60.6560590.2560250.5750200.058*C350.6475 (9)0.8081 (6)0.5286 (4)0.0473 (18)H35A0.5304900.7889340.5395720.057*H35B0.6832470.8278420.5822050.057*C160.1547 (9)0.7276 (5)1.0185 (4)0.0420 (16)H16A0.2077720.7139901.0702220.050*	H23	1.150355	1.267240	0.202027	0.043*
H18A0.2346060.7666230.8372070.040*H18B0.4230280.7745390.8559500.040*C12-0.0056 (8)0.5533 (5)0.6597 (4)0.0390 (15)H12-0.0788130.5478760.6188260.047*C40.5858 (7)0.4928 (5)0.6459 (4)0.0312 (13)H40.5804210.5641530.6268640.037*C60.6290 (8)0.3101 (6)0.6148 (5)0.0487 (19)H60.6560590.2560250.5750200.058*C350.6475 (9)0.8081 (6)0.5286 (4)0.0473 (18)H35A0.5304900.7889340.5395720.057*H35B0.6832470.8278420.5822050.057*C160.1547 (9)0.7276 (5)1.0185 (4)0.0420 (16)H16A0.2077720.7139901.0702220.050*	C18	0.3116 (8)	0.7526 (4)	0.8797 (4)	0.0329 (14)
H18B0.4230280.7745390.8559500.040*C12-0.0056 (8)0.5533 (5)0.6597 (4)0.0390 (15)H12-0.0788130.5478760.6188260.047*C40.5858 (7)0.4928 (5)0.6459 (4)0.0312 (13)H40.5804210.5641530.6268640.037*C60.6290 (8)0.3101 (6)0.6148 (5)0.0487 (19)H60.6560590.2560250.5750200.058*C350.6475 (9)0.8081 (6)0.5286 (4)0.0473 (18)H35A0.5304900.7889340.5395720.057*H35B0.6832470.8278420.5822050.057*C160.1547 (9)0.7276 (5)1.0185 (4)0.0420 (16)H16A0.2077720.7139901.0702220.050*	H18A	0.234606	0.766623	0.837207	0.040*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H18B	0.423028	0.774539	0.855950	0.040*
H12-0.0788130.5478760.6188260.047*C40.5858 (7)0.4928 (5)0.6459 (4)0.0312 (13)H40.5804210.5641530.6268640.037*C60.6290 (8)0.3101 (6)0.6148 (5)0.0487 (19)H60.6560590.2560250.5750200.058*C350.6475 (9)0.8081 (6)0.5286 (4)0.0473 (18)H35A0.5304900.7889340.5395720.057*H35B0.6832470.8278420.5822050.057*C160.1547 (9)0.7276 (5)1.0185 (4)0.0420 (16)H16A0.2077720.7139901.0702220.050*	C12	-0.0056 (8)	0.5533 (5)	0.6597 (4)	0.0390 (15)
C40.5858 (7)0.4928 (5)0.6459 (4)0.0312 (13)H40.5804210.5641530.6268640.037*C60.6290 (8)0.3101 (6)0.6148 (5)0.0487 (19)H60.6560590.2560250.5750200.058*C350.6475 (9)0.8081 (6)0.5286 (4)0.0473 (18)H35A0.5304900.7889340.5395720.057*H35B0.6832470.8278420.5822050.057*C160.1547 (9)0.7276 (5)1.0185 (4)0.0420 (16)H16A0.2077720.7139901.0702220.050*	H12	-0.078813	0.547876	0.618826	0.047*
H40.5804210.5641530.6268640.037*C60.6290 (8)0.3101 (6)0.6148 (5)0.0487 (19)H60.6560590.2560250.5750200.058*C350.6475 (9)0.8081 (6)0.5286 (4)0.0473 (18)H35A0.5304900.7889340.5395720.057*H35B0.6832470.8278420.5822050.057*C160.1547 (9)0.7276 (5)1.0185 (4)0.0420 (16)H16A0.2077720.7139901.0702220.050*	C4	0.5858 (7)	0.4928 (5)	0.6459 (4)	0.0312 (13)
C60.6290 (8)0.3101 (6)0.6148 (5)0.0487 (19)H60.6560590.2560250.5750200.058*C350.6475 (9)0.8081 (6)0.5286 (4)0.0473 (18)H35A0.5304900.7889340.5395720.057*H35B0.6832470.8278420.5822050.057*C160.1547 (9)0.7276 (5)1.0185 (4)0.0420 (16)H16A0.2077720.7139901.0702220.050*	H4	0.580421	0.564153	0.626864	0.037*
H60.6560590.2560250.5750200.058*C350.6475 (9)0.8081 (6)0.5286 (4)0.0473 (18)H35A0.5304900.7889340.5395720.057*H35B0.6832470.8278420.5822050.057*C160.1547 (9)0.7276 (5)1.0185 (4)0.0420 (16)H16A0.2077720.7139901.0702220.050*	C6	0.6290 (8)	0.3101 (6)	0.6148 (5)	0.0487 (19)
C350.6475 (9)0.8081 (6)0.5286 (4)0.0473 (18)H35A0.5304900.7889340.5395720.057*H35B0.6832470.8278420.5822050.057*C160.1547 (9)0.7276 (5)1.0185 (4)0.0420 (16)H16A0.2077720.7139901.0702220.050*	H6	0.656059	0.256025	0.575020	0.058*
H35A0.5304900.7889340.5395720.057*H35B0.6832470.8278420.5822050.057*C160.1547 (9)0.7276 (5)1.0185 (4)0.0420 (16)H16A0.2077720.7139901.0702220.050*	C35	0.6475 (9)	0.8081 (6)	0.5286 (4)	0.0473 (18)
H35B0.6832470.8278420.5822050.057*C160.1547 (9)0.7276 (5)1.0185 (4)0.0420 (16)H16A0.2077720.7139901.0702220.050*	H35A	0.530490	0.788934	0.539572	0.057*
C160.1547 (9)0.7276 (5)1.0185 (4)0.0420 (16)H16A0.2077720.7139901.0702220.050*	H35B	0.683247	0.827842	0.582205	0.057*
H16A 0.207772 0.713990 1.070222 0.050*	C16	0.1547 (9)	0.7276 (5)	1.0185 (4)	0.0420 (16)
	H16A	0.207772	0.713990	1.070222	0.050*

