

Received 20 February 2025 Accepted 11 March 2025

Edited by S. P. Kelley, University of Missouri-Columbia, USA

Keywords: crystal structure; phosphate; potassium; nickel; octahedral; pentagonal.

CCDC reference: 2430654

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Synthesis and crystal structure of dipotassium nickel polyphosphate

El Waleda Moustapha Thiam,^a Kalidou Mamadou Ba,^a Aichata Yaya Kane,^a Ibrahima Elhadji Thiam,^b* Nicolas Claiser,^c Mohamed Souhassou,^c Aliou Hamady Barry^a and Mohamed Gaye^b

^aUnité de Recherche en Chimie des Matériaux, Département de Chimie, Faculté des Sciences et Techniques, Université de Nouakchott, Mauritania, ^bDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheik Anta Diop, Dakar, Senegal, and ^cCNRS, Laboratoire CRM2, UMR CNRS 7036, Université de Lorraine, boulevard des aiguillettes, BP 70239, Vandoeuvre-lès-Nancy, 54506, France. *Correspondence e-mail: undefined

Single crystals of $K_2Ni(PO_3)_4$ were obtained by solid-state reaction. The structure consists of infinite zigzag polyphosphate chains, running along the *c*-axis direction, linked by Ni²⁺ ions and delimiting large tunnels in which the K⁺ ions are located. Ni²⁺ ions form slightly distorted NiO₆ octahedra and the coordination numbers of the independent potassium cations are 8 and 10.

1. Chemical context

Transition-metal oxides (Fe, Co, or Ni) in melted phosphate systems of alkali metals ($M_2O-P_2O_5$, M = Li, Na, or K) are widely studied (Pontchara & Durif, 1974; Litvin & Masloboev, 1989; Panahandeh & Jung, 2003; Moutataouia et al., 2014; Ouaatta et al., 2019). These materials present various and interesting properties and applications, such as catalysts (Moffat, 1978), ferroelectric and/or magnetic materials (Lazoryak et al., 2004; Hatert et al., 2004; Essehli et al., 2015) and ion-conduction properties (La Parola et al., 2018; Orikasa et al., 2016; Daidouh et al., 1999). Some of these specific properties, such as catalytic activity, are similar to those found in the phosphate systems themselves (Kapshuk et al., 2000). These compounds have been characterized by several physicochemical and structural methods. Among these studies, some have been devoted to nickel-based phosphates associated with alkali metals, such as the polyphosphates $MNi(PO_3)_3$ (M = Li, Na, or K; Kapshuk et al., 2000) and NiCs₄(PO₃)₆ (Sbai et al., 2004). For all these samples, the study of their structural characteristics is essential for understanding most of the physical properties (Fischer et al., 1994). The title polyphosphate, $K_2Ni(PO_3)_4$, designated as (1), was obtained in the quest to synthesize new condensed phosphates appearing in the $A_2O-MO-LnO_3-P_2O_5$ quaternary system (A: an alkali metal, M: transition metal divalent cation, Ln: lanthanide or Y metal). This compound has been observed in the diagram Ni(PO₃)₂-KPO₃ (Pontchara & Durif, 1974) but, to our knowledge, its crystal structure has not yet been reported. We report herein on its synthesis and structural characterization by single crystal X-ray diffraction.

2. Structural commentary

The title compound, (1), crystallizes in the non-centrosymmetric monoclinic space group Cc. The asymmetric unit contains 19 atoms corresponding to the chemical formula

The asymmetric unit of $K_2Ni(PO_3)_4$.

 $K_2Ni(PO_3)_4$, as shown in Fig. 1. The structure is based on infinite zigzag polyphosphate chains running almost along the *c*-axis direction and linked by NiO_6 octahedra (Fig. 2). Each NiO₆ octahedron shares corners with six different PO₄ tetrahedra belonging to three polyphosphate chains. All the terminal O atoms of the PO₄ tetrahedra in the polyphosphate chains interact with the Ni and K atoms. Such an arrangement creates a three-dimensional framework that delimits large hexagonal and pentagonal tunnels in which the K⁺ ions are located (Fig. 3). The NiO₆ octahedra are slightly distorted, with Ni-O distances ranging from 2.017 (2) to 2.167 (2) Å and the O-Ni-O angles from 82.52 (6) $^{\circ}$ to 173.51 (6) $^{\circ}$. In the four PO₄ tetrahedra, the equatorial and apical distances P-OE and P-OL, respectively, range from 1.469 (2) to 1.493 (2) Å for P–OE and 1.578 (1) to 1.602 (1)Å for P–OL and the O-P-O angles range from 100.37 (10) to $120.76 (10)^{\circ}$. The unit cell contains two crystallographically non-equivalent K atoms (K1 and K2) both located in large hexagonal and pentagonal tunnels (Fig. 3). The coordination

Figure 2 Projection of the K₂Ni(PO₃)₄ structure along [100].

Polyhedral representation of the structure of $K_2Ni(PO_3)_4$ showing the tunnels in which the K⁺ cations are located.

number (CN) is 8 for K1 and 10 for K2. The K-O interactions range from 2.582 (2) and 3.111 (2) Å for K1 (mean distance: 2.841 Å) and 2.761 (2) to 3.414 (2) Å for K2 (mean distance: 3.041 Å)

3. Database survey

A search in the Cambridge Structural Database (Version 5.43, November 2021; Groom et al., 2016) revealed about a dozen alkaline nickel-based phosphates: TlNi₄(PO₄)₃, Tl₄Ni₇(PO₄)₆ and $Tl_2Ni_4(P_2O_7)(PO_4)_2$ (Panahandeh & Jung, 2003), KNi₃(PO₄)P₂O₇ (Moutataouia et al., 2014), K₂Ni₄(PO₄)₂-(P₂O₇) (Palkina et al., 1980), K₂NiP₂O₇ (El Maadi et al., 1995), $AM_4(PO_4)_3$ (A = Na, K, Rb; M = Ni, Mn) (Daidouh et al., 1999), $MNi(PO_3)_3$ (M = Na or K) (Kapshuk *et al.*, 2000), KNiPO₄ (Fischer *et al.*, 1994), NiCs₄(PO₃)₆ and NiK₄(P₃O₉)₂ (Sbai et al., 2004). As in the case of the title compound, the structures of $MNi(PO_3)_3$ (M = Na or K) polyphosphates are based on infinite zigzag polyphosphate chains, linked by Ni²⁺ ions in octahedral coordination and delimiting tunnels in which the alkali ions are located (Fig. 3). The metal atoms (M)and nickel atoms form infinite ... Ni-M-Ni-M... columns of polyhedra sharing edges and alternating with the polyphosphate chains. In the NaNi(PO₃)₃ structure (Kapshuk et al., 2000), the polyphosphate chains run along the *a*-axis direction, and the Na atom exhibits a distorted octahedral environment whereas in $KNi(PO_3)_3$, the polyphosphate chains are run in the same direction as in the title polyphosphate (c-axis) and the coordination polyhedron of the K atom is a distorted tricapped trigonal prism (CN = 9), unlike in the title polyphosphate where the K atoms exhibit two different coordination numbers (8 and 10). In the other alkaline nickel-based

