

Received 11 November 2024 Accepted 10 February 2025

Edited by A. S. Batsanov, University of Durham, United Kingdom

Keywords: crystal structure; trifluoromethylpyrazole; trifluoromethyl; noncovalent interactions.

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN OPEN ACCESS

Crystal structure of 1-[(4-chlorophenyl)diphenylylmethyl]-3-(trifluoromethyl)-1*H*-pyrazole

Firudin I. Guseinov,^{a,b} Ksenia A. Afanaseva,^{a,b} Vera A.Vil,^b Bogdan I. Ugrak,^b Aida I. Samigullina,^b Ennio Zangrando^c and Alebel N. Belay^d*

^aKosygin State University of Russia, 117997 Moscow, Russian Federation, ^bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, ^cDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy, and ^dDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia. *Correspondence e-mail: alebel.nibret@bdu.edu.et

The title compound, $C_{23}H_{16}ClF_{3}N_{2}$, was synthesized from 3-(trifluoromethyl)-1*H*-pyrazole and chloro(4-chlorophenyl)methylene)dibenzene. The structure features intramolecular (Ph)C-H···N and intermolecular (Ph)C-H···F hydrogen bonds, as well as C-H··· π -ring interactions between the phenyl and pyrazole rings.

1. Chemical context

Pyrazoles and their derivatives are found in natural compounds and drugs, and are widely used in organic synthesis (Guseinov et al., 2006, 2024; Küçükgüzel et al., 2015; Pizzuti et al., 2014). Similarly to hydrazones (Mahmudov et al., 2011), new pyrazole derivatives can also be used in crystal engineering as well as in the synthesis of coordination compounds for catalysis (Jlassi et al., 2014; Ma et al., 2021; Mac Leod et al., 2012) and biological studies (Martins et al., 2017). The hydrogen-bond acceptor ability of the pyrazole motif can be employed as a tool for crystal growth and design (Guseinov et al., 2017, 2022; Abdelhamid et al., 2011; Afkhami et al., 2017). We believe that the attachment of a trifluoromethyl group to the pyrazole ring can improve the functional properties of new derivative ligands or supramolecular synthons. In fact, trifluoromethylated pyrazoles are indispensable heterocyclic motifs that constitute the core of a variety of bioactive substrates and pharmaceuticals (Kumar et al., 2023; Westphal et al., 2015; Zhu et al., 2014). Among them, the 3-trifluoromethylpyrazole scaffold is of great medicinal significance and is present in several drugs and bioactive molecules including celecoxib, mavacoxib (anti-inflammatory), razaxaban (anticoagulant), SC-560 (antitumor) and penthiopyrad (antifungal) (Davis et al., 2013; Fang et al., 2020; Liu et al., 2023).

research communications

Selected geometric parameters (A, $^{\circ}$).						
N1-N2	1.3517 (16)	C1-C2	1.373 (2)			
N1-C3	1.3328 (19)	C5-C6	1.5400 (18)			
N2-C1	1.3575 (19)	C5-C12	1.5431 (18)			
N2-C5	1.4981 (17)	C5-C18	1.5511 (17)			
N2-C5-C6	106.37 (10)	C6-C5-C12	110.99 (11)			
N2-C5-C12	110.49 (10)	C6-C5-C18	112.58 (10)			
N2-C5-C18	107.06 (10)	C12-C5-C18	109.24 (10)			

2. Structural commentary

Table 1

The title molecule, 1, is shown in Fig. 1. The central carbon atom C5 exhibits a geometry close to ideal tetrahedral and with similar C5-C(Ph) bond lengths (Table 1). The pyrazole ring geometry is unexceptional (Secrieru et al., 2020). The phenyl rings show an irregular propeller conformation about the C5-N2 bond: the ring planes A, B and C are inclined to the C6/C12/C18 plane in the same sense by 43.15 (5), 70.58 (6) and 22.62 (6)°, respectively. These angles (φ) vary much more widely than in 1,1,1-triphenylethane or triphenylchloromethane (see Section 4), partly as a result of the presence of the pyrazole ring, which assumes a nearly eclipsed orientation with a C1-N2-C5-C18 torsion angle of $16.58 (18)^{\circ}$, and partly because of the intramolecular C17-H17...N1 hydrogen bond (Table 2). It is noteworthy that the observed orientation of ring B (which shows the largest φ angle) is close to the simulated orientation (with $\varphi = 64^{\circ}$) that would give the shortest H17...N1 distance. This can be seen as the proof that this contact is a stabilizing hydrogen bond, rather than an incidental effect of crystal packing.