H16B	0.037391	0.752837	1.034725	0.050*
C34	0.7597 (9)	0.7161 (6)	0.4895 (4)	0.0449 (17)
H34A	0.847256	0.694674	0.525112	0.054*
H34B	0.693919	0.654893	0.483513	0.054*
H1′	0.397 (7)	0.632 (5)	0.948 (3)	0.054*
H2	0.911 (6)	0.875 (5)	0.454 (3)	0.054*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C12	0.0390 (8)	0.0279 (7)	0.0220 (7)	0.0035 (6)	-0.0099 (6)	-0.0062 (5)
Cl1	0.0553 (10)	0.0307 (8)	0.0290 (8)	-0.0163 (7)	-0.0203 (7)	0.0075 (6)
F1	0.041 (2)	0.0338 (19)	0.0285 (18)	-0.0134 (15)	-0.0076 (15)	0.0094 (14)
F2	0.0333 (19)	0.0309 (18)	0.0360 (19)	-0.0100 (14)	-0.0017 (15)	0.0077 (15)
F3	0.038 (2)	0.0304 (18)	0.0321 (19)	0.0034 (15)	-0.0013 (15)	-0.0111 (14)
F4	0.034 (2)	0.0281 (18)	0.057 (2)	0.0064 (15)	-0.0083 (17)	-0.0129 (16)
N2	0.028 (3)	0.027 (2)	0.016 (2)	-0.003 (2)	-0.0015 (19)	0.0012 (19)
N1	0.031 (3)	0.027 (2)	0.016 (2)	-0.003 (2)	-0.0052 (19)	-0.0038 (19)
C27	0.023 (3)	0.021 (3)	0.017 (3)	-0.004 (2)	-0.002 (2)	0.000 (2)
C9	0.022 (3)	0.021 (3)	0.018 (3)	0.005 (2)	-0.002 (2)	-0.005 (2)
C28	0.023 (3)	0.025 (3)	0.027 (3)	-0.006 (2)	-0.002 (2)	-0.001 (2)
C1	0.026 (3)	0.020 (3)	0.018 (3)	-0.001 (2)	-0.006 (2)	-0.002 (2)
C21	0.015 (3)	0.029 (3)	0.024 (3)	-0.001 (2)	-0.001 (2)	-0.001 (2)
C19	0.026 (3)	0.021 (3)	0.018 (3)	-0.005 (2)	-0.003 (2)	0.002 (2)
C3	0.020 (3)	0.031 (3)	0.023 (3)	-0.003 (2)	-0.001 (2)	-0.005 (2)
C20	0.026 (3)	0.029 (3)	0.022 (3)	-0.004 (2)	-0.006 (2)	-0.001 (2)
C14	0.023 (3)	0.023 (3)	0.030 (3)	0.000 (2)	-0.003 (2)	-0.002 (2)
C32	0.027 (3)	0.027 (3)	0.022 (3)	-0.006 (2)	0.002 (2)	-0.001 (2)
C11	0.043 (4)	0.033 (3)	0.024 (3)	0.005 (3)	-0.015 (3)	0.001 (2)
C22	0.031 (3)	0.034 (3)	0.028 (3)	-0.006 (3)	-0.002 (3)	-0.006 (3)
C2	0.023 (3)	0.028 (3)	0.022 (3)	-0.006 (2)	-0.005 (2)	-0.003 (2)
C25	0.032 (3)	0.044 (4)	0.021 (3)	-0.005 (3)	0.002 (2)	0.001 (3)
C10	0.024 (3)	0.023 (3)	0.025 (3)	-0.004 (2)	-0.002 (2)	-0.001 (2)
C8	0.020 (3)	0.039 (3)	0.037 (3)	0.002 (2)	-0.003 (2)	-0.002 (3)
C36	0.027 (3)	0.053 (4)	0.024 (3)	-0.008 (3)	0.004 (2)	-0.004 (3)
C15	0.038 (4)	0.035 (3)	0.029 (3)	0.001 (3)	0.008 (3)	-0.004 (3)
C33	0.045 (4)	0.032 (3)	0.028 (3)	-0.007 (3)	-0.007 (3)	0.005 (3)
C26	0.023 (3)	0.031 (3)	0.024 (3)	-0.005 (2)	-0.003 (2)	-0.001 (2)
C31	0.036 (3)	0.044 (4)	0.025 (3)	-0.020 (3)	0.003 (3)	-0.011 (3)
C13	0.025 (3)	0.029 (3)	0.049 (4)	-0.007 (2)	-0.010 (3)	0.000 (3)
C5	0.038 (4)	0.063 (5)	0.026 (3)	0.002 (3)	0.004 (3)	-0.015 (3)
C29	0.030 (3)	0.038 (4)	0.042 (4)	-0.008 (3)	-0.016 (3)	0.011 (3)
C17	0.044 (4)	0.032 (3)	0.043 (4)	0.005 (3)	-0.007 (3)	-0.016 (3)
C30	0.035 (4)	0.062 (4)	0.026 (3)	-0.022 (3)	-0.013 (3)	0.003 (3)
C7	0.027 (3)	0.035 (3)	0.050 (4)	0.000 (3)	0.002 (3)	-0.011 (3)
C24	0.037 (4)	0.047 (4)	0.031 (3)	-0.007 (3)	-0.002 (3)	0.015 (3)
C23	0.034 (3)	0.026 (3)	0.048 (4)	-0.003 (3)	-0.002 (3)	-0.001 (3)
C18	0.046 (4)	0.022 (3)	0.031 (3)	-0.001 (3)	-0.005 (3)	-0.005 (2)

