

Received 2 December 2024 Accepted 26 February 2025

Edited by N. Alvarez Failache, Universidad de la Repüblica, Uruguay

Keywords: crystal structure; platinum(II); triphenylphosphine; *π*-stacking.

CCDC reference: 2427287

Supporting information: this article has supporting information at journals.iucr.org/e

(5,6-Dimethyl-1,10-phenanthroline)(2-{[2-(diphenylphosphanyl)benzylidene]amino}ethan-1amine)platinum(II) dinitrate methanol disolvate

Ashley Jurisinec,^a Yingjie Zhang^b and Janice R. Aldrich-Wright^a*

^aSchool of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, Sydney, NSW 2751, Australia, and ^bAustralian Nuclear Science and Technology Organisation, Kirrawee DC, New South Wales, Australia. *Correspondence e-mail: j.aldrich-wright@westernsydney.edu.au

The title compound, $[Pt(C_{14}H_{12}N_2)(C_{21}H_{21}N_2P)](NO_3)_2\cdot 2CH_3OH$, is a platinum(II) complex, which crystallizes in a monoclinic $(P2_1/c)$ space group. The complex exhibits a distorted square-planar geometry, which includes a monodentate 5,6-dimethyl-1,10-phenanthroline ligand and a tridentate 2-{[2-(diphenylphosphanyl)benzylidene]amino}ethan-1-amine ligand. The structure reveals both intra- and intermolecular π -stacking interactions between the phenanthroline and phosphine rings. Hydrogen bonding is observed between the complex ion, nitrate counter-ions and solvent molecules.

1. Chemical context

Platinum(II) complexes of the structure $[Pt(A_L)(H_L)]$ have shown promise as potent chemotherapeutic agents (Kemp et al., 2007). To further enhance this class of complexes, various approaches have been undertaken including oxidation to platinum(IV) and subsequent modification by the coordination of various bioactive and non-bioactive ligands in the axial positions (Khoury et al., 2022). When investigating potential axial linking strategies, we discovered an unusual reaction between 2-(diphenylphosphino)benzaldehyde and [Pt(5,6-dimethyl-1,10-phenanthroline)(1,2-diaminoethane)]²⁺ resulting in a novel coordination sphere. Typically, 1,10-phenanthroline and its derivatives coordinate as a bidentate ligand, however in this instance one of the Pt-N bonds is displaced by the introduction of 2-(diphenylphosphino)benzaldehyde, resulting in a Pt-P bond and the formation of an imine with one of the 1,2-diaminoethane amines. Herein, we present the crystal structure of the title platinum complex.

research communications

Figure 1

View of the title complex with atom-numbering scheme. Displacement ellipsoids are drawn at the 50% level.

2. Structural commentary

The title complex contains a Pt^{II} ion coordinated with a monodentate 5,6-dimethyl-1,10-phenanthroline and a tridentate 2-{[2-(diphenylphosphanyl)benzylidene]amino}ethan-1amine ligand, with two nitrate counter-ions and two methanol solvent molecules (Fig. 1). The Pt coordination exhibits a distorted square-planar geometry with the platinum atom sitting 0.0063 (13)#7emsp14;Å from the plane. The 5,6-dimethyl-1,10-phenanthroline ligand is coordinated through a single nitrogen, with the extended ring structure sitting orthogonal to the coordinated amines. The centre of the phenanthroline ring sits below one of the triphenylphosphine rings, with a centroid–centroid distance of 3.652 (3) Å (Fig. 2), evidencing π -stacking interactions. The intramolecular π - π stacking interaction is quite unique as no similar case has been reported for Pt complexes with monodentate phenanthroline type ligands in CSD. Therefore, it is not essential for stabilizing the monodentate nature of phenanthroline ligands. The bond length for Pt-N1 [Pt-Phen, 2.052 (3) Å] is comparable to those in complexes bearing a monodentate 2,9-dimethyl-1,10-phenanthroline (Fanizzi et al., 1994, 2004), and is also comparable to other bidentate examples (Kato & Takahashi, 1999; Brodie et al., 2006). Despite imine derivatization of the 1,2-diaminoethane, the N3–Pt1–N4 bond angle is $83.30 (14)^{\circ}$, which is consistent with previously reported complexes with unmodified diamines (Ellis & Hambley, 1994; Kato & Takahashi, 1999; Brodie et al., 2006); however, the Pt-N4 (NH₂) and Pt-N3 (N) bond lengths do differ. The Pt-N4 bond is 2.092 (4) Å, which is slightly longer than the prior diamine examples which range from 2.031 to 2.044 Å for

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$).	

, , , , ,				
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N4-H4A\cdotsO1$	0.91	1.96	2.872 (5)	176
$N4 - H4B \cdots O4$	0.91	2.05	2.920 (5)	159
$O7 - H7 \cdot \cdot \cdot O6$	0.84	1.96	2.771 (5)	162
O8−H8···O7	0.84	2.04	2.872 (5)	170
$C3-H3\cdots O1^{i}$	0.95	2.36	3.244 (6)	154
$C3-H3\cdots O2^{i}$	0.95	2.57	3.168 (6)	121
$C9-H9A\cdots O4^{ii}$	0.98	2.48	3.235 (6)	134
$C9-H9B\cdots O5^{iii}$	0.98	2.53	3.494 (6)	170
$C14-H14\cdots O7^{iv}$	0.95	2.57	3.417 (6)	149
$C18-H18\cdots O5^{v}$	0.95	2.58	3.288 (6)	131
$C22 - H22A \cdots O3^{vi}$	0.99	2.47	3.422 (6)	162
$C22 - H22B \cdots O5$	0.99	2.44	3.385 (6)	160
$C25-H25\cdots O2^{vii}$	0.95	2.40	3.282 (5)	154
$C27-H27\cdots O6^{viii}$	0.95	2.58	3.278 (6)	131
C29-H29···O6	0.95	2.40	3.094 (5)	130

Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (iv) x, y + 1, z; (v) -x, -y + 2, -z + 1; (vi) -x + 1, -y + 2, -z + 1; (vii) x - 1, y, z; (viii) -x, -y + 1, -z + 1.

the Pt-NH₂ bonds (Ellis & Hambley, 1994; Kato & Takahashi, 1999; Brodie *et al.*, 2006), whereas the Pt-N3 bond is slightly shorter at 1.984 (3) Å. These differences are attributed to the presence of the imine double bond. The nitrate counterions are located next to the NH₂ with hydrogen-bonding interactions evident between the amine and the counterions (Table 1).