Table 2	
Hydrogen-bond geometry and $C-H\cdots\pi$ interaction parameters (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C17-H17···N1	0.98(2)	2.382 (19)	3.0541 (19)	125.1 (14)
$C22-H22\cdots F2^{i}$	0.96(2)	2.48 (2)	3.3596 (18)	151.6 (16)
$C2-H2\cdots Cg1^{i}$	0.95	2.96	3.6237 (17)	128
$C7-H7\cdots Cg1$	0.95	2.98	3.6784 (15)	132
$C8-H8\cdots Cg2^{ii}$	0.95	2.80	3.4721 (15)	129
$C13 - H13 \cdot \cdot \cdot Cg3^{ii}$	0.95	2.98	3.7873 (15)	144
$C21 - H21 \cdots Cg3^{iii}$	0.95	2.71	3.4928 (15)	140

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y + 1, z.

3. Supramolecular features

The crystal packing is shown in Fig. 2. Molecules are linked into centrosymmetric dimers by pairs of C22–H···F2 hydrogen bonds (Table 2, Fig. 3). Neither the phenyl nor the pyrazole rings are involved in π – π stacking interactions; however, there are C–H··· π -type interactions between rings contacting edge-to-face, at interplanar angles of 69.62 (6) to 78.68 (5)° and H···ring distances of 2.71–2.98 Å. Numerical details of hydoren bonds and C–H··· π interactions are given in Table 2.

4. Database survey

The propeller conformation of the CPh₃ moiety in **1** can be compared with those in 1,1,1-triphenylethane (**2**) and triphenylchloromethane (**3**). In **2**, the φ angles range from 41.3 to 55.3° at room temperature (TRPETN; Destro *et al.*, 1980) and from 42.0 to 53.9° at 100 K (TRPETN01; Fronczek, 2014). Three polymorphs of compound **3** have been reported:

Figure 1

Molecular structure of **1**. Displacement ellipsoids are drawn at the 50% probability level. The dotted line indicates the intramolecular hydrogen bond.

Figure 2 Crystal packing of 1 (H atoms are omitted for clarity).

Figure 3

Intermolecular hydrogen bonds in the structure of **1**. Symmetry code: (i) -x + 2, -y + 1, -z + 1.

trigonal phase I and monoclinic phases II and III. Phase I (ZZZVTY12; Dunand & Gerdil, 1982) contains three crystallographically non-equivalent molecules, each lying on a threefold axis and thus having a regular propeller conformation, with $\varphi = 43.4$, 47.0 and 51.0°. Phase II (ZZZVTY03; Kahr & Carter, 1992) has three molecules per asymmetric unit, with φ varying from 38.2 to 59.0°, whereas phase III has five, with φ = 36.9–57.5° at 248 K (ZZZVTY04; Kahr & Carter, 1992) and $\varphi = 34.6$ –58.2° at 100 K (ZZZVTY13; Wang *et al.*, 2013).

5. Synthesis and crystallization

A mixture of 435 mg (3.2 mmol) of 3-(trifluoromethyl)-1*H*pyrazole and 485 mg (3.5 mmol) of K_2CO_3 was dissolved in 20 mL of tetrahydrofuran and stirred at reflux for 10–15 minutes. Then 1.00 g (3.2 mmol) of chloro(4-chlorophenyl) methylene)dibenzene was added to the reaction mixture and continued to boil for 5 h. After completion of the reaction, tetrahydrofuran was removed under vacuum and 10 mL of diethyl ether were added to the obtained oily residue, which formed compound **1** as a solid product. Colourless prismatic crystals suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Yield: 936 mg (71%); m.p. 355–360 K. Analysis calculated (%) for $C_{23}H_{16}ClF_{3}N_{2}$: C 66.92, H 3.91, N 6.79; found C 66.90, H 3.90, N 6.77. ¹H NMR (300 MHz, CDCl₃): 6.52–6.53 (1H, CF₃CCH), 7.07–7.37 (10H, 2Ph, 4H, 4-ClPh, 1H, NCH). ¹³C NMR (75 MHz, CDCl₃): 79.24, 103.19, 111.07, 127.93, 128.04, 128.30, 130.01, 131.65, 133.79, 134.05, 139.12, 141.17, 142.18. ESI-MS: 413.8 (M + H⁺).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were placed geometrically with C-H = 0.95 Å and included in the refinement in the riding-motion model with $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C)$, except H17 and H22 which were refined in an isotropic approximation. About 50 hkl data were missed due to collection *via* the spindle axis only.