G1	0.000 (0)	0.041.(4)				0.005(0)
C12	0.033 (3)	0.041 (4)	0.049 (4)	0.000 (3)	-0.024 (3)	-0.005 (3)
C4	0.029 (3)	0.038 (3)	0.026 (3)	-0.004 (3)	0.000 (2)	-0.003 (3)
C6	0.031 (4)	0.057 (5)	0.056 (5)	0.000 (3)	0.008 (3)	-0.034 (4)
C35	0.045 (4)	0.075 (5)	0.023 (3)	-0.020 (4)	0.001 (3)	0.003 (3)
C16	0.046 (4)	0.047 (4)	0.031 (3)	0.004 (3)	0.001 (3)	-0.012 (3)
C34	0.047 (4)	0.056 (4)	0.034 (4)	-0.015 (3)	-0.009 (3)	0.018 (3)

Geometric parameters (Å, °)

F1-C10	1.357 (6)	C3—C4	1.393 (8)
F2	1.352 (6)	C3—C2	1.510 (7)
F3—C32	1.353 (6)	C14—C13	1.381 (8)
F4-C28	1.361 (6)	C32—C31	1.373 (8)
N2-C36	1.491 (7)	C11—C10	1.369 (8)
N2—C33	1.500 (7)	C11—C12	1.393 (9)
N2-C19	1.520 (6)	C22—C23	1.389 (8)
N1-C15	1.498 (7)	C25—C24	1.381 (9)
N1-C18	1.502 (7)	C25—C26	1.383 (8)
N1—C1	1.513 (6)	C8—C7	1.394 (8)
C27—C28	1.390 (7)	C36—C35	1.513 (9)
C27—C32	1.396 (7)	C15—C16	1.515 (8)
C27—C19	1.513 (7)	C33—C34	1.521 (8)
C9—C14	1.385 (7)	C31—C30	1.373 (9)
C9—C10	1.400(7)	C13—C12	1.374 (9)
C9—C1	1.518 (7)	C5—C4	1.378 (9)
C28—C29	1.378 (8)	C5—C6	1.382 (10)
C1—C2	1.528 (7)	C29—C30	1.386 (9)
C21—C26	1.391 (7)	C17—C18	1.516 (8)
C21—C22	1.392 (8)	C17—C16	1.550 (9)
C21—C20	1.513 (7)	C7—C6	1.388 (10)
C19—C20	1.526 (7)	C24—C23	1.375 (9)
C3—C8	1.392 (8)	C35—C34	1.534 (10)
C36—N2—C33	103.9 (4)	F3—C32—C31	117.2 (5)
C36—N2—C19	114.4 (4)	F3—C32—C27	118.1 (5)
C33—N2—C19	118.5 (4)	C31—C32—C27	124.8 (5)
C15—N1—C18	103.7 (4)	C10—C11—C12	117.7 (5)
C15—N1—C1	115.1 (4)	C23—C22—C21	120.2 (5)
C18—N1—C1	118.3 (4)	C3—C2—C1	110.2 (4)
С28—С27—С32	113.3 (5)	C24—C25—C26	120.2 (6)
С28—С27—С19	120.6 (5)	F1-C10-C11	117.3 (5)
С32—С27—С19	125.7 (5)	F1-C10-C9	118.0 (5)
C14—C9—C10	113.8 (5)	C11—C10—C9	124.7 (5)
C14—C9—C1	120.1 (5)	C3—C8—C7	120.4 (6)
C10—C9—C1	125.5 (5)	N2—C36—C35	104.2 (5)
F4-C28-C29	117.1 (5)	N1—C15—C16	103.7 (5)
F4-C28-C27	117.7 (5)	N2—C33—C34	103.2 (5)
C29—C28—C27	125.2 (5)	C25—C26—C21	120.3 (5)