3. Supramolecular features

The complex molecules are arranged in an inverted pattern, allowing for offset π -stacking interactions between the phenanthroline ligands [centroid–centroid distance = 4.179 (5) Å]. Hydrogen bonding is observed among the nitrate counter-ions and methanol solvent molecules, with the solvent occupying the spaces between complex molecules (Table 1, Fig. 3).

Figure 2 The intramolecular π - π stacking interaction.

Figure 3 Crystal packing of the title complex with hydrogen-bonding interactions shown as dashed lines.

4. Database survey

Although 330 crystal structures were reported in the CSD (2022.3.0; Groom et al., 2016) for Pt complexes involving phenanthroline ligands, Pt complexes with monodentate phenanthroline type ligands are rather rare. So far only eleven such structures were reported, almost all involving additional simple ligands, with the monodentate Pt-N bond lengths ranging from 2.037 to 2.181 Å. Among these eleven structures, nine include a monodentate 2,9-dimethyl-1,10-phenanthroline unit where the methyl groups are purported to induce steric effects, preventing bidentate coordination. Three of these structures [CSD Refcodes SOYZAH (Fanizzi et al., 1992), POFJOJ and POFJUP (Fanizzi et al., 1994)] also contain triphenylphosphine-type ligands, with monodentate Pt-N bond lengths of 2.181, 2.046 and 2.069 Å, respectively. Of the two structures that include a monodentate 1,10-phenathroline, one includes two triethylphosphine and one chlorido ligands (CPEUPT; Bushnell et al., 1974), whereas the other includes three pentafluorobenzene ligands (ZAXXOL; Usón et al., 1995) with monodentate Pt-N bond lengths of 2.136 and 2.140 Å respectively.

5. Synthesis and crystallization

The synthesis of the title complex was achieved *via* reaction between [Pt(5,6-dimethyl-1,10-phenanthroline)(1,2-diaminoethane)](NO₃)₂ (Pt56MEEN) and 2-(diphenylphosphino) benzaldehyde. Pt56MEEN was synthesized as its chloride salt using a modified literature method (Brodie *et al.*, 2004). First, 1,2-diaminoethane was reacted with an equimolar amount of K₂PtCl₄ in water. The resultant yellow precipitate was refluxed with 5,6-dimethyl-1,10-phenanthroline to yield a pale-yellow solution. The complex was then isolated using reverse-phase C18 chromatography and converted to its nitrate salt by addition of two molar equivalents of AgNO₃ in water. The AgCl precipitate was removed by vacuum filtration and the solution dried. The complex was suspended in

Table 2	
Experimental details.	

Crystal data	
Chemical formula	$[Pt(C_{14}H_{12}N_2)(C_{21}H_{21}N_2P)]$ -
	$(NO_3)_2 \cdot 2CH_4O$
M _r	923.82
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	12.692 (3), 11.349 (2), 25.812 (5)
β (°)	95.29 (3)
$V(Å^3)$	3702.1 (13)
Ζ	4
Radiation type	Silicon double crystal mono-
	chromated synchrotron,
	$\lambda = 0.71078 \text{ \AA}$
$\mu \text{ (mm}^{-1})$	3.89
Crystal size (mm)	$0.01 \times 0.01 \times 0.004$
Data collection	
Diffractometer	Eiger Detector
Absorption correction	Multi-scan (SADABS; Krause et
1	al., 2015)
T_{\min}, T_{\max}	0.339, 0.431
No. of measured, independent and	46431, 7437, 6419
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.109
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.673
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.108, 1.04
No. of reflections	7437
No. of parameters	484
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	2.77, -1.38

Computer programs: XDS (Kabsch, 1993, 2010), BlueIce (McPhillips et al., 2002), SHELXT2018/2 (Sheldrick, 2015b), SHELXL2018/3 (Sheldrick, 2015a) and OLEX2 (Dolomanov et al., 2009).

methanol and stirred with 1.25 molar equivalents of 2-(diphenylphosphino-benzaldehyde) at 323 K overnight to form a clear orange solution. The desired product was isolated using reverse-phase C18 flash chromatography with a water-methanol mobile phase. Crystals of the title complex were formed using vapour diffusion of diethyl ether into a solution of the complex in methanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The single-crystal data were collected at 100 (2) K on the MX1 beamline (Cowieson *et al.*, 2015) at the Australian Synchrotron employing silicon double crystal monochromated synchrotron radiation ($\lambda =$ 0.71078 Å). Hydrogen atoms were added to the calculated positions and refined using a riding model. Potential hydrogen bonds were calculated using *PLATON* (Spek, 2020).

Acknowledgements

The crystallographic data for the title compound were collected on the MX1 beamline at the Australian Synchrotron, a part of ANSTO.

References

- Brodie, C. R., Collins, J. G. & Aldrich-Wright, J. R. (2004). *Dalton Trans.* pp. 1145–1152.
- Brodie, C. R., Turner, P., Wheate, N. J. & Aldrich-Wright, J. R. (2006). *Acta Cryst.* E62, m3137–m3139.
- Bushnell, G. W., Dixon, K. R. & Khan, M. A. (1974). *Can. J. Chem.* 52, 1367–1376.
- Cowieson, N. P., Aragao, D., Clift, M., Ericsson, D. J., Gee, C., Harrop, S. J., Mudie, N., Panjikar, S., Price, J. R., Riboldi-Tunnicliffe, A., Williamson, R. & Caradoc-Davies, T. (2015). J. Synchrotron Rad. 22, 187–190.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Ellis, L. T. & Hambley, T. W. (1994). Acta Cryst. C50, 1888-1889.
- Fanizzi, F. P., Lanfranchi, M., Natile, G. & Tiripicchio, A. (1994). *Inorg. Chem.* 33, 3331–3339.
- Fanizzi, F. P., Maresca, L., Natile, G., Lanfranchi, M., Tiripicchio, A. & Pacchioni, G. (1992). J. Chem. Soc. Chem. Commun. pp. 333–338.
- Fanizzi, F. P., Margiotta, N., Lanfranchi, M., Tiripicchio, A., Pacchioni, G. & Natile, G. (2004). Eur. J. Inorg. Chem. pp. 1705–1713.

