

Received 7 January 2025 Accepted 4 March 2025

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; esters; hydrogen bonds; C—H··· π interactions; configuration..

CCDC references: 2428835; 2428834; 2428833; 2428832; 2428831

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures and Hirshfeld surface analyses of methyl (2*Z*)-(4-bromophenyl)[2-(4-methylphenyl)hydrazinylidene]acetate, methyl (2*Z*)-(4-bromophenyl)[2-(3,5-dimethylphenyl)hydrazinylidene]acetate, methyl (2*Z*)-[2-(4-methoxyphenyl)hydrazinylidene](3-nitrophenyl)acetate, methyl (2*E*)-(4chlorophenyl)(2-phenylhydrazinylidene)acetate and methyl (2*Z*)-[2-(4-bromophenyl)hydrazinylidene](4-chlorophenyl)acetate

Namiq Q. Shikhaliyev,^a Aliyar A. Babazade,^b Gulnar T. Atakishiyeva,^b Irada M. Shikhaliyeva,^b Abel M. Maharramov,^b Victor N. Khrustalev,^{c,d} Zeliha Atioğlu,^e Mehmet Akkurt^f and Ajaya Bhattarai^g*

^aDepartment of Chemical Engineering, Baku Engineering University, Khirdalan City, 120 AZ0101 Hasan Aliyev Street, Baku, Azerbaijan, ^bOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, ^cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, ^dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, ^eDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, ^fDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and ^gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal. *Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Molecules of the title compounds, methyl (Z)-2-(4-bromophenyl)-2-[2-(methylphenyl)hydrazin-1-ylidene]acetate, C₁₆H₁₅BrN₂O₂, (1), methyl (Z)-2-(4bromophenyl)-2-[2-(3,5-dimethylphenyl)hydrazin-1-ylidene]acetate, C₁₇H₁₇Br- N_2O_2 , (2), methyl (Z)-2-[2-(4-methoxyphenyl)hydrazin-1-ylidene]-2-(3-nitrophenyl)acetate, $C_{16}H_{15}N_3O_5$, (3), and methyl (Z)-2-[2-(4-bromophenyl) hydrazin-1-ylidene]-2-(4-chlorophenyl)acetate, C₁₅H₁₂BrClN₂O₂, (5), adopt a Z configuration with respect to the central C=N bond, while methyl (E)-2-(4chlorophenyl)-2-(2-phenylhydrazin-1-ylidene)acetate, $C_{15}H_{13}CIN_2O_2$, (4), adopts an E configuration. The atoms of the phenyl ring of the bromophenyl group of (1) are disordered over two sets of sites with equal occupancies. In the crystal structure of (1), molecules connected by $C-H \cdots N$ hydrogen bonds are further linked by $C-H\cdots\pi$ interactions, forming ribbons parallel to [010]. In (2), pairs of molecules are linked by $C-H\cdots\pi$ interactions parallel to [100]. In (3), $C-H \cdots O$ hydrogen bonds form ribbons parallel to [010], while in (4), the molecules are bonded together by $C-H\cdots N$, $C-H\cdots Cl$, $C-H\cdots O$ and $C-H\cdots\pi$ interactions parallel to [010]. In (5), $C-H\cdots$ Br, $C-H\cdots$ O and C-H···Cl interactions lead to the formation of layers parallel to (002). $C-H\cdots\pi$ interactions also occur between these planes. Hirshfeld surface analyses were performed to investigate and quantify the intermolecular interactions between the molecules of all compounds.

1. Chemical context

Catalytic olefination of hydrazones is a versatile method for the construction of halogenated alkenes starting from hydrazones (Adonin *et al.*, 2019; Bertani *et al.*, 2010; Metrangolo & Resnati, 2008; Askerova *et al.*, 2024, Sergeev *et al.*, 2020*a,b*). In the case of the reaction with N-substituted hydrazones the reaction leads to formation of dichlorodiazadienes (Nenajdenko *et al.*, 2017). By using carbon tetrabromide for olefination it is possible to prepare dibromosubstituted diazadienes as well (Nenajdenko *et al.*, 2023). Recently, these type of building blocks attracted attention for preparation of numerous classes of nitrogen-containing heterocycles with interesting properties (Vitaku *et al.*, 2014; Das *et al.*, 2019; Sergeev *et al.*, 2020*c*; Tsyrenova *et al.*, 2023; Safronov *et al.*, 2020*a*,*b*). It is particularly important to note that the solvolysis reaction of dichlorodiazadienes simultaneously yields *Z* and *E* isomers of arylhydrazones of α -keto esters (Shikhaliyev *et al.*, 2021*a*).

In this context, the methanolysis reaction of some dichlorodiazadienes was carried out and the synthesis of arylhydrazo derivatives (1)–(5) of the corresponding α -keto esters was achieved (Fig. 1).

2. Structural commentary

 $C_{16}H_{15}BrN_2O_2$ (1) (Fig. 2) crystallizes in the monoclinic *C2/c* space group with *Z* = 8. The atoms of the phenyl ring of the bromophenyl group of (1) are disordered over two sets of sites with equal occupancies. $C_{17}H_{17}BrN_2O_2$ (2) (Fig. 3) crystallizes with two molecules *A* and *B* in the asymmetric unit in the triclinic *P* $\overline{1}$ space group with *Z* = 4. An overlay fit of molecule *B* on molecule *A* of (2) is shown in Fig. 4; the weighted r.m.s. fit of the 22 non-H atoms is 0.268 Å with the major differences in the phenyl groups (C4*A*–C9*A*/C4*B*–C9*B* and C10*A*–C15*A*/

Figure 2

The molecular structure of (1), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. The phenyl ring atoms of the bromophenyl group of (1) are disordered over two sets of sites with equal occupancies. N2-H2 \cdots O1 and C9-H9 \cdots O2 intramolecular hydrogen bonds are shown by dashed lines.

Figure 3

The two molecules, A and B, in the asymmetric unit of (2), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Figure 4 A least-squares overlay of the two independent molecules A (black) and B (red) of (2).

Figure 5

The molecular structure of (3), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Figure 6

The molecular structure of (4), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Figure 7

The molecular structure of (5), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

C10*B*-C15*B*) of molecules *A* and *B*. $C_{16}H_{15}N_3O_5$ (**3**) (Fig. 5) crystallizes in the monoclinic *C*2/*c* space group with *Z* = 8, $C_{15}H_{13}CIN_2O_2$ (**4**) (Fig. 6) crystallizes in the orthorhombic

Pbca space group with Z = 8, and $C_{15}H_{12}BrClN_2O_2$ (5) (Fig. 7) crystallizes in the orthorhombic *Pca2*₁ space group with Z = 4.

Molecules (1), (2), (3) and (5) adopt a Z configuration with respect to the central C=N bond, while (4) adopts an Econfiguration. This also affects intra- and intermolecular hydrogen-bonding and, consequently, the packing arrangement (see next section for details). The molecular shapes of compounds (1), (2) and (5) are stabilized by intramolecular $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds (Tables 1, 2, 5), forming S(6) ring motifs (Bernstein *et al.*, 1995), while the stability of molecule (3) is provided only by intramolecular $N-H\cdots O$ interactions (Table 3) with the same kind of hydrogen-bonding pattern. In the molecule of (4) intramolecular hydrogen bonds do not occur. In the five molecules, the angles between the phenyl rings connected by the -NH-N=C- bridge are different. The corresponding angle is $44.40 (18)^{\circ}$ for (1) for one of the two orientations in the disordered parts and 52.74 $(19)^{\circ}$ for the other orientation, while the dihedral angle between the disordered phenyl rings in (1) is 83.1 (2)°. In (2), the angle is 32.31 (18)° for molecule A and 45.62 (18)° for molecule B. In (3) it is 51.09 (7)°, in (4) $83.69~(6)^{\circ}$ and in (5) 49.9 (3)°. Other bond lengths and angles within the five molecules are in normal ranges and consistent with those of the related compounds described in the Database survey (Section 4).

3. Supramolecular features and Hirshfeld surface analysis

In the crystal of (1), non-classical $C9A - H9A \cdots N1$ hydrogen bonds connect adjacent molecules parallel to [010] to form C(5) chains (Table 1; Fig. 8). In addition, molecules are connected by $C-H\cdots\pi$ interactions to form ribbons along the propagation direction (Fig. 9). Significant intermolecular hydrogen bonding is not observed in (2). The molecules are aligned in ribbons parallel to [100] in the (010) plane (Fig. 10) whereby pairs of molecules are formed by $C5-H5\cdots Cg3$ interactions (Table 2; Fig. 11). The crystal structure is consolidated through van der Waals interactions. In the crystal of (3), $C7-H7\cdots O4$ and $C12-H12\cdots O1$ interactions form ribbons along [010] (Table 3; Figs. 12 and 13), but $C-H\cdots\pi$

Figure 9

View of the C-H··· π interactions of (1) in the unit cell along the *b* axis.

Figure 10

A general view of the molecular packing of (2) in the unit cell.

A view of the C-H··· π interactions of (2) along the *c* axis.

Гable	1					
-------	---	--	--	--	--	--

Hydrogen-bond	geometry	(Å,	°)	for	1.
---------------	----------	-----	----	-----	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O1$	0.95 (4)	1.93 (4)	2.668 (3)	133 (4)
C9−H9···O2	0.95	2.49	2.862 (6)	103
$C9A - H9A \cdots N1^{i}$	0.95	2.55	3.488 (6)	169
$C5A - H5A \cdots Cg2^{ii}$	0.95	2.85	3.611 (6)	138
$C8-H8\cdots Cg5^{iii}$	0.95	2.81	3.677 (6)	152
$C8A - H8A \cdots Cg2^{i}$	0.95	2.86	3.607 (6)	136
$C16-H16B\cdots Cg7^{ii}$	0.98	2.74	3.544(3)	139

Symmetry codes: (i) x, y + 1, z; (ii) x, y - 1, z; (iii) $-x + 1, y, -z + \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$) for 2.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2A - H2A \cdots O1A$	1.00 (5)	1.82 (5)	2.631 (4)	136 (4)
$N2B - H2B \cdots O1B$	0.81 (5)	2.03 (5)	2.645 (4)	133 (5)
$C9A - H9A \cdots O2A$	0.95	2.47	2.827 (4)	102
$C9B - H9B \cdots O2B$	0.95	2.58	2.898 (4)	100
$C5A - H5A \cdots Cg3^{i}$	0.95	2.88	3.637 (4)	137

Symmetry code: (i) x - 1, y, z.

Table 3

Hydrogen-bond	geometry	(Å, °]) for 3 .
---------------	----------	--------	------------------

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O1$	0.86 (2)	1.98 (2)	2.657 (2)	134 (2)
$C7 - H7 \cdots O4^{1}$	0.95	2.44	3.245 (2)	142
$C12 - H12 \cdots O1^{ii}$	0.95	2.52	3.401 (2)	154

Symmetry codes: (i) $x, -y + 2, z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1.

Table 4

Hydrogen-bond geometry (Å, °) for 4.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3B\cdots N1^{i}$	0.98	2.55	3.5099 (15)	168
$C3-H3C\cdots Cl1^{ii}$	0.98	2.82	3.6422 (12)	142
$C6-H6\cdots O1^{iii}$	0.95	2.40	3.3113 (15)	161
$C15-H15\cdots O1^{iv}$	0.95	2.40	3.2759 (14)	153
$C14-H14\cdots Cg1^{v}$	0	2.80	3.4792 (12)	129

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x, y - 1, z; (iii) x, y + 1, z; (iv) $-x + \frac{3}{2}, y + \frac{1}{2}, z$; (v) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$.

Table 5

Hydrogen-bond	geometry	(Å, °) for 5
---------------	----------	-------	---------

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O1$	0.93 (5)	2.00 (6)	2.666 (4)	127 (4)
C9−H9···O2	0.95	2.58	2.953 (6)	103
$C11-H11\cdots Br1^{i}$	0.95	2.75	3.689 (4)	172
$C12-H12\cdots O1^{ii}$	0.95	2.54	3.479 (4)	168
$C14-H14\cdots Cl1^{iii}$	0.95	2.70	3.616 (4)	161
$C8-H8\cdots Cg1^{iv}$	0.95	2.70	3.591 (6)	157

Symmetry codes: (i) $x + \frac{1}{2}, -y, z$; (ii) $x - \frac{1}{2}, -y, z$; (iii) $x - \frac{1}{2}, -y + 1, z$; (iv) $-x + 2, -y + 1, z - \frac{1}{2}$.

interactions are not observed. The crystal structure is consolidated through van der Waals interactions between the ribbons. In the crystal structure of (4), $C3-H3B\cdots N1$, $C3-H3C\cdots C11$, $C6\cdots H6\cdots O1$ and $C15-H15\cdots O1$ intermolecular interactions connect the molecules under formation of layers parallel to the (001) plane (Table 4; Figs. 14, 15). At the same time, $C14-H14\cdots Cg1$ interactions link the molecules together in the (001) plane along [100] (Fig. 16). The crystal structure is consolidated by van der Waals interactions

research communications

Figure 12 A view of the packing of (**3**) along the *a* axis.

Figure 13 A view of the packing of (3) along the *c* axis.

Figure 14 A view of the hydrogen bonds present in (4) in a view along the *b* axis.

Figure 15 A view of the hydrogen bonds present in (4) in a view along the c axis.

Figure 16 A view of the C-H··· π contacts of (4) along the *a* axis.

between the layers. In the crystal structure of (5), C11-H11 \cdots Br1, C12-H12 \cdots O1 and C14-H14 \cdots Cl1 intermolecular hydrogen bonds form layers parallel to (002) (Table 5; Figs. 17, 18). C8-H8 \cdots Cg1 interactions also take place between these planes and consolidate the crystal structure (Fig. 19).

To quantify the intermolecular interactions between the molecules in (1)–(5) in their respective crystal structures, Hirshfeld surfaces (Fig. 20) and their corresponding two-dimensional fingerprint plots (Fig. 21) were calculated with

Figure 17 A view of the hydrogen bonds present in (5) in a view along the *a* axis.

research	h	commun	ica	fi		nc
rescare		commun	ica	u	U	13

 Table 6

 Percentage contributions of interatomic contacts to the Hirshfeld surface for compounds 1, 2, 3, 4 and 5.

Contact	1	2 A	3 B	3	4	5
H···H	59.9	41.8	46.4	38.9	39.0	26.3
$C{\cdots}H/H{\cdots}C$	13.3	26.8	21.0	16.0	21.4	25.1
$Br \cdot \cdot \cdot H/H \cdot \cdot \cdot Br$	12.5	15.7	15.6	_	_	15.8
$O{\cdots} \cdot H/H{\cdots} O$	6.2	6.9	8.5	28.5	12.7	5.6
$N{\cdots} \cdot H/H{\cdots} \cdot N$	2.0	3.2	3.2	2.4	5.7	1.9
$N{\cdots}C/C{\cdots}N$	2.2	1.7	1.7	3.4	2.0	1.0
$C \cdot \cdot \cdot C$	1.4	1.1	1.1	3.6	1.2	2.3
$O{\cdots}C/C{\cdots}O$	1.1	1.4	1.4	3.9	1.4	3.9
$O{\cdots}N/N{\cdots}O$	0.9	0.7	0.7	1.9	_	_
00	_	0.1	_	0.9	0.2	_
$N \cdots N$	_	_	-	0.4	_	1.5
$Br \cdots O/O \cdots Br$	0.5	_	-	-	_	_
$Br \cdots C/C \cdots Br$	0.1	0.5	0.2	-	_	0.6
$Br \cdot \cdot \cdot Br$	_	_	_	_	_	0.1
$Cl{\cdot}\cdot{\cdot}H/H{\cdot}\cdot{\cdot}Cl$	_	_	_	_	_	14.5
$Cl \cdot \cdot \cdot O/O \cdot \cdot \cdot Cl$	—	—	_	_	—	1.3

Figure 18 A view of the hydrogen bonds present in (5) in a view along the *c* axis.

Figure 19 A view of the C-H··· π contacts of (5) in a view along the *a* axis.