 Table 3

 Experimental details.

Crystal data	
Chemical formula	C23H16ClF3N2
Mr	412.83
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.12054 (10), 8.93314 (6), 17.75198 (15)
β (°)	90.4278 (8)
$V(Å^3)$	1922.03 (3)
Ζ	4
Radiation type	Cu Ka
$\mu (\text{mm}^{-1})$	2.11
Crystal size (mm)	$0.18 \times 0.11 \times 0.06$
Data collection	
Diffractometer	XtaLAB Synergy, Dualflex, HyPix
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2024)
T_{\min}, T_{\max}	0.688, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	25542, 4102, 3917
R _{int}	0.026
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.638
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.108, 1.07
No. of reflections	4102
No. of parameters	270
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.44, -0.46

Computer programs: CrysAlis PRO (Rigaku OD, 2024), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2019/2 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 1999 and Crystal Explorer 17.5 (Spackman et al., 2021).

References

- Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, 0744.
- Afkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). *Dalton Trans.* 46, 14888–14896.
- Brandenburg, K. & Putz, H. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Davis, L. O. (2013). Org. Prep. Proced. Int. 45, 437-464.
- Destro, R., Pilati, T. & Simonetta, M. (1980). Acta Cryst. B36, 2495–2497.
- Dunand, A. & Gerdil, R. (1982). Acta Cryst. B38, 570-575.
- Fang, Z., Yin, H., Lin, L., Wen, S., Xie, L., Huang, Y. & Weng, Z. (2020). J. Org. Chem. 85, 8714–8722.
- Fronczek, F. R. (2014). Private Communication (refcode TRPETN01) CCDC, Cambridge, England. https://doi.org/10.5517/ cc11k9d9
- Guseinov, F. I., Çelikesir, S. T., Akkurt, M., Ovsyannikov, V. O., Ugrak, B. I., Lavrova, O. M., Samigullina, A. I. & Bhattarai, A. (2024). Acta Cryst. E80, 582–585.
- Guseinov, F. I., Malinnikov, V. M., Lialin, K. N., Kobrakov, K. I., Shuvalova, E. V., Nelyubina, Y. V., Ugrak, B. I., Kustov, L. M. & Mahmudov, K. T. (2022). *Dyes Pigments*, **197**, 109898.
- Guseinov, F. I., Pistsov, M. F., Movsumzade, E. M., Kustov, L. M., Tafeenko, V. A., Chernyshev, V. V., Gurbanov, A. V., Mahmudov, K. T. & Pombeiro, A. J. L. (2017). *Crystals*, **7**, 327.
- Guseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). *Chem. Heterocycl. Compd.* 42, 943–947.
- Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). *Eur. J. Inorg. Chem.* pp. 4541–4550.

research communications

- Kahr, B. & Carter, R. L. (1992). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. 219, 79–100.
- Küçükgüzel, Ş. G., ŞG, & Şenkardeş, S. (2015). *Eur. J. Med. Chem.* **97**, 786–815.
- Kumar, A., Mathew, S., Jamali, M. F., Ahamad, S., Kant, R. & Mohanan, K. (2023). Adv. Synth. Catal. 365, 2218–2224.
- Liu, R. H., Chai, G. L., Wang, X., Deng, H. Y. & Chang, J. (2023). J. Org. Chem. 88, 16566–16580.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). *Coord. Chem. Rev.* 437, 213859.
- Mac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). *Appl. Catal. Gen.* 439–440, 15–23.
- Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. **219**, 159–165.
- Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). *New J. Chem.* **41**, 4076–4086.