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kabsch, W. (1993). J. Appl. Cryst. 26, 795-800.
- Kabsch, W. (2010). Acta Cryst. D66, 133-144.
- Kato, M. & Takahashi, J. (1999). Acta Cryst. C55, 1809-1812.
- Kemp, S., Wheate, N. J., Buck, D. P., Nikac, M., Collins, J. G. & Aldrich-Wright, J. R. (2007). J. Inorg. Biochem. 101, 1049–1058.
- Khoury, A., Sakoff, J. A., Gilbert, J., Scott, K. F., Karan, S., Gordon, C. P. & Aldrich-Wright, J. R. (2022). *Pharmaceutics*, **14**, 787.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- McPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). *J. Synchrotron Rad.* **9**, 401–406.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Usón, R., Forniés, J., Tomás, M., Martínez, F., Casas, J. M. & Fortuño, C. (1995). *Inorg. Chim. Acta*, 235, 51–60.

Acta Cryst. (2025). E81, 275-278 [https://doi.org/10.1107/S2056989025001847]

(5,6-Dimethyl-1,10-phenanthroline)(2-{[2-(diphenylphosphanyl)benzylidene]amino}ethan-1-amine)platinum(II) dinitrate methanol disolvate

Ashley Jurisinec, Yingjie Zhang and Janice R. Aldrich-Wright

Computing details

(5,6-Dimethyl-1,10-phenanthroline)(2-{[2-(diphenylphosphanyl)benzylidene]amino}ethan-1-amine)platinum(II) dinitrate methanol disolvate

Crystal data

 $[Pt(C_{14}H_{12}N_2)(C_{21}H_{21}N_2P)](NO_3)_2 \cdot 2CH_4O$ $M_r = 923.82$ Monoclinic, $P2_1/c$ a = 12.692 (3) Å b = 11.349 (2) Å c = 25.812 (5) Å $\beta = 95.29$ (3)° V = 3702.1 (13) Å³ Z = 4F(000) = 1848

Data collection

Eiger Detector diffractometer Radiation source: Australian Synchrotron MX1 π scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.339$, $T_{\max} = 0.431$ 46431 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.108$ S = 1.047437 reflections 484 parameters 1 restraint $D_x = 1.657 \text{ Mg m}^{-3}$ Silicon double crystal monochromated synchrotron radiation, $\lambda = 0.71078 \text{ Å}$ Cell parameters from 12000 reflections $\theta = 1.6-28.6^{\circ}$ $\mu = 3.89 \text{ mm}^{-1}$ T = 100 KBlock, yellow $0.01 \times 0.01 \times 0.004 \text{ mm}$