CrystalExplorer (Spackman *et al.*, 2021). The dominant interactions in all compounds are $H \cdots H$ [(1): 59.9%, (2A): 41.8%, (2B): 46.4, (3): 38.9%, (4): 39.0% and (5): 26.3%] and $C \cdots H/$ $H \cdots C$ [(1): 13.3%, (2A): 26.8%, (2B): 21.0, (3): 16.0%, (4): 21.4% and (5): 25.1%]. In (3) and (4), $O \cdots H/H \cdots O$ interactions are also important interactions [(3): 28.5% and (4): 12.7%]. Br $\cdots H/H \cdots$ Br in Br-containing compounds (1), (2) and (5) [(1): 12.5%, (2A): 15.7%, (2B): 15.6% and (5): 15.8%]

Figure 20

Front (a) and back (b) views of the three-dimensional Hirshfeld surface of the molecules (1), (2), (3), (4) and (5), with some $C-H\cdots O$, $C-H\cdots Br$, $C-H\cdots Cl$ and $O-H\cdots O$ hydrogen bonds shown as dashed lines.

Figure 21

The full two-dimensional fingerprint plots for (1), (2), (3), (4) and (5), showing (a) $H \cdots H$, (b) $C \cdots H/H \cdots C$, (c) $C I \cdots H/H \cdots C I$ or $Br \cdots H/H \cdots Br$ and (d) $O \cdots H/H \cdots O$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.

Table 7

Experimental details.

	1	2	3	4	5
Crystal data					
Chemical formula $M_{\rm r}$	C ₁₆ H ₁₅ BrN ₂ O ₂ 347.20	C ₁₇ H ₁₇ BrN ₂ O ₂ 361.23	C ₁₆ H ₁₅ N ₃ O ₅ 329.31	C ₁₅ H ₁₃ ClN ₂ O ₂ 288.72	C ₁₅ H ₁₂ BrClN ₂ O ₂ 367.62
Crystal system, space group	Monoclinic, C2/c	Triclinic, $P\overline{1}$	Monoclinic, C2/c	Orthorhombic, Pbca	Orthorhombic, <i>Pca</i> 2 ₁
Temperature (K)	100	100	100	100	100
a, b, c (Å)	34.6329 (5), 4.84061 (6), 19.1365 (3)	9.8859 (9), 12.3021 (11), 13.9790 (12)	18.8022 (5), 21.9649 (6), 7.43092 (15)	15.86326 (8), 8.79608 (3), 19.24680 (8)	14.0199 (16), 16.5940 (19), 6.4471 (9)
α, β, γ (°)	90, 109.8598 (16), 90	83.480 (9), 73.266 (7), 81.695 (8)	90, 96.156 (2), 90	90, 90, 90	90, 90, 90
V (Å ³)	3017.33 (8)	1606.4 (3)	3051.19 (13)	2685.59 (2)	1499.9 (3)
Z	8	4	8	8	4
Radiation type	Cu Ka	Synchrotron, $\lambda = 0.75270 \text{ Å}$	Cu Ka	Cu Ka	Synchrotron, $\lambda = 0.75270 \text{ Å}$
$\mu (\text{mm}^{-1})$	3.77	2.97	0.91	2.55	3.35
Crystal size (mm)	$0.20 \times 0.05 \times 0.03$	$0.12\times0.09\times0.07$	$0.29\times0.10\times0.09$	$0.12 \times 0.11 \times 0.06$	$0.18\times0.15\times0.13$
Data collection					
Diffractometer	Rigaku XtaLAB Synergy-S, HyPix- 6000HE area- detector	Rayonix SX165 CCD	Rigaku XtaLAB Synergy-S, HyPix- 6000HE area- detector	Rigaku XtaLAB Synergy-S, HyPix- 6000HE area- detector	Rayonix SX165 CCD
Absorption correction	Gaussian (<i>CrysAlis</i> <i>PRO</i> ; Rigaku OD, 2021).	Multi-scan (SCALA; Evans, 2006)	Gaussian (<i>CrysAlis</i> <i>PRO</i> ; Rigaku OD, 2021).	Multi-scan (<i>CrysAlis</i> <i>PRO</i> ; Rigaku OD, 2021).	Multi-scan (SCALA; Evans, 2006)
T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	0.745, 1.000 30865, 3282, 3031	0.666, 0.789 21921, 8417, 6338	0.322, 1.000 21181, 3303, 2634	0.676, 1.000 51407, 2935, 2871	0.514, 0.633 12123, 3908, 3677
R _{int}	0.047	0.036	0.072	0.030	0.039
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.639	0.686	0.639	0.639	0.682
Refinement $R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.043, 0.123, 1.12	0.064, 0.190, 1.07	0.046, 0.126, 1.07	0.030, 0.082, 1.08	0.040, 0.110, 1.09
No. of reflections	3282	8417	3303	2935	3908
No. of parameters	232	410	223	186	196
No. of restraints	0	0	0	0	1
H-atom treatment	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm A}^{-3})$	1.17, -1.20	1.89, -0.94	0.27, -0.25	0.29, -0.28	1.27, -0.67
Absolute structure	_	_	_	_	Refined as an inversion twin
Absolute structure parameter	-	-	-	-	0.167 (15)

Computer programs: CrysAlis PRO (Rigaku OD, 2021), Marccd (Doyle, 2011), iMosflm (Battye et al., 2011), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

and $Cl\cdots H/H\cdots Cl$ interactions in Cl-containing compound (5) [(5): 14.5%] also contribute to the stability of the crystal structures. The full percentage contributions of interatomic contacts calculated for each compound are given in Table 6. The presence of different functional groups in the compounds leads to some differences in the remaining weak interactions.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom *et al.*, 2016) for structures with the (1E)-1-benzylidene-2-phenylhydrazine moiety revealed that the three most similar compounds are

KOGYEN (Akhramez et al., 2019), UREKIM (Jasinski et al., 2011) and SOJQAL (Sultan et al., 2014).

KOGYEN crystallizes in the monoclinic *Cc* space group with Z = 4, UREKIM in the triclinic $P\overline{1}$ space group with Z = 2, and SOJQAL in the orthorhombic $P2_12_12_1$ space group with Z = 4.

In KOGYEN, molecules are linked by a $C-H\cdots\pi$ -phenyl interaction, forming zigzag chains propagating along [100]. The N-H group does not participate in hydrogen bonding but is directed towards the phenyl ring of an adjacent molecule, so linking the chains *via* weak N-H··· π interactions into the three-periodic structure. In UREKIM, crystal packing is stabilized by N-H···O hydrogen bonds, weak C-H···O and

C-H···F intermolecular interactions and centroid-tocentroid π -ring stacking interactions. In SOJQAL, molecules are linked by N-H···O and C-H···O hydrogen bonds into zigzag chains propagating along [100].

5. Synthesis and crystallization

Compounds (1), (2) (3), (4) and (5) were synthesized according to a literature protocol (Shikhaliyev *et al.*, 2021*b*). For the procedure, 10 mg of the corresponding dichlorodiazadiene and 30 ml of methanol were mixed and stirred for 2 h. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and dichloromethane (1/1 v/v), and corresponding ethers were obtained as polycrystalline yellow solids.

Methyl (2Z)-(4-bromophenyl)[2-(4-methylphenyl)hydrazinylidene]acetate (1): yield 75%; m.p. 370 K. ¹H NMR (300 MHz, chloroform-*d*, ppm) δ 12.48 (*s*, 1H, -NH), 7.53 (*d*, *J* = 2.8 Hz, 4H, Ar), 7.19 (*t*, *J* = 7.0 Hz, 4H, Ar), 3.89 (*s*, 3H, -OCH₃), 2.34 (*s*, 3H, --CH₃). ¹³C NMR (75 MHz, CDCl₃, ppm) δ 140.8, 140.6, 135.4, 132.5, 131.0, 130.1, 129.9, 121.5, 114.3, 114.1, 51.7, 20.8

Methyl (2Z)-(4-bromo-phenyl)[2-(3,5-dimethylphenyl)hydrazinylidene]acetate (2): yield 37%; m.p. 383 K. ¹H NMR (300 MHz, chloroform-*d*, ppm) δ 12.44 (*s*, 1H, –NH), 7.54 (*s*, 4H, Ar), 6.93 (*s*, 2H, Ar), 6.71 (*s*, 1H, Ar), 3.89 (*s*, 3H, –OCH₃) , 2.34 (*s*, 6H, –CH₃), ¹³C NMR (75 MHz, chloroform-*d*, ppm) δ 163.8, 142.8, 139.2, 135.4, 131.0, 130.2, 126.0, 124.8, 121.6, 112.2, 51.8, 21.4.

Methyl (2Z)-[2-(4-methoxyphenyl)hydrazinylidene](3nitrophenyl)acetate (3): yield 63%; m.p. 375.18 K. ¹H NMR (300 MHz, chloroform-*d*, ppm) δ 12.67 (*s*, 1H, -NH), 8.55 (*s*, 1H, Ar), 8.14 (*dd*, *J* = 8.2, 1.3 Hz, 1H, Ar), 8.01 (*d*, *J* = 7.9 Hz, 1H, Ar), 7.53 (*t*, *J* = 8.0 Hz, 1H, Ar), 7.27 (*d*, *J* = 2.1 Hz, 1H, Ar), 7.25 (*d*, *J* = 2.0 Hz, 1H, Ar), 6.96–6.89 (*m*, 2H, Ar), 3.92 (*s*, 3H, -OCH₃), 3.82 (*s*, 3H, -OCH₃). ¹³C NMR (75 MHz, CDCl₃, ppm) δ 163.7, 156.2, 148.0, 138.2, 136.3, 134.1, 128.6, 123.6, 123.2, 121.7, 115.8, 114.8, 55.6, 51.9.

Methyl (2*E*)-(4-chloro-phenyl)(2-phenylhydrazinylidene)acetate (4): yield 63%; m.p. 375 K. ¹H NMR (300 MHz, chloroform-*d*, ppm) δ 8.07 (*s*, 1H, –NH), 7.55 (*d*, *J* = 8.4 Hz, 2H, Ar), 7.30 (*dd*, *J* = 7.8, 5.4 Hz, 4H, Ar), 7.16 (*d*, *J* = 7.7 Hz, 2H, Ar), 7.01 (*t*, *J* = 7.3 Hz, 1H, Ar), 3.88 (*s*, 3H, –OCH₃). ¹³C NMR (75 MHz, CDCl₃) δ 163.8, 142.9, 134.8, 133.5, 129.8, 129.4, 128.0, 126.4, 122.8, 114.3, 77.5, 77.0, 76.7, 76.6, 51.8.

Methyl (2Z)-[2-(4-bromophenyl)-hydrazinylidene](4chlorophenyl)acetate (5): yield 42%; m.p. 382 K. ¹H NMR (300 MHz, chloroform-*d*, ppm) δ 12.43 (*s*, 1H, -NH), 7.58 (*d*, *J* = 8.3 Hz, 2H, Ar), 7.44 (*d*, *J* = 8.4 Hz, 2H, Ar), 7.37 (*d*, *J* = 8.2 Hz, 2H, Ar), 7.16 (*d*, *J* = 8.4 Hz, 2H, Ar), 3.90 (*s*, 3H, -OCH₃). ¹³C NMR (75 MHz, CDCl₃) δ 132.34, 132.29, 129.91, 129.88, 128.20, 128.15, 117.52, 115.92, 63.76, 52.02, 29.72.

Compounds (1), (2) (3), (4) and (5) were dissolved in dichloromethane and then left at room temperature for slow evaporation; red single crystals of all compounds suitable for X-ray diffraction analysis started to form after $ca \ 2 \ d$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7. The Moscow synchrotron radiation source was used to collect the data for crystals (2) and (5), while the data for crystals (1), (3) and (4) were collected using Cu $K\alpha$ radiation on a laboratory diffractometer. In all five compounds, C-bound H atoms were positioned geometrically and treated as riding atoms, with C-H = 0.95 and 0.98 Å and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$ or $1.5 U_{\rm eq}({\rm C}\text{-methyl})$. The NH group hydrogen atoms were found by difference-Fourier maps for all five crystals and were refined freely for (1), (4) and (5), while those in (2) and (3) were refined with $U_{iso}(H) = 1.2U_{eq}(N)$ of the attached nitrogen atom. In (1), the phenyl ring atoms of the bromophenyl group are disordered over two sets of sites with equal occupancies. In (2) owing to poor agreement between observed and calculated intensities, 23 reflections were omitted from the final cycles of refinement.

Acknowledgements

The author's contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, AAB and GTA; X-ray analysis, ZA, VNK and MA; writing (review and editing of the manuscript) ZA, MA and AB; funding acquisition, NQS, IMS, AMM; supervision, NQS, MA and AB.

References

- Adonin, S. A., Gorokh, I. D., Samsonenko, D. G., Novikov, A. S., Korolkov, I. V., Plyusnin, P. E., Sokolov, M. N. & Fedin, V. P. (2019). *Polyhedron*, **159**, 318–322.
- Akhramez, S., Hafid, A., Khouili, M., Saadi, M., El Ammari, L. & Ketatni, E. M. (2019). *Acta Cryst.* E75, 964–968.
- Askerova, U., Abdullayev, Y., Shikhaliyev, N., Maharramov, A., Nenajdenko, V. G. & Autschbach, J. (2024). J. Comput. Chem. 45, 2098–2103.
- Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). *Acta Cryst.* D67, 271–281.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bertani, R., Sgarbossa, P., Venzo, A., Lelj, F., Amati, M., Resnati, G., Pilati, T., Metrangolo, P. & Terraneo, G. (2010). *Coord. Chem. Rev.* **254**, 677–695.
- Das, P., Delost, M. D., Qureshi, M. H., Smith, D. T. & Njardarson, J. T. (2019). J. Med. Chem. 62, 4265–4311.
- Doyle, R. A. (2011). Marced software manual. Rayonix L. L. C., Evanston, IL 60201, USA.
- Evans, P. (2006). Acta Cryst. D62, 72-82.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Jasinski, J. P., Braley, A. N., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2011). Acta Cryst. E67, o1200–o1201.
- Metrangolo, P. & Resnati, G. (2008). Science, 321, 918-919.
- Nenajdenko, V. G., Kazakova, A. A., Novikov, A. S., Shikhaliyev, N. G., Maharramov, A. M., Qajar, A. M. & Tskhovrebov, A. G. (2023). *Catalysts*, **13**, 1194.
- Nenajdenko, V. G., Shastin, A. V., Gorbachev, V. M., Shorunov, S. V., Muzalevskiy, V. M., Lukianova, A. I., Dorovatovskii, P. V. & Khrustalev, V. N. (2017). ACS Catal. 7, 205–209.
- Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.

- Safronov, N. E., Tsyrenova, B. D., Minin, A. S., Benassi, E., Nenajdenko, V. G. & Belskaya, N. P. (2023). *Dyes Pigments*, 217, 111405.
- Sergeev, P. G., Khrustalev, V. N. & Nenajdenko, V. G. (2020a). Eur. J. Org. Chem. pp. 6085–6093.
- Sergeev, P. G., Khrustalev, V. N. & Nenajdenko, V. G. (2020b). Eur. J. Org. Chem. pp. 4964–4971.
- Sergeev, P. G. & Nenajdenko, V. G. (2020c). Russ. Chem. Rev. 89, 393-429.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Tsyrenova, B. D., Nenajdenko, V. G., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2021a). *Mendeleev Commun.* 31, 191–193.