- Pizzuti, L. G., Barschak, A. M., Stefanello, F. D., Farias, M., Lencina, C., Roesch-Ely, M., Cunico, W., Moura, S. & Pereira, C. (2014). *Curr. Org. Chem.* 18, 115–126.
- Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Secrieru, A., O'Neill, P. M. & Cristiano, M. L. S. (2020). *Molecules*, **25**, 42.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Wang, R., Dols, T., Lehmann, C. & Englert, U. (2013). Z. Anorg. Allg. Chem. 639, 1933–1939.
- Westphal, M. V., Wolfstädter, B. T., Plancher, J. M., Gatfield, J. & Carreira, E. M. (2015). *ChemMedChem*, **10**, 461–469.
- Zhu, W., Wang, J., Wang, S., Gu, Z., Aceña, J. L., Izawa, K., Liu, H. & Soloshonok, V. A. (2014). *J. Fluor. Chem.* **167**, 37–54.

Acta Cryst. (2025). E81 [https://doi.org/10.1107/S2056989025001185]

Crystal structure of 1-[(4-chlorophenyl)diphenylylmethyl]-3-(trifluoromethyl)-1*H*-pyrazole

Firudin I. Guseinov, Ksenia A. Afanaseva, Vera A.Vil, Bogdan I. Ugrak, Aida I. Samigullina, Ennio Zangrando and Alebel N. Belay

Computing details

1-[(4-Chlorophenyl)diphenylmethyl]-3-(trifluoromethyl)-1H-pyrazole

Crystal data

 $C_{23}H_{16}ClF_{3}N_{2}$ $M_{r} = 412.83$ Monoclinic, $P2_{1}/c$ a = 12.12054 (10) Å b = 8.93314 (6) Å c = 17.75198 (15) Å $\beta = 90.4278 (8)^{\circ}$ $V = 1922.03 (3) Å^{3}$ Z = 4

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube ω scans Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2024) $T_{\min} = 0.688, T_{\max} = 1.000$ 25542 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.108$ S = 1.074102 reflections 270 parameters 0 restraints Primary atom site location: dual F(000) = 848 $D_x = 1.427 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 19127 reflections $\theta = 2.5-79.5^{\circ}$ $\mu = 2.11 \text{ mm}^{-1}$ T = 100 KPrism, colorless $0.18 \times 0.11 \times 0.06 \text{ mm}$