7437 independent reflections 6419 reflections with $I > 2\sigma(I)$ $R_{int} = 0.109$ $\theta_{max} = 28.6^\circ, \ \theta_{min} = 1.6^\circ$ $h = -13 \rightarrow 14$ $k = -13 \rightarrow 13$ $l = -32 \rightarrow 32$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0607P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 2.77$ e Å⁻³ $\Delta\rho_{min} = -1.38$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data integration and reduction were undertaken with XDS (Kabsch, 2010). Absorption corrections were applied to the data using SADABS (Krause *et al.*, 2015). The structures were solved by direct methods using SHELXT (Sheldrick, 2015a) and refined with SHELXL2014 (Sheldrick, 2015b) using the Olex² graphical user interface (Dolomanov *et al.*, 2009). All non-hydrogen atoms were located on the electron density maps and refined anisotropically.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Pt1	0.26663 (2)	0.87768 (2)	0.61133 (2)	0.02627 (8)
P1	0.09855 (9)	0.89639 (9)	0.62855 (4)	0.0265 (2)
N1	0.3115 (3)	0.7812 (3)	0.67692 (13)	0.0290 (7)
N2	0.3393 (3)	1.0216 (3)	0.68673 (14)	0.0309 (8)
N3	0.2414 (3)	0.9622 (3)	0.54403 (13)	0.0283 (7)
N4	0.4185 (3)	0.8543 (3)	0.58758 (14)	0.0292 (7)
H4A	0.468165	0.870595	0.614330	0.035*
H4B	0.427217	0.778448	0.577408	0.035*
C1	0.3119 (3)	0.6634 (4)	0.67141 (17)	0.0326 (9)
H1	0.292138	0.630952	0.637989	0.039*
C2	0.3400 (4)	0.5872 (4)	0.71225 (18)	0.0378 (10)
H2	0.340900	0.504497	0.706610	0.045*
C3	0.3667 (4)	0.6331 (4)	0.7615 (2)	0.0367 (10)
Н3	0.384959	0.581989	0.790055	0.044*
C4	0.3666 (3)	0.7555 (4)	0.76877 (16)	0.0316 (9)
C5	0.3429 (3)	0.8290 (4)	0.72493 (17)	0.0303 (9)
C6	0.3902 (3)	0.8071 (4)	0.82022 (17)	0.0343 (10)
C7	0.4071 (4)	0.7244 (4)	0.86580 (18)	0.0437 (11)
H7A	0.350480	0.665416	0.863801	0.066*
H7B	0.406364	0.769071	0.898246	0.066*
H7C	0.475581	0.684777	0.865029	0.066*
C8	0.3932 (3)	0.9272 (4)	0.82598 (17)	0.0349 (9)
С9	0.4176 (4)	0.9848 (4)	0.87858 (18)	0.0446 (11)
H9A	0.494441	0.989675	0.886698	0.067*
H9B	0.386855	0.937820	0.905257	0.067*
H9C	0.387298	1.064286	0.877854	0.067*
C10	0.3755 (3)	1.0031 (4)	0.78090 (17)	0.0324 (9)
C11	0.3521 (3)	0.9549 (4)	0.73063 (16)	0.0295 (9)
C12	0.3800 (4)	1.1271 (4)	0.7840 (2)	0.0393 (11)
H12	0.394391	1.164132	0.816907	0.047*
C13	0.3638 (4)	1.1941 (4)	0.74024 (18)	0.0385 (10)
H13	0.365270	1.277623	0.742369	0.046*
C14	0.3450 (4)	1.1373 (4)	0.6917 (2)	0.0369 (10)
H14	0.335972	1.184385	0.661237	0.044*
C15	0.0374 (3)	1.0261 (3)	0.59714 (15)	0.0279 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C16	-0.0553 (3)	1.0722 (4)	0.61407 (17)	0.0326 (9)
H16	-0.084325	1.037142	0.643003	0.039*
C17	-0.1065 (4)	1.1692 (4)	0.58928 (18)	0.0363 (10)
H17	-0.169825	1.198887	0.601348	0.044*
C18	-0.0651 (3)	1.2216 (4)	0.54746 (17)	0.0356 (9)
H18	-0.098841	1.288320	0.531030	0.043*
C19	0.0261 (3)	1.1762 (4)	0.52962 (16)	0.0333 (9)
H19	0.053785	1.211959	0.500485	0.040*
C20	0.0789 (3)	1.0784 (4)	0.55352 (16)	0.0290 (8)
C21	0.1711 (3)	1.0384 (4)	0.52799 (16)	0.0303 (9)
H21	0.179904	1.073485	0.495261	0.036*
C22	0.3266 (3)	0.9377 (4)	0.50960 (16)	0.0339 (9)
H22A	0.327753	0.999749	0.482685	0.041*
H22B	0.314209	0.860793	0.492023	0.041*
C23	0.4301 (3)	0.9360 (4)	0.54336 (16)	0.0325 (9)
H23A	0.487772	0.908665	0.522936	0.039*
H23B	0.447790	1.016172	0.556550	0.039*
C24	0.0141 (3)	0.7732 (3)	0.60688 (15)	0.0295 (9)
C25	-0.0948(3)	0.7758 (4)	0.61190 (17)	0.0368 (10)
H25	-0.125164	0.841140	0.628073	0.044*
C26	-0.1579 (4)	0.6833 (4)	0.59331 (18)	0.0390 (10)
H26	-0.231898	0.685773	0.596350	0.047*
C27	-0.1143 (4)	0.5862 (4)	0.57013 (19)	0.0389 (10)
H27	-0.158082	0.522578	0.557602	0.047*
C28	-0.0068(4)	0.5832 (4)	0.56551 (17)	0.0381 (10)
H28	0.023360	0.517118	0.549780	0.046*
C29	0.0576 (3)	0.6761 (4)	0.58369 (15)	0.0306 (9)
H29	0.131418	0.673391	0.580305	0.037*
C30	0.0824 (3)	0.9117 (4)	0.69738 (16)	0.0313 (9)
C31	0.0708 (4)	0.8101 (4)	0.72678 (17)	0.0378 (10)
H31	0.061421	0.736023	0.709831	0.045*
C32	0.0728 (4)	0.8163 (5)	0.78048 (18)	0.0457 (12)
H32	0.065234	0.746749	0.800282	0.055*
C33	0.0858 (4)	0.9244 (5)	0.80516 (19)	0.0490 (12)
H33	0.087445	0.928851	0.841980	0.059*
C34	0.0965 (4)	1.0258 (4)	0.77646 (18)	0.0425 (11)
H34	0.104560	1.099692	0.793663	0.051*
C35	0.0955 (3)	1.0206 (4)	0.72290 (17)	0.0357 (9)
H35	0.103556	1.090507	0.703439	0.043*
01	0.5815 (3)	0.8966 (3)	0.67026 (13)	0.0378 (7)
O2	0.7493 (2)	0.9350 (3)	0.67857 (14)	0.0519 (9)
O3	0.6696 (3)	0.9005 (4)	0.60208 (14)	0.0547 (9)
N5	0.6680 (3)	0.9108 (3)	0.65012 (15)	0.0364 (8)
O4	0.3886 (3)	0.6110 (3)	0.55246 (16)	0.0450 (9)
O5	0.2954 (3)	0.6488 (3)	0.47932 (13)	0.0441 (8)
O6	0.2319 (3)	0.5336 (3)	0.53539 (13)	0.0451 (8)
N6	0.3067 (3)	0.5982 (3)	0.52204 (15)	0.0356 (8)
O7	0.2720 (3)	0.3786 (3)	0.61778 (15)	0.0431 (10)