- Shikhaliyev, N. G., Maharramov, A. M., Suleymanova, G. T., Babazade, A. A., Nenajdenko, V. G., Khrustalev, V. N., Novikov, A. S. & Tskhovrebov, A. G. (2021b). *Mendeleev Commun.* **31**, 677–679.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Sultan, S., Taha, M., Shah, S. A. A., Yamin, B. M. & Zaki, H. M. (2014). Acta Cryst. E70, 0751.
- Tsyrenova, B., Khrustalev, V. & Nenajdenko, V. (2020a). J. Org. Chem. 85, 7024–7035.
- Tsyrenova, B. & Nenajdenko, V. (2020b). Molecules, 25, 480.
- Tsyrenova, B. D., Lemport, P. S. & Nenajdenko, V. G. (2023). Uspehi Himii, 92, 5066.
- Vitaku, E., Smith, D. T. & Njardarson, J. T. (2014). J. Med. Chem. 57, 10257–10274.

```
Acta Cryst. (2025). E81, 314-323 [https://doi.org/10.1107/S2056989025002051]
```

Crystal structures and Hirshfeld surface analyses of methyl (2*Z*)-(4-bromophenyl)[2-(4-methylphenyl)hydrazinylidene]acetate, methyl (2*Z*)-(4-bromophenyl)[2-(3,5-dimethylphenyl)hydrazinylidene]acetate, methyl (2*Z*)-[2-(4methoxyphenyl)hydrazinylidene](3-nitrophenyl)acetate, methyl (2*E*)-(4-chlorophenyl)(2-phenylhydrazinylidene)acetate and methyl (2*Z*)-[2-(4bromophenyl)hydrazinylidene](4-chlorophenyl)acetate

Namiq Q. Shikhaliyev, Aliyar A. Babazade, Gulnar T. Atakishiyeva, Irada M. Shikhaliyeva, Abel M. Maharramov, Victor N. Khrustalev, Zeliha Atioğlu, Mehmet Akkurt and Ajaya Bhattarai

Computing details

Methyl (Z)-2-(4-bromophenyl)-2-[2-(4-methylphenyl)hydrazin-1-ylidene]acetate (1)

Crystal data

C₁₆H₁₅BrN₂O₂ $M_r = 347.20$ Monoclinic, C2/c a = 34.6329 (5) Å b = 4.84061 (6) Å c = 19.1365 (3) Å $\beta = 109.8598$ (16)° V = 3017.33 (8) Å³ Z = 8

Data collection

Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector diffractometer Radiation source: micro-focus sealed X-ray tube φ and ω scans Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2021). $T_{\min} = 0.745, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.123$ F(000) = 1408 $D_x = 1.529 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 15931 reflections $\theta = 2.7-79.1^{\circ}$ $\mu = 3.77 \text{ mm}^{-1}$ T = 100 KNeedle, yellow $0.20 \times 0.05 \times 0.03 \text{ mm}$

30865 measured reflections 3282 independent reflections 3031 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$ $\theta_{max} = 80.0^{\circ}, \theta_{min} = 2.7^{\circ}$ $h = -44 \rightarrow 44$ $k = -6 \rightarrow 5$ $l = -24 \rightarrow 24$

S = 1.123282 reflections 232 parameters 0 restraints

Primary atom site location: difference Fourier map	H atoms treated by a mixture of independent and constrained refinement
Secondary atom site location: difference Fourier map	$w = 1/[\sigma^2(F_o^2) + (0.0672P)^2 + 8.4257P]$ where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: mixed	$(\Delta/\sigma)_{\text{max}} = 0.003$ $\Delta\rho_{\text{max}} = 1.17 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{\text{max}} = -1.20 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	0.57358 (2)	0.73045 (7)	0.43385 (2)	0.03156 (14)	
01	0.32249 (6)	0.6995 (4)	0.20483 (12)	0.0287 (4)	
O2	0.38021 (6)	0.9149 (4)	0.20583 (10)	0.0237 (4)	
N1	0.37298 (7)	0.3715 (5)	0.32724 (12)	0.0242 (4)	
N2	0.33381 (7)	0.3087 (5)	0.30821 (13)	0.0250 (5)	
H2	0.3151 (12)	0.417 (8)	0.270 (2)	0.035 (10)*	
C1	0.38646 (8)	0.5648 (5)	0.29398 (14)	0.0218 (5)	
C2	0.35954 (9)	0.7297 (5)	0.23131 (16)	0.0229 (5)	
C3	0.35571 (9)	1.0778 (6)	0.14355 (15)	0.0288 (6)	
H3A	0.3424	0.9561	0.1013	0.043*	
H3B	0.3734	1.2099	0.1298	0.043*	
H3C	0.3347	1.1783	0.1572	0.043*	
C4	0.43162 (8)	0.6094 (5)	0.32521 (14)	0.0215 (5)	
C5	0.45024 (15)	0.6230 (11)	0.4017 (3)	0.0218 (9)	0.5
Н5	0.4338	0.6105	0.4325	0.026*	0.5
C6	0.49249 (16)	0.6545 (11)	0.4344 (3)	0.0249 (10)	0.5
H6	0.5050	0.6596	0.4869	0.030*	0.5
C5A	0.45868 (17)	0.3824 (11)	0.3370 (3)	0.0261 (10)	0.5
H5A	0.4480	0.2021	0.3234	0.031*	0.5
C6A	0.50112 (17)	0.4202 (12)	0.3687 (3)	0.0268 (10)	0.5
H6A	0.5193	0.2676	0.3758	0.032*	0.5
C7	0.51588 (8)	0.6783 (6)	0.38907 (14)	0.0231 (5)	
C8	0.49822 (16)	0.6675 (12)	0.3116 (3)	0.0234 (10)	0.5
H8	0.5148	0.6812	0.2811	0.028*	0.5
C9	0.45600 (16)	0.6364 (11)	0.2801 (3)	0.0219 (9)	0.5
H9	0.4435	0.6334	0.2276	0.026*	0.5
C8A	0.49031 (19)	0.9093 (12)	0.3792 (3)	0.0315 (12)	0.5
H8A	0.5014	1.0883	0.3937	0.038*	0.5
C9A	0.44817 (18)	0.8689 (11)	0.3474 (3)	0.0293 (11)	0.5
H9A	0.4303	1.0230	0.3408	0.035*	0.5
C10	0.32137 (8)	0.1052 (5)	0.34874 (14)	0.0244 (5)	
C11	0.27995 (9)	0.0484 (6)	0.33053 (14)	0.0270 (5)	

H11	0.2603	0.1459	0.2913	0.032*
C12	0.26724 (8)	-0.1513 (6)	0.36979 (15)	0.0251 (5)
H12	0.2387	-0.1896	0.3563	0.030*
C13	0.29469 (9)	-0.2977 (5)	0.42819 (15)	0.0226 (5)
C14	0.33647 (9)	-0.2381 (5)	0.44565 (16)	0.0266 (6)
H14	0.3561	-0.3352	0.4850	0.032*
C15	0.34988 (8)	-0.0385 (6)	0.40626 (15)	0.0263 (5)
H15	0.3784	-0.0012	0.4188	0.032*
C16	0.28049 (10)	-0.5098 (6)	0.47178 (16)	0.0308 (6)
H16A	0.2842	-0.4373	0.5214	0.046*
H16B	0.2967	-0.6791	0.4762	0.046*
H16C	0.2514	-0.5510	0.4460	0.046*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.01941 (19)	0.0424 (2)	0.02934 (19)	-0.00077 (10)	0.00364 (13)	0.00388 (11)
01	0.0183 (9)	0.0295 (9)	0.0366 (10)	-0.0017 (7)	0.0069 (8)	0.0004 (8)
02	0.0202 (8)	0.0263 (9)	0.0254 (8)	-0.0009 (7)	0.0087 (7)	0.0027 (7)
N1	0.0229 (10)	0.0259 (11)	0.0256 (10)	-0.0046 (9)	0.0107 (8)	-0.0049 (8)
N2	0.0222 (11)	0.0291 (11)	0.0234 (10)	-0.0026 (9)	0.0074 (9)	0.0006 (9)
C1	0.0226 (12)	0.0208 (11)	0.0234 (11)	-0.0012 (9)	0.0097 (9)	-0.0023 (9)
C2	0.0220 (13)	0.0221 (12)	0.0273 (12)	-0.0019 (9)	0.0118 (11)	-0.0031 (9)
C3	0.0290 (13)	0.0307 (13)	0.0267 (12)	0.0038 (11)	0.0092 (11)	0.0044 (11)
C4	0.0210 (12)	0.0204 (11)	0.0227 (11)	0.0005 (9)	0.0068 (9)	0.0004 (9)
C5	0.020 (2)	0.025 (2)	0.021 (2)	-0.0017 (19)	0.0077 (18)	0.0001 (18)
C6	0.023 (2)	0.026 (2)	0.022 (2)	-0.001 (2)	0.0038 (19)	0.0021 (19)
C5A	0.027 (3)	0.021 (2)	0.032 (3)	-0.002(2)	0.011 (2)	0.000(2)
C6A	0.028 (3)	0.026 (2)	0.031 (3)	0.003 (2)	0.015 (2)	0.006 (2)
C7	0.0188 (11)	0.0264 (12)	0.0230 (12)	-0.0007 (10)	0.0056 (9)	0.0029 (10)
C8	0.019 (2)	0.029 (2)	0.023 (2)	0.002 (2)	0.0072 (19)	0.002 (2)
С9	0.021 (2)	0.026 (2)	0.019 (2)	0.0015 (19)	0.0082 (18)	-0.0001 (18)
C8A	0.029 (3)	0.023 (2)	0.037 (3)	0.001 (2)	0.005 (2)	-0.002(2)
C9A	0.027 (3)	0.018 (2)	0.037 (3)	0.003 (2)	0.004 (2)	-0.003(2)
C10	0.0289 (13)	0.0249 (12)	0.0217 (11)	-0.0033 (10)	0.0115 (10)	-0.0046 (9)
C11	0.0275 (13)	0.0306 (13)	0.0218 (11)	-0.0013 (11)	0.0071 (10)	0.0009 (10)
C12	0.0200 (12)	0.0304 (13)	0.0243 (11)	-0.0030 (10)	0.0068 (10)	-0.0016 (10)
C13	0.0271 (13)	0.0198 (11)	0.0234 (12)	-0.0007 (10)	0.0117 (10)	-0.0013 (9)
C14	0.0239 (14)	0.0279 (13)	0.0269 (13)	0.0050 (10)	0.0071 (11)	-0.0028 (10)
C15	0.0202 (12)	0.0294 (13)	0.0313 (13)	-0.0036 (10)	0.0114 (10)	-0.0088 (10)
C16	0.0401 (16)	0.0237 (12)	0.0357 (14)	-0.0013 (11)	0.0222 (13)	0.0022 (11)

Geometric parameters (Å, °)

Br1—C7	1.905 (3)	С6А—Н6А	0.9500
O1—C2	1.218 (4)	C7—C8A	1.399 (6)
O2—C2	1.338 (3)	C7—C8	1.400 (6)
O2—C3	1.441 (3)	C8—C9	1.387 (7)

N1—C1	1.304 (3)	С8—Н8	0.9500
N1—N2	1.315 (3)	С9—Н9	0.9500
N2—C10	1.409 (4)	C8A—C9A	1.391 (8)
N2—H2	0.96 (4)	C8A—H8A	0.9500
C1—C2	1.478 (4)	C9A—H9A	0.9500
C1—C4	1.488 (4)	C10—C11	1.384 (4)
C3—H3A	0.9800	C10-C15	1 390 (4)
C3—H3B	0.9800	$C_{11} - C_{12}$	1 385 (4)
C3—H3C	0.9800	C11—H11	0.9500
C4—C9A	1 386 (6)	C12-C13	1 390 (4)
C4-C5	1.387(5)	C12—H12	0.9500
C4 - C9	1.307(5) 1 403(5)	C12 - C12	1400(4)
$C_4 - C_5 \Delta$	1.403 (5)	C13 - C16	1.400(4) 1.507(4)
C5 C6	1.412(0) 1 300(7)	$C_{13} = C_{10}$	1.307(4) 1.308(4)
C5_H5	0.0500	C14 H14	0.0500
C5—II5 C6_C7	1.378 (6)	C15 H15	0.9500
C6 H6	0.0500	C16_H16A	0.9500
	1 208 (8)		0.9800
C5A U5A	1.398 (8)		0.9800
CSA—HSA	0.9500	CIO-HIOC	0.9800
C6A-C/	1.356 (6)		
$C_{2} - C_{3}$	115.5 (2)	C8A—C7—Br1	118.3 (3)
C1-N1-N2	122.5 (2)	C8-C7-Br1	119.7 (3)
N1 - N2 - C10	119 3 (2)	C9-C8-C7	1187(4)
N1—N2—H2	117 (2)	C9-C8-H8	120.6
$C10 - N^2 - H^2$	124 (2)	C7-C8-H8	120.0
N1-C1-C2	1235(2)	$C_{8} - C_{9} - C_{4}$	120.6(4)
N1-C1-C4	1123.3(2) 114.2(2)	C8-C9-H9	119.7
$C_2 - C_1 - C_4$	117.2(2) 122 3(2)	C4 - C9 - H9	119.7
$01 - C^2 - 0^2$	122.3(2) 123.2(3)	C9A - C8A - C7	119.7 118.0(5)
01 - 02 - 02	123.2(3) 123.9(2)	C9A - C8A - H8A	121.0
$0^{2}-0^{2}-0^{1}$	123.9(2) 112.9(2)	C7 - C8A - H8A	121.0
02 - 02 - 01 02 - 03 - H3A	109.5	C_{4} C_{94} C_{84}	121.0 121.6(5)
$O_2 = C_3 = H_3 R$	109.5	$C_4 = C_9 A = C_8 A$	121.0(3)
$H_{3A} = C_3 = H_{3B}$	109.5	C_{4}	119.2
02 C3 H3C	109.5	$C_{0} = C_{0} = C_{0} = C_{0}$	119.2 110.8(2)
H_{2} C_{3} H_{3} H_{3} C_{3} H_{3} H_{3	109.5	$C_{11} = C_{10} = C_{13}$	119.0(2) 110.0(2)
	109.5	$C_{11} = C_{10} = N_2$	119.0(2) 121.2(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$C_{10} = C_{10} = N_2$	121.2(2) 1107(3)
C_{3}	118.9(3)	$C_{10} = C_{11} = C_{12}$	119.7 (5)
$C_{9A} = C_4 = C_{3A}$	110.2 (4) 121.6 (2)		120.1
$C_{9A} - C_{4} - C_{1}$	121.0(3)		120.1
$C_3 - C_4 - C_1$	110.0(3)	C11 - C12 - C13	122.4 (2)
C_{2}	122.4(3)	C12—C12—H12	110.0
CA = C5 = C(120.1(3)	C13 - C12 - H12	118.8
$\begin{array}{ccc} \mathbf{C} 4 & \mathbf{C} 5 & \mathbf{U} 5 \\ \mathbf{C} 4 & \mathbf{C} 5 & \mathbf{U} 5 \\ \end{array}$	121.4 (4)	C12 - C13 - C14	11/.1(2)
C4-C5-H5	119.3	C12 - C13 - C16	122.0(3)
	119.3	C14—C13—C16	120.9 (3)
C/C6C5	118.7 (4)	C15—C14—C13	121.3 (3)

