

Received 5 December 2024 Accepted 24 February 2025

Edited by G. Ferrence, Illinois State University, LISA

Keywords: crystal structure; copper (II) complex; 1,2,3-triazole; hydrogen bonding; Hirshfeld surface analysis.

CCDC reference: 2426436

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Synthesis, crystal structure and Hirshfeld surface analysis of a propyl 4-{[1-(2-methyl-4-nitrophenyl)-1H-1,2,3-triazol-4-yl]methoxy}benzoate copper(II) chloride complex

Muminjon Hakimov,^a* Ilkhomjon Ortikov,^b Tulkinjon Sattarov,^a Bakhodir Tashkhodjaev^c and Akmaljon Tojiboev^d

^aNamangan State University, Boburshoh str. 161, Namangan, 160107, Uzbekistan, ^bAlfraganus University, Yukari Karakamysh str. 2A 100190, Tashkent, Uzbekistan, ^cInstitute of the Chemistry of Plant Substances, Uzbekistan Academy of Sciences, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan, and ^dUniversity of Geological Sciences, Olimlar Str. 64, Tashkent 100170, Uzbekistan. *Correspondence e-mail: hakimov1094@yahoo.com

The core of the title complex, dichloridobis(propyl 4-{[1-(2-methyl-4-nitrophenyl)-1*H*-1,2,3-triazol-4-yl]methoxy}benzoate)copper(II), $[CuCl_2(C_{20}H_{20} N_4O_5_2$, which belongs to the copper(II) complex family, consists of two $C_{20}H_{20}N_4O_5$ ligands and two chloride ligands arranged around the metal, forming a trans-dichlorido square-planar complex. In the crystal, the molecules are linked by $C-H\cdots Cl$ and $C-H\cdots O$ hydrogen bonds as well as by aromatic π - π stacking interactions into a three-dimensional network. To further analyse the intermolecular interactions, a Hirshfeld surface analysis was performed.

1. Chemical context

Transition-metal halides may be reacted with functionalized organic molecules (for example carboxylic acids, amides or amines) to produce neutral or ionic coordination compounds that combine and leverage the properties of both components (Constable et al., 2021). 1,2,3-Triazoles comprise an interesting class of heterocyclic compounds (Bozorov et al., 2019), and the synthesis of ligand-based 3d metal complexes from these compounds is of even greater interest (Dheer et al., 2017). The discovery by Sharpless and coworkers in 2001 (Kolb et al., 2001) of click chemistry, especially the copper-catalysed alkyne-azide cycloaddition (CuAAC) methodology for the preparation of triazole derivatives, has accelerated important advances in many scientific areas. This copper-catalysed process constituted a substantial development on the classical Huisgen-type thermal 1,3-dipolar cycloaddition as it permitted the regioselective preparation of 1,4- and 1,5-disubstituted 1,2,3-triazoles (Huisgen, 1963; Ling et al., 1996; Hein & Fokin, 2010; Liang & Astruc, 2011). Daniel Mendoza and co-worker reported the new copper(II) complexes supported by 2-mercapto and 4-mercaptopyridine-derived 1,2,3-triazole ligands. Their new complexes were tested in the CuAAC process under a variety of reaction conditions. The overall catalytic data demonstrated these complexes displayed the best CuAAC performance in alcoholic solvents without the need for an external reducing agent (Gonzalez-Silva et al., 2019). Herein, we report the synthesis of the coordination compound, 1, formed from propyl 4-{[1-(2-methyl-4-nitrophenyl)-1H-1,2,3-triazol-4-yl]methoxy}benzoate and copper(II) chloride and examined it using single-crystal X-ray diffraction and Hirshfeld surface studies as a part of our 2. Structural commentary

🗶 N23🗹

024

C10

025

ongoing interest in 1,2,3-triazole derivatives, a continuation of our recently published work on the synthesis of triazole derivatives (Hakimov *et al.*, 2024).

Compound 1 crystallizes in the monoclinic space group $P2_1/c$.