H7	0.269808	0.434623	0.596420	0.065*	
C36	0.1720 (5)	0.3699 (4)	0.6397 (3)	0.0537 (14)	
H36A	0.120403	0.330725	0.614865	0.081*	
H36B	0.146541	0.449053	0.647250	0.081*	
H36C	0.180943	0.324001	0.671986	0.081*	
08	0.3441 (3)	0.2207 (3)	0.54159 (17)	0.0588 (10)	
H8	0.325735	0.260658	0.566648	0.088*	
C37	0.3934 (4)	0.2952 (5)	0.5070 (2)	0.0545 (13)	
H37A	0.392299	0.257235	0.472879	0.082*	
H37B	0.466893	0.309650	0.520749	0.082*	
H37C	0.355299	0.370287	0.503528	0.082*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.03153 (13)	0.02215 (12)	0.02472 (12)	-0.00001 (5)	0.00038 (7)	0.00103 (5)
P1	0.0315 (6)	0.0235 (5)	0.0241 (5)	-0.0001 (4)	0.0001 (4)	-0.0003 (4)
N1	0.0345 (18)	0.0220 (16)	0.0305 (18)	-0.0020 (13)	0.0023 (14)	-0.0003 (14)
N2	0.0316 (19)	0.0256 (17)	0.0345 (19)	-0.0016 (13)	-0.0027 (14)	0.0004 (15)
N3	0.0321 (18)	0.0221 (16)	0.0303 (18)	-0.0041 (13)	0.0001 (14)	-0.0015 (13)
N4	0.033 (2)	0.0258 (16)	0.0285 (19)	0.0033 (14)	0.0019 (14)	0.0023 (14)
C1	0.040 (2)	0.024 (2)	0.034 (2)	0.0002 (17)	0.0013 (17)	-0.0002 (18)
C2	0.047 (3)	0.026 (2)	0.040 (3)	0.0000 (19)	0.003 (2)	0.004 (2)
C3	0.039 (3)	0.031 (2)	0.039 (3)	-0.0018 (17)	0.002 (2)	0.0086 (18)
C4	0.029 (2)	0.035 (2)	0.031 (2)	-0.0003 (17)	0.0018 (16)	0.0060 (18)
C5	0.029 (2)	0.026 (2)	0.035 (2)	0.0028 (16)	0.0026 (16)	0.0005 (17)
C6	0.031 (2)	0.039 (2)	0.033 (2)	-0.0022 (18)	0.0005 (17)	0.0033 (19)
C7	0.049 (3)	0.048 (3)	0.033 (2)	0.005 (2)	-0.001 (2)	0.010 (2)
C8	0.033 (2)	0.040 (3)	0.032 (2)	0.0008 (18)	0.0015 (17)	-0.0024 (19)
C9	0.058 (3)	0.041 (3)	0.033 (2)	0.000 (2)	-0.004(2)	-0.002 (2)
C10	0.027 (2)	0.032 (2)	0.038 (2)	0.0039 (16)	0.0011 (17)	-0.0027 (18)
C11	0.027 (2)	0.031 (2)	0.031 (2)	0.0014 (16)	0.0028 (16)	0.0003 (17)
C12	0.040 (3)	0.039 (3)	0.038 (3)	-0.0023 (17)	-0.002(2)	-0.0085 (18)
C13	0.045 (3)	0.024 (2)	0.045 (3)	0.0005 (17)	-0.001 (2)	-0.0046 (19)
C14	0.043 (3)	0.029 (2)	0.039 (3)	-0.0004 (17)	0.002 (2)	0.0063 (18)
C15	0.035 (2)	0.0237 (19)	0.024 (2)	-0.0011 (15)	-0.0010 (15)	-0.0020 (16)
C16	0.034 (2)	0.027 (2)	0.036 (2)	-0.0020 (17)	-0.0010 (17)	-0.0018 (18)
C17	0.037 (2)	0.027 (2)	0.044 (3)	0.0034 (18)	-0.0027 (19)	-0.0053 (19)
C18	0.046 (3)	0.025 (2)	0.035 (2)	0.0029 (17)	-0.0050 (18)	0.0000 (18)
C19	0.043 (3)	0.025 (2)	0.030 (2)	-0.0020 (17)	-0.0046 (17)	0.0025 (17)
C20	0.034 (2)	0.0229 (19)	0.029 (2)	0.0010 (16)	-0.0044 (16)	-0.0035 (17)
C21	0.036 (2)	0.030 (2)	0.024 (2)	-0.0045 (17)	0.0010 (16)	-0.0012 (16)
C22	0.041 (2)	0.030 (2)	0.031 (2)	0.0015 (17)	0.0030 (17)	0.0031 (17)
C23	0.038 (2)	0.030 (2)	0.030 (2)	0.0000 (17)	0.0033 (17)	0.0047 (17)
C24	0.038 (2)	0.024 (2)	0.025 (2)	-0.0022 (16)	-0.0011 (16)	0.0026 (16)
C25	0.040 (3)	0.032 (2)	0.039 (2)	-0.0016 (18)	0.0023 (18)	-0.0020 (18)
C26	0.037 (2)	0.034 (2)	0.045 (3)	-0.0037 (18)	-0.0029 (19)	0.002 (2)
C27	0.043 (3)	0.030 (2)	0.041 (3)	-0.0047 (19)	-0.008(2)	0.004 (2)

C28	0.055 (3)	0.025 (2)	0.033 (2)	-0.0012 (19)	-0.005 (2)	0.0002 (19)
C29	0.038 (2)	0.024 (2)	0.029 (2)	-0.0032 (16)	-0.0017 (17)	-0.0012 (17)
C30	0.027 (2)	0.038 (2)	0.028 (2)	0.0019 (17)	0.0010 (16)	0.0016 (19)
C31	0.048 (3)	0.036 (2)	0.029 (2)	-0.0057 (19)	-0.0004 (18)	0.0030 (19)
C32	0.053 (3)	0.050 (3)	0.035 (3)	-0.011 (2)	0.004 (2)	0.003 (2)
C33	0.047 (3)	0.070 (4)	0.030 (2)	0.000 (3)	0.003 (2)	-0.005 (2)
C34	0.043 (3)	0.047 (3)	0.036 (2)	0.004 (2)	-0.0036 (19)	-0.013 (2)
C35	0.033 (2)	0.039 (2)	0.035 (2)	0.0048 (18)	0.0041 (18)	0.0002 (19)
01	0.0381 (19)	0.0356 (17)	0.0397 (18)	-0.0020 (13)	0.0040 (14)	-0.0003 (14)
O2	0.0343 (18)	0.061 (2)	0.060 (2)	-0.0016 (16)	-0.0001 (16)	-0.0230 (19)
03	0.051 (2)	0.078 (3)	0.035 (2)	0.0135 (18)	0.0066 (16)	0.0069 (18)
N5	0.042 (2)	0.0278 (18)	0.039 (2)	0.0057 (16)	0.0011 (17)	-0.0012 (17)
O4	0.043 (2)	0.0381 (19)	0.052 (2)	0.0061 (13)	-0.0094 (16)	-0.0032 (15)
05	0.055 (2)	0.0406 (17)	0.0363 (19)	0.0048 (15)	-0.0001 (15)	0.0075 (15)
06	0.048 (2)	0.0412 (18)	0.0463 (19)	-0.0014 (15)	0.0075 (15)	-0.0007 (15)
N6	0.043 (2)	0.0304 (18)	0.033 (2)	0.0047 (16)	0.0026 (16)	-0.0061 (16)
O7	0.045 (2)	0.035 (2)	0.050 (2)	0.0022 (12)	0.0050 (18)	0.0111 (13)
C36	0.053 (4)	0.044 (3)	0.062 (4)	0.001 (2)	-0.002 (3)	0.008 (2)
08	0.068 (3)	0.0364 (19)	0.073 (3)	-0.0019 (17)	0.012 (2)	-0.0042 (18)
C37	0.062 (3)	0.048 (3)	0.055 (3)	0.004 (2)	0.012 (3)	-0.010 (3)