N1—C1—C9	113.3 (4)	C30—C31—C32	118.0 (6)
N1—C1—C2	110.0 (4)	C12—C13—C14	118.2 (5)
C9—C1—C2	114.7 (4)	C4—C5—C6	120.0 (6)
C26—C21—C22	119.0 (5)	C28—C29—C30	117.2 (6)
C26—C21—C20	121.1 (5)	C18—C17—C16	105.3 (5)
C22—C21—C20	119.9 (5)	C31—C30—C29	121.4 (5)
C27—C19—N2	113.2 (4)	C6—C7—C8	120.1 (6)
C27—C19—C20	114.3 (4)	C23—C24—C25	120.0 (6)
N2—C19—C20	110.0 (4)	C24—C23—C22	120.2 (6)
C8—C3—C4	118.4 (5)	N1-C18-C17	104.2 (5)
C8—C3—C2	120.3 (5)	C13—C12—C11	121.0 (5)
C4—C3—C2	121.3 (5)	C5—C4—C3	121.4 (6)
C21—C20—C19	111.0 (4)	C5—C6—C7	119.7 (6)
F2-C14-C13	117.9 (5)	C36—C35—C34	105.5 (5)
F2—C14—C9	117.6 (5)	C15—C16—C17	105.7 (5)
C13—C14—C9	124.6 (5)	C33—C34—C35	105.9 (5)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1′···Cl1	0.99 (1)	2.07 (2)	3.021 (5)	163 (6)
N2—H2…Cl2	0.98 (1)	2.08 (2)	3.052 (5)	169 (6)

[1-(2,6-Difluorophenyl)-2-phenylethyl](ethyl)azanium chloride dichloromethane hemisolvate (II)

Crystal data

$2C_{16}H_{18}F_2N^+\!\cdot\!2Cl^-\!\cdot\!CH_2Cl_2$
$M_r = 680.45$
Monoclinic, <i>I</i> 2/ <i>a</i>
<i>a</i> = 22.9963 (14) Å
b = 7.8729 (5) Å
c = 19.033 (1) Å
$\beta = 92.130 \ (5)^{\circ}$
V = 3443.5 (4) Å ³
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer Radiation source: fine-focus sealed tube scans in phi and ω Absorption correction: analytical (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.911, T_{\max} = 0.962$ 12738 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.077$ F(000) = 1416 $D_x = 1.313 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8967 reflections $\theta = 3.0-26.4^{\circ}$ $\mu = 0.39 \text{ mm}^{-1}$ T = 123 KBlock, colourless $0.3 \times 0.2 \times 0.1 \text{ mm}$

3034 independent reflections 2813 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 3.3^{\circ}$ $h = -27 \rightarrow 26$ $k = -9 \rightarrow 9$ $l = -21 \rightarrow 22$

S = 1.073034 reflections 224 parameters 0 restraints

Hydrogen site location: mixed	$w = 1/[\sigma^2(F_o^2) + (0.0343P)^2 + 2.8401P]$
H atoms treated by a mixture of independent	where $P = (F_o^2 + 2F_c^2)/3$
and constrained refinement	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C11	0.28641 (2)	0.60990 (5)	0.16223 (2)	0.02972 (12)	
Cl1S	0.31326 (2)	0.28821 (7)	0.00859 (3)	0.05486 (16)	
F1	0.05520 (5)	1.14129 (13)	0.11535 (6)	0.0466 (3)	
F2	0.17656 (5)	0.69870 (15)	0.04908 (5)	0.0570 (3)	
N1	0.19574 (5)	0.90437 (17)	0.17878 (7)	0.0248 (3)	
C1	0.13169 (6)	0.88167 (19)	0.16264 (7)	0.0251 (3)	
H1	0.110554	0.967062	0.191048	0.030*	
C9	0.11629 (6)	0.91562 (18)	0.08602 (7)	0.0242 (3)	
C3	0.05036 (7)	0.6689 (2)	0.17558 (8)	0.0308 (3)	
C13	0.12414 (8)	0.8489 (2)	-0.03848 (9)	0.0391 (4)	
H13	0.140233	0.779839	-0.073793	0.047*	
C12	0.08611 (7)	0.9784 (2)	-0.05562 (9)	0.0392 (4)	
H12	0.075593	0.999429	-0.103567	0.047*	
C11	0.06315 (7)	1.0777 (2)	-0.00420 (9)	0.0369 (4)	
H11	0.037235	1.168104	-0.016069	0.044*	
C14	0.13806 (7)	0.8227 (2)	0.03156 (8)	0.0326 (4)	
C10	0.07854 (6)	1.04341 (19)	0.06485 (8)	0.0288 (3)	
C4	0.00903 (8)	0.7455 (2)	0.21652 (9)	0.0399 (4)	
H4	0.021169	0.820557	0.253303	0.048*	
C15	0.2196 (4)	1.0751 (12)	0.1558 (4)	0.0316 (19)	0.707 (5)
H15A	0.195508	1.167814	0.174557	0.038*	0.707 (5)
H15B	0.217609	1.082569	0.103855	0.038*	0.707 (5)
C8	0.03174 (8)	0.5597 (2)	0.12252 (9)	0.0388 (4)	
H8	0.059436	0.506416	0.093985	0.047*	
C2	0.11439 (7)	0.7045 (2)	0.18834 (9)	0.0326 (4)	
H2A	0.137251	0.617767	0.163763	0.039*	
H2B	0.124134	0.695173	0.239296	0.039*	
C7	-0.02704 (9)	0.5276 (3)	0.11066 (10)	0.0501 (5)	
H7	-0.039328	0.451887	0.074176	0.060*	
C5	-0.04964 (8)	0.7136 (3)	0.20423 (11)	0.0490 (5)	
Н5	-0.077544	0.767277	0.232379	0.059*	
C6	-0.06771 (8)	0.6042 (3)	0.15123 (11)	0.0524 (5)	
H6	-0.107970	0.581969	0.142816	0.063*	
C16	0.28347 (10)	1.0963 (3)	0.18310 (13)	0.0360 (7)	0.707 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H16A	0.285642	1.081935	0.234280	0.054*	0.707 (5)	
H16B	0.297386	1.209892	0.171032	0.054*	0.707 (5)	
H16C	0.307818	1.010445	0.161259	0.054*	0.707 (5)	
C1S	0.250000	0.4136 (3)	0.000000	0.0302 (5)		
H1S1	0.252617	0.487565	-0.041826	0.036*	0.5	
H1S2	0.247383	0.487565	0.041827	0.036*	0.5	
C16A	0.1932 (3)	1.2115 (7)	0.1843 (3)	0.0383 (18)	0.293 (5)	
H16D	0.155523	1.220984	0.158750	0.057*	0.293 (5)	
H16E	0.216492	1.313058	0.175641	0.057*	0.293 (5)	
H16F	0.186879	1.201409	0.234797	0.057*	0.293 (5)	
H1B	0.2162 (8)	0.819 (2)	0.1612 (9)	0.036 (5)*		
H1A	0.2010 (7)	0.893 (2)	0.2273 (10)	0.034 (5)*		
C15A	0.2248 (10)	1.057 (3)	0.1594 (10)	0.037 (6)	0.293 (5)	
H15C	0.227354	1.060956	0.107617	0.044*	0.293 (5)	
H15D	0.264950	1.056010	0.180153	0.044*	0.293 (5)	