phosphates $TlNi_4(PO_4)_3$, $Tl_4Ni_7(PO_4)_6$, $Tl_2Ni_4(P_2O_7)(PO_4)_2$, KNi₃(PO₄)P₂O₇, K₂Ni₄(PO₄)₂(P₂O₇), K₂NiP₂O₇, AM₄(PO₄)₃ (A = Na, K, Rb; M = Ni, Mn); the structural arrangements are markedly different from that of the title compound being based on alkali and Ni polyhedra sharing edges and forming chains that are linked together by isolated PO₄ and/or diphosphate (P_2O_7) groups. In addition, the coordination polyhedron of the Ni atom is not always octahedral. For 7-coordinated instance. it is in $TlNi_4(PO_4)_3$, 5-coordinated in $KNi_4(PO_4)_3$ and has an unusual coordination of only four oxygen atoms in a distorted tetrahedron in $Tl_2Ni_4(P_2O_7)(PO_4)_2$. The coordination numbers of the metal atoms (Tl and K) in these phosphates range from 6 to 12. Thallium nickel phosphate, Tl₂Ni₄(P₂O₇)(PO₄)₂, adopts the $K_2Ni_4(PO_4)_2(P_2O_7)$ structure, and the environments of the alkali and nickel atoms are nearly identical.

4. Synthesis and crystallization

Single crystals of $K_2Ni(PO_3)_4$ were prepared by solid-state reaction. A mixture of the reagents K_2CO_3 , NiCl₂·6H₂O, NH₄H₂PO₄ and La₂O₃ in a molar ratio of K:Ni:P:La of 0.4:0.05:1:0.02 was placed in a porcelain crucible. The reaction mixture was then calcined at 623 K for 1 h and gradually heated to 823 K. Maintained at this temperature for 72 h, the reaction mixture then underwent slow cooling at a rate of 1 K h⁻¹ to 773 K and then to room temperature with furnace inertia. The crystals obtained were recovered after washing with boiling water.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Solving and refinement tests of the structure were carried out in both the centrosymmetric and non-centrosymmetric space groups C2/c and Cc. Better results with a much convergent refinement were obtained with the non-centrosymmetric model. The use of the TWIN refinement mode made the refinement results significantly improved. No Extinction correction was applied. The residual maximum and minimum electron density peaks are located 0.13 Å from P1 and 0.36 Å from Ni1, respectively. However, the minimum density observed in the vicinity of a nickel atom is rather largely negative $(-2.6 \text{ e} \text{ Å}^{-3})$ indicating probably that the absorption correction applied was not optimal.

Acknowledgements

The authors are grateful to the Service de Coopération et d'Action Culturelle (SCAC) de l'Ambassade de France en Mauritanie for financial support and Professor Claude Lecomte and coworkers of the Laboratoire CRM2 of the Université de Lorraine (France) for their help.

Table 1

Experimental	details.
--------------	----------

0 (11)	
Crystal data	K M (DO)
Chemical formula	$K_2N1(PO_3)_4$
M _r	452.79
Crystal system, space group	Monoclinic, Cc
Temperature (K)	293
<i>a</i> , <i>b</i> , <i>c</i> (A)	11.07179 (16), 12.50386 (16), 7.53969 (11)
β (°)	103.2349 (14)
$V(Å^3)$	1016.07 (3)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	3.43
Crystal size (mm)	$0.12 \times 0.08 \times 0.07$
Data collection	
Diffractometer	SuperNova
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)
T_{\min}, T_{\max}	0.509, 0.710
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	33158, 8076, 7869
R _{int}	0.035
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.999
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.031, 0.088, 1.07
No. of reflections	8076
No. of parameters	173
No. of restraints	2
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.83, -2.85
Absolute structure	Refined as an inversion twin
Absolute structure parameter	0.539 (9)

Computer programs: *CrysAlis PRO* (Rigaku OD, 2022), *SHELXT* (Sheldrick, 2015*a*), *SHELXL* (Sheldrick, 2015*b*), *ORTEP-3 for Windows* (Farrugia, 2012), *DIAMOND* (Brandenburg, 2006) and *publCIF* (Westrip, 2010).

References

- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Daidouh, A., Pico, C. & Veiga, M. L. (1999). Solid State Ionics, **124**, 109–117.
- El Maadi, A., Boukhari, A. & Holt, E. M. (1995). J. Chem. Crystallogr. 25, 531–536.
- Essehli, R., Belharouak, I., Ben Yahia, H., Chamoun, R., Orayech, B., El Bali, B., Bouziane, K., Zhou, X. L. & Zhou, Z. (2015). *Dalton Trans.* 44, 4526–4532.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fischer, P., Luján, M., Kubel, F. & Schmid, H. (1994). Ferroelectrics, 162, 37-44.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hatert, F., Long, G. J., Hautot, D., Fransolet, A. M., Delwiche, J., Hubin-Franskin, M. J. & Grandjean, F. (2004). *Phys. Chem. Miner.* 31, 487–506.
- Kapshuk, A. A., Nagornyï, P. G. & Petrenko, O. V. (2000). Crystallogr. *Rep.* 45, 206–209.
- La Parola, V., Liveri, V. T., Todaro, L., Lombardo, D., Bauer, E. M., Dell'Era, A., Longo, A., Caschera, D., de Caro, T., Toro, R. G. & Calandra, P. (2018). *Mater. Lett.* **220**, 58–61.
- Lazoryak, B. I., Morozov, V. A., Belik, A. A., Stefanovich, S. Y., Grebenev, V. V., Leonidov, I. A., Mitberg, E. B., Davydov, S. A., Lebedev, O. I. & Van Tendeloo, G. (2004). *Solid State Sci.* 6, 185– 195.
- Litvin, B. N. & Masloboev, V. A. (1989). Rare Earth Phosphates, edited by R. Grebentshikov. Moscow: Nauka Publishing. Moffat, J. B. (1978). Catal. Rev. 18, 199–258.

- Moutataouia, M., Lamire, M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, i5.
- Orikasa, Y., Gogyo, Y., Yamashige, H., Katayama, M., Chen, K., Mori, T., Yamamoto, K., Masese, T., Inada, Y., Ohta, T., Siroma, Z., Kato, S., Kinoshita, H., Arai, H., Ogumi, Z. & Uchimoto, Y. (2016). *Sci. Rep.* **6**, 26382.
- Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2019). Acta Cryst. E75, 402–404.
- Palkina, K. K. & Maksimova, S. I. (1980). Dokl. Akad. Nauk SSSR, 250, 1130–1134.
- Panahandeh, A. & Jung, W. (2003). Z. Anorg. Allg. Chem. 629, 1651–1660.
- Pontchara, P. & Durif, A. (1974). C. R. Acad. Sci. C, 278, 175-178.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sbai, K., Belaaouad, S., Kenz, A., Tace, E. M. & Tridane, M. (2004). Powder Diffr. 19, 375–377.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2025). E81, 324-327 [https://doi.org/10.1107/S2056989025002221]

Synthesis and crystal structure of dipotassium nickel polyphosphate

El Waleda Moustapha Thiam, Kalidou Mamadou Ba, Aichata Yaya Kane, Ibrahima Elhadji Thiam, Nicolas Claiser, Mohamed Souhassou, Aliou Hamady Barry and Mohamed Gaye

Computing details

Dipotassium nickel polyphosphate

Crystal data

K₂Ni(PO₃)₄ $M_r = 452.79$ Monoclinic, Cc a = 11.07179 (16) Å b = 12.50386 (16) Å c = 7.53969 (11) Å $\beta = 103.2349$ (14)° V = 1016.07 (3) Å³ Z = 4