Fig. 1 depicts a perspective view of the mononuclear centrosymmetric complex, $[(Cu)(L)_2(Cl)_2]$, where $L = \text{propyl 4-}{[1-$

(2-methyl-4-nitrophenyl)-1*H*-1,2,3-triazol-4-yl]methoxy}-

benzoate, with the atom-labeling scheme. The asymmetric unit

contains half of the molecule, with the copper atom coincident

with an inversion center, which renders the two $C_{20}H_{20}N_4O_5$

ligands crystallographically equivalent. Likewise, the trans-

chloride ligands are crystallographically equivalent. The

copper(II) center is coordinated by a single nitrogen of each of

the two 1H-1,2,3-triazole ligands with an N14-Cu bond

length of 2.009 (2) Å and to two chlorine atoms with a Cu-Cl

distances of 2.2460 (9) Å. Interestingly, the O10 atoms are

located far away from the Cu center [4.451 (2) Å], ruling out a

possible bidentate coordination of each 1,2,3-triazole ligand

Table 1Hydrogen-bond geometry (Å, °). $D-H\cdots A$ D-H $H\cdots A$ D-H $H\cdots A$ $D\cdots A$

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
C7-H7···O9	0.93	2.39	2.706 (4)	100
$C22 - H22 \cdots Cl^{i}$	0.93	2.78	3.689 (3)	167
$C29-H29B\cdotsO8^{ii}$	0.96	2.59	3.531 (6)	168
	. 3 1 /**	. 1	. 3	

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$.

for the title compound. The coordination of the Cu metal center adopts a square-planar geometry, with $\tau_4 = 0$ (Yang *et al.*, 2007). According to the structural data for the title compound, the torsion angles O10-C11-C15-C16 and C16-N12-C17-C22 of the triazole ring with neighboring atoms are 53.6 (5) and -47.3 (5)°, respectively.

3. Supramolecular features

In the crystal structure of the title compound, no classical strong hydrogen bonds are observed. Some intermolecular $C-H\cdots O$ and $C-H\cdots Cl$ contacts (Table 1) can be identified as hydrogen bonds by Hirshfeld surface analysis (*vide infra*). For the complexes, a chain along the *c*-axis direction is observed due to stacking effects between the benzene rings (Fig. 2). These contacts link the molecules into a three-dimensional network, complemented by short ring-interactions with stacking between the triazole (centroid *Cg1*), propyl benzoate (centroid *Cg2*) rings and 1-methyl-5-nitrobenzene (centroid *Cg3*) rings $[Cg1\cdots Cg1' = 5.5492$ (18) Å, $Cg2\cdots Cg2' = 4.009$ (2) Å and $Cg3\cdots Cg3' = 4.094$ (2) Å, with slippages of 0.46, 1.799 and 2.091 Å, respectively].

4. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed using *Crystal*-*Explorer21* (Spackman *et al.*, 2021). The Hirshfeld surface of molecule **1** mapped over d_{norm} is shown in Fig. 3. Intermolecular C-H···O and C-H···Cl contacts are shown, indicating close interactions (hydrogen bonds) as blue and red dashed lines, respectively. The 2D fingerprint plots (McKinnon *et al.*, 2007), indicate that intermolecular H···H

Figure 1

Ellipsoid plot of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 3 Hirshfeld surface of 1 mapped over d_{norm} and close intermolecular contacts.

and $O \cdots H/H \cdots O$ contacts make the largest contributions to the total Hirshfeld surface, 38.8% and 25.1%, respectively, with other significant contributions being $H \cdots C/C \cdots H$ (10.0%), $H \cdots C/C I \cdots H$ (8.9%) and $O \cdots C/C \cdots O$ (3.3%) (Fig. 4). The characteristic pair of spikes in the $H \cdots CI/CI \cdots H$ and especially $O \cdots H/H \cdots O$ plots shown in Fig. 4c and Fig. 4e are also indicative of hydrogen bonds. The Hirshfeld surface mapped over shape-index properties (Fig. 5) illustrates the $\pi - \pi$ stacking interactions.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.46, November 2024; Groom *et al.*, 2016) for the generalized 4-(phenoxymethyl)-1-phenyl-1*H*-1,2,3-triazole with triazole coordination to copper returned zero relevant hits. A search instead with 4-(pyridinesulfanylymethyl)-1-phenyl-1*H*-1,2,3-triazole returned one hit, CSD refcode GORBAT (Gonzalez-Silva *et al.*, 2019). Four six-coordinate examples containing two bidentate 4-(pyridine)-1-phenyl-1*H*-

Figure 4

Two-dimensional fingerprint plots of the intermolecular contacts in 1.