	100 5		110.4
С/—С6—Н6	120.7	C15—C14—H14	119.4
С5—С6—Н6	120.7	C13—C14—H14	119.4
C6A—C5A—C4	120.7 (5)	C10—C15—C14	119.7 (2)
C6A—C5A—H5A	119.6	C10—C15—H15	120.1
C4—C5A—H5A	119.6	C14—C15—H15	120.1
C7—C6A—C5A	118.9 (5)	C13—C16—H16A	109.5
С7—С6А—Н6А	120.6	C13—C16—H16B	109.5
С5А—С6А—Н6А	120.6	H16A—C16—H16B	109.5
C6A—C7—C8A	122.6 (4)	C13—C16—H16C	109.5
C6—C7—C8	121.7 (4)	H16A—C16—H16C	109.5
C6A—C7—Br1	1191(3)	H16B—C16—H16C	109.5
C6-C7-Br1	118.6 (3)		109.0
	110.0 (5)		
C1 - N1 - N2 - C10	-1774(2)	C5-C6-C7-C8	-0.9(7)
$N_2 N_1 C_1 C_2$	-0.9(4)	$C_{5} - C_{6} - C_{7} - Br_{1}$	1785(4)
$N_2 = N_1 = C_1 = C_2$	(-1)	C_{6}^{6} C_{7}^{7} C_{8}^{8} C_{9}^{0}	170.3(4)
$N_2 = N_1 = C_1 = C_4$	170.5(2)	C6 $C7$ $C8$ $C0$	10(7)
$C_3 = 0_2 = C_2 = 0_1$	-0.6(4)	$C_{0} - C_{1} - C_{0} - C_{9}$	1.0(7)
C3_02_C2_C1	1/8.6 (2)	C8A = C7 = C8 = C9	-60.4 (5)
NI-CI-C2-01	-0.4 (4)	Br1—C7—C8—C9	-1/8.4 (4)
C4—C1—C2—O1	-179.5 (3)	C7—C8—C9—C4	-1.6(8)
N1—C1—C2—O2	-179.7 (2)	C9A—C4—C9—C8	61.1 (5)
C4—C1—C2—O2	1.2 (3)	C5—C4—C9—C8	2.0 (7)
N1—C1—C4—C9A	-126.8 (4)	C5A—C4—C9—C8	-63.7 (5)
C2-C1-C4-C9A	52.4 (4)	C1—C4—C9—C8	-177.6 (4)
N1—C1—C4—C5	-45.3 (4)	C6A—C7—C8A—C9A	0.3 (8)
C2-C1-C4-C5	133.9 (3)	C6—C7—C8A—C9A	-66.2 (6)
N1-C1-C4-C9	134.2 (3)	C8—C7—C8A—C9A	61.5 (6)
C2-C1-C4-C9	-46.6 (4)	Br1-C7-C8A-C9A	-179.1 (4)
N1—C1—C4—C5A	49.4 (4)	C5—C4—C9A—C8A	66.2 (6)
C2-C1-C4-C5A	-131.4 (4)	C9—C4—C9A—C8A	-60.2 (6)
C9A—C4—C5—C6	-67.0 (5)	C5A—C4—C9A—C8A	1.3 (8)
C9—C4—C5—C6	-1.9 (7)	C1—C4—C9A—C8A	177.6 (5)
C5A-C4-C5-C6	58.9 (5)	C7—C8A—C9A—C4	-0.7 (9)
C1—C4—C5—C6	177.7 (4)	N1—N2—C10—C11	177.2 (2)
C4—C5—C6—C7	1.3 (8)	N1—N2—C10—C15	-2.8(4)
C9A—C4—C5A—C6A	-1.5(7)	C15-C10-C11-C12	0.0 (4)
C5—C4—C5A—C6A	-60.5 (5)	N2-C10-C11-C12	179.9 (2)
C9—C4—C5A—C6A	65.3 (5)	C10-C11-C12-C13	0.7 (4)
C1-C4-C5A-C6A	-177.8(4)	C11—C12—C13—C14	-0.9(4)
C4—C5A—C6A—C7	1.1 (7)	C11—C12—C13—C16	178.5 (3)
C5A - C6A - C7 - C6	60 5 (5)	C12-C13-C14-C15	04(4)
C5A - C6A - C7 - C8A	-0.5(7)	C_{16} C_{13} C_{14} C_{15}	-179.0(2)
C5A - C6A - C7 - C8	-670(5)	$C_{11} - C_{10} - C_{15} - C_{14}$	-0.4(4)
C5A-C6A-C7-Br1	178 9 (4)	N_{-C10} C_{15} C_{14}	179 6 (2)
C_{5}	-62.6 (5)	C_{13} C_{14} C_{15} C_{10}	0.2(4)
$C_5 = C_6 = C_7 = C_8^{\circ}$	660(5)	015-014-015-010	0.2 (+)
UJ-UU-U/-U0A	00.0 (5)		

D—H···A	D—H	H…A	$D \cdots A$	D—H…A
N2—H2…O1	0.95 (4)	1.93 (4)	2.668 (3)	133 (4)
С9—Н9…О2	0.95	2.49	2.862 (6)	103
$C9A$ — $H9A$ ···· $N1^{i}$	0.95	2.55	3.488 (6)	169
$C5A - H5A - Cg2^{ii}$	0.95	2.85	3.611 (6)	138
C8—H8…Cg5 ⁱⁱⁱ	0.95	2.81	3.677 (6)	152
$C8A - H8A - Cg2^{i}$	0.95	2.86	3.607 (6)	136
C16—H16 B ··· $Cg7^{ii}$	0.98	2.74	3.544 (3)	139

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*, *y*-1, *z*; (iii) –*x*+1, *y*, –*z*+1/2.

Methyl (Z)-2-(4-bromophenyl)-2-[2-(3,5-dimethylphenyl)hydrazin-1-ylidene]acetate (2)

Crystal data

 $C_{17}H_{17}BrN_{2}O_{2}$ $M_{r} = 361.23$ Triclinic, *P*1 *a* = 9.8859 (9) Å *b* = 12.3021 (11) Å *c* = 13.9790 (12) Å *a* = 83.480 (9)° *β* = 73.266 (7)° *y* = 81.695 (8)° *V* = 1606.4 (3) Å³

Data collection

Rayonix SX165 CCD diffractometer /f scan Absorption correction: multi-scan (Scala; Evans, 2006) $T_{min} = 0.666, T_{max} = 0.789$ 21921 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.190$ S = 1.078417 reflections 410 parameters 0 restraints Hydrogen site location: mixed Z = 4 F(000) = 736 $D_x = 1.494 \text{ Mg m}^{-3}$ Synchrotron radiation, $\lambda = 0.75270 \text{ Å}$ Cell parameters from 1000 reflections $\theta = 1.8-30.0^{\circ}$ $\mu = 2.97 \text{ mm}^{-1}$ T = 100 K Prism, yellow $0.12 \times 0.09 \times 0.07 \text{ mm}$

8417 independent reflections 6338 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 31.1^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -13 \rightarrow 13$ $k = -16 \rightarrow 16$ $l = -18 \rightarrow 19$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1079P)^2 + 1.6265P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.89 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.94 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL-2019/2 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}Extinction coefficient: 0.044 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1A	0.4335 (3)	0.3106 (3)	0.6750 (3)	0.0279 (6)	
C2A	0.4825 (3)	0.4119 (3)	0.6932 (3)	0.0294 (7)	
C3A	0.6205 (4)	0.5560 (3)	0.6248 (3)	0.0423 (9)	
H3AA	0.677439	0.585644	0.560006	0.063*	
H3AB	0.677900	0.543397	0.672504	0.063*	
H3AC	0.536763	0.608779	0.650156	0.063*	
C4A	0.5061 (3)	0.2504 (3)	0.5848 (2)	0.0261 (6)	
C5A	0.4260 (3)	0.1991 (3)	0.5392 (3)	0.0316 (7)	
H5A	0.325686	0.203652	0.566444	0.038*	
C6A	0.4906 (4)	0.1420 (3)	0.4553 (3)	0.0319(7)	
H6A	0.435177	0.106993	0.425294	0.038*	
C7A	0.6361 (4)	0.1361 (3)	0.4152 (3)	0.0301 (7)	
C8A	0.7196 (3)	0.1832 (3)	0.4598 (3)	0.0318 (7)	
H8A	0.819991	0.177166	0.432725	0.038*	
C9A	0.6534 (3)	0.2393 (3)	0.5451 (3)	0.0309(7)	
H9A	0.709808	0.270754	0.576918	0.037*	
C10A	0.1256 (4)	0.2743 (3)	0.8804 (3)	0.0316(7)	
C11A	0.0567 (4)	0.3239 (3)	0.9683 (3)	0.0369 (8)	
H11A	0.092046	0.385259	0.984307	0.044*	
C12A	-0.0639 (4)	0.2842 (3)	1.0332 (3)	0.0375 (8)	
C13A	-0.1141 (4)	0.1949 (3)	1.0083 (3)	0.0327 (7)	
H13A	-0.197025	0.168028	1.052340	0.039*	
C14A	-0.0465 (4)	0.1436 (3)	0.9208 (3)	0.0307 (7)	
C15A	0.0755 (4)	0.1845 (3)	0.8550 (3)	0.0314 (7)	
H15A	0.122838	0.151241	0.794216	0.038*	
C16A	-0.1391 (5)	0.3384 (4)	1.1287 (3)	0.0500 (11)	
H16C	-0.236055	0.368284	1.127359	0.075*	
H16D	-0.087377	0.398205	1.134887	0.075*	
H16E	-0.142998	0.283830	1.185948	0.075*	
C17A	-0.1000 (4)	0.0467 (3)	0.8954 (3)	0.0363 (8)	
H17C	-0.070369	-0.019532	0.933805	0.054*	
H17D	-0.060773	0.037247	0.823594	0.054*	
H17E	-0.204056	0.058564	0.912015	0.054*	
Br1A	0.72473 (4)	0.06195 (3)	0.29756 (3)	0.03885 (15)	
N1A	0.3195 (3)	0.2721 (2)	0.7342 (2)	0.0305 (6)	
N2A	0.2473 (3)	0.3176 (3)	0.8175 (2)	0.0318 (6)	
O1A	0.4383 (3)	0.4574 (2)	0.7710 (2)	0.0333 (5)	
O2A	0.5755 (3)	0.4536 (2)	0.6125 (2)	0.0331 (5)	
H2A	0.294 (5)	0.376 (4)	0.835 (4)	0.040*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C1B	0.9468 (3)	0.3394 (3)	0.6648 (2)	0.0260 (6)
C2B	1.0061 (3)	0.4347 (3)	0.6847 (2)	0.0262 (6)
C3B	1.1954 (4)	0.5434 (3)	0.6364 (3)	0.0322 (7)
H3BA	1.285785	0.549359	0.584772	0.048*
H3BB	1.212847	0.530187	0.702487	0.048*
H3BC	1.131891	0.612029	0.633975	0.048*
C4B	1.0166 (3)	0.2763 (3)	0.5762 (2)	0.0258 (6)
C5B	1.0352 (3)	0.1616 (3)	0.5884 (3)	0.0282 (6)
H5B	1.003525	0.125356	0.653181	0.034*
C6B	1.0992 (3)	0.1001 (3)	0.5070 (3)	0.0303 (7)
H6B	1.114012	0.022028	0.516203	0.036*
C7B	1.1416 (3)	0.1523 (3)	0.4120 (3)	0.0283 (6)
C8B	1.1236 (3)	0.2656 (3)	0.3969 (3)	0.0300(7)
H8B	1.152827	0.301006	0.331502	0.036*
C9B	1.0619 (3)	0.3266 (3)	0.4793 (3)	0.0283 (6)
H9B	1.049927	0.404698	0.469699	0.034*
C10B	0.6466 (3)	0.2975 (3)	0.8746 (3)	0.0275 (6)
C11B	0.5797 (4)	0.3428 (3)	0.9656 (3)	0.0298 (7)
H11B	0.613998	0.404242	0.982436	0.036*
C12B	0.4637 (4)	0.2990 (3)	1.0317 (3)	0.0328 (7)
C13B	0.4136 (4)	0.2099 (3)	1.0046 (3)	0.0316 (7)
H13B	0.333141	0.180104	1.049162	0.038*
C14B	0.4789 (3)	0.1636 (3)	0.9135 (3)	0.0295 (7)
C15B	0.5967 (3)	0.2091 (3)	0.8484 (2)	0.0277 (6)
H15B	0.642570	0.178951	0.785965	0.033*
C16B	0.3916 (5)	0.3463 (4)	1.1314 (3)	0.0427 (9)
H16F	0.291085	0.370073	1.135972	0.064*
H16G	0.437852	0.409619	1.137109	0.064*
H16H	0.399070	0.289955	1.185660	0.064*
C17B	0.4269 (4)	0.0673 (3)	0.8860 (3)	0.0342 (7)
H17F	0.451926	0.067228	0.812845	0.051*
H17G	0.323359	0.071899	0.913332	0.051*
H17H	0.471205	-0.000818	0.913587	0.051*
Br1B	1.22812 (4)	0.06754 (3)	0.30080 (3)	0.03961 (16)
N1B	0.8342 (3)	0.3006 (2)	0.7260 (2)	0.0275 (5)
N2B	0.7636 (3)	0.3450 (2)	0.8103 (2)	0.0278 (6)
O1B	0.9482 (3)	0.4914 (2)	0.7546 (2)	0.0334 (5)
O2B	1.1299 (2)	0.45294 (19)	0.61850 (18)	0.0279 (5)
H2B	0.793 (5)	0.396 (4)	0.827 (4)	0.034*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1A	0.0274 (14)	0.0292 (15)	0.0269 (16)	-0.0017 (11)	-0.0068 (12)	-0.0047 (12)
C2A	0.0272 (14)	0.0316 (16)	0.0290 (17)	-0.0008 (12)	-0.0074 (12)	-0.0056 (13)
C3A	0.050(2)	0.0344 (19)	0.039 (2)	-0.0136 (16)	0.0002 (17)	-0.0116 (16)
C4A	0.0258 (14)	0.0258 (14)	0.0259 (16)	-0.0016 (11)	-0.0065 (11)	-0.0022 (12)
C5A	0.0266 (14)	0.0354 (17)	0.0334 (18)	-0.0009 (12)	-0.0097 (13)	-0.0055 (14)

C6A	0.0316 (16)	0.0342 (17)	0.0315 (18)	-0.0042 (12)	-0.0092 (13)	-0.0074 (14)
C7A	0.0365 (16)	0.0252 (15)	0.0263 (16)	0.0007 (12)	-0.0060 (13)	-0.0045 (12)
C8A	0.0264 (14)	0.0255 (15)	0.041 (2)	-0.0021 (11)	-0.0049 (13)	-0.0054 (13)
C9A	0.0304 (15)	0.0268 (15)	0.0366 (19)	-0.0048 (12)	-0.0088 (13)	-0.0063 (13)
C10A	0.0292 (15)	0.0319 (16)	0.0299 (17)	0.0010 (12)	-0.0047 (13)	-0.0017 (13)
C11A	0.0404 (18)	0.0351 (18)	0.0331 (19)	-0.0020 (14)	-0.0065 (15)	-0.0062 (15)
C12A	0.0423 (19)	0.0365 (18)	0.0295 (18)	-0.0017 (14)	-0.0037 (14)	-0.0054 (14)
C13A	0.0298 (15)	0.0377 (18)	0.0260 (17)	0.0002 (13)	-0.0030 (12)	-0.0015 (13)
C14A	0.0307 (15)	0.0310 (16)	0.0293 (17)	0.0008 (12)	-0.0089 (13)	-0.0011 (13)
C15A	0.0318 (16)	0.0364 (17)	0.0237 (16)	0.0039 (13)	-0.0071 (12)	-0.0048 (13)
C16A	0.053 (2)	0.052 (2)	0.036 (2)	-0.0084 (19)	0.0076 (18)	-0.0136 (19)
C17A	0.0341 (17)	0.0366 (18)	0.036 (2)	-0.0039 (14)	-0.0060 (14)	-0.0038 (15)
Br1A	0.0446 (2)	0.0352 (2)	0.0327 (2)	0.00094 (15)	-0.00333 (16)	-0.01194 (15)
N1A	0.0312 (13)	0.0321 (14)	0.0267 (14)	0.0011 (11)	-0.0079 (11)	-0.0022 (11)
N2A	0.0325 (14)	0.0310 (14)	0.0303 (15)	-0.0042 (11)	-0.0048 (11)	-0.0056 (12)
O1A	0.0336 (12)	0.0338 (13)	0.0314 (13)	-0.0013 (9)	-0.0064 (10)	-0.0086 (10)
O2A	0.0379 (13)	0.0268 (11)	0.0324 (13)	-0.0061 (9)	-0.0033 (10)	-0.0070 (10)
C1B	0.0259 (13)	0.0263 (14)	0.0249 (15)	-0.0037 (11)	-0.0046 (11)	-0.0029 (12)
C2B	0.0262 (14)	0.0286 (15)	0.0222 (15)	-0.0003 (11)	-0.0052 (11)	-0.0026 (12)
C3B	0.0317 (16)	0.0310 (16)	0.0339 (18)	-0.0067 (12)	-0.0069 (13)	-0.0045 (13)
C4B	0.0236 (13)	0.0267 (15)	0.0253 (15)	-0.0017 (11)	-0.0031 (11)	-0.0058 (12)
C5B	0.0285 (14)	0.0270 (15)	0.0284 (16)	-0.0043 (11)	-0.0061 (12)	-0.0021 (12)
C6B	0.0322 (15)	0.0244 (14)	0.0344 (18)	-0.0050 (11)	-0.0078 (13)	-0.0052 (13)
C7B	0.0277 (14)	0.0316 (16)	0.0254 (16)	-0.0034 (12)	-0.0034 (12)	-0.0111 (13)
C8B	0.0315 (15)	0.0322 (16)	0.0257 (16)	-0.0062 (12)	-0.0050 (12)	-0.0041 (13)
C9B	0.0278 (14)	0.0275 (15)	0.0262 (16)	0.0000 (11)	-0.0033 (12)	-0.0029 (12)
C10B	0.0256 (14)	0.0303 (15)	0.0238 (16)	0.0015 (11)	-0.0039 (11)	-0.0038 (12)
C11B	0.0322 (15)	0.0296 (16)	0.0252 (16)	-0.0035 (12)	-0.0032 (12)	-0.0052 (12)
C12B	0.0326 (16)	0.0347 (17)	0.0253 (17)	-0.0005 (13)	0.0003 (13)	-0.0045 (13)
C13B	0.0296 (15)	0.0328 (17)	0.0268 (17)	-0.0023 (12)	-0.0002 (12)	-0.0008 (13)
C14B	0.0274 (14)	0.0282 (15)	0.0317 (17)	-0.0011 (11)	-0.0080 (12)	-0.0004 (13)
C15B	0.0279 (14)	0.0296 (15)	0.0218 (15)	0.0013 (11)	-0.0027 (11)	-0.0032 (12)
C16B	0.046 (2)	0.047 (2)	0.0292 (19)	-0.0101 (17)	0.0057 (15)	-0.0131 (16)
C17B	0.0324 (16)	0.0307 (17)	0.039 (2)	-0.0043 (13)	-0.0076 (14)	-0.0062 (14)
Br1B	0.0464 (2)	0.0367 (2)	0.0340 (2)	-0.00589 (15)	-0.00226 (16)	-0.01727 (16)
N1B	0.0269 (12)	0.0299 (13)	0.0246 (14)	-0.0008 (10)	-0.0057 (10)	-0.0046 (11)
N2B	0.0276 (13)	0.0308 (14)	0.0228 (14)	-0.0024 (10)	-0.0020 (10)	-0.0079 (11)
O1B	0.0344 (12)	0.0319 (12)	0.0314 (13)	-0.0052 (9)	-0.0025 (10)	-0.0084 (10)
O2B	0.0272 (11)	0.0292 (11)	0.0266 (12)	-0.0049 (8)	-0.0042 (9)	-0.0052 (9)