Data collection

SuperNova diffractometer $\theta/2\theta$ scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) $T_{\min} = 0.509, T_{\max} = 0.710$ 33158 measured reflections 8076 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.088$ S = 1.078076 reflections 173 parameters 2 restraints

Special details

F(000) = 888 $D_x = 2.960 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 5641 reflections $\theta = 2.5-45.2^{\circ}$ $\mu = 3.43 \text{ mm}^{-1}$ T = 293 KBlock, metallic reddish red $0.12 \times 0.08 \times 0.07 \text{ mm}$

7869 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 45.2^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = -22 \rightarrow 21$ $k = -24 \rightarrow 24$ $l = -14 \rightarrow 14$ 3 standard reflections every 120 min intensity decay: none

 $w = 1/[\sigma^2(F_o^2) + (0.0564P)^2 + 1.2215P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.83$ e Å⁻³ $\Delta\rho_{min} = -2.85$ e Å⁻³ Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.539 (9)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Data were collected on a SuperNova diffractometer equipped with a (Mo)X-ray Source and an Atlas CCD detector. Cell refinement and data reduction were performed with CrysAlisPro 1.171.42.49 (Rigaku, 2022) and adsorption correction withSCALE3 ABSPACK scaling algorithm (Rigaku Oxford Diffraction, 2022). Using the SHELX software package, the structure was solved by the direct method with the SHELXS program (Sheldrick, 2015a) and refined by the full-matrix least-squares method using SHELXL program (Sheldrick, 2015b). The programs *Ortep-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006) were used for molecular graphics and the software *publCIF* (Westrip, 2010) to prepare material for publication.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.94642 (3)	0.34669 (2)	0.79387 (4)	0.00586 (5)	
K1	0.61359 (4)	0.63341 (3)	0.12530 (6)	0.00747 (6)	
K2	1.31600 (5)	0.37393 (4)	0.96892 (7)	0.01014 (7)	
P1	1.05470 (5)	0.57511 (4)	0.70758 (7)	0.00330 (7)	
P2	0.83590 (5)	0.57688 (4)	0.86578 (7)	0.00340 (7)	
P3	0.62807 (5)	0.68963 (4)	0.62381 (7)	0.00407 (7)	
P4	1.28454 (5)	0.66069 (4)	0.97345 (7)	0.00384 (7)	
01	0.94041 (16)	0.62429 (12)	0.7749 (2)	0.0065 (2)	
02	0.84766 (14)	0.45926 (12)	0.8902 (2)	0.00540 (19)	
03	0.71177 (15)	0.58966 (12)	0.7095 (2)	0.0066 (2)	
O4	1.16650 (16)	0.59314 (15)	0.8769 (2)	0.0088 (2)	
05	1.04508 (15)	0.45704 (12)	0.6879(2)	0.0058 (2)	
06	0.82806 (16)	0.64783 (12)	1.0220 (2)	0.0059 (2)	
07	1.07218 (15)	0.64267 (13)	0.5525 (2)	0.0059 (2)	
08	1.31674 (15)	0.73723 (13)	0.8407 (2)	0.0074 (2)	
09	1.23326 (16)	0.72198 (13)	1.1278 (2)	0.0070 (2)	
O10	1.37679 (15)	0.58280 (13)	1.0701 (2)	0.0085 (2)	
011	0.55585 (16)	0.72302 (13)	0.7586 (2)	0.0076 (2)	
012	0.56100 (16)	0.66049 (14)	0.4387 (2)	0.0085 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic	displ	lacement	parameters	$(Å^2)$
--------	-------	----------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.00581 (9)	0.00526 (8)	0.00660 (8)	0.00012 (7)	0.00160 (7)	0.00007 (7)
K1	0.00615 (13)	0.00922 (13)	0.00764 (13)	-0.00002 (12)	0.00283 (10)	-0.00036 (12)
K2	0.00994 (16)	0.00745 (14)	0.01295 (17)	-0.00041 (12)	0.00245 (13)	-0.00230 (12)
P1	0.00303 (16)	0.00325 (16)	0.00364 (15)	-0.00080 (12)	0.00081 (12)	-0.00030 (12)
P2	0.00332 (16)	0.00287 (15)	0.00425 (15)	0.00051 (12)	0.00139 (12)	-0.00014 (12)
Р3	0.00380 (16)	0.00497 (16)	0.00343 (15)	0.00063 (12)	0.00079 (12)	0.00020 (13)
P4	0.00303 (16)	0.00393 (17)	0.00437 (16)	-0.00011 (12)	0.00048 (13)	-0.00040 (12)
01	0.0059 (5)	0.0051 (4)	0.0101 (6)	0.0000 (4)	0.0052 (4)	0.0001 (4)
02	0.0059 (5)	0.0030 (4)	0.0075 (5)	0.0009 (3)	0.0020 (4)	0.0005 (3)
03	0.0050 (5)	0.0051 (4)	0.0085 (5)	0.0007 (4)	-0.0008(4)	0.0003 (4)
04	0.0073 (5)	0.0110 (6)	0.0063 (5)	-0.0048 (4)	-0.0023 (4)	0.0003 (4)
05	0.0065 (5)	0.0037 (4)	0.0076 (5)	-0.0006 (4)	0.0026 (4)	-0.0007 (4)
06	0.0069 (5)	0.0053 (5)	0.0057 (5)	0.0009 (4)	0.0019 (4)	-0.0014 (4)
O7	0.0065 (5)	0.0067 (5)	0.0048 (5)	-0.0015 (4)	0.0017 (4)	0.0008 (4)

supporting information

08	0.0073 (5)	0.0075 (5)	0.0082 (5)	-0.0011 (4)	0.0035 (4)	0.0013 (4)
09	0.0087 (5)	0.0064 (5)	0.0064 (5)	0.0020 (4)	0.0029 (4)	-0.0011 (4)
O10	0.0060 (5)	0.0068 (5)	0.0112 (6)	0.0023 (4)	-0.0007 (4)	0.0016 (4)
011	0.0085 (5)	0.0078 (5)	0.0078 (5)	0.0023 (4)	0.0043 (4)	0.0005 (4)
012	0.0074 (5)	0.0129 (6)	0.0044 (5)	-0.0006 (4)	-0.0004 (4)	-0.0008(4)

Geometric parameters (Å, °)