View of the Hirshfeld surface of the title compound plotted over shapeindex: front and back views of middle molecule, respectively.

1,2,3-triazole moieties and two chloride ligands have been reported (CSD refcodes KINNAZ, KINNED, KINNIH, KINNON and KINNUT; Conradie *et al.*, 2018). The CSD returned less than 25 examples of four-coordinate copper(II) coordinated with exactly two chloride ligands and at least one N-coordinating triazole-derived ligand. Only eight examples have the chloride ligands in a *trans* or near-*trans* geometry, and of these, six include substituted benzotriazole ligands. The structure most similar to the title complex is bis{4-[(benz-yloxy)methyl]-1-(4-chlorobenzyl)-1*H*-1,2,3-triazole}dichloro-copper(II) (CSD refcode QOCBAN; Mendoza-Espinosa *et al.*, 2014).

6. Synthesis and crystallization

The starting reagents used for the synthesis of the title coordination compound – CuCl₂·2H₂O (chemical grade), 2aminoethanol (MEA) (analytical grade) and ethyl alcohol (analytical grade) – were used as received. 40 mg (0.01 mmol) of C₂₀H₂₀N₄O₅ triazole ligand and 20 mg (0.12 mmol) of CuCl₂·2H₂O were added to 0.4 ml of C₂H₇NO and 4 ml of C₂H₆O solution in a glass vial. The mixture cleared and became a navy blue solution, without sediment. It was then stored in the dark at room temperature for two weeks, after which dark-pink prism-shaped crystals of the complex formed. The yield was 33 mg (55%), m.p. 491–499 K.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically and refined using a riding model with distance constraints of C-H = 0.93 Å (aromatic) and 0.97 Å (methylene) with $U_{iso}(H) = 1.2U_{eq}(C)$; C-H = 0.96 Å (methyl) with $U_{iso}(H) = 1.5U_{eq}(C)$.

Acknowledgements

The authors thank the Institute of Bioorganic Chemistry of the Academy Sciences of Uzbekistan, Tashkent, Uzbekistan, for providing the single-crystal XRD facility.

References

- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Bozorov, Kh., Zhao, J. & Aisa, H. A. (2019). Bioorg. Med. Chem. 27, 3511–3531.
- Conradie, J., Conradie, M. M., Tawfiq, K. M., Coles, S. J., Tizzard, G. J., Wilson, C. & Potgieter, J. H. (2018). New J. Chem. 42, 16335–16345.
- Constable, E. C., Parkin, G. & Que, L. (2021). Editors. Comprehensive Coordination Chemistry III, 3rd ed., pp. 185–214. Amsterdam: Elsevier.
- Dheer, D., Singh, V. & Shankar, R. (2017). Bioorg. Chem. 71, 30-54.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Gonzalez-Silva, K., Rendon-Nava, D., Alvarez-Hernández, A. & Mendoza-Espinosa, D. (2019). *New J. Chem.* **43**, 16538–16545.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hakimov, M., Khozhimatova, S., Ortikov, I., Abdugafurov, I. & Tojiboev, A. (2024). Acta Cryst. E80, 910–912.
- Hein, J. E. & Fokin, V. V. (2010). Chem. Soc. Rev. 39, 1302-1315.
- Huisgen, R. (1963). Angew. Chem. Int. Ed. Engl. 2, 565-598.
- Kolb, H. C., Finn, M. G. & Sharpless, K. B. (2001). Angew. Chem. Int. Ed. 40, 2004–2021.
- Liang, L. & Astruc, D. (2011). Coord. Chem. Rev. 255, 2933-2945.
- Ling, R., Yoshida, M. & Mariano, P. S. (1996). J. Org. Chem. 61, 4439– 4449.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.
- Mendoza-Espinosa, D., Negrón-Silva, G. E., Ángeles-Beltrán, D., Álvarez-Hernández, A., Suárez-Castillo, O. R. & Santillán, R. (2014). Dalton Trans. 43, 7069–7077.
- Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.

Table 2

Experimental details.