Geometric parameters (Å, °)

C1A—N1A	1.307 (4)	C1B—N1B	1.308 (4)	
C1A—C2A	1.473 (5)	C1B—C2B	1.471 (4)	
C1A—C4A	1.480 (5)	C1B—C4B	1.478 (4)	
C2A—O1A	1.217 (4)	C2B—O1B	1.219 (4)	
C2A—O2A	1.337 (4)	C2B—O2B	1.336 (4)	
C3A—O2A	1.439 (4)	C3B—O2B	1.444 (4)	

СЗА—НЗАА	0.9800	СЗВ—НЗВА	0.9800
СЗА—НЗАВ	0.9800	C3B—H3BB	0.9800
СЗА—НЗАС	0.9800	C3B—H3BC	0.9800
C4A—C9A	1.394 (4)	C4B—C5B	1.394 (4)
C4A—C5A	1.399 (4)	C4B—C9B	1.400 (5)
C5A-C6A	1 380 (5)	C5B—C6B	1 382 (5)
C5A—H5A	0.9500	C5B—H5B	0.9500
C6A—C7A	1 380 (5)	C6B—C7B	1 383 (5)
C6A—H6A	0.9500	C6B—H6B	0.9500
C7A - C8A	1 387 (5)	C7B-C8B	1 379 (5)
C7A—Br1A	1.893 (3)	C7B— $Br1B$	1.893 (3)
C8A - C9A	1 390 (5)	C8B-C9B	1.095(3) 1 386(4)
	0.9500	C8B_H8B	0.9500
	0.9500	C9B_H9B	0.9500
	1 384 (5)	C10B $C15B$	1.382(5)
C10A = C15A	1.304 (5)	C10B = C11B	1.302(3)
C10A = C15A	1.395(3) 1.405(4)	C10B N2B	1.391(3) 1.402(4)
C10A - N2A	1.403(4)	C10D - N2D	1.402(4)
$C_{11A} = C_{12A}$	1.566 (5)	C11B - C12B	1.364(3)
CI2A CI2A	1 295 (5)	C12D C12D	1.206 (5)
C12A = C15A	1.585 (5)	C12D—C15D	1.590(3)
C12A = C10A	1.303(3)	C12D = C10D	1.310(3) 1.206(5)
C12A = U12A	1.587 (5)	C12D = U12D	1.390 (3)
CI3A—HI3A	0.9300		0.9300
C14A = C15A	1.409 (5)	C14B—C15B	1.399 (3)
C14A - C1/A	1.487 (5)	CI4B—CI7B	1.48/(5)
CISA—HISA	0.9500	CISB—HISB	0.9500
CI6A—HI6C	0.9800	CI6B—HI6F	0.9800
CI6A—HI6D	0.9800	CI6B—HI6G	0.9800
CI6A—HI6E	0.9800	CI6B—HI6H	0.9800
CI/A—HI/C	0.9800	C17B—H17F	0.9800
C17A—H17D	0.9800	C17B—H17G	0.9800
С17А—Н17Е	0.9800	С17В—Н17Н	0.9800
N1A—N2A	1.316 (4)	N1B—N2B	1.317 (4)
N2A—H2A	0.99 (5)	N2B—H2B	0.81 (5)
N1A—C1A—C2A	122.2 (3)	N1B—C1B—C2B	123.0 (3)
N1A—C1A—C4A	116.2 (3)	N1B—C1B—C4B	115.2 (3)
C2A—C1A—C4A	121.6 (3)	C2B—C1B—C4B	121.7 (3)
O1A—C2A—O2A	122.7 (3)	O1B—C2B—O2B	123.4 (3)
O1A—C2A—C1A	124.4 (3)	O1B—C2B—C1B	123.4 (3)
O2A—C2A—C1A	112.9 (3)	O2B—C2B—C1B	113.2 (3)
О2А—С3А—НЗАА	109.5	O2B—C3B—H3BA	109.5
О2А—С3А—НЗАВ	109.5	O2B—C3B—H3BB	109.5
НЗАА—СЗА—НЗАВ	109.5	НЗВА—СЗВ—НЗВВ	109.5
О2А—С3А—НЗАС	109.5	O2B—C3B—H3BC	109.5
НЗАА—СЗА—НЗАС	109.5	НЗВА—СЗВ—НЗВС	109.5
НЗАВ—СЗА—НЗАС	109.5	H3BB—C3B—H3BC	109.5
C9A—C4A—C5A	118.2 (3)	C5B—C4B—C9B	118.0 (3)

C9A—C4A—C1A	122.2 (3)	C5B—C4B—C1B	119.1 (3)
C5A—C4A—C1A	119.6 (3)	C9B—C4B—C1B	122.8 (3)
C6A—C5A—C4A	120.9 (3)	C6B—C5B—C4B	120.6 (3)
С6А—С5А—Н5А	119.5	C6B—C5B—H5B	119.7
C4A—C5A—H5A	119.5	C4B—C5B—H5B	119.7
C5A—C6A—C7A	119.6 (3)	C5B—C6B—C7B	119.9 (3)
С5А—С6А—Н6А	120.2	C5B—C6B—H6B	120.0
С7А—С6А—Н6А	120.2	C7B—C6B—H6B	120.0
C6A—C7A—C8A	121.1 (3)	C8B—C7B—C6B	121.1 (3)
C6A—C7A—Br1A	119.8 (3)	C8B—C7B—Br1B	119.1 (3)
C8A—C7A—Br1A	119.0 (3)	C6B—C7B—Br1B	119.7 (3)
C7A—C8A—C9A	118.7 (3)	C7B—C8B—C9B	118.4 (3)
C7A—C8A—H8A	120.7	C7B—C8B—H8B	120.8
С9А—С8А—Н8А	120.7	C9B—C8B—H8B	120.8
C8A—C9A—C4A	121.3 (3)	C8B—C9B—C4B	121.8 (3)
С8А—С9А—Н9А	119.3	C8B—C9B—H9B	119.1
C4A—C9A—H9A	119.3	C4B—C9B—H9B	119.1
C11A - C10A - C15A	121.0 (3)	C15B-C10B-C11B	120.4 (3)
C11A - C10A - N2A	117.9 (3)	C15B— $C10B$ — $N2B$	120.1(3) 121.4(3)
C15A - C10A - N2A	121.1 (3)	C11B— $C10B$ — $N2B$	118.2 (3)
C10A—C11A—C12A	120.2 (4)	C12B—C11B—C10B	120.5(3)
C10A—C11A—H11A	119.9	C12B—C11B—H11B	119.7
C12A—C11A—H11A	119.9	C10B—C11B—H11B	119.7
C13A—C12A—C11A	119.0 (3)	C11B—C12B—C13B	118.7 (3)
C13A—C12A—C16A	120.7 (4)	C11B—C12B—C16B	121.0 (3)
C11A— $C12A$ — $C16A$	120.3 (4)	C13B— $C12B$ — $C16B$	120.2(3)
C12A—C13A—C14A	121.8 (3)	C14B— $C13B$ — $C12B$	121.6(3)
C12A—C13A—H13A	119.1	C14B—C13B—H13B	119.2
C14A—C13A—H13A	119.1	C12B—C13B—H13B	119.2
C13A—C14A—C15A	119.0 (3)	C13B—C14B—C15B	118.4 (3)
C13A—C14A—C17A	121.4 (3)	C13B—C14B—C17B	121.3 (3)
C15A—C14A—C17A	119.6 (3)	C15B—C14B—C17B	120.3 (3)
C10A—C15A—C14A	119.0 (3)	C10B—C15B—C14B	120.4 (3)
C10A—C15A—H15A	120.5	C10B—C15B—H15B	119.8
C14A—C15A—H15A	120.5	C14B—C15B—H15B	119.8
C12A—C16A—H16C	109.5	C12B—C16B—H16F	109.5
C12A—C16A—H16D	109.5	C12B—C16B—H16G	109.5
H16C—C16A—H16D	109.5	H16F—C16B—H16G	109.5
C12A—C16A—H16E	109.5	C12B—C16B—H16H	109.5
H16C—C16A—H16E	109.5	H16F—C16B—H16H	109.5
H16D—C16A—H16E	109.5	H16G—C16B—H16H	109.5
C14A—C17A—H17C	109.5	C14B—C17B—H17F	109.5
C14A—C17A—H17D	109.5	C14B—C17B—H17G	109.5
H17C—C17A—H17D	109.5	H17F— $C17B$ — $H17G$	109.5
C14A—C17A—H17E	109.5	C14B—C17B—H17H	109.5
H17C—C17A—H17E	109.5	H17F—C17B—H17H	109.5
H17D—C17A—H17E	109.5	H17G—C17B—H17H	109.5
CIA—NIA—N2A	121.7 (3)	C1B - N1B - N2B	122.5 (3)
C 19111 19211			

N1A—N2A—C10A	120.6 (3)	N1B—N2B—C10B	119.9 (3)
N1A—N2A—H2A	114 (3)	N1B—N2B—H2B	120 (3)
C10A—N2A—H2A	125 (3)	C10B—N2B—H2B	120 (3)
C2A—O2A—C3A	115.0 (3)	C2B—O2B—C3B	115.6 (3)
N1A—C1A—C2A—O1A	13.0 (5)	N1B—C1B—C2B—O1B	-7.1 (5)
C4A—C1A—C2A—O1A	-170.9 (3)	C4B—C1B—C2B—O1B	176.8 (3)
N1A—C1A—C2A—O2A	-163.1 (3)	N1B—C1B—C2B—O2B	172.9 (3)
C4A—C1A—C2A—O2A	13.0 (4)	C4B—C1B—C2B—O2B	-3.2 (4)
N1A—C1A—C4A—C9A	-145.6 (3)	N1B—C1B—C4B—C5B	-43.2 (4)
C2A—C1A—C4A—C9A	38.1 (5)	C2B—C1B—C4B—C5B	133.2 (3)
N1A—C1A—C4A—C5A	32.0 (5)	N1B—C1B—C4B—C9B	134.9 (3)
C2A—C1A—C4A—C5A	-144.4 (3)	C2B—C1B—C4B—C9B	-48.7 (5)
C9A—C4A—C5A—C6A	-2.1 (5)	C9B—C4B—C5B—C6B	1.3 (5)
C1A—C4A—C5A—C6A	-179.7 (3)	C1B—C4B—C5B—C6B	179.5 (3)
C4A—C5A—C6A—C7A	-0.5 (5)	C4B—C5B—C6B—C7B	-1.9 (5)
C5A—C6A—C7A—C8A	2.4 (5)	C5B—C6B—C7B—C8B	1.2 (5)
C5A—C6A—C7A—Br1A	-178.0(3)	C5B—C6B—C7B—Br1B	-179.6 (2)
C6A—C7A—C8A—C9A	-1.6 (5)	C6B—C7B—C8B—C9B	0.1 (5)
Br1A—C7A—C8A—C9A	178.8 (3)	Br1B—C7B—C8B—C9B	-179.1 (2)
C7A—C8A—C9A—C4A	-1.1 (5)	C7B—C8B—C9B—C4B	-0.6 (5)
C5A—C4A—C9A—C8A	2.9 (5)	C5B—C4B—C9B—C8B	-0.1(5)
C1A—C4A—C9A—C8A	-179.6 (3)	C1B—C4B—C9B—C8B	-178.2(3)
C15A—C10A—C11A—C12A	0.3 (6)	C15B—C10B—C11B—C12B	0.9 (5)
N2A—C10A—C11A—C12A	-179.9 (3)	N2B—C10B—C11B—C12B	180.0 (3)
C10A—C11A—C12A—C13A	-0.2 (6)	C10B—C11B—C12B—C13B	-1.1 (5)
C10A—C11A—C12A—C16A	-179.8 (4)	C10B-C11B-C12B-C16B	179.1 (4)
C11A—C12A—C13A—C14A	0.5 (6)	C11B—C12B—C13B—C14B	0.9 (5)
C16A—C12A—C13A—C14A	-179.9 (4)	C16B—C12B—C13B—C14B	-179.3 (4)
C12A—C13A—C14A—C15A	-0.8 (5)	C12B—C13B—C14B—C15B	-0.4 (5)
C12A—C13A—C14A—C17A	179.1 (4)	C12B—C13B—C14B—C17B	178.7 (3)
C11A—C10A—C15A—C14A	-0.5 (5)	C11B-C10B-C15B-C14B	-0.4 (5)
N2A—C10A—C15A—C14A	179.6 (3)	N2B-C10B-C15B-C14B	-179.5 (3)
C13A—C14A—C15A—C10A	0.8 (5)	C13B—C14B—C15B—C10B	0.2 (5)
C17A—C14A—C15A—C10A	-179.1 (3)	C17B—C14B—C15B—C10B	-178.9 (3)
C2A—C1A—N1A—N2A	-4.7 (5)	C2B—C1B—N1B—N2B	0.9 (5)
C4A—C1A—N1A—N2A	179.0 (3)	C4B—C1B—N1B—N2B	177.2 (3)
C1A—N1A—N2A—C10A	-179.6 (3)	C1B—N1B—N2B—C10B	-177.8(3)
C11A—C10A—N2A—N1A	178.1 (3)	C15B—C10B—N2B—N1B	-4.6 (5)
C15A—C10A—N2A—N1A	-2.0 (5)	C11B—C10B—N2B—N1B	176.3 (3)
O1A—C2A—O2A—C3A	0.4 (5)	O1B—C2B—O2B—C3B	2.0 (5)
C1A—C2A—O2A—C3A	176.7 (3)	C1B—C2B—O2B—C3B	-178.0 (3)
	× /		\ /

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N2A—H2A…O1A	1.00 (5)	1.82 (5)	2.631 (4)	136 (4)
N2B—H2B····O1B	0.81 (5)	2.03 (5)	2.645 (4)	133 (5)

Acta Cryst. (2025). E81, 314-323

				5	
C9 <i>A</i> —H9 <i>A</i> ···O2 <i>A</i>	0.95	2.47	2.827 (4)	102	
С9 <i>В</i> —Н9 <i>В</i> …О2 <i>В</i>	0.95	2.58	2.898 (4)	100	
$C5A$ — $H5A$ ··· $Cg3^{i}$	0.95	2.88	3.637 (4)	137	

F(000) = 1376

 $\theta = 4.0-78.2^{\circ}$ $\mu = 0.91 \text{ mm}^{-1}$

T = 100 K

 $D_{\rm x} = 1.434 {\rm Mg} {\rm m}^{-3}$

Prismatic needle, yellow $0.29 \times 0.10 \times 0.09$ mm

Cu K α radiation, $\lambda = 1.54184$ Å

Cell parameters from 4042 reflections

supporting information

Symmetry code: (i) x-1, y, z.