Atomic displacement parameters $(Å^2)$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54 (15)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(6)
C3 0.0340 (8) 0.0268 (8) 0.0313 (8) -0.0038 (7) -0.0044 (7) 0.0103 C13 0.0366 (9) 0.0524 (11) 0.0280 (8) -0.0036 (8) -0.0014 (7) -0.006 C12 0.0325 (9) 0.0556 (11) 0.0287 (8) -0.0121 (8) -0.0080 (7) 0.0119 C11 0.0271 (8) 0.0381 (9) 0.0448 (10) -0.0028 (7) -0.0082 (7) 0.0179 C14 0.0301 (8) 0.0358 (9) 0.0314 (8) 0.0074 (7) -0.0057 (6) -0.002	(6)
C13 0.0366 (9) 0.0524 (11) 0.0280 (8) -0.0036 (8) -0.0014 (7) -0.006 C12 0.0325 (9) 0.0556 (11) 0.0287 (8) -0.0121 (8) -0.0080 (7) 0.0119 C11 0.0271 (8) 0.0381 (9) 0.0448 (10) -0.0028 (7) -0.0082 (7) 0.0179 C14 0.0301 (8) 0.0358 (9) 0.0314 (8) 0.0074 (7) -0.0057 (6) -0.002	(7)
C12 0.0325 (9) 0.0556 (11) 0.0287 (8) -0.0121 (8) -0.0080 (7) 0.0119 C11 0.0271 (8) 0.0381 (9) 0.0448 (10) -0.0028 (7) -0.0082 (7) 0.0179 C14 0.0301 (8) 0.0358 (9) 0.0314 (8) 0.0074 (7) -0.0057 (6) -0.002	1 (8)
C11 0.0271 (8) 0.0381 (9) 0.0448 (10) -0.0028 (7) -0.0082 (7) 0.0179 C14 0.0301 (8) 0.0358 (9) 0.0314 (8) 0.0074 (7) -0.0057 (6) -0.002	(8)
C14 0.0301 (8) 0.0358 (9) 0.0314 (8) 0.0074 (7) -0.0057 (6) -0.002	(8)
	28 (7)
C10 0.0242 (7) 0.0266 (8) 0.0356 (8) 0.0002 (6) 0.0009 (6) 0.0031	(7)
C4 0.0433 (10) 0.0393 (10) 0.0372 (9) -0.0060 (8) 0.0029 (8) 0.0050	(8)
C15 0.023 (2) 0.030 (3) 0.041 (3) -0.011 (3) -0.0100 (19) 0.014 ((2)
C8 0.0451 (10) 0.0303 (9) 0.0405 (10) -0.0053 (8) -0.0048 (8) 0.0039	(7)
C2 0.0331 (9) 0.0294 (8) 0.0349 (9) -0.0014 (7) -0.0056 (7) 0.0078	(7)
C7 0.0563 (12) 0.0426 (11) 0.0499 (11) -0.0201 (9) -0.0178 (9) 0.0104	(9)
C5 0.0373 (10) 0.0504 (11) 0.0599 (12) 0.0000 (9) 0.0101 (9) 0.0196	(10)
C6 0.0349 (10) 0.0546 (12) 0.0665 (13) -0.0143 (9) -0.0130 (9) 0.0315	(11)
C16 0.0326 (14) 0.0355 (14) 0.0397 (14) -0.0085 (10) -0.0007 (10) 0.0018	(10)
C1S 0.0286 (11) 0.0273 (11) 0.0340 (12) 0.000 -0.0070 (9) 0.000	
C16A 0.040 (3) 0.031 (3) 0.043 (3) -0.010 (3) -0.010 (3) -0.002	2 (3)
C15A 0.053 (9) 0.042 (8) 0.015 (5) 0.024 (5) -0.009 (4) 0.006 ((5)