Ni1—K1 ⁱ	3.6212 (6)	K2—O6 ^{vi}	2.8540 (16)
Ni1—K1 ⁱⁱ	3.8294 (5)	K2—O7 ⁱ	2.9168 (18)
Ni1—K2 ⁱⁱⁱ	3.7520 (6)	K2—O8 ⁱ	3.1274 (18)
Ni1—K2	4.0161 (6)	K2—O9 ^{iv}	2.7951 (17)
Nil—O2	2.0168 (15)	K2—O10 ^{iv}	3.273 (2)
Nil—O5	2.0335 (16)	K2—O10	2.7605 (18)
Ni1—O6 ^{iv}	2.1666 (16)	K2—O11 ^x	3.2612 (18)
Nil—O7 ⁱ	2.1253 (16)	K2—O12 ^x	2.8069 (19)
Nil—O8 ^v	2.0717 (16)	P1—O1	1.5910 (17)
Ni1—O11 ^{vi}	2.0194 (16)	P1—O4	1.5779 (16)
K1—P2 ^{vii}	3.5486 (7)	P1—O5	1.4852 (16)
$K1 - P2^{iv}$	3.7705 (7)	P1—O7	1.4903 (16)
K1—P4 ^{viii}	3.5763 (7)	P2—O1	1.5882 (17)
$K1 - O2^{iv}$	3.1108 (16)	P2—O2	1.4842 (16)
K1—O3 ^{iv}	3.0080 (16)	P2—O3	1.6002 (16)
K1—O6 ^{vii}	2.6693 (18)	P2—O6	1.4928 (16)
K1—O7 ^{ix}	2.8697 (16)	P3—O3	1.6016 (16)
K1—O8 ^{ix}	2.9396 (17)	P3—O9 ^{ix}	1.6009 (17)
K1-O10 ^{viii}	2.6358 (18)	P3—O11	1.4893 (17)
K1—O11 ^{vii}	2.9154 (17)	P3—O12	1.4691 (17)
K1—O12	2.5817 (18)	P4—O4	1.5860 (17)
K2—P3 ^x	3.4765 (7)	P4—O8	1.4858 (17)
K2—P4	3.6034 (7)	P4—O9	1.6022 (17)
К2—О4	3.195 (2)	P4—O10	1.4771 (16)
K2—O5	3.4141 (17)		
K1 ⁱ —Ni1—K1 ⁱⁱ	125.300 (12)	O10—K2—O5	90.43 (4)
K1 ⁱ —Ni1—K2 ⁱⁱⁱ	67.218 (12)	O10—K2—O6 ^{vi}	153.87 (5)
K1 ⁱⁱ —Ni1—K2	62.662 (11)	O10—K2—O7 ⁱ	100.77 (5)
K1 ⁱ —Ni1—K2	171.099 (12)	O10—K2—O8 ⁱ	102.85 (5)
K2 ⁱⁱⁱ —Ni1—K1 ⁱⁱ	88.300 (11)	O10—K2—O9 ^{iv}	131.91 (5)
K2 ⁱⁱⁱ —Ni1—K2	119.195 (13)	O10—K2—O10 ^{iv}	90.52 (4)
O2—Ni1—K1 ⁱⁱ	118.16 (5)	O10—K2—O11 ^x	93.26 (5)
O2-Ni1-K1 ⁱ	59.09 (5)	O10—K2—O12 ^x	89.34 (5)
O2—Ni1—K2 ⁱⁱⁱ	126.08 (5)	O11 ^x —K2—P3 ^x	25.28 (3)
O2—Ni1—K2	114.71 (5)	O11 ^x —K2—P4	115.41 (3)
02—Ni1—05	92.99 (6)	O11 ^x —K2—O5	173.59 (4)
O2-Ni1-O6 ^{iv}	93.34 (6)	O11 ^x —K2—O10 ^{iv}	111.68 (4)
O2-Ni1-O7 ⁱ	85.48 (6)	$O12^{x}$ —K2—P 3^{x}	24.16 (3)
O2—Ni1—O8 ^v	86.88 (7)	O12 ^x —K2—P4	104.51 (4)

O2-Ni1-011 ^{vi}	166.65 (7)	O12 ^x —K2—O4	125.18 (5)
O5—Ni1—K1 ⁱⁱ	120.40 (5)	O12 ^x —K2—O5	136.41 (5)
O5—Ni1—K1 ⁱ	114.24 (5)	O12 ^x —K2—O6 ^{vi}	81.05 (5)
O5—Ni1—K2	58.20 (5)	O12 ^x —K2—O7 ⁱ	165.05 (5)
O5—Ni1—K2 ⁱⁱⁱ	113.79 (5)	O12 ^x —K2—O8 ⁱ	101.57 (5)
O5—Ni1—O6 ^{iv}	82.52 (6)	O12 ^x —K2—O10 ^{iv}	62.93 (5)
O5—Ni1—O7 ⁱ	91.15 (6)	O12 ^x —K2—O11 ^x	48.97 (4)
O5—Ni1—O8 ^v	166.15 (7)	$K1^{xi}$ $P1$ $K2^{iv}$	65.244 (13)
O6 ^{iv} —Ni1—K1 ⁱ	47.10 (5)	O1—P1—K1 ^{xi}	81.92 (6)
O6 ^{iv} —Ni1—K1 ⁱⁱ	137.45 (4)	O1—P1—K2 ^{iv}	146.61 (6)
O6 ^{iv} —Ni1—K2	131.17 (5)	O4—P1—K1 ^{xi}	82.08 (7)
O6 ^{iv} —Ni1—K2 ⁱⁱⁱ	49.19 (4)	O4—P1—K2 ^{iv}	79.50 (7)
O7 ⁱ —Ni1—K1 ⁱⁱ	47.74 (4)	O4—P1—O1	102.73 (10)
O7 ⁱ —Ni1—K1 ⁱ	135.89 (5)	O5—P1—K1 ^{xi}	162.46 (7)
O7 ⁱ —Ni1—K2 ⁱⁱⁱ	135.94 (4)	O5—P1—K2 ^{iv}	99.47 (7)
O7 ⁱ —Ni1—K2	44.68 (5)	O5—P1—O1	111.84 (9)
O7 ⁱ —Ni1—O6 ^{iv}	173.50 (6)	O5—P1—O4	104.35 (10)
O8 ^v —Ni1—K1 ⁱ	54.26 (5)	O5—P1—O7	120.29 (9)
O8 ^v —Ni1—K1 ⁱⁱ	71.27 (5)	O7—P1—K1 ^{xi}	42.80 (6)
O8 ^v —Ni1—K2 ⁱⁱⁱ	56.46 (5)	O7—P1—K2 ^{iv}	44.18 (7)
O8 ^v —Ni1—K2	133.93 (5)	O7—P1—O1	106.67 (9)
O8 ^v —Ni1—O6 ^{iv}	83.66 (6)	O7—P1—O4	109.57 (10)
O8v—Ni1—O7 ⁱ	102.64 (7)	$K1^{xii}$ $P2$ $K1^{i}$	86.856 (17)
O11 ^{vi} —Ni1—K1 ⁱⁱ	48.53 (5)	$K1^{xii}$ $P2$ $K2^{xiii}$	67.271 (14)
O11 ^{vi} —Ni1—K1 ⁱ	126.83 (5)	K1 ⁱ —P2—K2 ^{xiii}	135.710 (18)
O11 ^{vi} —Ni1—K2 ⁱⁱⁱ	60.25 (5)	O1—P2—K1 ^{xii}	146.03 (6)
O11 ^{vi} —Ni1—K2	60.75 (5)	$O1 - P2 - K1^{i}$	120.85 (7)
O11 ^{vi} —Ni1—O5	94.32 (7)	O1—P2—K2 ^{xiii}	78.82 (6)
O11 ^{vi} —Ni1—O6 ^{iv}	98.67 (7)	O1—P2—O3	103.48 (9)
O11 ^{vi} —Ni1—O7 ⁱ	83.22 (7)	O2—P2—K1 ^{xii}	100.44 (7)
$O11^{vi}$ —Ni1— $O8^{v}$	88.67 (7)	O2—P2—K1 ⁱ	52.96 (6)
Ni1 ^{iv} —K1—P2 ^{iv}	51.633 (11)	O2—P2—K2 ^{xiii}	161.42 (7)
P2 ^{vii} —K1—Ni1 ^{iv}	55.151 (12)	O2—P2—O1	111.80 (9)
$P2^{vii}$ —K1— $P2^{iv}$	70.573 (13)	O2—P2—O3	103.08 (9)
P2 ^{vii} —K1—P4 ^{viii}	128.817 (18)	O2—P2—O6	120.69 (9)
P4 ^{viii} —K1—Ni1 ^{iv}	170.418 (17)	O3—P2—K1 ⁱ	50.17 (6)
$P4^{viii}$ — $K1$ — $P2^{iv}$	136.511 (17)	O3—P2—K1 ^{xii}	78.39 (7)
O2 ^{iv} —K1—Ni1 ^{iv}	33.80 (3)	O3—P2—K2 ^{xiii}	88.45 (6)
$O2^{iv}$ —K1—P2 ^{iv}	22.39 (3)	06—P2—K1 ⁱ	130.12 (7)
$O2^{iv}$ —K1—P 2^{vii}	72.46 (3)	06—P2—K1 ^{xii}	43.42 (7)
$O2^{iv}$ —K1—P4 ^{viii}	151.52 (3)	06—P2—K2 ^{xiii}	40.83 (6)
O3 ^{iv} —K1—Ni1 ^{iv}	72.55 (3)	O6—P2—O1	107.34 (9)
$O3^{iv}$ —K1—P2 ^{vii}	70.67 (4)	O6—P2—O3	109.04 (9)
$O3^{iv}$ —K1—P2 ^{iv}	24.11 (3)	K2 ^{xiii} —P3—K1	134.104 (18)
O3 ^{iv} —K1—P4 ^{viii}	116.65 (3)	K2 ^{xiv} —P3—K1	79.126 (15)
$O3^{iv}$ —K1— $O2^{iv}$	46.48 (4)	K2 ^{xiv} —P3—K2 ^{xiii}	136.71 (2)
$O6^{vii}$ —K1—Ni1 ^{iv}	36.48 (4)	O3—P3—K1	98.32 (7)
$O6^{vii}$ —K1—P2 ^{iv}	70.19 (4)	03—P3—K2 ^{xiv}	113.32 (6)
	· · · · · · · · · · · · · · · · · · ·		