Methyl (Z)-2-[2-(4-methoxyphenyl)hydrazin-1-ylidene]-2-(3-nitrophenyl)acetate (3)

Crystal data

 $C_{16}H_{15}N_{3}O_{5}$ $M_{r} = 329.31$ Monoclinic, C2/c a = 18.8022 (5) Å b = 21.9649 (6) Å c = 7.43092 (15) Å $\beta = 96.156 (2)^{\circ}$ $V = 3051.19 (13) \text{ Å}^{3}$ Z = 8

Data collection

Rigaku XtaLAB Synergy-S, HyPix-6000HE	21181 measured reflections
area-detector	3303 independent reflections
diffractometer	2634 reflections with $I > 2\sigma(I)$
Radiation source: micro-focus sealed X-ray tube	$R_{\rm int} = 0.072$
φ and ω scans	$\theta_{\rm max} = 80.0^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$
Absorption correction: gaussian	$h = -23 \rightarrow 23$
(CrysAlisPro; Rigaku OD, 2021).	$k = -28 \rightarrow 27$
$T_{\min} = 0.322, \ T_{\max} = 1.000$	$l = -6 \rightarrow 9$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.046$	and constrained refinement
$wR(F^2) = 0.126$	$w = 1/[\sigma^2(F_o^2) + (0.0486P)^2 + 2.64P]$
S = 1.07	where $P = (F_o^2 + 2F_c^2)/3$
3303 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
223 parameters	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$
Primary atom site location: difference Fourier	Extinction correction: SHELXL,
map	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.00022 (2)
map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.61696 (7)	0.61943 (6)	0.38295 (16)	0.0270 (3)	
O2	0.68370 (6)	0.70446 (6)	0.37126 (17)	0.0268 (3)	

03	0.63758 (7)	0.86543 (6)	-0.02805 (16)	0.0303 (3)
O4	0.59273 (7)	0.95144 (6)	0.04857 (17)	0.0288 (3)
05	0.24312 (6)	0.55365 (6)	0.76639 (16)	0.0246 (3)
N1	0.50639 (8)	0.69827 (7)	0.50010 (18)	0.0221 (3)
N2	0.49323 (8)	0.63946 (7)	0.5152 (2)	0.0243 (3)
H2	0.5246 (12)	0.6133 (11)	0.488 (3)	0.029*
N3	0.60948 (8)	0.89818 (7)	0.07922 (18)	0.0230 (3)
C1	0.56661 (9)	0.71660 (8)	0.4425 (2)	0.0210 (3)
C2	0.62303 (9)	0.67454 (8)	0.3949 (2)	0.0220 (4)
C3	0.74375 (10)	0.66734 (9)	0.3324 (3)	0.0317 (4)
H3A	0.7313	0.6450	0.2192	0.048*
H3B	0.7554	0.6384	0.4314	0.048*
H3C	0.7852	0.6935	0.3203	0.048*
C4	0.57519 (8)	0.78340 (8)	0.4289 (2)	0.0197 (3)
C5	0.59311 (8)	0.80907 (8)	0.2672 (2)	0.0202 (3)
Н5	0.6038	0.7840	0.1695	0.024*
C6	0.59483 (9)	0.87167 (8)	0.2535 (2)	0.0200 (3)
C7	0.58109 (9)	0.91057 (8)	0.3922 (2)	0.0225 (3)
H7	0.5819	0.9535	0.3770	0.027*
C8	0.56615 (9)	0.88470 (9)	0.5545 (2)	0.0237 (4)
H8	0.5582	0.9100	0.6539	0.028*
С9	0.56288 (9)	0.82174 (8)	0.5716 (2)	0.0222 (4)
H9	0.5520	0.8046	0.6828	0.027*
C10	0.42944 (9)	0.61927 (8)	0.5796 (2)	0.0228 (4)
C11	0.42116 (9)	0.55701 (8)	0.6003 (2)	0.0240 (4)
H11	0.4579	0.5302	0.5712	0.029*
C12	0.35965 (9)	0.53308 (8)	0.6634 (2)	0.0233 (4)
H12	0.3545	0.4904	0.6778	0.028*
C13	0.30601 (9)	0.57256 (8)	0.7047 (2)	0.0216 (4)
C14	0.31391 (9)	0.63514 (8)	0.6835 (2)	0.0233 (4)
H14	0.2770	0.6619	0.7117	0.028*
C15	0.37540 (9)	0.65865 (8)	0.6213 (2)	0.0239 (4)
H15	0.3806	0.7014	0.6073	0.029*
C16	0.23032 (9)	0.48938 (8)	0.7635 (2)	0.0254 (4)
H16A	0.2302	0.4742	0.6395	0.038*
H16B	0.1839	0.4811	0.8069	0.038*
H16C	0.2681	0.4689	0.8423	0.038*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0297 (7)	0.0239 (7)	0.0277 (6)	-0.0003 (5)	0.0043 (5)	-0.0002 (5)
O2	0.0191 (6)	0.0262 (7)	0.0357 (7)	0.0005 (5)	0.0057 (5)	0.0010 (5)
03	0.0396 (7)	0.0329 (7)	0.0196 (6)	-0.0022 (6)	0.0088 (5)	-0.0013 (5)
O4	0.0310(7)	0.0246 (7)	0.0305 (6)	-0.0009 (6)	0.0024 (5)	0.0085 (5)
O5	0.0221 (6)	0.0250 (6)	0.0278 (6)	-0.0020 (5)	0.0071 (5)	0.0003 (5)
N1	0.0231 (7)	0.0240 (7)	0.0189 (6)	-0.0025 (6)	0.0002 (5)	0.0034 (6)
N2	0.0242 (7)	0.0233 (8)	0.0256 (7)	-0.0026 (6)	0.0041 (6)	0.0028 (6)

N3	0.0229 (7)	0.0258 (8)	0.0201 (7)	-0.0039 (6)	0.0015 (5)	0.0028 (6)
C1	0.0212 (7)	0.0249 (9)	0.0165 (7)	-0.0010 (7)	0.0005 (6)	0.0026 (6)
C2	0.0226 (8)	0.0255 (9)	0.0176 (7)	-0.0024 (7)	0.0013 (6)	0.0015 (6)
C3	0.0231 (9)	0.0322 (10)	0.0405 (10)	0.0045 (8)	0.0059 (8)	-0.0002 (8)
C4	0.0169 (7)	0.0236 (9)	0.0182 (7)	-0.0012 (6)	-0.0005 (6)	0.0021 (6)
C5	0.0189 (7)	0.0256 (9)	0.0160 (7)	-0.0002 (7)	0.0018 (6)	-0.0014 (6)
C6	0.0184 (7)	0.0245 (9)	0.0168 (7)	-0.0023 (6)	0.0012 (6)	0.0023 (6)
C7	0.0208 (7)	0.0213 (8)	0.0252 (8)	-0.0010 (7)	0.0020 (6)	-0.0022 (7)
C8	0.0214 (8)	0.0299 (9)	0.0199 (8)	0.0008 (7)	0.0035 (6)	-0.0034 (7)
C9	0.0189 (7)	0.0303 (9)	0.0178 (7)	-0.0004 (7)	0.0032 (6)	0.0024 (7)
C10	0.0238 (8)	0.0267 (9)	0.0178 (7)	-0.0045 (7)	0.0005 (6)	0.0011 (7)
C11	0.0226 (8)	0.0241 (9)	0.0256 (8)	0.0004 (7)	0.0046 (6)	0.0000 (7)
C12	0.0247 (8)	0.0217 (9)	0.0235 (8)	-0.0019 (7)	0.0029 (6)	0.0005 (7)
C13	0.0219 (8)	0.0261 (9)	0.0168 (7)	-0.0038 (7)	0.0018 (6)	0.0005 (6)
C14	0.0240 (8)	0.0253 (9)	0.0206 (8)	0.0007 (7)	0.0019 (6)	-0.0015 (7)
C15	0.0267 (8)	0.0229 (9)	0.0216 (8)	-0.0016 (7)	0.0006 (6)	0.0014 (7)
C16	0.0255 (8)	0.0262 (9)	0.0248 (8)	-0.0041 (7)	0.0040 (7)	0.0034 (7)

Geometric parameters (Å, °)

1.218 (2)	С5—Н5	0.9500
1.344 (2)	C6—C7	1.385 (2)
1.447 (2)	C7—C8	1.388 (2)
1.2339 (19)	С7—Н7	0.9500
1.227 (2)	C8—C9	1.391 (3)
1.3774 (19)	C8—H8	0.9500
1.432 (2)	С9—Н9	0.9500
1.316 (2)	C10—C11	1.387 (2)
1.322 (2)	C10—C15	1.394 (3)
1.410 (2)	C11—C12	1.396 (2)
0.86 (2)	C11—H11	0.9500
1.472 (2)	C12—C13	1.389 (2)
1.478 (2)	C12—H12	0.9500
1.481 (2)	C13—C14	1.393 (2)
0.9800	C14—C15	1.390 (2)
0.9800	C14—H14	0.9500
0.9800	C15—H15	0.9500
1.393 (2)	C16—H16A	0.9800
1.401 (2)	C16—H16B	0.9800
1.379 (2)	C16—H16C	0.9800
116.24 (15)	С8—С7—Н7	121.1
116.19 (13)	C7—C8—C9	120.11 (15)
120.14 (15)	С7—С8—Н8	119.9
120.66 (15)	С9—С8—Н8	119.9
119.4 (15)	C8—C9—C4	121.25 (15)
119.9 (15)	С8—С9—Н9	119.4
123.74 (14)	С4—С9—Н9	119.4
	$\begin{array}{c} 1.218\ (2)\\ 1.344\ (2)\\ 1.344\ (2)\\ 1.447\ (2)\\ 1.2339\ (19)\\ 1.227\ (2)\\ 1.3774\ (19)\\ 1.432\ (2)\\ 1.3774\ (19)\\ 1.432\ (2)\\ 1.316\ (2)\\ 1.322\ (2)\\ 1.410\ (2)\\ 0.86\ (2)\\ 1.472\ (2)\\ 1.478\ (2)\\ 1.478\ (2)\\ 1.478\ (2)\\ 1.478\ (2)\\ 1.478\ (2)\\ 1.478\ (2)\\ 1.478\ (2)\\ 1.478\ (2)\\ 1.478\ (2)\\ 1.479\ (2)\\ 1.379\ (2)\\ 116.24\ (15)\\ 116.19\ (13)\\ 120.14\ (15)\\ 120.66\ (15)\\ 119.4\ (15)\\ 119.9\ (15)\\ 123.74\ (14)\\ \end{array}$	1.218 (2) $C5-H5$ $1.344 (2)$ $C6-C7$ $1.447 (2)$ $C7-C8$ $1.2339 (19)$ $C7-H7$ $1.227 (2)$ $C8-C9$ $1.3774 (19)$ $C8-H8$ $1.432 (2)$ $C9-H9$ $1.316 (2)$ $C10-C11$ $1.322 (2)$ $C10-C15$ $1.410 (2)$ $C11-C12$ $0.86 (2)$ $C11-H11$ $1.472 (2)$ $C12-C13$ $1.478 (2)$ $C12-H12$ $1.481 (2)$ $C13-C14$ 0.9800 $C14-H14$ 0.9800 $C14-H14$ 0.9800 $C15-H15$ $1.393 (2)$ $C16-H16B$ $1.379 (2)$ $C16-H16B$ $1.379 (2)$ $C16-H16B$ $1.379 (2)$ $C16-H16C$ $116.24 (15)$ $C8-C7-H7$ $116.19 (13)$ $C7-C8-H8$ $120.66 (15)$ $C9-C8-H8$ $119.4 (15)$ $C8-C9-C4$ $119.9 (15)$ $C8-C9-H9$ $123.74 (14)$ $C4-C9-H9$

O4—N3—C6	118.16 (14)	C11—C10—C15	119.60 (16)
O3—N3—C6	118.10 (14)	C11—C10—N2	117.23 (16)
N1—C1—C2	123.46 (16)	C15—C10—N2	123.17 (17)
N1-C1-C4	115.42 (15)	C10-C11-C12	121.02 (16)
C2—C1—C4	121.12 (14)	C10-C11-H11	119.5
O1—C2—O2	123.38 (16)	C12—C11—H11	119.5
O1—C2—C1	125.07 (15)	C13—C12—C11	119.10 (16)
O2—C2—C1	111.52 (15)	C13—C12—H12	120.5
O2—C3—H3A	109.5	C11—C12—H12	120.5
O2—C3—H3B	109.5	O5—C13—C12	123.69 (16)
НЗА—СЗ—НЗВ	109.5	O5—C13—C14	116.16 (15)
O2—C3—H3C	109.5	C12—C13—C14	120.14 (15)
H3A—C3—H3C	109.5	C15—C14—C13	120.44 (16)
H3B-C3-H3C	109.5	C15-C14-H14	119.8
C9 - C4 - C5	118 99 (16)	C_{13} C_{14} H_{14}	119.8
C9-C4-C1	121 26 (14)	C_{14} C_{15} C_{10}	119.0 119.70(17)
C_{5} C_{4} C_{1}	121.20(14) 110.60(15)	C_{14} C_{15} H_{15}	120.1
$C_{5} - C_{7} - C_{1}$	119.09 (15)	$C_{14} = C_{15} = H_{15}$	120.1
C6 C5 H5	110.55 (15)	$C_{10} - C_{13} - 1115$	120.1
$C_0 = C_5 = H_5$	120.8		109.5
C4—C3—H3	120.8		109.5
C_{2}	123.31 (15)		109.5
C_{5} — C_{6} — N_{3}	117.87 (14)	05-016-HI6C	109.5
$C/-C_0-N_3$	118.58 (15)	H16A—C16—H16C	109.5
C6-C/-C8	117.73 (16)	H16B—C16—H16C	109.5
С6—С7—Н7	121.1		
C1—N1—N2—C10	178.96 (15)	С5—С6—С7—С8	1.2 (3)
N2—N1—C1—C2	-1.1 (2)	N3—C6—C7—C8	178.90 (14)
N2—N1—C1—C4	179.31 (14)	C6—C7—C8—C9	-2.2 (2)
C3-02-C2-01	-0.9 (2)	C7—C8—C9—C4	0.8 (2)
C3—O2—C2—C1	177.22 (14)	C5—C4—C9—C8	1.8 (2)
N1—C1—C2—O1	9.1 (3)	C1—C4—C9—C8	-175.54 (15)
C4—C1—C2—O1	-171.35 (15)	N1—N2—C10—C11	-176.81 (14)
N1—C1—C2—O2	-169.00(15)	N1—N2—C10—C15	3.5 (2)
C4-C1-C2-O2	10.5 (2)	C15-C10-C11-C12	-0.4(3)
N1-C1-C4-C9	49.2 (2)	N2-C10-C11-C12	179.97 (15)
C_{2} C_{1} C_{4} C_{9}	-13037(17)	C10-C11-C12-C13	0.3(3)
N1-C1-C4-C5	-12810(16)	$C_{16} - 05 - C_{13} - C_{12}$	-83(2)
C_{2} C_{1} C_{4} C_{5}	52 3 (2)	$C_{16} = 05 = C_{13} = C_{14}$	171 31 (14)
$C_{2}^{0} = C_{4}^{0} = C_{5}^{0} = C_{6}^{0}$	-2.7(2)	C_{11} C_{12} C_{13} C_{14}	171.51(14) 179.49(15)
$C_{1} = C_{4} = C_{5} = C_{6}$	2.7(2) 174.63(14)	$C_{11} C_{12} C_{13} C_{14}$	-0.1(2)
C_{4}	1 3 (2)	05-013-014 015	-17076(14)
$C_{1} = C_{2} = C_{1} = C_{1}$	-176 41 (14)	$C_{12} = C_{13} = C_{14} = C_{15}$	-0.1(2)
$C_{+} = C_{0} = C_{0} = C_{0}$	1/0.41(14) 160.97(15)	$C_{12} = C_{13} = C_{14} = C_{15} = C_{10}$	0.1(2)
04 - 103 - 00 - 03	100.8/(13)	$C_{13} - C_{14} - C_{15} - C_{10}$	0.1(2)
$U_3 - N_3 - U_6 - U_5$	-18.7(2)	C11 - C10 - C15 - C14	0.1 (2)
U4—N3—C6—C7	-16.9(2)	N2-C10-C15-C14	1/9.77 (15)
O3—N3—C6—C7	163.47 (15)		

D—H···A	D—H	H···A	D··· A	D—H··· A
N2—H2…O1	0.86 (2)	1.98 (2)	2.657 (2)	134 (2)
C7—H7····O4 ⁱ	0.95	2.44	3.245 (2)	142
C12—H12…O1 ⁱⁱ	0.95	2.52	3.401 (2)	154

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) x, -y+2, z+1/2; (ii) -x+1, -y+1, -z+1.