Geometric parameters (Å, °)

Cl1S—C1S	1.7606 (13)	С3—С2	1.510 (2)
F1—C10	1.3580 (18)	C13—C12	1.375 (3)

F2—C14	1.3516 (18)	C13—C14	1.375 (2)
N1—C15A	1.43 (2)	C12—C11	1.374 (3)
N1—C1	1.5040 (19)	C11—C10	1.375 (2)
N1—C15	1.522 (8)	C4—C5	1.384 (3)
C1—C9	1.512 (2)	C15—C16	1.550 (8)
C1—C2	1.535 (2)	C8—C7	1.385 (3)
C9—C14	1.378 (2)	C7—C6	1.374 (3)
C9—C10	1.379 (2)	C5—C6	1.379 (3)
C3—C8	1.382 (2)	C16A—C15A	1.51 (2)
C3—C4	1.389 (2)		
C15A N1 C1	120.8 (11)	$E_{2}^{2} C_{14}^{14} C_{0}^{0}$	116 20 (14)
$C1_{A}$ $N1_{C1}$ $C1_{5}$	120.0(11)	$F_2 = C_1 4 = C_9$	110.80(14)
CI-NI-CIS	114.0 (4)		124.89 (13)
NI-CI-C9	111.62 (12)	F1—C10—C11	118.07 (14)
N1—C1—C2	107.84 (12)	F1—C10—C9	117.92 (14)
C9—C1—C2	114.45 (13)	C11—C10—C9	124.01 (15)
C14—C9—C10	114.19 (14)	C5—C4—C3	120.64 (17)
C14—C9—C1	123.60 (13)	N1—C15—C16	110.2 (7)
C10—C9—C1	122.21 (13)	C3—C8—C7	120.44 (18)
C8—C3—C4	118.70 (16)	C3—C2—C1	112.35 (13)
C8—C3—C2	120.46 (15)	C6—C7—C8	120.56 (18)
C4—C3—C2	120.84 (15)	C6—C5—C4	120.15 (19)
C12—C13—C14	117.66 (16)	C7—C6—C5	119.51 (18)
C11—C12—C13	120.75 (15)	Cl1S—C1S—Cl1S ⁱ	111.79 (12)
C12-C11-C10	118.49 (15)	N1—C15A—C16A	111.2 (13)
F2-C14-C13	118.30 (14)		

Symmetry code: (i) -x+1/2, y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H····A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>B</i> …Cl1	0.89 (2)	2.30 (2)	3.1417 (14)	156.0 (16)

tert-Butyl[1-(2,6-difluorophenyl)-2-phenylethyl]azanium chloride (III)

Crystal data	
$C_{18}H_{22}F_2N^+ \cdot Cl^-$	F(000) = 688
$M_r = 325.81$	$D_{\rm x} = 1.270 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 11.3115 (6) Å	Cell parameters from 8922 reflections
b = 10.5400 (5) Å	$\theta = 3.0-26.2^{\circ}$
c = 14.8039 (7) Å	$\mu = 0.24 \text{ mm}^{-1}$
$\beta = 105.044 \ (5)^{\circ}$	T = 123 K
$V = 1704.48 (15) \text{ Å}^3$	Block, colourless
Z = 4	$0.4 \times 0.2 \times 0.1 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur diffractometer Radiation source: fine-focus sealed tube scans in phi and ω Absorption correction: analytical (SADABS; Krause <i>et al.</i> , 2015) $T_{\min} = 0.944, T_{\max} = 0.976$ 7223 measured reflections	3008 independent reflections 2343 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 3.3^{\circ}$ $h = -13 \rightarrow 13$ $k = -8 \rightarrow 12$ $l = -17 \rightarrow 12$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.095$ S = 1.06 3008 reflections 210 parameters 0 restraints	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0303P)^2 + 0.5824P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.22$ e Å ⁻³ $\Delta\rho_{min} = -0.25$ e Å ⁻³
Special details	

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.39037 (5)	1.13981 (5)	0.05585 (4)	0.02430 (17)	
F1	0.09857 (12)	0.74034 (14)	0.10106 (9)	0.0339 (4)	
F2	0.39994 (13)	0.60187 (13)	-0.04167 (9)	0.0323 (4)	
N1	0.41820 (17)	0.84575 (19)	0.06664 (12)	0.0173 (4)	
C1	0.5951 (2)	0.8889 (2)	0.19595 (15)	0.0253 (6)	
H1C	0.648652	0.862937	0.156776	0.038*	
H1D	0.636607	0.873592	0.261856	0.038*	
H1E	0.576024	0.979356	0.186458	0.038*	
C2	0.3904 (2)	0.8518 (2)	0.22761 (15)	0.0266 (6)	
H2A	0.367671	0.941068	0.215264	0.040*	
H2B	0.431267	0.840815	0.294127	0.040*	
H2C	0.316581	0.799009	0.211062	0.040*	
C3	0.5069 (2)	0.6716 (2)	0.18050 (15)	0.0264 (6)	
H3A	0.430789	0.622529	0.168216	0.040*	
H3B	0.555718	0.655092	0.244475	0.040*	
H3C	0.553596	0.646429	0.136139	0.040*	
C4	0.4769 (2)	0.8122 (2)	0.16915 (14)	0.0193 (5)	
C5	0.2864 (2)	0.8140 (2)	0.02029 (14)	0.0186 (5)	
H5	0.234618	0.867019	0.050999	0.022*	
C6	0.2527 (2)	0.6777 (2)	0.03035 (14)	0.0185 (5)	
C7	0.1596 (2)	0.6448 (2)	0.07147 (15)	0.0233 (5)	
C8	0.1273 (2)	0.5219 (3)	0.08481 (17)	0.0325 (6)	