Crystal data	
Chemical formula	$[CuCl_2(C_{20}H_{20}N_4O_5)_2]$
M _r	927.24
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	295
a, b, c (Å)	15.8765 (4), 16.2381 (3), 8.0187 (2)
β (°)	92.984 (2)
$V(\dot{A}^3)$	2064.45 (8)
Z	2
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	2.52
Crystal size (mm)	$0.4 \times 0.2 \times 0.1$
Data collection	
Diffractometer	XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2020)
T_{\min}, T_{\max}	0.617, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	11763, 3975, 3315
R:	0.034
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.615
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.058, 0.171, 1.08
No. of reflections	3975
No. of parameters	279
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.11, -0.73

Computer programs: CrysAlis PRO (Rigaku OD, 2020), OLEX2.solve (Bourhis et al., 2015), OLEX2 (Dolomanov et al., 2009), SHELXL2019/3 (Sheldrick, 2015) and publCIF (Westrip, 2010).

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Yang, L., Powell, D. R. & Houser, R. P. (2007). *Dalton Trans.* pp. 955–964.

supporting information

Acta Cryst. (2025). E81, 271-274 [https://doi.org/10.1107/S2056989025001732]

Synthesis, crystal structure and Hirshfeld surface analysis of a propyl 4-{[1-(2-methyl-4-nitrophenyl)-1*H*-1,2,3-triazol-4-yl]methoxy}benzoate copper(II) chloride complex

Muminjon Hakimov, Ilkhomjon Ortikov, Tulkinjon Sattarov, Bakhodir Tashkhodjaev and Akmaljon Tojiboev

Computing details

Dichloridobis(propyl 4-{[1-(2-methyl-4-nitrophenyl)-1H-1,2,3-triazol-4-yl]methoxy}benzoate)copper(II)

Crystal data
$[CuCl_2(C_{20}H_{20}N_4O_5)_2]$
$M_r = 927.24$
Monoclinic, $P2_1/c$
<i>a</i> = 15.8765 (4) Å
<i>b</i> = 16.2381 (3) Å
c = 8.0187 (2) Å
$\beta = 92.984 \ (2)^{\circ}$
$V = 2064.45 (8) \text{ Å}^3$
7 = 2

Data collection

XtaLAB Synergy, Single source at home/near,
HyPix3000
diffractometer
Detector resolution: 10.000 pixels mm ⁻¹
scan
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
$T_{\min} = 0.617, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.171$ S = 1.083975 reflections 279 parameters 0 restraints Primary atom site location: iterative F(000) = 958 $D_x = 1.492 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 6038 reflections $\theta = 2.8-71.2^{\circ}$ $\mu = 2.52 \text{ mm}^{-1}$ T = 295 KPrism, metallic pinkish pink $0.4 \times 0.2 \times 0.1 \text{ mm}$