Methyl (E)-2-(4-chlorophenyl)-2-(2-phenylhydrazin-1-ylidene)acetate (4)

Crystal data	
$\begin{array}{l} C_{15}H_{13}ClN_{2}O_{2} \\ M_{r} = 288.72 \\ Orthorhombic, Pbca \\ a = 15.86326 \ (8) \ \text{\AA} \\ b = 8.79608 \ (3) \ \text{\AA} \\ c = 19.24680 \ (8) \ \text{\AA} \\ V = 2685.59 \ (2) \ \text{\AA}^{3} \\ Z = 8 \\ F(000) = 1200 \end{array}$	$D_x = 1.428 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 35974 reflections $\theta = 4.6-79.5^{\circ}$ $\mu = 2.55 \text{ mm}^{-1}$ T = 100 K Prism, yellow $0.12 \times 0.11 \times 0.06 \text{ mm}$
Data collection	
Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector diffractometer Radiation source: micro-focus sealed X-ray tube φ and ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021). $T_{min} = 0.676, T_{max} = 1.000$	51407 measured reflections 2935 independent reflections 2871 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 80.1^{\circ}, \theta_{min} = 4.6^{\circ}$ $h = -20 \rightarrow 20$ $k = -11 \rightarrow 10$ $l = -24 \rightarrow 24$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.082$ S = 1.08 2935 reflections 186 parameters 0 restraints Primary atom site location: difference Fourier map	Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0407P)^2 + 1.4066P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.29$ e Å ⁻³ $\Delta\rho_{min} = -0.28$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.62856 (2)	0.69084 (3)	0.30196 (2)	0.02208 (10)

01	0.55614 (6)	-0.13395 (10)	0.46392 (4)	0.02205 (19)
O2	0.52650 (5)	0.03451 (9)	0.37933 (4)	0.01828 (18)
N1	0.68620 (6)	0.05063 (11)	0.50371 (5)	0.0165 (2)
N2	0.74780 (6)	0.14132 (11)	0.52647 (5)	0.0176 (2)
H2	0.7585 (10)	0.227 (2)	0.5070 (9)	0.025 (4)*
C1	0.63703 (7)	0.09638 (13)	0.45406 (6)	0.0161 (2)
C2	0.57050 (7)	-0.01517 (13)	0.43440 (6)	0.0168 (2)
C3	0.45741 (7)	-0.06150 (15)	0.35765 (6)	0.0213 (2)
H3A	0.4278	-0.0137	0.3187	0.032*
H3B	0.4182	-0.0753	0.3965	0.032*
H3C	0.4794	-0.1607	0.3431	0.032*
C4	0.64041 (7)	0.24740 (13)	0.41905 (6)	0.0157 (2)
C5	0.61040 (8)	0.37765 (14)	0.45216 (6)	0.0188 (2)
Н5	0.5916	0.3719	0.4989	0.023*
C6	0.60782 (8)	0.51597 (14)	0.41715 (6)	0.0194 (2)
H6	0.5869	0.6046	0.4394	0.023*
C7	0.63640 (7)	0.52207 (13)	0.34913 (6)	0.0176 (2)
C8	0.66907 (8)	0.39514 (14)	0.31583 (6)	0.0197 (2)
H8	0.6903	0.4024	0.2698	0.024*
C9	0.67013 (7)	0.25752 (13)	0.35102 (6)	0.0188 (2)
Н9	0.6913	0.1693	0.3285	0.023*
C10	0.79852 (7)	0.09200 (13)	0.58191 (6)	0.0155 (2)
C11	0.77436 (7)	-0.03165 (13)	0.62277 (6)	0.0167 (2)
H11	0.7228	-0.0829	0.6137	0.020*
C12	0.82608 (8)	-0.07924 (13)	0.67669 (6)	0.0196 (2)
H12	0.8101	-0.1646	0.7039	0.023*
C13	0.90101 (8)	-0.00373 (14)	0.69152 (6)	0.0203 (2)
H13	0.9360	-0.0367	0.7286	0.024*
C14	0.92395 (7)	0.12079 (13)	0.65114 (6)	0.0187 (2)
H14	0.9746	0.1740	0.6613	0.022*
C15	0.87377 (7)	0.16839 (13)	0.59610 (6)	0.0169 (2)
H15	0.8905	0.2523	0.5683	0.020*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.02274 (16)	0.01621 (15)	0.02730 (17)	0.00088 (10)	-0.00065 (10)	0.00687 (10)
01	0.0299 (5)	0.0155 (4)	0.0207 (4)	-0.0003 (3)	-0.0038 (3)	0.0027 (3)
02	0.0199 (4)	0.0184 (4)	0.0165 (4)	-0.0008 (3)	-0.0041 (3)	0.0022 (3)
N1	0.0190 (5)	0.0163 (4)	0.0143 (4)	0.0019 (4)	-0.0007 (3)	-0.0008(4)
N2	0.0214 (5)	0.0146 (4)	0.0168 (4)	-0.0008(4)	-0.0033 (4)	0.0031 (4)
C1	0.0200 (5)	0.0146 (5)	0.0138 (5)	0.0031 (4)	-0.0002 (4)	-0.0006 (4)
C2	0.0209 (5)	0.0151 (5)	0.0143 (5)	0.0043 (4)	-0.0002 (4)	-0.0010 (4)
C3	0.0182 (5)	0.0247 (6)	0.0211 (5)	-0.0022 (5)	-0.0020 (4)	-0.0009 (5)
C4	0.0165 (5)	0.0148 (5)	0.0159 (5)	0.0010 (4)	-0.0042 (4)	0.0007 (4)
C5	0.0241 (6)	0.0176 (6)	0.0146 (5)	0.0012 (5)	-0.0016 (4)	-0.0013 (4)
C6	0.0226 (6)	0.0152 (5)	0.0204 (6)	0.0022 (4)	-0.0028 (4)	-0.0021 (4)
C7	0.0162 (5)	0.0149 (5)	0.0216 (6)	-0.0013 (4)	-0.0039 (4)	0.0035 (4)

C8	0.0206 (6)	0.0200 (6)	0.0184 (5)	0.0016 (4)	0.0017 (4)	0.0025 (4)
C9	0.0209 (5)	0.0168 (5)	0.0187 (5)	0.0028 (4)	0.0008 (4)	-0.0005 (4)
C10	0.0181 (5)	0.0151 (5)	0.0134 (5)	0.0040 (4)	0.0002 (4)	-0.0010 (4)
C11	0.0183 (5)	0.0147 (5)	0.0172 (5)	-0.0009 (4)	-0.0005 (4)	-0.0003 (4)
C12	0.0256 (6)	0.0167 (5)	0.0164 (5)	0.0004 (4)	-0.0005 (4)	0.0030 (4)
C13	0.0220 (6)	0.0218 (6)	0.0173 (5)	0.0042 (5)	-0.0037 (4)	0.0005 (4)
C14	0.0170 (5)	0.0194 (5)	0.0197 (5)	0.0006 (4)	-0.0001 (4)	-0.0036 (4)
C15	0.0183 (5)	0.0149 (5)	0.0176 (5)	0.0006 (4)	0.0031 (4)	-0.0005 (4)

Geometric parameters (Å, °)

Cl1—C7	1.7446 (12)	C6—C7	1.3864 (17)
O1—C2	1.2109 (14)	С6—Н6	0.9500
O2—C2	1.3423 (14)	C7—C8	1.3878 (17)
O2—C3	1.4451 (14)	C8—C9	1.3872 (16)
N1—C1	1.2975 (15)	C8—H8	0.9500
N1—N2	1.3354 (14)	С9—Н9	0.9500
N2—C10	1.4050 (14)	C10—C11	1.3959 (16)
N2—H2	0.861 (18)	C10—C15	1.3967 (16)
C1—C2	1.4899 (16)	C11—C12	1.3876 (16)
C1—C4	1.4905 (16)	C11—H11	0.9500
С3—НЗА	0.9800	C12—C13	1.3911 (18)
С3—Н3В	0.9800	C12—H12	0.9500
С3—НЗС	0.9800	C13—C14	1.3914 (17)
C4—C9	1.3945 (16)	С13—Н13	0.9500
C4—C5	1.3948 (16)	C14—C15	1.3897 (17)
С5—С6	1.3914 (17)	C14—H14	0.9500
С5—Н5	0.9500	C15—H15	0.9500
C2—O2—C3	115.60 (9)	C6—C7—Cl1	120.07 (9)
C1—N1—N2	119.75 (10)	C8—C7—Cl1	118.09 (9)
N1—N2—C10	118.94 (9)	C9—C8—C7	118.75 (11)
N1—N2—H2	121.8 (11)	С9—С8—Н8	120.6
C10—N2—H2	119.2 (11)	С7—С8—Н8	120.6
N1—C1—C2	114.11 (10)	C8—C9—C4	120.66 (11)
N1—C1—C4	126.00 (11)	С8—С9—Н9	119.7
C2—C1—C4	119.84 (10)	С4—С9—Н9	119.7
O1—C2—O2	123.61 (11)	C11—C10—C15	119.96 (10)
O1—C2—C1	125.62 (11)	C11—C10—N2	120.74 (10)
O2—C2—C1	110.76 (10)	C15—C10—N2	119.30 (10)
O2—C3—H3A	109.5	C12-C11-C10	119.61 (11)
O2—C3—H3B	109.5	C12—C11—H11	120.2
НЗА—СЗ—НЗВ	109.5	C10-C11-H11	120.2
O2—C3—H3C	109.5	C11—C12—C13	120.97 (11)
НЗА—СЗ—НЗС	109.5	C11—C12—H12	119.5
НЗВ—СЗ—НЗС	109.5	C13—C12—H12	119.5
C9—C4—C5	119.48 (11)	C12—C13—C14	119.00 (11)
C9—C4—C1	119.57 (10)	C12—C13—H13	120.5

C5—C4—C1	120.88 (10)	C14—C13—H13	120.5
C6—C5—C4	120.46 (11)	C15—C14—C13	120.87 (11)
С6—С5—Н5	119.8	C15—C14—H14	119.6
С4—С5—Н5	119.8	C13—C14—H14	119.6
C7—C6—C5	118.79 (11)	C14—C15—C10	119.58 (11)
С7—С6—Н6	120.6	C14—C15—H15	120.2
С5—С6—Н6	120.6	C10—C15—H15	120.2
C6—C7—C8	121.81 (11)		
C1—N1—N2—C10	177.79 (10)	C5—C6—C7—Cl1	176.33 (9)
N2—N1—C1—C2	-179.28 (9)	C6—C7—C8—C9	2.39 (18)
N2—N1—C1—C4	-1.64 (17)	Cl1—C7—C8—C9	-175.45 (9)
C3—O2—C2—O1	1.85 (16)	C7—C8—C9—C4	-1.20 (18)
C3—O2—C2—C1	-177.15 (9)	C5—C4—C9—C8	-0.84 (17)
N1-C1-C2-O1	5.92 (17)	C1—C4—C9—C8	176.03 (11)
C4—C1—C2—O1	-171.89 (11)	N1—N2—C10—C11	-14.31 (16)
N1-C1-C2-O2	-175.10 (9)	N1—N2—C10—C15	165.87 (10)
C4—C1—C2—O2	7.09 (14)	C15—C10—C11—C12	-0.95 (17)
N1-C1-C4-C9	108.05 (14)	N2-C10-C11-C12	179.23 (10)
C2-C1-C4-C9	-74.43 (14)	C10-C11-C12-C13	1.22 (18)
N1—C1—C4—C5	-75.13 (16)	C11—C12—C13—C14	-0.27 (18)
C2-C1-C4-C5	102.39 (13)	C12—C13—C14—C15	-0.95 (18)
C9—C4—C5—C6	1.78 (18)	C13—C14—C15—C10	1.21 (17)
C1—C4—C5—C6	-175.04 (11)	C11—C10—C15—C14	-0.25 (17)
C4—C5—C6—C7	-0.65 (18)	N2-C10-C15-C14	179.58 (10)
C5—C6—C7—C8	-1.47 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A
) 168
.) 142
) 161
) 153
.) 129
;;

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*, *y*-1, *z*; (iii) *x*, *y*+1, *z*; (iv) -*x*+3/2, *y*+1/2, *z*; (v) -*x*, *y*+1/2, -*z*+3/2.

Methyl (Z)-2-[2-(4-bromophenyl)hydrazin-1-ylidene]-2-(4-chlorophenyl)acetate (5)

Crystal data

C₁₅H₁₂BrClN₂O₂ $M_r = 367.62$ Orthorhombic, $Pca2_1$ a = 14.0199 (16) Å b = 16.5940 (19) Å c = 6.4471 (9) Å V = 1499.9 (3) Å³ Z = 4F(000) = 736 $D_x = 1.628 \text{ Mg m}^{-3}$ Synchrotron radiation, $\lambda = 0.75270 \text{ Å}$ Cell parameters from 1000 reflections $\theta = 2.0-30.0^{\circ}$ $\mu = 3.35 \text{ mm}^{-1}$ T = 100 KPrism, yellow $0.18 \times 0.15 \times 0.13 \text{ mm}$ Data collection

Rayonix SX165 CCD	3908 independent reflections 3677 reflections with $I > 2\sigma(I)$
/f scon	P = 0.020
Abcomption composition, multi coon	$R_{\text{int}} = 0.039$
Absorption correction: multi-scan	$\sigma_{\rm max} = 50.9$, $\sigma_{\rm min} = 2.0$
(Scala; Evans, 2006)	$h = -19 \rightarrow 18$
$T_{\min} = 0.514, T_{\max} = 0.633$	$k = -18 \rightarrow 22$
12123 measured reflections	$l = -8 \rightarrow 8$
Refinement	
Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.040$	$w = 1/[\sigma^2(F_0^2) + (0.0506P)^2 + 2.3974P]$
$wR(F^2) = 0.110$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} = 0.001$
3908 reflections	$\Delta \rho_{\rm max} = 1.27 \text{ e} \text{ Å}^{-3}$
196 parameters	$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: SHELXL,
Primary atom site location: difference Fourier	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.014 (1)
Secondary atom site location: difference Fourier map	Absolute structure: Refined as an inversion twin.
Hydrogen site location: mixed	Absolute structure parameter: 0.167 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.35303 (3)	0.07176 (3)	0.51060 (10)	0.03049 (18)	
C11	0.86147 (9)	0.63637 (7)	0.4619 (3)	0.0430 (5)	
01	0.95706 (19)	0.14905 (16)	0.5120 (8)	0.0231 (5)	
O2	1.04385 (18)	0.26332 (17)	0.5082 (9)	0.0251 (6)	
N1	0.7900 (2)	0.24954 (19)	0.5158 (9)	0.0196 (6)	
N2	0.7689 (2)	0.17193 (19)	0.5187 (9)	0.0203 (6)	
H2	0.816 (4)	0.133 (3)	0.534 (11)	0.028 (14)*	
C1	0.8774 (3)	0.2762 (2)	0.5109 (10)	0.0192 (7)	
C2	0.9619 (3)	0.2222 (2)	0.5112 (11)	0.0204 (6)	
C3	1.1298 (3)	0.2153 (3)	0.5058 (17)	0.0320 (9)	
H3A	1.1856	0.2509	0.5035	0.048*	
H3B	1.1302	0.1810	0.3821	0.048*	
H3C	1.1320	0.1815	0.6303	0.048*	
C4	0.8846 (3)	0.3657 (2)	0.5107 (10)	0.0193 (6)	
C5	0.8273 (4)	0.4089 (3)	0.6459 (8)	0.0273 (9)	
Н5	0.7915	0.3809	0.7482	0.033*	
C6	0.8212 (4)	0.4922 (3)	0.6349 (9)	0.0306 (10)	

H6	0.7813	0.5212	0.7278	0.037*	
C7	0.8734 (3)	0.5318 (3)	0.4883 (12)	0.0283 (11)	
C8	0.9341 (4)	0.4911 (3)	0.3510 (8)	0.0296 (10)	
H8	0.9705	0.5197	0.2508	0.035*	
С9	0.9397 (4)	0.4077 (3)	0.3655 (8)	0.0271 (9)	
H9	0.9813	0.3788	0.2760	0.033*	
C10	0.6727 (3)	0.1497 (2)	0.5157 (11)	0.0197 (6)	
C11	0.6488 (3)	0.0683 (2)	0.5221 (18)	0.0257 (9)	
H11	0.6978	0.0289	0.5285	0.031*	
C12	0.5535 (3)	0.0441 (2)	0.5193 (12)	0.0260 (8)	
H12	0.5370	-0.0115	0.5219	0.031*	
C13	0.4838 (2)	0.1026 (2)	0.5125 (12)	0.0220 (7)	
C14	0.5058 (3)	0.1841 (2)	0.5129 (11)	0.0214 (7)	
H14	0.4562	0.2231	0.5133	0.026*	
C15	0.6005 (3)	0.2082 (2)	0.5128 (11)	0.0198 (7)	
H15	0.6164	0.2639	0.5109	0.024*	