supporting information

O6 ^{vii} —K1—P2 ^{vii}	22.61 (3)	O3—P3—K2 ^{xiii}	91.25 (6)
$O6^{vii}$ —K1—P4 viii	144.02 (4)	O9 ^{ix} —P3—K1	90.70 (6)
$O6^{vii}$ —K1— $O2^{iv}$	63.03 (5)	O9 ^{ix} —P3—K2 ^{xiii}	43.41 (6)
O6 ^{vii} —K1—O3 ^{iv}	79.73 (5)	$O9^{ix}$ —P3—K 2^{xiv}	145.79 (6)
O6 ^{vii} —K1—O7 ^{ix}	89.55 (5)	O9 ^{ix} —P3—O3	100.37 (9)
O6 ^{vii} —K1—O8 ^{ix}	60.32 (5)	O11—P3—K1	145.19 (7)
O6 ^{vii} —K1—O11 ^{vii}	73.37 (5)	O11—P3—K2 ^{xiii}	69.63 (7)
O7 ^{ix} —K1—Ni1 ^{iv}	96.04 (4)	O11—P3—K2 ^{xiv}	69.25 (7)
$O7^{ix}$ —K1—P2 ^{iv}	146.15 (4)	O11—P3—O3	107.15 (10)
$O7^{ix}$ —K1—P2 ^{vii}	100.93 (4)	O11—P3—O9 ^{ix}	107.19 (10)
O7 ^{ix} —K1—P4 ^{viii}	74.89 (4)	O12—P3—K1	27.68 (7)
$O7^{ix}$ —K1— $O2^{iv}$	124.00 (4)	O12—P3—K2 ^{xiv}	51.45 (8)
O7 ^{ix} —K1—O3 ^{iv}	168.30 (5)	O12—P3—K2 ^{xiii}	153.56 (7)
$O7^{ix}$ —K1— $O8^{ix}$	68.73 (5)	O12—P3—O3	108.05 (9)
O7 ^{ix} —K1—O11 ^{vii}	56.84 (5)	O12—P3—O9 ^{ix}	113.35 (10)
O8 ^{ix} —K1—Ni1 ^{iv}	34.89 (3)	O12—P3—O11	118.97 (11)
$O8^{ix}$ —K1—P2 ^{iv}	77.60 (3)	$K1^{xv}$ P4 $K1^{xi}$	126.000 (18)
$O8^{ix}$ —K1—P2 ^{vii}	82.80 (3)	$K1^{xv}$ —P4— $K2^{i}$	79.159 (15)
$O8^{ix}$ —K1—P4 ^{viii}	135.97 (4)	K1 ^{xv} —P4—K2	79.311 (16)
$O8^{ix}$ —K1— $O2^{iv}$	55.29 (4)	K2—P4—K1 ^{xi}	133.819 (19)
O8 ^{ix} —K1—O3 ^{iv}	101.52 (5)	$K2^{i}$ —P4— $K1^{xi}$	133.235 (18)
O10 ^{viii} —K1—Ni1 ^{iv}	165.34 (4)	$K2$ — $P4$ — $K2^{i}$	84.614 (14)
$O10^{viii}$ — $K1$ — $P2^{iv}$	115.13 (4)	O4—P4—K1 ^{xi}	79.54 (7)
$O10^{viii}$ — $K1$ — $P2^{vii}$	130.96 (4)	O4—P4—K1 ^{xv}	140.19 (8)
$O10^{viii}$ — $K1$ — $P4^{viii}$	21.38 (4)	O4—P4—K2	62.42 (7)
$O10^{viii}$ —K1— $O2^{iv}$	131.63 (5)	$O4$ — $P4$ — $K2^{i}$	106.16 (7)
O10 ^{viii} —K1—O3 ^{iv}	96.26 (5)	O4—P4—O9	101.31 (10)
O10 ^{viii} —K1—O6 ^{vii}	152.78 (6)	O8—P4—K1 ^{xi}	42.82 (7)
O10 ^{viii} —K1—O7 ^{ix}	95.42 (5)	O8—P4—K1 ^{xv}	83.87 (7)
O10 ^{viii} —K1—O8 ^{ix}	145.79 (5)	O8—P4—K2	126.58 (7)
O10 ^{viii} —K1—O11 ^{vii}	87.03 (5)	O8—P4—K2 ⁱ	140.74 (7)
O11 ^{vii} —K1—Ni1 ^{iv}	106.92 (4)	O8—P4—O4	109.49 (10)
$O11^{vii}$ —K1—P2 ^{iv}	134.53 (4)	O8—P4—O9	111.14 (9)
$O11^{vii}$ —K1—P2 ^{vii}	65.34 (3)	O9—P4—K1 ^{xi}	88.55 (6)
$O11^{vii}$ —K1—P4 ^{viii}	70.95 (4)	O9—P4—K1 ^{xv}	108.51 (6)
$O11^{vii}$ —K1— $O2^{iv}$	136.18 (5)	O9—P4—K2 ⁱ	44.69 (6)
O11 ^{vii} —K1—O3 ^{iv}	123.15 (5)	O9—P4—K2	122.27 (6)
O11 ^{vii} —K1—O8 ^{ix}	106.65 (5)	O10—P4—K1 ^{xv}	40.58 (7)
O12—K1—Ni1 ^{iv}	95.42 (4)	O10—P4—K1 ^{xi}	162.48 (8)
O12—K1—P2 ^{vii}	149.42 (4)	O10—P4—K2 ⁱ	61.96 (8)
$O12-K1-P2^{iv}$	84.87 (4)	O10—P4—K2	44.86 (7)
O12—K1—P4 ^{viii}	81.60 (4)	O10—P4—O4	106.22 (10)
O12—K1—O2 ^{iv}	77.92 (5)	O10—P4—O8	120.76 (10)
O12—K1—O3 ^{iv}	94.28 (5)	O10—P4—O9	106.09 (10)
O12—K1—O6 ^{vii}	131.32 (5)	P2—O1—P1	134.80 (10)
O12—K1—O7 ^{ix}	89.27 (5)	Ni1—O2—K1 ⁱ	87.11 (5)
O12—K1—O8 ^{ix}	74.13 (5)	P2—O2—Ni1	133.34 (10)
O12—K1—O10 ^{viii}	75.61 (6)	$P2-O2-K1^{i}$	104.66 (7)