4102 independent reflections 3917 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 79.8^{\circ}, \theta_{min} = 3.7^{\circ}$ $h = -14 \rightarrow 15$ $k = -10 \rightarrow 11$ $l = -22 \rightarrow 22$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.056P)^2 + 0.9694P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.44$ e Å⁻³ $\Delta\rho_{min} = -0.46$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.36774 (3)	0.04033 (5)	0.33222 (2)	0.03673 (13)	
F1	0.93996 (8)	-0.01654 (11)	0.32090 (6)	0.0377 (2)	
F2	1.04152 (11)	0.00747 (12)	0.41780 (6)	0.0499 (3)	
F3	1.09493 (10)	0.09519 (13)	0.31067 (8)	0.0583 (4)	
N1	0.86043 (10)	0.23237 (13)	0.40816 (7)	0.0227 (2)	
N2	0.83992 (9)	0.38039 (12)	0.41539 (6)	0.0201 (2)	
C1	0.92135 (13)	0.46447 (17)	0.38471 (9)	0.0290 (3)	
H1	0.924180	0.570700	0.383099	0.035*	
C2	0.99888 (13)	0.36792 (18)	0.35644 (9)	0.0320 (3)	
H2	1.065849	0.391975	0.331748	0.038*	
C3	0.95659 (12)	0.22665 (17)	0.37235 (8)	0.0244 (3)	
C4	1.00804 (12)	0.07923 (18)	0.35536 (9)	0.0280 (3)	
C5	0.73785 (11)	0.42950 (14)	0.45553 (7)	0.0190 (3)	
C6	0.64342 (11)	0.32991 (14)	0.42577 (8)	0.0192 (3)	
C7	0.56995 (11)	0.25784 (15)	0.47346 (8)	0.0213 (3)	
H7	0.577978	0.269227	0.526420	0.026*	
C8	0.48472 (12)	0.16921 (16)	0.44485 (8)	0.0239 (3)	
H8	0.434854	0.120859	0.477957	0.029*	
C9	0.47364 (12)	0.15249 (16)	0.36766 (8)	0.0245 (3)	
C10	0.54608 (12)	0.22183 (15)	0.31846 (8)	0.0239 (3)	
H10	0.537938	0.209519	0.265557	0.029*	
C11	0.63059 (11)	0.30946 (14)	0.34793 (8)	0.0210 (3)	
H11	0.680799	0.356557	0.314612	0.025*	
C12	0.75251 (11)	0.41134 (14)	0.54147 (7)	0.0198 (3)	
C13	0.68273 (12)	0.49156 (16)	0.58885 (8)	0.0242 (3)	
H13	0.629103	0.556908	0.567554	0.029*	
C14	0.69039 (13)	0.47746 (17)	0.66662 (8)	0.0267 (3)	
H14	0.642528	0.533415	0.698044	0.032*	
C15	0.76794 (13)	0.38167 (16)	0.69848 (8)	0.0261 (3)	
H15	0.773672	0.371902	0.751657	0.031*	
C16	0.83678 (13)	0.30059 (16)	0.65192 (8)	0.0268 (3)	
H16	0.889550	0.234290	0.673460	0.032*	
C17	0.82977 (12)	0.31486 (16)	0.57365 (8)	0.0239 (3)	
H17	0.8794 (16)	0.257 (2)	0.5412 (11)	0.028 (4)*	
C18	0.72023 (11)	0.59740 (14)	0.43669 (7)	0.0197 (3)	
C19	0.64102 (12)	0.64777 (15)	0.38557 (8)	0.0225 (3)	
H19	0.591919	0.578336	0.362534	0.027*	
C20	0.63317 (12)	0.80002 (16)	0.36787 (8)	0.0248 (3)	
H20	0.578844	0.833085	0.332791	0.030*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C21	0.70372 (13)	0.90285 (15)	0.40092 (8)	0.0247 (3)