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0175 (2)	0.0280 (2)	0.0460 (3)	-0.00531 (13)	-0.0003 (3)	-0.0011 (3)
0.0338 (6)	0.0200 (5)	0.0750 (14)	-0.0015 (4)	-0.0054 (6)	0.0041 (6)
0.0214 (12)	0.0224 (12)	0.0255 (13)	0.0014 (10)	-0.0026 (19)	-0.0035 (19)
0.0157 (11)	0.0254 (13)	0.0343 (14)	-0.0009 (10)	-0.001 (2)	-0.001 (2)
0.0205 (14)	0.0213 (14)	0.0168 (13)	-0.0035 (11)	0.002 (2)	-0.0016 (18)
0.0156 (13)	0.0185 (13)	0.0268 (15)	0.0000 (10)	0.000 (2)	0.000 (2)
0.0175 (15)	0.0205 (15)	0.0195 (15)	-0.0019 (12)	-0.010 (3)	-0.003 (2)
0.0183 (15)	0.0248 (16)	0.0183 (15)	-0.0013 (12)	0.000 (3)	-0.001(2)
0.0186 (17)	0.033 (2)	0.044 (2)	0.0030 (15)	-0.009 (4)	-0.003 (3)
0.0165 (14)	0.0210 (15)	0.0205 (15)	-0.0029 (12)	0.001 (2)	0.001 (3)
0.023 (2)	0.027 (2)	0.031 (2)	-0.0007 (19)	0.0050 (18)	-0.0013 (18)
0.023 (2)	0.027 (2)	0.042 (3)	-0.0032 (18)	0.006 (2)	0.000 (2)
0.0209 (17)	0.0198 (17)	0.044 (3)	-0.0005 (14)	-0.002(3)	0.007 (2)
0.024 (2)	0.034 (3)	0.030 (2)	-0.0049 (19)	0.0017 (19)	0.0018 (19)
0.023 (2)	0.034 (2)	0.025 (2)	-0.0040 (19)	0.0067 (18)	0.0016 (19)
0.0166 (15)	0.0205 (15)	0.0218 (16)	-0.0020 (12)	-0.004 (2)	-0.002(2)
0.0201 (18)	0.0171 (16)	0.040 (3)	0.0017 (13)	0.001 (3)	0.000 (2)
0.0218 (17)	0.0168 (15)	0.040 (2)	-0.0019 (13)	-0.004(3)	0.003 (3)
0.0150 (14)	0.0218 (16)	0.0292 (17)	-0.0024 (12)	0.000 (3)	0.000 (2)
0.0198 (15)	0.0183 (15)	0.0262 (16)	0.0013 (12)	0.000 (3)	0.000 (2)
0.0209 (16)	0.0185 (15)	0.0202 (15)	-0.0010(12)	-0.001(3)	-0.002(2)
	U^{11} 0.0175 (2) 0.0338 (6) 0.0214 (12) 0.0157 (11) 0.0205 (14) 0.0156 (13) 0.0175 (15) 0.0183 (15) 0.0186 (17) 0.0165 (14) 0.023 (2) 0.0209 (17) 0.024 (2) 0.023 (2) 0.0209 (17) 0.024 (2) 0.023 (2) 0.0166 (15) 0.0201 (18) 0.0218 (17) 0.0150 (14) 0.0198 (15) 0.0209 (16)	U^{11} U^{22} 0.0175 (2) 0.0280 (2) 0.0338 (6) 0.0200 (5) 0.0214 (12) 0.0224 (12) 0.0157 (11) 0.0254 (13) 0.0205 (14) 0.0213 (14) 0.0156 (13) 0.0185 (13) 0.0175 (15) 0.0205 (15) 0.0183 (15) 0.0248 (16) 0.0186 (17) 0.033 (2) 0.0165 (14) 0.0210 (15) 0.023 (2) 0.027 (2) 0.0209 (17) 0.0198 (17) 0.024 (2) 0.034 (3) 0.023 (2) 0.034 (2) 0.0166 (15) 0.0205 (15) 0.0201 (18) 0.0171 (16) 0.0218 (17) 0.0188 (15) 0.0150 (14) 0.0218 (16) 0.0198 (15) 0.0183 (15) 0.0209 (16) 0.0185 (15)	U^{11} U^{22} U^{33} $0.0175(2)$ $0.0280(2)$ $0.0460(3)$ $0.0338(6)$ $0.0200(5)$ $0.0750(14)$ $0.0214(12)$ $0.0224(12)$ $0.0255(13)$ $0.0157(11)$ $0.0254(13)$ $0.0343(14)$ $0.0205(14)$ $0.0213(14)$ $0.0168(13)$ $0.0156(13)$ $0.0185(13)$ $0.0268(15)$ $0.0175(15)$ $0.0205(15)$ $0.0195(15)$ $0.0183(15)$ $0.0248(16)$ $0.0183(15)$ $0.0165(14)$ $0.0210(15)$ $0.0205(15)$ $0.0165(14)$ $0.0210(15)$ $0.0205(15)$ $0.023(2)$ $0.027(2)$ $0.044(2)$ $0.0209(17)$ $0.0198(17)$ $0.044(3)$ $0.024(2)$ $0.034(3)$ $0.030(2)$ $0.023(2)$ $0.025(15)$ $0.0218(16)$ $0.0201(18)$ $0.0171(16)$ $0.040(3)$ $0.0218(17)$ $0.0168(15)$ $0.0292(17)$ $0.0150(14)$ $0.0218(16)$ $0.0292(17)$ $0.0198(15)$ $0.0183(15)$ $0.0262(16)$	U^{11} U^{22} U^{33} U^{12} 0.0175 (2)0.0280 (2)0.0460 (3) $-0.00531 (13)$ 0.0338 (6)0.0200 (5)0.0750 (14) $-0.0015 (4)$ 0.0214 (12)0.0224 (12)0.0255 (13)0.0014 (10)0.0157 (11)0.0254 (13)0.0343 (14) $-0.0009 (10)$ 0.0205 (14)0.0213 (14)0.0168 (13) $-0.0035 (11)$ 0.0156 (13)0.0185 (13)0.0268 (15)0.0000 (10)0.0175 (15)0.0205 (15)0.0195 (15) $-0.0019 (12)$ 0.0183 (15)0.0248 (16)0.0183 (15) $-0.0030 (15)$ 0.0186 (17)0.033 (2)0.044 (2)0.0030 (15)0.0165 (14)0.0210 (15)0.0205 (15) $-0.0029 (12)$ 0.023 (2)0.027 (2)0.031 (2) $-0.0032 (18)$ 0.0209 (17)0.0198 (17)0.044 (3) $-0.0005 (14)$ 0.0214 (2)0.034 (3)0.030 (2) $-0.0049 (19)$ 0.023 (2)0.025 (15) $-0.0029 (12)$ 0.0209 (17)0.0198 (17)0.044 (3) $-0.0005 (14)$ 0.0209 (17)0.0198 (17)0.044 (3) $-0.0020 (12)$ 0.0211 (18)0.0171 (16)0.040 (3) $0.0017 (13)$ 0.0211 (18)0.0171 (16)0.040 (2) $-0.0019 (13)$ 0.0150 (14)0.0218 (16) $0.0292 (17)$ $-0.0024 (12)$ 0.0198 (15)0.0183 (15) $0.0262 (16)$ $0.0013 (12)$	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0175 (2)0.0280 (2)0.0460 (3) $-0.00531 (13)$ $-0.0003 (3)$ 0.0338 (6)0.0200 (5)0.0750 (14) $-0.0015 (4)$ $-0.0054 (6)$ 0.0214 (12)0.0224 (12)0.0255 (13)0.0014 (10) $-0.0026 (19)$ 0.0157 (11)0.0254 (13)0.0343 (14) $-0.0009 (10)$ $-0.001 (2)$ 0.0205 (14)0.0213 (14)0.0168 (13) $-0.0035 (11)$ $0.002 (2)$ 0.0156 (13)0.0185 (13)0.0268 (15) $0.0000 (10)$ $0.000 (2)$ 0.0175 (15)0.0205 (15) $0.0195 (15)$ $-0.0019 (12)$ $-0.010 (3)$ 0.0183 (15)0.0248 (16) $0.0183 (15)$ $-0.0013 (12)$ $0.000 (3)$ 0.0186 (17)0.033 (2) $0.044 (2)$ $0.0030 (15)$ $-0.009 (4)$ 0.0165 (14) $0.0210 (15)$ $0.0205 (15)$ $-0.0029 (12)$ $0.001 (2)$ $0.023 (2)$ $0.027 (2)$ $0.042 (3)$ $-0.0032 (18)$ $0.006 (2)$ $0.029 (17)$ $0.0198 (17)$ $0.044 (3)$ $-0.0005 (14)$ $-0.002 (3)$ $0.024 (2)$ $0.034 (2)$ $0.025 (2)$ $-0.0040 (19)$ $0.0017 (19)$ $0.023 (2)$ $0.034 (2)$ $0.0218 (16)$ $-0.0020 (12)$ $-0.004 (2)$ $0.021 (18)$ $0.0171 (16)$ $0.040 (3)$ $0.0017 (13)$ $0.001 (3)$ $0.0218 (17)$ $0.0183 (15)$ $0.0226 (16)$ $-0.0019 (13)$ $-0.004 (3)$ $0.0166 (15)$ $0.0205 (15)$ $0.0218 (16)$ $-0.0020 (12)$ $-0.004 (3)$

Geometric parameters (Å, °)

Br1—C13	1.904 (3)	С5—Н5	0.9500
Cl1—C7	1.752 (4)	C6—C7	1.365 (8)
O1—C2	1.217 (4)	С6—Н6	0.9500
O2—C2	1.335 (4)	C7—C8	1.401 (8)

01 02	1 445 (5)	C2 C0	1 200 (7)
02	1.445 (5)	C8-C9	1.390 (7)
NI—CI	1.303 (5)	C8—H8	0.9500
N1—N2	1.322 (4)	С9—Н9	0.9500
N2—C10	1.397 (5)	C10—C11	1.392 (5)
N2—H2	0.93 (6)	C10—C15	1.403 (5)
C1—C2	1.485 (5)	C11—C12	1.396 (5)
C1—C4	1.489 (5)	C11—H11	0.9500
С3—НЗА	0.9800	C12—C13	1.379 (5)
С3—Н3В	0.9800	C12—H12	0.9500
С3—Н3С	0.9800	C13—C14	1.385 (5)
C4-C5	1 385 (7)	C14—C15	1 388 (5)
C4-C9	1.309(7)	C14—H14	0.9500
C_{2}	1.397(7)	C15 H15	0.9500
65-66	1.387 (7)	C15—1115	0.9500
C2—O2—C3	115.9 (3)	C6—C7—Cl1	119.5 (4)
C1—N1—N2	122.8 (3)	C8—C7—Cl1	118.3 (5)
N1—N2—C10	118.2 (3)	C9—C8—C7	118.1 (5)
N1—N2—H2	121 (3)	С9—С8—Н8	120.9
$C10 - N^2 - H^2$	121 (3)	C7—C8—H8	120.9
N1_C1_C2	121(3)	C8 - C9 - C4	120.5 120.6(5)
$\mathbf{N}_{1} = \mathbf{C}_{1} = \mathbf{C}_{2}$	123.1(3) 113.7(3)	C_{8} C_{9} H_{9}	110.7
$C_2 = C_1 = C_4$	113.7(3) 122.2(2)	$C_4 = C_2 = H_2$	110.7
$C_2 = C_1 = C_4$	123.2(3) 122.0(2)	$C_{4} - C_{9} - H_{9}$	119.7
01 - 02 - 02	123.9 (3)	CII = CI0 = N2	119.2 (3)
01	123.8 (3)	CII—CI0—CI5	119.8 (3)
O2—C2—C1	112.2 (3)	N2—C10—C15	120.9 (3)
O2—C3—H3A	109.5	C10—C11—C12	120.7 (3)
O2—C3—H3B	109.5	C10—C11—H11	119.7
НЗА—СЗ—НЗВ	109.5	C12—C11—H11	119.7
O2—C3—H3C	109.5	C13—C12—C11	118.4 (3)
НЗА—СЗ—НЗС	109.5	C13—C12—H12	120.8
НЗВ—СЗ—НЗС	109.5	C11—C12—H12	120.8
C5—C4—C9	119.0 (4)	C12—C13—C14	122.0 (3)
C5-C4-C1	118.5 (5)	C12—C13—Br1	119.5 (3)
C9—C4—C1	122.3 (5)	C14-C13-Br1	1184(3)
C4-C5-C6	122.3(5)	C13 - C14 - C15	110.1(3)
C4-C5-H5	119.4	C13 - C14 - H14	120.2
C6 C5 H5	110.4	C15 $C14$ $H14$	120.2
C_{0}	119.4	$C_{13} - C_{14} - C_{15} - C_{10}$	120.2
$C_{1} = C_{0} = C_{3}$	110.0 (5)	C14 - C15 - C10	119.4 (5)
C/-CO-HO	120.0	C14—C15—H15	120.3
С5—С6—Н6	120.6	C10-C15-H15	120.3
C6—C7—C8	122.1 (4)		
C1—N1—N2—C10	-177.5 (6)	C6—C7—C8—C9	0.7 (9)
N2—N1—C1—C2	-0.9 (11)	Cl1—C7—C8—C9	-176.8(4)
$N_{2} N_{1} C_{1} C_{4}$	-179 3 (6)	C7-C8-C9-C4	12(8)
$C_{3} = 0^{2} = 0^{2} = 0^{1}$	0.0 (11)	$C_{5} - C_{4} - C_{9} - C_{8}$	-27(8)
$C_{3} = C_{2} = C_{2} = C_{1}$	-1793(7)	$C_1 - C_4 - C_9 - C_8$	170.7(5)
$C_{3} = C_{2} = C_{1}$	1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	$V_1 = V_2 = V_0$	-170.7(3)
101 - 01 - 02 - 01	1.3 (11)	NI-NZ-UIU-UII	-1/9.0(8)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	179.8 (7)	N1—N2—C10—C15	-1.0 (10)
	-179.2 (6)	N2—C10—C11—C12	180.0 (8)
	-0.9 (9)	C15—C10—C11—C12	2.0 (14)
	44.2 (8)	C10—C11—C12—C13	-0.8 (14)
	-134.2 (6)	C11—C12—C13—C14	-1.4 (13)
	-129.2 (6)	C11—C12—C13—Br1	-179.5 (7)
	52.3 (9)	C12—C13—C14—C15	2.3 (13)
	2.3 (8)	Br1—C13—C14—C15	-179.5 (5)
	-171.4 (5)	C13—C14—C15—C10	-1.0 (11)
	-0.4 (8)	C11—C10—C15—C14	-1.1 (11)
C1—C4—C5—C6 C4—C5—C6—C7 C5—C6—C7—C8 C5—C6—C7—C11	-171.4 (5) -0.4 (8) -1.1 (9) 176.4 (4)	C13—C14—C15—C10 C11—C10—C15—C14 N2—C10—C15—C14	-1.0 (11) -1.1 (11) -179.0 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2…O1	0.93 (5)	2.00 (6)	2.666 (4)	127 (4)
С9—Н9…О2	0.95	2.58	2.953 (6)	103
C11—H11···Br1 ⁱ	0.95	2.75	3.689 (4)	172
C12—H12…O1 ⁱⁱ	0.95	2.54	3.479 (4)	168
C14—H14···Cl1 ⁱⁱⁱ	0.95	2.70	3.616 (4)	161
C8—H8···· $Cg1^{iv}$	0.95	2.70	3.591 (6)	157

Symmetry codes: (i) x+1/2, -y, z; (ii) x-1/2, -y, z; (iii) x-1/2, -y+1, z; (iv) -x+2, -y+1, z-1/2.