O12—K1—O11 ^{vii}	140.45 (5)	P2-03-K1 ⁱ	105.71 (7)
P3 ^x —K2—P4	108.365 (18)	P2—O3—P3	134.04 (11)
O4—K2—P3 ^x	134.00 (3)	P3—O3—K1 ⁱ	119.39 (8)
O4—K2—P4	26.10 (3)	P1—O4—K2	108.94 (9)
O4—K2—O5	42.80 (4)	P1—O4—P4	149.18 (13)
O4—K2—O10 ^{iv}	82.19 (5)	P4—O4—K2	91.47 (8)
$04-K2-011^{x}$	140.01 (4)	Ni1—05—K2	91.39 (5)
$05-K2-P3^{x}$	160.47 (3)	P1-05-Ni1	131.91 (10)
O5—K2—P4	68.28 (3)	P1	102.00 (7)
$O6^{vi}$ K2 P3 ^x	73 47 (4)	$Ni1^{i}$ O6 K 1^{xii}	96.42 (6)
$O6^{vi}$ K2 P4	170 35 (4)	Ni1 ⁱ $-06-K2^{xiii}$	95 74 (5)
06^{vi} K2 04	152 31 (5)	$K1^{xii}$ $O6$ $K2^{xiii}$	95.74 (5)
06^{vi} K2 01	113 25 (4)	$P2 - 06 - Ni1^{i}$	129.30(10)
06^{vi} K2 03	85 13 (5)	$P2 = 06 = K1^{xii}$	113 98 (9)
06^{vi} K2 07	56 20 (5)	$P2 = O6 = K2^{xiii}$	119.90(9) 119.17(9)
00^{vi} K2 00	106.24(5)	$Ni1^{iv} - 07 - K1^{xi}$	99.02 (6)
06^{vi} K2 010	62 17 (5)	$Ni1^{iv} - 07 - K2^{iv}$	104 50 (6)
$O7^{i}$ K2 P3 ^x	1/3 00 (A)	$K1^{xi} = 07 = K2$	89 74 (5)
O_{1}^{i} K2 P4	88 43 (3)	$R1 \longrightarrow 07 \longrightarrow 11^{iv}$	125 44 (10)
O_{1}^{i} K2 O_{1}^{i}	60.45 (5)	$P1 O7 K1^{xi}$	125.44 (10)
07 - K2 - 04 $07^{i} - K2 - 05$	55 30 (4)	$P1 \longrightarrow K^{2iv}$	114.96 (9)
O_{7}^{i} K2 O_{8}^{i}	55.50 (4)	$Ni1^{xvi} O K K1^{xi}$	90.84(6)
07 - K2 - 08 $07^{i} - K2 - 010^{iv}$	127.26(5)	$Ni1^{xvi} 08 K2^{iv}$	90.07 (6)
07 - K2 - 010	127.20(5) 118.74(5)	$K1^{xi} \cap R K2^{iv}$	90.02 (0) 84.52 (4)
O_{i}^{k} K2 P_{i}^{x}	78 40 (3)	$P_{1} = 0.0 = K_{2}$	145.38(11)
$O8^{i}$ K2 P4	114 47 (3)	$P4 = O8 = K1^{xi}$	143.38(11) 117.09(9)
0.00 K2 14	114.47(5) 118.08(5)	$P4 = 08 = K2^{iv}$	117.09(9)
$0.00 - K^2 - 0.00$	120.88 (4)	$P3^{xi} = 09 = K2^{i}$	113 41 (8)
0.00 - K2 - 0.00 = 0.000	159 73 (5)	$P3^{xi} = O9 = P4$	133.93(11)
$0.00 - K2 - 0.10^{x}$	53 12 (4)	$P4 = 09 = K2^{i}$	111 54 (8)
$O9^{iv}$ $K2 - P3^{x}$	10759(4)	$K_{1xv} = 010 = K_{2}$	116.20(6)
O^{iv} K^2 P^4	115.06 (4)	$K1^{xv}$ $O10$ $K2^{i}$	102.79(5)
$O_{9^{iv}} K^2 O^4$	97 12 (5)	$K_{2} = 010 = K_{2}^{i}$	102.77 (6)
O_{0}^{iv} K2 O4	60.22(4)	$P4 - O10 - K1^{xv}$	100.77(0) 118.04(9)
O^{iv} K^2 O^{iv}	72.48(5)	$P4-010-K2^{i}$	94 57 (8)
$O_{i}^{i} - K_{i}^{i} - O_{i}^{i}$	92 51 (5)	P4 = 010 = K2	112 97 (9)
$O_{j}^{iv} - K_{2}^{iv} - O_{j}^{iv}$	12455(5)	$Ni1^{xiii}$ $O11 - K1^{xii}$	112.97(9)
O_{0}^{iv} K2 O_{0}^{iv}	47.05(4)	$Ni1^{xiii}$ $011 - K2^{xiv}$	87 23 (6)
$0^{iv} - K^2 - 0^{11x}$	12012(5)	$K_{1}^{xii} = 011 = K_{2}^{xiv}$	117 41 (6)
09^{iv} K2 011	88 78 (5)	$P3 = 011 = Ni1^{xiii}$	137.44(11)
$O10^{iv} K2 P3^{x}$	87.07.(3)	$P3 = O11 = K1^{xii}$	120 26 (9)
$010 - K^2 - P^{3x}$	87 87 (4)	$P3 = 011 = K2^{xiv}$	85 46 (7)
$O10^{iv}$ K2 P4	83 39 (3)	$K1 = 012 = K2^{xiv}$	118 61 (6)
$010 - K^2 - P4$	22 17 (3)	P3-012-K1	136 99 (11)
010 K2 04	47 91 (4)	P3 - 012 - K1	104 38 (9)
$010^{iv} - K^2 - 05$	73 49 (4)	15 012-K2	101.30 (3)
	(3,1) (1)		
K1 ^{xi} —P1—O1—P2	-175.17 (16)	O1—P2—O2—Ni1	-12.87 (16)
			/ (+/