Geometric parameters (Å, °)

Pt1—P1	2.2290 (13)	C18—C19	1.384 (6)
Pt1—N1	2.052 (3)	C19—H19	0.9500
Pt1—N3	1.984 (3)	C19—C20	1.410 (6)
Pt1—N4	2.092 (4)	C20—C21	1.467 (6)
P1—C15	1.819 (4)	C21—H21	0.9500
P1—C24	1.818 (4)	C22—H22A	0.9900
P1—C30	1.815 (4)	C22—H22B	0.9900
N1-C1	1.345 (5)	C22—C23	1.509 (6)
N1-C5	1.377 (5)	C23—H23A	0.9900
N2-C11	1.360 (5)	С23—Н23В	0.9900
N2-C14	1.321 (5)	C24—C25	1.400 (6)
N3—C21	1.283 (5)	C24—C29	1.392 (6)
N3—C22	1.487 (5)	C25—H25	0.9500
N4—H4A	0.9100	C25—C26	1.380 (6)
N4—H4B	0.9100	C26—H26	0.9500
N4—C23	1.488 (5)	C26—C27	1.392 (7)
C1—H1	0.9500	С27—Н27	0.9500
C1—C2	1.384 (6)	C27—C28	1.381 (7)
С2—Н2	0.9500	C28—H28	0.9500
C2—C3	1.386 (7)	C28—C29	1.388 (6)
С3—Н3	0.9500	C29—H29	0.9500
C3—C4	1.402 (6)	C30—C31	1.396 (6)
C4—C5	1.416 (6)	C30—C35	1.402 (6)
C4—C6	1.457 (6)	C31—H31	0.9500
C5—C11	1.440 (6)	C31—C32	1.386 (6)

C6—C7	1.505 (6)	С32—Н32	0.9500
C6—C8	1.371 (7)	C32—C33	1.385 (8)
C7—H7A	0.9800	С33—Н33	0.9500
С7—Н7В	0.9800	C33—C34	1.382 (8)
C7—H7C	0.9800	C34—H34	0.9500
C8—C9	1.513 (6)	C34—C35	1.383 (6)
C8—C10	1.448 (6)	С35—Н35	0.9500
С9—Н9А	0.9800	O1—N5	1.267 (5)
С9—Н9В	0.9800	O2—N5	1.241 (5)
С9—Н9С	0.9800	O3—N5	1.248 (5)
C10—C11	1,414 (6)	Q4—N6	1.252 (5)
C10—C12	1.410 (6)	05—N6	1.240 (5)
С12—Н12	0.9500	06—N6	1.272 (5)
C12—C13	1.362 (7)	07—H7	0.8400
C13—H13	0.9500	07	1440(7)
C13—C14	1 409 (7)	C36—H36A	0.9800
C14—H14	0.9500	C36—H36B	0.9800
C15-C16	1 393 (6)	C36—H36C	0.9800
$C_{15} - C_{20}$	1 417 (6)	08—H8	0.8400
C16—H16	0.9500	08-C37	1 416 (6)
C16-C17	1 403 (6)	C_{37} H37A	0.9800
C17—H17	0.9500	C37—H37B	0.9800
C17 - C18	1 378 (7)	C37—H37D	0.9800
C18_H18	0.9500	es/—iis/e	0.9000
010-1110	0.9500		
N1Pt1P1	94.83 (10)	C18_C17_H17	110.0
N1 Pt1 N4	94.05 (10) 88.02 (13)	$C_{10} = C_{17} = H_{18}$	120.3
N3 Pt1 P1	92.78(10)	$C_{17} = C_{18} = C_{19}$	120.3 110 $A(A)$
$N_{2} = P_{1} + 1$ $N_{1} = P_{1} + 1$	92.78(10) 171 07 (13)	$C_{10} = C_{18} = C_{19}$	119.4 (4)
N2 D+1 N4	1/1.9/(13) 92.20(14)	C19 - C10 - H10	120.5
N4 D+1 D1	33.30(14)	$C_{10} = C_{10} = C_{10}$	117.1 121.7(4)
$\frac{1}{1} - \frac{1}{1} - \frac{1}{1} = \frac{1}{1}$	1/4.13(10) 111.42(14)	$C_{10} = C_{10} = C_{20}$	121.7 (4)
C13 $P1$ $Pt1$	111.42(14) 114.42(14)	С15 С20 С21	119.1 126.7(4)
C_{24} P_{1} P_{11} C_{15}	114.42(14) 105 (2 (10)	C13 - C20 - C21	120.7(4)
C_{24} P1 C15	105.03(19) 112(2(14))	C19 - C20 - C13	118.8(4)
C_{30} PI $-$ PII	115.02(14)	19 - 120 - 121	114.5(4)
C_{30} P1-C15	106.1(2) 105.0(2)	$N_{3} = C_{21} = C_{20}$	128.0 (4)
C_{30} P_{1} C_{24}	105.0(2)	$N_{3} = C_{21} = H_{21}$	115./
CI_NI_Pti	116.5 (3)	C20—C21—H21	115./
CI-NI-CS	118.9 (4)	N3-C22-H22A	110.2
C5—NI—Ptl	124.6 (3)	N3-C22-H22B	110.2
C14 - N2 - C11	118.0 (4)	N3-C22-C23	107.5 (3)
C21—N3—Pt1	131.2 (3)	H22A—C22—H22B	108.5
C21 - N3 - C22	117.1 (3)	C23—C22—H22A	110.2
C22—N3—Pt1	111.4 (2)	C23—C22—H22B	110.2
Pt1—N4—H4A	110.2	N4—C23—C22	107.9 (3)
Pt1—N4—H4B	110.2	N4—C23—H23A	110.1
H4A—N4—H4B	108.5	N4—C23—H23B	110.1
C23—N4—Pt1	107.8 (3)	C22—C23—H23A	110.1