H8	0.064723	0.504267	0.115178	0.039*
C9	0.1874 (2)	0.4250 (3)	0.05328 (17)	0.0352 (7)
Н9	0.166274	0.339447	0.061977	0.042*
C10	0.2784 (2)	0.4506 (2)	0.00904 (17)	0.0313 (6)
H10	0.319903	0.384076	-0.013306	0.038*
C11	0.3068 (2)	0.5751 (2)	-0.00151 (15)	0.0234 (6)
C12	0.2600 (2)	0.8573 (2)	-0.08193 (14)	0.0213 (5)
H12A	0.290438	0.944996	-0.084222	0.026*
H12B	0.304422	0.801691	-0.115937	0.026*
C13	0.1247 (2)	0.8529 (2)	-0.12948 (14)	0.0207 (5)
C14	0.0489 (2)	0.9493 (3)	-0.11500 (17)	0.0332 (6)
H14	0.082380	1.018435	-0.075390	0.040*
C15	-0.0752 (3)	0.9463 (3)	-0.15751 (19)	0.0444 (8)
H15	-0.126360	1.013158	-0.147073	0.053*
C16	-0.1250 (2)	0.8465 (3)	-0.21498 (19)	0.0415 (7)
H16	-0.210343	0.844521	-0.244199	0.050*
C17	-0.0509 (2)	0.7503 (3)	-0.22978 (17)	0.0368 (7)
H17	-0.084782	0.681460	-0.269479	0.044*
C18	0.0738 (2)	0.7533 (2)	-0.18684 (15)	0.0274 (6)
H18	0.124631	0.685936	-0.197099	0.033*
H1A	0.423 (2)	0.933 (2)	0.0648 (15)	0.020 (6)*
H1B	0.471 (2)	0.818 (2)	0.0302 (16)	0.033 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0305 (3)	0.0186 (3)	0.0261 (3)	0.0042 (3)	0.0115 (2)	0.0024 (3)
F1	0.0296 (8)	0.0364 (9)	0.0419 (8)	0.0001 (7)	0.0202 (7)	0.0009(7)
F2	0.0383 (9)	0.0276 (8)	0.0363 (8)	0.0065 (7)	0.0190 (7)	0.0004 (7)
N1	0.0222 (11)	0.0132 (11)	0.0172 (10)	0.0009 (10)	0.0063 (8)	0.0011 (9)
C1	0.0248 (14)	0.0286 (15)	0.0205 (12)	-0.0010 (12)	0.0021 (10)	0.0037 (11)
C2	0.0302 (14)	0.0320 (15)	0.0186 (12)	-0.0025 (13)	0.0081 (10)	-0.0008 (11)
C3	0.0329 (15)	0.0232 (14)	0.0205 (12)	0.0024 (12)	0.0021 (10)	0.0061 (11)
C4	0.0213 (13)	0.0210 (12)	0.0142 (11)	0.0003 (11)	0.0021 (9)	0.0035 (10)
C5	0.0198 (13)	0.0168 (12)	0.0196 (12)	0.0025 (11)	0.0056 (9)	0.0006 (10)
C6	0.0197 (13)	0.0191 (12)	0.0151 (11)	0.0001 (11)	0.0019 (9)	0.0020 (10)
C7	0.0207 (13)	0.0252 (14)	0.0225 (12)	0.0007 (12)	0.0029 (10)	0.0010 (11)
C8	0.0302 (15)	0.0340 (16)	0.0317 (14)	-0.0100 (13)	0.0051 (11)	0.0075 (13)
C9	0.0429 (17)	0.0215 (15)	0.0338 (15)	-0.0113 (14)	-0.0031 (12)	0.0069 (12)
C10	0.0389 (16)	0.0182 (13)	0.0315 (14)	0.0024 (13)	-0.0003 (12)	-0.0005 (12)
C11	0.0264 (14)	0.0242 (14)	0.0198 (12)	0.0009 (12)	0.0061 (10)	0.0019 (11)
C12	0.0228 (13)	0.0209 (13)	0.0197 (11)	0.0004 (11)	0.0047 (9)	0.0041 (11)
C13	0.0241 (13)	0.0213 (13)	0.0171 (11)	-0.0003 (12)	0.0059 (9)	0.0054 (11)
C14	0.0326 (16)	0.0272 (15)	0.0347 (14)	0.0043 (13)	-0.0005 (12)	-0.0044 (12)
C15	0.0326 (17)	0.0459 (19)	0.0513 (18)	0.0166 (15)	0.0047 (13)	-0.0013 (16)
C16	0.0226 (15)	0.052 (2)	0.0457 (16)	0.0001 (15)	0.0015 (12)	0.0001 (16)
C17	0.0356 (17)	0.0408 (17)	0.0305 (14)	-0.0099 (15)	0.0024 (12)	-0.0106 (13)
C18	0.0272 (15)	0.0280 (15)	0.0278 (13)	0.0015 (12)	0.0086 (11)	-0.0018 (12)