H21	0.699169	1.005792	0.387826	0.030*
C22	0.78131 (12)	0.85427 (16)	0.45345 (8)	0.0256 (3)
H22	0.8306 (17)	0.924 (2)	0.4781 (11)	0.031 (5)*
C23	0.78900 (12)	0.70327 (16)	0.47162 (8)	0.0237 (3)
H23	0.841568	0.671365	0.508187	0.028*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cl1	0.0276 (2)	0.0408 (2)	0.0417 (2)	-0.00851 (14)	-0.00535 (16)	-0.01070 (16)
F1	0.0353 (5)	0.0348 (5)	0.0429 (5)	0.0067 (4)	-0.0064 (4)	-0.0102 (4)
F2	0.0671 (8)	0.0418 (6)	0.0404 (6)	0.0279 (5)	-0.0212 (5)	-0.0061 (5)
F3	0.0413 (6)	0.0447 (6)	0.0894 (9)	0.0068 (5)	0.0370 (6)	-0.0065 (6)
N1	0.0209 (6)	0.0201 (5)	0.0270 (6)	0.0029 (4)	0.0014 (4)	-0.0007 (4)
N2	0.0195 (5)	0.0188 (5)	0.0219 (5)	0.0014 (4)	0.0009 (4)	0.0017 (4)
C1	0.0264 (7)	0.0245 (7)	0.0363 (8)	-0.0001 (5)	0.0081 (6)	0.0066 (6)
C2	0.0256 (7)	0.0317 (8)	0.0390 (8)	0.0017 (6)	0.0107 (6)	0.0070 (6)
C3	0.0210 (6)	0.0297 (7)	0.0224 (6)	0.0037 (5)	-0.0006 (5)	0.0011 (5)
C4	0.0227 (7)	0.0322 (8)	0.0290 (7)	0.0053 (6)	0.0007 (6)	-0.0013 (6)
C5	0.0184 (6)	0.0176 (6)	0.0211 (6)	0.0013 (5)	0.0012 (5)	0.0011 (5)
C6	0.0185 (6)	0.0149 (5)	0.0241 (6)	0.0029 (4)	-0.0003 (5)	0.0009 (5)
C7	0.0210 (6)	0.0203 (6)	0.0228 (6)	0.0017 (5)	0.0010 (5)	0.0006 (5)
C8	0.0205 (6)	0.0219 (6)	0.0294 (7)	0.0004 (5)	0.0035 (5)	0.0011 (5)
C9	0.0198 (6)	0.0213 (6)	0.0322 (7)	0.0024 (5)	-0.0031 (5)	-0.0035 (5)
C10	0.0256 (7)	0.0229 (6)	0.0230 (6)	0.0053 (5)	-0.0030 (5)	-0.0018 (5)
C11	0.0225 (6)	0.0179 (6)	0.0225 (6)	0.0033 (5)	0.0006 (5)	0.0020 (5)
C12	0.0197 (6)	0.0180 (6)	0.0217 (6)	-0.0022 (5)	-0.0006 (5)	0.0020 (5)
C13	0.0246 (7)	0.0238 (6)	0.0242 (7)	0.0026 (5)	0.0003 (5)	0.0022 (5)
C14	0.0278 (7)	0.0278 (7)	0.0246 (7)	0.0011 (6)	0.0030 (6)	-0.0007 (5)
C15	0.0295 (7)	0.0272 (7)	0.0216 (6)	-0.0058 (6)	-0.0016 (5)	0.0034 (5)
C16	0.0286 (7)	0.0247 (7)	0.0270 (7)	0.0017 (5)	-0.0044 (6)	0.0055 (5)
C17	0.0250 (7)	0.0218 (6)	0.0249 (7)	0.0019 (5)	-0.0012 (5)	0.0013 (5)
C18	0.0207 (6)	0.0174 (6)	0.0210 (6)	0.0010 (5)	0.0017 (5)	0.0014 (5)
C19	0.0245 (6)	0.0197 (6)	0.0231 (6)	0.0012 (5)	-0.0013 (5)	-0.0004 (5)
C20	0.0288 (7)	0.0211 (6)	0.0245 (6)	0.0037 (5)	-0.0024 (5)	0.0027 (5)
C21	0.0296 (7)	0.0177 (6)	0.0269 (7)	0.0012 (5)	0.0038 (6)	0.0030 (5)
C22	0.0272 (7)	0.0211 (6)	0.0284 (7)	-0.0042 (5)	0.0005 (6)	-0.0006 (5)
C23	0.0237 (7)	0.0218 (6)	0.0255 (6)	-0.0013 (5)	-0.0019 (5)	0.0021 (5)