C23—N4—H4A	110.2	C22—C23—H23B	110.1
C23—N4—H4B	110.2	H23A—C23—H23B	108.4
N1—C1—H1	118.5	C25—C24—P1	121.0 (3)
N1—C1—C2	122.9 (4)	C29—C24—P1	119.7 (3)
C2—C1—H1	118.5	C29—C24—C25	119.3 (4)
C1—C2—H2	120.4	C24—C25—H25	120.1
C1—C2—C3	119.2 (4)	C26—C25—C24	119.9 (4)
С3—С2—Н2	120.4	С26—С25—Н25	120.1
С2—С3—Н3	120.3	С25—С26—Н26	119.7
C2—C3—C4	119.5 (4)	C25—C26—C27	120.7 (4)
С4—С3—Н3	120.3	С27—С26—Н26	119.7
C3—C4—C5	118.6 (4)	С26—С27—Н27	120.3
C3—C4—C6	121.2 (4)	C28—C27—C26	119.5 (4)
C5—C4—C6	120.1 (4)	С28—С27—Н27	120.3
N1—C5—C4	120.7 (4)	C27—C28—H28	119.8
N1—C5—C11	119.7 (4)	C27—C28—C29	120.5 (4)
C4—C5—C11	119.6 (4)	С29—С28—Н28	119.8
C4—C6—C7	117.7 (4)	C24—C29—H29	119.9
C8—C6—C4	120.0 (4)	C28—C29—C24	120.2 (4)
C8—C6—C7	122.3 (4)	C28—C29—H29	119.9
С6—С7—Н7А	109.5	C31—C30—P1	118.7 (4)
С6—С7—Н7В	109.5	C31—C30—C35	119.1 (4)
С6—С7—Н7С	109.5	C35—C30—P1	121.7 (3)
H7A—C7—H7B	109.5	С30—С31—Н31	119.7
H7A—C7—H7C	109.5	C32—C31—C30	120.6 (4)
H7B—C7—H7C	109.5	C32—C31—H31	119.7
C6—C8—C9	121.9 (4)	С31—С32—Н32	120.1
C6—C8—C10	120.2 (4)	C33—C32—C31	119.7 (5)
C10—C8—C9	117.9 (4)	С33—С32—Н32	120.1
С8—С9—Н9А	109.5	С32—С33—Н33	119.9
С8—С9—Н9В	109.5	C34—C33—C32	120.3 (5)
С8—С9—Н9С	109.5	С34—С33—Н33	119.9
H9A—C9—H9B	109.5	С33—С34—Н34	119.7
Н9А—С9—Н9С	109.5	C33—C34—C35	120.5 (5)
Н9В—С9—Н9С	109.5	С35—С34—Н34	119.7
C11—C10—C8	120.7 (4)	С30—С35—Н35	120.1
C12—C10—C8	123.0 (4)	C34—C35—C30	119.8 (4)
C12—C10—C11	116.2 (4)	С34—С35—Н35	120.1
N2—C11—C5	117.7 (4)	O2—N5—O1	119.3 (4)
N2—C11—C10	123.3 (4)	O2—N5—O3	121.3 (4)
C10—C11—C5	119.0 (4)	O3—N5—O1	119.4 (4)
C10—C12—H12	119.7	O4—N6—O6	119.6 (4)
C13—C12—C10	120.5 (4)	O5—N6—O4	121.7 (4)
C13—C12—H12	119.7	O5—N6—O6	118.7 (4)
С12—С13—Н13	120.6	С36—О7—Н7	109.5
C12—C13—C14	118.8 (4)	O7—C36—H36A	109.5
С14—С13—Н13	120.6	O7—C36—H36B	109.5
N2-C14-C13	123.0 (4)	O7—C36—H36C	109.5