11763 measured reflections 3975 independent reflections 3315 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 71.5^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -18 \rightarrow 19$ $k = -19 \rightarrow 16$ $l = -9 \rightarrow 9$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0806P)^2 + 2.7811P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.11$ e Å⁻³ $\Delta\rho_{min} = -0.73$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cu	0.500000	1.000000	0.500000	0.0332 (2)
Cl	0.47301 (8)	0.90207 (6)	0.68768 (12)	0.0572 (3)
N14	0.51141 (17)	0.91436 (16)	0.3218 (3)	0.0326 (6)
N13	0.58540 (18)	0.90064 (16)	0.2623 (3)	0.0356 (6)
N12	0.57226 (17)	0.84290 (16)	0.1438 (3)	0.0335 (6)
C16	0.4907 (2)	0.8206 (2)	0.1295 (4)	0.0388 (7)
H16	0.466154	0.781814	0.056789	0.047*
C15	0.4514 (2)	0.86703 (19)	0.2442 (4)	0.0357 (7)
C11	0.3628 (2)	0.86819 (19)	0.2929 (5)	0.0406 (8)
H11A	0.356711	0.904300	0.387925	0.049*
H11B	0.325842	0.887620	0.201033	0.049*
O10	0.34212 (16)	0.78556 (14)	0.3351 (4)	0.0475 (6)
C5	0.2652 (2)	0.7721 (2)	0.3977 (4)	0.0373 (7)
C6	0.2435 (2)	0.6895 (2)	0.4118 (5)	0.0430 (8)
H6	0.279257	0.648799	0.375015	0.052*
C7	0.1692 (2)	0.6684 (2)	0.4801 (5)	0.0430 (8)
H7	0.155728	0.613122	0.492948	0.052*
C2	0.1138 (2)	0.7287 (2)	0.5304 (4)	0.0374 (7)
C3	0.1353 (2)	0.8107 (2)	0.5119 (5)	0.0444 (8)
Н3	0.098309	0.851467	0.544037	0.053*
C4	0.2108 (2)	0.8329 (2)	0.4463 (5)	0.0450 (8)
H4	0.224769	0.888164	0.435060	0.054*
C1	0.0341 (2)	0.7081 (2)	0.6095 (5)	0.0417 (8)
O9	0.02717 (16)	0.62677 (16)	0.6325 (3)	0.0488 (6)
C27	-0.0424 (2)	0.5987 (2)	0.7267 (5)	0.0469 (9)
H27A	-0.095493	0.618928	0.677040	0.056*
H27B	-0.036330	0.618210	0.841093	0.056*
C28	-0.0399 (3)	0.5062 (2)	0.7216 (6)	0.0589 (11)
H28A	-0.051299	0.488279	0.607285	0.071*
H28B	-0.084449	0.484809	0.787746	0.071*
C29	0.0439 (4)	0.4699 (3)	0.7865 (7)	0.0789 (16)
H29A	0.087621	0.486837	0.715733	0.118*
H29B	0.040059	0.410879	0.786445	0.118*
H29C	0.056727	0.488996	0.898212	0.118*
C17	0.6440 (2)	0.8097 (2)	0.0661 (4)	0.0342 (7)
C22	0.6531 (2)	0.7246 (2)	0.0682 (4)	0.0358 (7)
H22	0.613273	0.690744	0.114771	0.043*
C21	0.7238 (2)	0.6921 (2)	-0.0018 (4)	0.0380 (7)
C20	0.7843 (2)	0.7405 (2)	-0.0689(5)	0.0465 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H20	0.831569	0.717168	-0.113705	0.056*	
C19	0.7731 (2)	0.8247 (2)	-0.0681(5)	0.0467 (9)	
H19	0.813681	0.857969	-0.113702	0.056*	
C18	0.7032 (2)	0.8617 (2)	-0.0014 (4)	0.0393 (8)	
C26	0.6933 (3)	0.9537 (2)	-0.0065 (5)	0.0553 (10)	
H26A	0.636487	0.967348	-0.043287	0.083*	
H26B	0.731712	0.976626	-0.082638	0.083*	
H26C	0.705328	0.975968	0.103051	0.083*	