Geometric parameters (Å, °)

Cl1—C9	1.7422 (14)	C10—C11	1.388 (2)	
F1—C4	1.3340 (18)	C11—H11	0.9500	
F2—C4	1.3408 (18)	C12—C13	1.395 (2)	
F3—C4	1.3308 (19)	C12—C17	1.3920 (19)	
N1—N2	1.3517 (16)	C13—H13	0.9500	
N1—C3	1.3328 (19)	C13—C14	1.389 (2)	

N2—C1	1.3575 (19)	C14—H14	0.9500
N2—C5	1.4981 (17)	C14—C15	1.388 (2)
C1—H1	0.9500	C15—H15	0.9500
C1—C2	1.373 (2)	C15—C16	1.384 (2)
С2—Н2	0.9500	C16—H16	0.9500
C2—C3	1.392 (2)	C16—C17	1.397 (2)
C3—C4	1.489 (2)	С17—Н17	0.98 (2)
C5—C6	1.5400 (18)	C18—C19	1.3910 (19)
C5—C12	1.5431 (18)	C18—C23	1.4021 (19)
C5-C18	1.5511 (17)	С19—Н19	0.9500
C6—C7	1 3911 (19)	C19-C20	1 3990 (19)
C6—C11	1 4013 (18)	C_{20} H20	0.9500
C7 H7	0.9500	C_{20} C_{21}	1.383(2)
C_{7}	1.304(2)	$C_{20} = C_{21}$	0.0500
C^{2}	1.394 (2)	C_{21} C_{21} C_{22}	1.280 (2)
	0.9300	C21—C22	1.389(2)
	1.384 (2)	C22—H22	0.96 (2)
C9—C10	1.389 (2)	C22—C23	1.390 (2)
C10—H10	0.9500	С23—Н23	0.9500
C3—N1—N2	104.17 (11)	C6—C11—H11	119.3
N1—N2—C1	111.62 (12)	C10—C11—C6	121.41 (13)
N1-N2-C5	118 99 (11)	C10-C11-H11	119.3
C1 - N2 - C5	129 37 (12)	C_{13} C_{12} C_{5}	119.0 118.43(12)
N2 C1 H1	125.37 (12)	C_{12} C_{12} C_{2} C_{2}	110.49(12) 122.88(12)
$N_2 = C_1 = C_2$	120.3 107.50(12)	C17 - C12 - C12	122.00(12)
$N_2 - C_1 - C_2$	107.50 (15)	C12 - C12 - C13	110.00 (12)
C2—C1—H1	126.3	C12—C13—H13	119.5
C1—C2—H2	128.0	C14—C13—C12	121.08 (13)
C1 - C2 - C3	103.96 (13)	С14—С13—Н13	119.5
C3—C2—H2	128.0	C13—C14—H14	120.0
N1—C3—C2	112.75 (13)	C15—C14—C13	120.06 (14)
N1—C3—C4	119.98 (13)	C15—C14—H14	120.0
C2—C3—C4	127.26 (14)	C14—C15—H15	120.4
F1—C4—F2	104.77 (13)	C16—C15—C14	119.25 (13)
F1—C4—C3	113.68 (12)	C16—C15—H15	120.4
F2—C4—C3	112.33 (12)	C15—C16—H16	119.5
F3—C4—F1	106.56 (13)	C15—C16—C17	120.92 (13)
F3—C4—F2	107.94 (13)	C17—C16—H16	119.5
F3-C4-C3	111 13 (13)	C12-C17-C16	120.02 (14)
N_{2} C5 C6	106 37 (10)	C_{12} C_{17} H_{17}	120.02(11)
$N_2 C_5 C_{12}$	110.37(10)	$C_{12} = C_{17} + H_{17}$	119.9(11) 120.1(11)
$N_2 = C_5 = C_{12}$	110.49(10) 107.06(10)	$C_{10} = C_{17} = M_{17}$	120.1(11) 122.14(12)
112 - 03 - 010	107.00(10) 110.00(11)	$C_{19} = C_{10} = C_{22}$	123.14(12)
$C_{0} = C_{1} = C_{1}$	110.99 (11)	(19-(10-(25)))	110.39 (12)
0-05-018	112.58 (10)	C23—C18—C5	118.46 (11)
C12—C5—C18	109.24 (10)	С18—С19—Н19	119.8
C7—C6—C5	122.41 (12)	C18—C19—C20	120.43 (13)
C7—C6—C11	118.22 (12)	C20—C19—H19	119.8
C11—C6—C5	119.36 (12)	C19—C20—H20	119.7
С6—С7—Н7	119.4	C21—C20—C19	120.65 (13)