N2—C14—H14	118.5	H36A—C36—H36B	109.5
C13—C14—H14	118.5	H36A—C36—H36C	109.5
C16—C15—P1	120.1 (3)	H36B—C36—H36C	109.5
C16-C15-C20	1186(4)	С37—О8—Н8	109.5
C_{20} C_{15} P_{1}	1212(3)	08-C37-H37A	109.5
C15 C16 H16	110.3	08 C37 H37B	109.5
$C_{15} = C_{16} = C_{17}$	119.3 121 A (A)	08 - 037 - 1137B	109.5
C17 - C16 - C17	121.4 (4)		109.5
С1/—С10—Н10	119.5	П3/А—С3/—П3/В	109.3
	119.9	$H_3/A - C_3/-H_3/C$	109.5
C18—C17—C16	120.1 (4)	H3/B—C3/—H3/C	109.5
Dt1 D1 C15 C16	1(2,0,(2))	C ⁸ C10 C12 C12	170.2(4)
$P_{t1} = P_{1} = C_{15} = C_{10}$	-102.0(5)	$C_{0} = C_{10} = C_{12} = C_{13}$	179.5 (4)
Pt1_P1_C15_C20	21.5 (4)	$C_{9} = C_{8} = C_{10} = C_{11}$	-1/9.8(4)
Pt1—P1—C24—C25	-1/5.8(3)		0.0 (6)
Pt1—P1—C24—C29	2.5 (4)	C10—C12—C13—C14	-1.4 (7)
Pt1—P1—C30—C31	-89.2 (3)	C11—N2—C14—C13	0.1 (7)
Pt1—P1—C30—C35	82.2 (4)	C11—C10—C12—C13	-1.0 (7)
Pt1—N1—C1—C2	-179.7 (3)	C12—C10—C11—N2	3.2 (6)
Pt1—N1—C5—C4	176.2 (3)	C12—C10—C11—C5	-178.0 (4)
Pt1—N1—C5—C11	-3.9 (5)	C12—C13—C14—N2	1.9 (7)
Pt1—N3—C21—C20	-6.9 (6)	C14—N2—C11—C5	178.4 (4)
Pt1-N3-C22-C23	-39.7 (4)	C14—N2—C11—C10	-2.8 (6)
Pt1-N4-C23-C22	-39.0 (4)	C15—P1—C24—C25	-52.9 (4)
P1-C15-C16-C17	-177.5 (3)	C15—P1—C24—C29	125.4 (3)
P1-C15-C20-C19	177.8 (3)	C15—P1—C30—C31	148.1 (3)
P1-C15-C20-C21	0.6 (6)	C15—P1—C30—C35	-40.6 (4)
P1-C24-C25-C26	177.5 (3)	C15—C16—C17—C18	-0.4(7)
P1-C24-C29-C28	-178.0(3)	C15—C20—C21—N3	-12.1(7)
P1-C30-C31-C32	171.1 (4)	C16—C15—C20—C19	1.2 (6)
P1-C30-C35-C34	-171.4(3)	C16—C15—C20—C21	-176.0(4)
N1-C1-C2-C3	15(7)	C16-C17-C18-C19	12(6)
N1-C5-C11-N2	-65(5)	C17 - C18 - C19 - C20	-0.8(6)
N1 - C5 - C11 - C10	174 6 (4)	C18 - C19 - C20 - C15	-0.4(6)
N_{3} C_{22} C_{23} N_{4}	516(4)	C18 - C19 - C20 - C21	1771(4)
C1 N1 C5 C4	-5.4(6)	$C_{10} = C_{10} = C_{20} = C_{21}$	177.1(4)
C1 N1 C5 C11	3.+(0)	$C_{20} = C_{20} = C_{21} = R_{3}$	-0.8(6)
C1 = C2 = C3 = C4	-1, 1, (7)	$C_{20} = C_{13} = C_{10} = C_{17}$	0.8(0)
C1 - C2 - C3 - C4	-1.1(7)	$C_{21} = N_{3} = C_{22} = C_{23}$	133.1(4)
$C_2 = C_3 = C_4 = C_3$	-2.4(7)	$C_{22} = N_{3} = C_{21} = C_{20}$	1/9.3(4)
$C_2 = C_3 = C_4 = C_6$	1/7.0 (4)	C_{24} P1 C_{15} C_{16}	/3.2 (4)
C3—C4—C5—N1	5.7 (6)	C24—P1—C15—C20	-103.3(3)
C3—C4—C5—C11	-1/4.1 (4)	C24—P1—C30—C31	36.5 (4)
C3—C4—C6—C7	-4.2 (6)	C24—P1—C30—C35	-152.1 (4)
C3—C4—C6—C8	177.7 (4)	C24—C25—C26—C27	0.9 (7)
C4—C5—C11—N2	173.4 (4)	C25—C24—C29—C28	0.4 (6)
C4—C5—C11—C10	-5.5 (5)	C25—C26—C27—C28	-0.4 (7)
C4—C6—C8—C9	-179.9 (4)	C26—C27—C28—C29	-0.1 (7)
C4—C6—C8—C10	-1.5 (6)	C27—C28—C29—C24	0.1 (7)
C5—N1—C1—C2	1.8 (6)	C29—C24—C25—C26	-0.8 (6)

C5—C4—C6—C7	175.8 (4)	C30—P1—C15—C16	-37.9 (4)
C5-C4-C6-C8	-2.3 (6)	C30—P1—C15—C20	145.6 (3)
C6—C4—C5—N1	-174.3 (4)	C30—P1—C24—C25	59.0 (4)
C6—C4—C5—C11	5.8 (6)	C30—P1—C24—C29	-122.7 (3)
C6—C8—C10—C11	1.8 (6)	C30—C31—C32—C33	0.4 (7)
C6—C8—C10—C12	-178.5 (4)	C31—C30—C35—C34	-0.1 (6)
C7—C6—C8—C9	2.1 (6)	C31—C32—C33—C34	0.2 (7)
C7—C6—C8—C10	-179.5 (4)	C32—C33—C34—C35	-0.7 (7)
C8—C10—C11—N2	-177.1 (4)	C33—C34—C35—C30	0.7 (7)
C8—C10—C11—C5	1.8 (6)	C35—C30—C31—C32	-0.4 (7)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N4—H4 <i>A</i> …O1	0.91	1.96	2.872 (5)	176
N4—H4 <i>B</i> …O4	0.91	2.05	2.920 (5)	159
O7—H7…O6	0.84	1.96	2.771 (5)	162
O8—H8…O7	0.84	2.04	2.872 (5)	170
C3—H3···O1 ⁱ	0.95	2.36	3.244 (6)	154
C3—H3···O2 ⁱ	0.95	2.57	3.168 (6)	121
С9—Н9А…О4 ^{іі}	0.98	2.48	3.235 (6)	134
C9—H9 <i>B</i> ···O5 ⁱⁱⁱ	0.98	2.53	3.494 (6)	170
$C14$ — $H14$ ···O 7^{iv}	0.95	2.57	3.417 (6)	149
C18—H18····O5 ^v	0.95	2.58	3.288 (6)	131
C22—H22A···O3 ^{vi}	0.99	2.47	3.422 (6)	162
C22—H22 <i>B</i> ···O5	0.99	2.44	3.385 (6)	160
C25—H25····O2 ^{vii}	0.95	2.40	3.282 (5)	154
C27—H27····O6 ^{viii}	0.95	2.58	3.278 (6)	131
С29—Н29…Об	0.95	2.40	3.094 (5)	130

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+3/2; (ii) -*x*+1, *y*+1/2, -*z*+3/2; (iii) *x*, -*y*+3/2, *z*+1/2; (iv) *x*, *y*+1, *z*; (v) -*x*, -*y*+2, -*z*+1; (vi) -*x*+1, -*y*+2, -*z*+1; (vii) *x*-1, *y*, *z*; (viii) -*x*, -*y*+1, -*z*+1.