N23	0.7348 (2)	0.60191 (19)	0.0011 (4)	0.0469 (8)	
O25	0.6897 (2)	0.56138 (16)	0.0887 (4)	0.0610 (8)	
O24	0.7876 (2)	0.5722 (2)	-0.0855 (5)	0.0753 (10)	
08	-0.01809 (19)	0.75633 (18)	0.6508 (5)	0.0674 (9)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu	0.0392 (4)	0.0267 (3)	0.0345 (4)	-0.0014 (3)	0.0092 (3)	-0.0058 (3)
Cl	0.0881 (8)	0.0353 (5)	0.0505 (5)	0.0033 (4)	0.0254 (5)	0.0041 (4)
N14	0.0386 (14)	0.0267 (13)	0.0330 (13)	-0.0035 (11)	0.0078 (11)	-0.0039 (10)
N13	0.0396 (15)	0.0324 (14)	0.0351 (14)	-0.0030 (12)	0.0053 (11)	-0.0094 (11)
N12	0.0409 (15)	0.0262 (12)	0.0339 (14)	-0.0016 (11)	0.0074 (11)	-0.0061 (10)
C16	0.0420 (18)	0.0297 (16)	0.0449 (18)	-0.0054 (14)	0.0030 (14)	-0.0080 (14)
C15	0.0413 (18)	0.0257 (15)	0.0403 (17)	-0.0024 (13)	0.0038 (14)	-0.0013 (13)
C11	0.0394 (18)	0.0260 (16)	0.057 (2)	-0.0019 (13)	0.0066 (15)	-0.0025 (15)
O10	0.0418 (13)	0.0270 (11)	0.0755 (18)	-0.0004 (10)	0.0185 (12)	0.0026 (11)
C5	0.0350 (17)	0.0317 (16)	0.0452 (18)	-0.0029 (13)	0.0020 (14)	0.0017 (14)
C6	0.0430 (19)	0.0295 (16)	0.057 (2)	0.0009 (14)	0.0102 (16)	-0.0007 (15)
C7	0.0456 (19)	0.0302 (17)	0.054 (2)	-0.0036 (15)	0.0050 (16)	0.0018 (15)
C2	0.0355 (17)	0.0356 (17)	0.0410 (18)	-0.0031 (14)	0.0002 (13)	0.0017 (14)
C3	0.0407 (19)	0.0318 (17)	0.061 (2)	0.0032 (15)	0.0078 (16)	-0.0012 (16)
C4	0.044 (2)	0.0292 (16)	0.063 (2)	-0.0011 (15)	0.0116 (17)	0.0023 (16)
C1	0.0415 (19)	0.0403 (18)	0.0433 (18)	-0.0015 (15)	0.0022 (15)	0.0019 (15)
09	0.0464 (14)	0.0397 (13)	0.0622 (16)	-0.0055 (11)	0.0210 (12)	0.0031 (12)
C27	0.0420 (19)	0.052 (2)	0.048 (2)	-0.0043 (17)	0.0133 (16)	0.0029 (17)
C28	0.070 (3)	0.049 (2)	0.060 (3)	-0.022 (2)	0.027 (2)	-0.0047 (19)
C29	0.093 (4)	0.051 (3)	0.096 (4)	0.016 (3)	0.038 (3)	0.017 (3)
C17	0.0398 (17)	0.0303 (16)	0.0330 (16)	0.0001 (13)	0.0057 (13)	-0.0040 (13)
C22	0.0433 (18)	0.0307 (16)	0.0336 (16)	-0.0003 (14)	0.0043 (13)	-0.0019 (13)
C21	0.0429 (18)	0.0351 (17)	0.0357 (17)	0.0060 (14)	-0.0005 (14)	-0.0031 (14)
C20	0.0413 (19)	0.051 (2)	0.048 (2)	0.0038 (17)	0.0066 (15)	-0.0079 (17)
C19	0.046 (2)	0.051 (2)	0.044 (2)	-0.0079 (17)	0.0121 (16)	-0.0016 (16)
C18	0.051 (2)	0.0346 (17)	0.0329 (16)	-0.0049 (15)	0.0057 (14)	-0.0013 (13)
C26	0.078 (3)	0.0349 (19)	0.055 (2)	-0.0079 (19)	0.020 (2)	0.0034 (17)
N23	0.0530 (19)	0.0382 (16)	0.0492 (18)	0.0113 (14)	-0.0018 (15)	-0.0043 (14)
O25	0.093 (2)	0.0366 (14)	0.0546 (17)	0.0082 (14)	0.0110 (15)	0.0061 (12)
O24	0.064 (2)	0.0563 (18)	0.107 (3)	0.0209 (16)	0.0236 (18)	-0.0154 (18)
08	0.0484 (17)	0.0448 (16)	0.111 (3)	0.0069 (13)	0.0250 (16)	0.0018 (16)