K1 ^{xi} —P1—O4—K2	-149.54 (7)	O1—P2—O2—K1 ⁱ	-112.96 (8)
$K1^{xi}$ $P1$ $O4$ $P4$	-20.6 (3)	O1—P2—O3—K1 ⁱ	119.13 (8)
K1 ^{xi} —P1—O5—Ni1	-159.81 (12)	O1—P2—O3—P3	-72.00 (17)
$K1^{xi}$ P1 O5 $K2$	97.2 (2)	O1—P2—O6—Ni1 ⁱ	-79.45 (13)
$K1^{xi}$ P1 O7 Ni1 ^{iv}	-124.79 (16)	$O1 - P2 - O6 - K1^{xii}$	159.07 (8)
$K1^{xi}$ P1 07 $K2^{iv}$	103.12 (10)	$O1$ — $P2$ — $O6$ — $K2^{xiii}$	47.77 (11)
$K1^{i}$ P2 O1 P1	-59.95(18)	$O_2 - P_2 - O_1 - P_1$	-1.07(19)
$K1^{xii}$ $P2$ $O1$ $P1$	159 50 (8)	$O^2 - P^2 - O^3 - K1^i$	2 53 (10)
$K1^{xii}$ P2 O2 Ni1	178 03 (11)	$0^2 - P^2 - 0^3 - P^3$	17140(15)
$K1^{i}$ P2 O2 Ni1	100.09(14)	$\Omega^2 = P^2 = \Omega^6 = Ni1^{i}$	50 18 (16)
$K1^{xii} - P2 - O2 - K1^{i}$	77 94 (5)	$O_2 = P_2 = O_6 = K_1^{xii}$	-71.30(12)
$K1^{xii} P2 02^{-1}K1^{i}$	-95.65(6)	$O^2 - P^2 - O^2 - K^2 X^{xiii}$	177 41 (8)
$K1^{i} - P2 - O3 - P3$	168 9 (2)	$O_2 = P_2 = O_1 = P_1$	-11134(16)
$K1^{xii}$ P2 03 P3	73 22 (15)	$O_3 = P_2 = O_2 = N_1 I_1$	97.66 (13)
$K_1 = 12 = 05 = 15$ $K_1^{xii} = P_2 = 06 = Ni1^{i}$	121.48(15)	$O_3 P_2 O_2 K_1^{i}$	-2.43(10)
$K_1 = 12 = 00 = N_11$	121.40(13)	$O_3 = 12 = O_2 = K_1$	2.43(10)
$K_1 - F_2 - O_0 - N_1 P_1$	5 87 (12)	$O_3 = P_2 = O_0 = N_1 P_1$	109.07 (11)
K1 - P2 - 00 - K1 - W2 = 0	-5.87(12)	$03 - P2 - 06 - K1^{m}$	4/.00 (11)
$K1^{in}$ P2 06 $K2^{ini}$	-111.29 (12)	$03 - P2 - 06 - K2^{\text{AM}}$	-63.70(11)
$K1 - P2 - 06 - K2^{AIII}$	-11/.1/(/)	$O_3 - P_3 - O_1 - N_1 N_1$	1/0.05 (14)
$K1 - P3 - O3 - K1^{4}$	-63.59 (8)	$O_3 - P_3 - O_{11} - K_{1x_1}$	10.20 (12)
K1—P3—O3—P2	128.73 (15)	$O3 - P3 - O11 - K2^{XIV}$	-109.04 (7)
K1—P3—O11—Ni1 ^{xin}	-54.8 (2)	O3—P3—O12—K1	-72.92 (16)
K1—P3—O11—K1 ^{x11}	145.33 (7)	$O3 - P3 - O12 - K2^{xiv}$	105.83 (9)
$K1$ —P3—O11— $K2^{xiv}$	26.10 (12)	O4—P1—O1—P2	-95.24 (17)
K1—P3—O12—K2 ^{xiv}	178.75 (19)	O4—P1—O5—Ni1	90.47 (14)
$K1^{xi}$ —P4—O4—K2	152.97 (5)	O4—P1—O5—K2	-12.48 (10)
$K1^{xv}$ —P4—O4—K2	17.57 (12)	O4—P1—O7—Ni1 ^{iv}	-177.97 (11)
$K1^{xv}$ —P4—O4—P1	-115.0 (2)	O4—P1—O7—K1 ^{xi}	-53.18 (12)
$K1^{xi}$ —P4—O4—P1	20.4 (3)	O4—P1—O7—K2 ^{iv}	49.94 (12)
K1 ^{xi} —P4—O8—Ni1 ^{xvi}	140.4 (2)	O4—P4—O8—Ni1 ^{xvi}	-171.34 (17)
K1 ^{xv} —P4—O8—Ni1 ^{xvi}	-29.95 (18)	O4—P4—O8—K1 ^{xi}	48.30 (12)
$K1^{xv}$ —P4—O8— $K1^{xi}$	-170.31 (8)	O4—P4—O8—K2 ^{iv}	-46.62 (12)
$K1^{xi}$ P4 O8 $K2^{iv}$	-94.92 (10)	O4—P4—O9—K2 ⁱ	101.62 (9)
K1 ^{xv} —P4—O8—K2 ^{iv}	94.78 (6)	$O4$ — $P4$ — $O9$ — $P3^{xi}$	-65.16 (17)
$K1^{xi}$ —P4—O9— $K2^{i}$	-179.35 (6)	O4-P4-O10-K1 ^{xv}	152.89 (10)
$K1^{xv}$ —P4—O9— $K2^{i}$	-51.64 (8)	O4—P4—O10—K2	12.62 (13)
K1 ^{xv} —P4—O9—P3 ^{xi}	141.58 (13)	O4—P4—O10—K2 ⁱ	-99.99 (9)
$K1^{xi}$ —P4—O9—P 3^{xi}	13.87 (15)	O5—P1—O1—P2	16.13 (19)
K1 ^{xi} —P4—O10—K1 ^{xv}	45.8 (3)	O5—P1—O4—K2	13.82 (11)
$K1^{xi}$ P4 O10 $K2^{i}$	153.0 (2)	O5—P1—O4—P4	142.7 (3)
$K1^{xv} - P4 - O10 - K2$	-140.27(15)	$05-P1-07-Ni1^{iv}$	61 21 (15)
$K1^{xi}$ P4—O10—K2	-944(2)	$O5-P1-O7-K1^{xi}$	$-174\ 00\ (8)$
$K1^{xv} - P4 - O10 - K2^{i}$	107.12(10)	$05 - P1 - 07 - K2^{iv}$	-70.88(11)
$K^{2iv} = P1 = O1 = P2$	174 58 (7)	$06-P^2-01-P^1$	133 43 (16)
K_{2iv} P1 O_4 K2	-83 38 (6)	06 - P2 - 02 - Ni1	-14052(10)
$K_2 \rightarrow 1 \rightarrow 0 \rightarrow -K_2$	45 5 (3)	$O_{0} P_{1} = O_{2} V_{1}$	170.32(12)
$K_2 \longrightarrow 1 \longrightarrow 04 \longrightarrow 14$ $K_2 \longrightarrow 105 \times 14$	171 05 (10)	$00-12-02-K1^{-1}$	-12696(9)
$K_2 = r_1 = 0.5 = K_2$	1/1.93(10)	$00 - r^2 - 03 - K^1$	-120.80(8)
K2"—P1—U3—K2	69.00 (5)	06—P2—03—P3	42.01 (19)