Geometric parameters (Å, °)

F1—C7	1.356 (3)	C6—C7	1.390 (3)
F2—C11	1.367 (2)	С7—С8	1.374 (3)
N1—C5	1.508 (3)	C8—C9	1.374 (4)
N1—C4	1.532 (3)	С8—Н8	0.9500
N1—H1A	0.92 (2)	C9—C10	1.382 (4)
N1—H1B	0.95 (2)	С9—Н9	0.9500
C1—C4	1.524 (3)	C10—C11	1.369 (3)
C1—H1C	0.9800	C10—H10	0.9500
C1—H1D	0.9800	C12—C13	1.510 (3)
C1—H1E	0.9800	C12—H12A	0.9900
C2—C4	1.523 (3)	C12—H12B	0.9900
C2—H2A	0.9800	C13—C18	1.379 (3)
C2—H2B	0.9800	C13—C14	1.382 (3)
C2—H2C	0.9800	C14—C15	1.381 (4)
C3—C4	1.520 (3)	C14—H14	0.9500
С3—НЗА	0.9800	C15—C16	1.377 (4)
С3—Н3В	0.9800	C15—H15	0.9500
С3—НЗС	0.9800	C16—C17	1.369 (4)
C5—C6	1.504 (3)	C16—H16	0.9500
C5—C12	1.534 (3)	C17—C18	1.389 (3)
С5—Н5	1.0000	С17—Н17	0.9500
C6—C11	1.384 (3)	C18—H18	0.9500
C5—N1—C4	121.50 (16)	F1—C7—C8	118.5 (2)
C5—N1—H1A	105.3 (14)	F1—C7—C6	117.6 (2)
C4—N1—H1A	104.3 (14)	C8—C7—C6	123.9 (2)
C5—N1—H1B	111.4 (14)	C9—C8—C7	118.6 (2)
C4—N1—H1B	108.5 (15)	С9—С8—Н8	120.7
H1A—N1—H1B	104.2 (19)	С7—С8—Н8	120.7
C4—C1—H1C	109.5	C8—C9—C10	120.7 (2)
C4—C1—H1D	109.5	С8—С9—Н9	119.6
H1C—C1—H1D	109.5	С10—С9—Н9	119.6
C4—C1—H1E	109.5	C11—C10—C9	117.8 (2)
H1C—C1—H1E	109.5	C11—C10—H10	121.1
H1D—C1—H1E	109.5	C9—C10—H10	121.1
C4—C2—H2A	109.5	F2-C11-C10	118.5 (2)
C4—C2—H2B	109.5	F2—C11—C6	116.5 (2)
H2A—C2—H2B	109.5	C10—C11—C6	124.9 (2)
C4—C2—H2C	109.5	C13—C12—C5	111.39 (17)
H2A—C2—H2C	109.5	C13—C12—H12A	109.4
H2B—C2—H2C	109.5	C5—C12—H12A	109.4
C4—C3—H3A	109.5	C13—C12—H12B	109.4
C4—C3—H3B	109.5	C5—C12—H12B	109.4
НЗА—СЗ—НЗВ	109.5	H12A—C12—H12B	108.0
C4—C3—H3C	109.5	C18—C13—C14	118.6 (2)
НЗА—СЗ—НЗС	109.5	C18—C13—C12	121.4 (2)

НЗВ—СЗ—НЗС	109.5	C14—C13—C12	120.0 (2)
C3—C4—C2	111.26 (19)	C15—C14—C13	120.7 (3)
C3—C4—C1	109.42 (19)	C15—C14—H14	119.7
C2—C4—C1	110.85 (19)	C13—C14—H14	119.7
C3—C4—N1	111.22 (18)	C16—C15—C14	120.2 (3)
C2—C4—N1	108.81 (18)	C16—C15—H15	119.9
C1—C4—N1	105.11 (17)	C14—C15—H15	119.9
C6—C5—N1	114.40 (18)	C17—C16—C15	119.6 (3)
C6—C5—C12	113.12 (18)	C17—C16—H16	120.2
N1-C5-C12	107.39 (16)	C15—C16—H16	120.2
С6—С5—Н5	107.2	C16—C17—C18	120.1 (3)
N1—C5—H5	107.2	C16—C17—H17	119.9
С12—С5—Н5	107.2	C18—C17—H17	119.9
C11—C6—C7	114.0 (2)	C13—C18—C17	120.7 (2)
C11—C6—C5	124.53 (19)	C13—C18—H18	119.6
C7—C6—C5	121.5 (2)	C17—C18—H18	119.6

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A····Cl1	0.92 (2)	2.21 (3)	3.115 (2)	167.7 (19)
N1—H1 <i>B</i> ···Cl1 ⁱ	0.95 (2)	2.31 (2)	3.1684 (19)	151 (2)

Symmetry code: (i) -x+1, -y+2, -z.