Geometric parameters (Å, °)

Cu—Cl	2.2460 (9)	C1—O8	1.199 (5)	
Cu—Cl ⁱ	2.2460 (9)	O9—C27	1.444 (4)	
Cu—N14 ⁱ	2.009 (2)	C27—H27A	0.9700	
Cu—N14	2.009 (2)	C27—H27B	0.9700	
N14—N13	1.310 (4)	C27—C28	1.503 (5)	
N14—C15	1.350 (4)	C28—H28A	0.9700	
N13—N12	1.344 (4)	C28—H28B	0.9700	
N12—C16	1.344 (4)	C28—C29	1.522 (7)	
N12—C17	1.432 (4)	C29—H29A	0.9600	
C16—H16	0.9300	C29—H29B	0.9600	
C16—C15	1.365 (5)	C29—H29C	0.9600	
C15—C11	1.481 (5)	C17—C22	1.390 (4)	
C11—H11A	0.9700	C17—C18	1.394 (5)	
C11—H11B	0.9700	C22—H22	0.9300	
C11—O10	1.426 (4)	C22—C21	1.385 (5)	
O10—C5	1.361 (4)	C21—C20	1.373 (5)	
C5—C6	1.390 (5)	C21—N23	1.475 (4)	
C5—C4	1.383 (5)	C20—H20	0.9300	
С6—Н6	0.9300	C20—C19	1.378 (5)	
С6—С7	1.369 (5)	C19—H19	0.9300	
С7—Н7	0.9300	C19—C18	1.393 (5)	
C7—C2	1.391 (5)	C18—C26	1.502 (5)	
C2—C3	1.384 (5)	C26—H26A	0.9600	
C2—C1	1.483 (5)	C26—H26B	0.9600	
С3—Н3	0.9300	C26—H26C	0.9600	
C3—C4	1.381 (5)	N23—O25	1.221 (4)	
C4—H4	0.9300	N23—O24	1.216 (4)	
C1—O9	1.338 (4)			
Cl ⁱ —Cu—Cl	180.0	C1—O9—C27	117.0 (3)	
$N14^{i}$ — Cu — Cl^{i}	90.80 (8)	O9—C27—H27A	110.5	
N14—Cu—Cl ⁱ	89.20 (8)	O9—C27—H27B	110.5	
N14 ⁱ —Cu—Cl	89.20 (8)	O9—C27—C28	106.2 (3)	
N14—Cu—Cl	90.80 (8)	H27A—C27—H27B	108.7	
N14 ⁱ —Cu—N14	180.0	C28—C27—H27A	110.5	
N13—N14—Cu	119.5 (2)	C28—C27—H27B	110.5	
N13—N14—C15	111.1 (3)	C27—C28—H28A	108.8	
C15—N14—Cu	129.4 (2)	C27—C28—H28B	108.8	
N14—N13—N12	105.5 (2)	C27—C28—C29	113.7 (4)	
N13—N12—C16	111.2 (3)	H28A—C28—H28B	107.7	
N13—N12—C17	118.2 (3)	C29—C28—H28A	108.8	
C16—N12—C17	130.3 (3)	C29—C28—H28B	108.8	
N12-C16-H16	127.3	C28—C29—H29A	109.5	
N12-C16-C15	105.4 (3)	C28—C29—H29B	109.5	
C15-C16-H16	127.3	C28—C29—H29C	109.5	
N14-C15-C16	106.8 (3)	H29A—C29—H29B	109.5	