C6—C7—C8	121.14 (13)	C21—C20—H20	119.7
С8—С7—Н7	119.4	C20—C21—H21	120.3
С7—С8—Н8	120.4	C20—C21—C22	119.39 (13)
C9—C8—C7	119.21 (13)	C22—C21—H21	120.3
С9—С8—Н8	120.4	C21—C22—H22	121.3 (12)
C8—C9—Cl1	119.04 (12)	C21—C22—C23	120.19 (13)
C8—C9—C10	121.16 (13)	С23—С22—Н22	118.6 (12)
C10—C9—Cl1	119.80 (11)	С18—С23—Н23	119.6
C9—C10—H10	120.6	C22—C23—C18	120.90 (13)
C11—C10—C9	118.86 (13)	С22—С23—Н23	119.6
C11—C10—H10	120.6		
Cl1—C9—C10—C11	-179.33(10)	C5-C18-C23-C22	176.11 (13)
N1—N2—C1—C2	-0.28 (18)	C6—C5—C12—C13	-81.65 (15)
N1—N2—C5—C6	-44.59 (14)	C6—C5—C12—C17	96.19 (15)
N1—N2—C5—C12	75.97 (14)	C6—C5—C18—C19	-12.64(18)
N1—N2—C5—C18	-165.17 (11)	C6—C5—C18—C23	168.79 (12)
N1-C3-C4-F1	51.16 (19)	C6—C7—C8—C9	0.3 (2)
N1—C3—C4—F2	-67.59(18)	C7—C6—C11—C10	1.02 (19)
N1-C3-C4-F3	171 36 (14)	C7 - C8 - C9 - C11	179.45(10)
$N_2 - N_1 - C_3 - C_2$	0 17 (16)	C7 - C8 - C9 - C10	0.3(2)
$N_2 - N_1 - C_3 - C_4$	178 79 (12)	C8-C9-C10-C11	-0.2(2)
$N_2 - C_1 - C_2 - C_3$	0.35(18)	C9-C10-C11-C6	-0.5(2)
$N_2 - C_5 - C_6 - C_7$	131 58 (12)	$C_{11} - C_{6} - C_{7} - C_{8}$	-0.89(19)
$N_2 = C_5 = C_6 = C_{11}$	-48.00(15)	C_{12} C_{5} C_{6} C_{7}	11.35(17)
$N_2 = C_5 = C_0 = C_{11}$	160.59(12)	$C_{12} = C_{5} = C_{6} = C_{11}$	-168 23 (11)
$N_2 = C_5 = C_{12} = C_{13}$	-21.57(17)	$C_{12} = C_{5} = C_{18} = C_{19}$	-13642(13)
$N_2 = C_5 = C_{12} = C_{17}$	103.91(14)	$C_{12} - C_{5} - C_{18} - C_{23}$	45.01 (16)
$N_2 = C_5 = C_{18} = C_{23}$	-74.66(14)	$C_{12} = C_{13} = C_{14} = C_{15}$	-0.4(2)
12 - 05 - 010 - 025	137.16(14)	$C_{12}^{} C_{13}^{} C_{14}^{} C_{15}^{} C_{15}^{} C_{16}^{} C_{1$	-0.4(2)
C1 = N2 = C5 = C0	-102.28(16)	$C_{13}^{13} = C_{12}^{14} = C_{15}^{16} = C_{16}^{16}$	-0.2(2)
C1 N2 C5 C18	16 58 (18)	C_{14} C_{15} C_{16} C_{17}	0.2(2)
$C_1 = C_2 = C_3 = C_{18}$	-0.33(18)	$C_{14} = C_{15} = C_{10} = C_{17}$	-0.2(2)
$C_1 = C_2 = C_3 = C_4$	-178.83(14)	$C_{13} - C_{10} - C_{17} - C_{12}$	0.2(2)
$C_1 = C_2 = C_3 = C_4$	-130.44(16)	$C_{17} = C_{12} = C_{13} = C_{14}$	-111.46(14)
$C_2 = C_3 = C_4 = F_1^2$	130.44(10)	$C_{18} = C_{5} = C_{6} = C_{11}$	68.06 (15)
$C_2 = C_3 = C_4 = F_2$	-10.2(2)	$C_{18} = C_{5} = C_{12} = C_{13}$	43.06 (16)
$C_2 = C_3 = C_4 = F_3$	-10.2(2)	$C_{18} = C_{5} = C_{12} = C_{13}$	43.00 (10)
$C_3 = N_1 = N_2 = C_1$	0.07(13)	C18 = C10 = C20 = C21	-139.10(13)
$C_5 N_2 C_1 C_2$	-1/8.4/(11)	C18 - C19 - C20 - C21	-0.1(2)
C_{3} N_{2} C_{1} C_{2}	1/8.0/(13)	C19 - C18 - C23 - C22	-2.5(2)
$C_{5} = C_{6} = C_{11} = C_{10}$	1/9.33 (12)	$C_{19} - C_{20} - C_{21} - C_{22} - C_{22}$	-1.5(2)
	-1/9.39(12)	$C_{20} = C_{21} = C_{22} = C_{23}$	1.0 (2)
C_{5} C_{12} C_{13} C_{14}	1/8.64 (13)	$C_{21} = C_{22} = C_{23} = C_{18}$	1.0 (2)
C5-C12-C17-C16	-1/8.24 (13)	C23—C18—C19—C20	2.1 (2)
C5-C18-C19-C20	-176.47 (13)		

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 at	nd Cg3 are the co	entroids of the C	C12-17, C18-23	and C6-11 rings	, respectively.

<i>D</i> —H··· <i>A</i>	D—H	H···A	$D \cdots A$	D—H··· A
C17—H17…N1	0.98 (2)	2.382 (19)	3.0541 (19)	125.1 (14)
C22— $H22$ ···F2 ⁱ	0.96 (2)	2.48 (2)	3.3596 (18)	151.6 (16)
C2—H2···· $Cg1^i$	0.95	2.96	3.6237 (17)	128
C7—H7…Cg1	0.95	2.98	3.6784 (15)	132
C8—H8…Cg2 ⁱⁱ	0.95	2.80	3.4721 (15)	129
C13—H13··· <i>Cg</i> 3 ⁱⁱ	0.95	2.98	3.7873 (15)	144
C21—H21····Cg3 ⁱⁱⁱ	0.95	2.71	3.4928 (15)	140

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*, *y*+1, *z*.