$K2^{iv}$ —P1—O7—Ni1 ^{iv}	132.09 (15)	O7—P1—O1—P2	149.54 (15)
$K2^{iv}$ —P1—O7— $K1^{xi}$	-103.12 (10)	O7—P1—O4—K2	-116.23 (9)
K2 ^{xiii} —P2—O1—P1	163.00 (16)	O7—P1—O4—P4	12.7 (3)
K2 ^{xiii} —P2—O2—Ni1	-135.19 (15)	O7—P1—O5—Ni1	-146.17 (12)
$K2^{xiii}$ —P2—O2— $K1^{i}$	124.72 (18)	O7—P1—O5—K2	110.88 (9)
$K2^{xiii}$ —P2—O3— $K1^{i}$	-162.76 (6)	O8—P4—O4—K2	121.90 (8)
K2 ^{xiii} —P2—O3—P3	6.11 (15)	O8—P4—O4—P1	-10.7 (3)
K2 ^{xiii} —P2—O6—Ni1 ⁱ	-127.23 (17)	O8—P4—O9—K2 ⁱ	-142.14 (9)
$K2^{xiii}$ —P2—O6— $K1^{xii}$	111.29 (12)	O8—P4—O9—P3 ^{xi}	51.08 (18)
$K2^{xiii}$ —P3—O3— $K1^{i}$	161.44 (8)	O8—P4—O10—K1 ^{xv}	27.62 (15)
$K2^{xiv}$ —P3—O3— $K1^{i}$	18.10 (11)	O8—P4—O10—K2	-112.65 (11)
K2 ^{xiii} —P3—O3—P2	-6.24 (16)	O8—P4—O10—K2 ⁱ	134.73 (9)
K2 ^{xiv} —P3—O3—P2	-149.58 (13)	$O9^{ix}$ —P3—O3—K1 ⁱ	-155.84 (9)
K2 ^{xiii} —P3—O11—Ni1 ^{xiii}	85.23 (15)	O9 ^{ix} —P3—O3—P2	36.48 (18)
K2 ^{xiv} —P3—O11—Ni1 ^{xiii}	-80.91 (15)	O9 ^{ix} —P3—O11—Ni1 ^{xiii}	63.04 (18)
K2 ^{xiii} —P3—O11—K1 ^{xii}	-74.63 (8)	O9 ^{ix} —P3—O11—K1 ^{xii}	-96.82 (10)
K2 ^{xiv} —P3—O11—K1 ^{xii}	119.23 (10)	O9 ^{ix} —P3—O11—K2 ^{xiv}	143.95 (7)
K2 ^{xiii} —P3—O11—K2 ^{xiv}	166.14 (5)	O9 ^{ix} —P3—O12—K1	37.38 (18)
K2 ^{xiii} —P3—O12—K1	62.0 (2)	O9 ^{ix} —P3—O12—K2 ^{xiv}	-143.87 (8)
K2 ^{xiv} —P3—O12—K1	-178.75 (19)	O9—P4—O4—K2	-120.65 (7)
K2 ^{xiii} —P3—O12—K2 ^{xiv}	-119.20 (14)	O9—P4—O4—P1	106.8 (3)
K2 ⁱ —P4—O4—K2	-74.83 (5)	O9—P4—O8—Ni1 ^{xvi}	77.6 (2)
K2—P4—O4—P1	-132.6 (3)	O9—P4—O8—K1 ^{xi}	-62.80 (11)
$K2^{i}$ —P4—O4—P1	152.6 (3)	O9—P4—O8—K2 ^{iv}	-157.72 (8)
K2 ⁱ —P4—O8—Ni1 ^{xvi}	34.6 (3)	O9—P4—O10—K1 ^{xv}	-99.86 (11)
K2—P4—O8—Ni1 ^{xvi}	-101.76 (18)	O9—P4—O10—K2	119.87 (9)
K2—P4—O8—K1 ^{xi}	117.88 (7)	O9—P4—O10—K2 ⁱ	7.26 (9)
$K2^{i}$ —P4—O8— $K1^{xi}$	-105.80 (10)	O10—P4—O4—K2	-10.01 (10)
$K2 - P4 - O8 - K2^{iv}$	22.96 (11)	O10—P4—O4—P1	-142.6 (3)
$K2^{i}$ —P4—O8— $K2^{iv}$	159.29 (5)	O10-P4-O8-Ni1 ^{xvi}	-47.6 (2)
$K2 - P4 - O9 - K2^{i}$	37.22 (10)	O10—P4—O8—K1 ^{xi}	172.04 (9)
$K2 - P4 - O9 - P3^{xi}$	-129.56 (12)	O10—P4—O8—K2 ^{iv}	77.12 (12)
$K2^{i}$ —P4—O9—P 3^{xi}	-166.8 (2)	O10—P4—O9—K2 ⁱ	-9.12 (11)
$K2^{i}$ —P4—O10— $K1^{xv}$	-107.12 (10)	O10—P4—O9—P3 ^{xi}	-175.90 (14)
K2—P4—O10—K1 ^{xv}	140.27 (15)	O11—P3—O3—K1 ⁱ	92.39 (11)
K2—P4—O10—K2 ⁱ	-112.61 (10)	O11—P3—O3—P2	-75.29 (18)
K2 ⁱ —P4—O10—K2	112.61 (10)	O11—P3—O12—K1	164.75 (12)
O1—P1—O4—K2	130.66 (8)	O11—P3—O12—K2 ^{xiv}	-16.50 (12)
O1—P1—O4—P4	-100.4 (3)	O12—P3—O3—K1 ⁱ	-36.92 (13)
O1—P1—O5—Ni1	-19.87 (16)	O12—P3—O3—P2	155.39 (15)
O1—P1—O5—K2	-122.82 (8)	O12—P3—O11—Ni1 ^{xiii}	-67.17 (19)
O1—P1—O7—Ni1 ^{iv}	-67.44 (13)	O12—P3—O11—K1 ^{xii}	132.98 (10)
O1—P1—O7—K1 ^{xi}	57.35 (10)	O12—P3—O11—K2 ^{xiv}	13.74 (10)
O1—P1—O7—K2 ^{iv}	160.47 (8)		

Symmetry codes: (i) *x*, -*y*+1, *z*+1/2; (ii) *x*+1/2, *y*-1/2, *z*+1; (iii) *x*-1/2, -*y*+1/2, *z*-1/2; (iv) *x*, -*y*+1, *z*-1/2; (v) *x*-1/2, *y*-1/2, *z*; (vi) *x*+1/2, *y*-1/2, *z*; (vii) *x*, *y*, *z*-1; (viii) *x*-1, *y*, *z*-1; (ix) *x*-1/2, -*y*+3/2, *z*-1/2; (x) *x*+1, -*y*+1, *z*+1/2; (xi) *x*+1/2, -*y*+3/2, *z*+1/2; (xii) *x*, *y*, *z*+1; (xiii) *x*-1/2, *y*+1/2, *z*; (xiv) *x*-1, -*y*+1, *z*-1/2; (xv) *x*+1, *y*, *z*+1; (xvi) *x*+1/2, *y*+1/2, *z*.