N14—C15—C11	121.9 (3)	H29A—C29—H29C	109.5
C16—C15—C11	131.2 (3)	H29B—C29—H29C	109.5
C15—C11—H11A	110.4	C22—C17—N12	116.9 (3)
C15—C11—H11B	110.4	C22—C17—C18	122.4 (3)
H11A—C11—H11B	108.6	C18—C17—N12	120.6 (3)
010-011-015	106 5 (3)	C17—C22—H22	121.3
010 $-C11$ $-H11A$	110.4	$C_{21} - C_{22} - C_{17}$	1173(3)
010-C11-H11B	110.4	$C_{21} = C_{22} = C_{17}$	121.3
C_{5} O_{10} C_{11}	117.4(3)	$C_{22} = C_{21} = N_{23}$	121.9 118.0(3)
010 C5 C6	117.4(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122.6(3)
010 - 05 - 00	114.0(3)	$C_{20} = C_{21} = C_{22}$	122.0(3)
$C_{10} = C_{5} = C_{4}$	123.1(3) 120.2(2)	$C_{20} = C_{21} = N_{23}$	119.5 (5)
C4 - C3 - C0	120.5 (5)	$C_{21} = C_{20} = C_{10}$	120.9
C3—C6—H6	120.1	$C_{21} = C_{20} = C_{19}$	118.2 (3)
C/-C6-C5	119.8 (3)	C19—C20—H20	120.9
С/—С6—Н6	120.1	С20—С19—Н19	118.8
С6—С7—Н7	119.6	C20—C19—C18	122.4 (3)
C6—C7—C2	120.7 (3)	C18—C19—H19	118.8
С2—С7—Н7	119.6	C17—C18—C26	122.8 (3)
C7—C2—C1	122.1 (3)	C19—C18—C17	117.0 (3)
C3—C2—C7	118.8 (3)	C19—C18—C26	120.2 (3)
C3—C2—C1	119.0 (3)	C18—C26—H26A	109.5
С2—С3—Н3	119.5	C18—C26—H26B	109.5
C4—C3—C2	121.1 (3)	C18—C26—H26C	109.5
С4—С3—Н3	119.5	H26A—C26—H26B	109.5
C5—C4—H4	120.4	H26A—C26—H26C	109.5
C3—C4—C5	119.3 (3)	H26B—C26—H26C	109.5
C3—C4—H4	120.4	O25—N23—C21	118.1 (3)
09—C1—C2	111.1 (3)	024—N23—C21	118.0 (3)
08-C1-C2	1260(3)	024—N23—025	123.9(3)
0.00 - 0.00 - 0.000	120.0(3) 122.9(3)	021 1123 023	125.5 (5)
	122.9 (3)		
$C_{\rm II}$ N14 N13 N12	$-178\ 21\ (19)$	C6 - C7 - C2 - C1	-1781(3)
$C_{11} = N14 = C_{15} = C_{16}$	178.21(19)	$C_{0} - C_{1} - C_{2} - C_{1}$	-0.7(6)
$C_{\rm H} = N14 - C15 - C10$	-4.7(5)	$C_{7}^{-}C_{2}^{-}C_{3}^{-}C_{4}^{-}$	0.7(0)
$U_{\rm m} = N14 - C15 - C11$	-4.7(3)	$C_{1} - C_{2} - C_{1} - O_{3}$	5.0(3)
N14 N12 N12 C17	-0.1(3)	$C_{1} = C_{2} = C_{1} = 0_{8}$	-1/7.5(4)
N14—N13—N12—C17	-1/4.4(3)	$C_2 - C_3 - C_4 - C_5$	0.4(6)
	-122.9(3)	$C_2 - C_1 - O_9 - C_2 / C_2$	1/2.7 (3)
N13—N14—C15—C16	0.2 (4)	C3-C2-C1-O9	-173.9(3)
N13—N14—C15—C11	177.5 (3)	C3—C2—C1—O8	5.2 (6)
N13—N12—C16—C15	0.2 (4)	C4—C5—C6—C7	-2.5 (6)
N13—N12—C17—C22	125.8 (3)	C1—C2—C3—C4	176.9 (3)
N13—N12—C17—C18	-51.5 (4)	C1—O9—C27—C28	175.3 (3)
N12-C16-C15-N14	-0.3 (4)	O9—C27—C28—C29	56.2 (5)
N12-C16-C15-C11	-177.1 (3)	C17—N12—C16—C15	173.7 (3)
N12-C17-C22-C21	-177.9 (3)	C17—C22—C21—C20	1.1 (5)
N12—C17—C18—C19	177.2 (3)	C17—C22—C21—N23	179.3 (3)
N12—C17—C18—C26	-3.8 (5)	C22—C17—C18—C19	0.1 (5)
C16—N12—C17—C22	-47.3 (5)	C22—C17—C18—C26	179.1 (3)

G1()112 G17 G10	125 4 (4)	600 601 600 610	0.0(5)
C16—N12—C17—C18	135.4 (4)	$C_{22} - C_{21} - C_{20} - C_{19}$	-0.9 (5)
C16—C15—C11—O10	53.6 (5)	C22—C21—N23—O25	-12.1 (5)
C15—N14—N13—N12	-0.1 (3)	C22—C21—N23—O24	167.0 (3)
C15—C11—O10—C5	174.7 (3)	C21—C20—C19—C18	0.3 (6)
C11—O10—C5—C6	170.4 (3)	C20—C21—N23—O25	166.1 (3)
C11-O10-C5-C4	-10.0 (5)	C20-C21-N23-O24	-14.8 (5)
O10—C5—C6—C7	177.1 (3)	C20-C19-C18-C17	0.1 (5)
O10-C5-C4-C3	-178.4 (4)	C20-C19-C18-C26	-178.9 (4)
C5-C6-C7-C2	2.2 (6)	C18—C17—C22—C21	-0.7 (5)
C6—C5—C4—C3	1.2 (6)	N23-C21-C20-C19	-179.1 (3)
C6—C7—C2—C3	-0.6 (6)	O8—C1—O9—C27	-6.4 (6)

Symmetry code: (i) -x+1, -y+2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
С7—Н7…О9	0.93	2.39	2.706 (4)	100
C22—H22···Cl ⁱⁱ	0.93	2.78	3.689 (3)	167
C29—H29 <i>B</i> ···O8 ⁱⁱⁱ	0.96	2.59	3.531 (6)	168

Symmetry codes: (ii) *x*, -*y*+3/2, *z*-1/2; (iii) -*x*, *y*-1/2, -*z*+3/2.