

Received 14 April 2025 Accepted 17 April 2025

Edited by N. Alvarez Failache, Universidad de la Repüblica, Uruguay

Keywords: crystal structure; C-H···O hydrogen bonds; C=O·· π interaction; imide; [2.2.2] cyclooctene.

CCDC reference: 2444823

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of a bis-4-azatetracyclo-[5.3.2.0^{2,6}.0^{8,10}]dodec-11-ene-3,5-dione compound

Christina Yu Jiang,^a Richard J. Staples^b and Shannon M. Biros^a*

^aDepartment of Chemistry, Grand Valley State University, Allendale, MI 49401, USA, and ^bCenter for Crystallographic Research, Department of Chemistry and Chemical Biology, Michigan State University, East Lansing, MI 48824, USA. *Correspondence e-mail: biross@gvsu.edu

In the molecule of 4-({3-[(3,5-dioxo-4-azatetracyclo[$5.3.2.0^{2.6}.0^{8.10}$]dodec-11-en-4-yl)methyl]phenyl}methyl)-4-azatetracyclo[$5.3.2.0^{2.6}.0^{8.10}$]dodec-11-ene-3,5-dione, C₃₀H₂₈N₂O₄, which contains two substituted [2.2.2]bicyclooctene ring systems linked through a *m*-xylenediamine ring, the six-membered rings of the bicyclooctene ring systems adopt nearly perfect boat conformations as determined from Cremer–Pople analysis. Both ring systems are fused to a fivemembered imide ring that is oriented *endo* to a bridgehead cyclopropyl ring. The crystal structure features C=O··· π interactions along with C–H···O hydrogen bonds.

1. Chemical context

The upper-level synthetic organic laboratory course at Grand Valley State University (GVSU) has exploited the chemistry of compound **a** for its ease of preparation (Kohler *et al.*, 1939; Kurtz & Johnson, 1989), readily interpretable ¹H, ¹³C, COSY and HSQC NMR spectra, and its reactivity with primary amines (Fig. 1). The resulting imide products happen to be quite crystalline and we have reported the structures of three of these compounds in this journal (Hulsman *et al.*, 2020; Bajko *et al.*, 2024). Anhydride **a** has been used as a scaffold for the preparation of many new compounds, with one in particular earning approval as a treatment for smallpox (Tecovirimat; Bailey *et al.*, 2007; Hughes 2019). We report here the crystal structure of a *bis*-imide derived from anhydride **a** where the [2.2.2]cyclooctene ring systems have been linked through a *meta*-xylenediamine core.

2. Structural commentary

The structure of compound I is shown in Fig. 2 along with the atom-numbering scheme. The *meta*-methylene-substituted

Figure 1 Reaction of anhydride (**a**) and *m*-xylenediamine to give compound **I**.

research communications

Table 1	
Hydrogen-bond geometry	√ (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C3A - H3A \cdots O2A^{i}$	1.00	2.53	3.3958 (17)	144
$C9A - H9A \cdots O2A^{i}$	1.00	2.51	3.3041 (17)	136
$C9-H9\cdots O1A^{ii}$	1.00	2.41	3.1985 (17)	135
$C7A - H7A \cdots O2A^{iii}$	0.95	2.52	3.1135 (18)	121

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, z; (ii) x, y - 1, z; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

benzene ring (C13-C18) displays two structurally identical, yet crystallographically unique, 4-azatetracyclo[5.3.2.0^{2.6}.0^{8,10}]dodec-11-ene-3,5-dione ring systems. The bicyclo[2.2.2]cyclooctene ring systems within each tetracycle feature C=C bonds with distances of 1.333 (2) and 1.330 (2) Å for C6–C7 and C6A–C7A, respectively. The cyclohexene rings (C3–C8 and C3A–C8A) both adopt a nearly perfect boat conformation with Cremer–Pople puckering parameters of 89.89 (10) and 90.82 (11)° for φ and 299.84 (10) and 298.70 (11)° for θ (where $\varphi = 90^{\circ}$ and $\theta = 0^{\circ}$ is an ideal boat; Cremer & Pople, 1975). The imide rings (N1/C1/C3/C4/C2 and N1A/C1A/C3A/C4A/C2A) are oriented *endo* relative to the bridgehead carbons C9/C10 and C9A/C10A. The tetracyclic ring systems are oriented in nearly opposite directions relative to the planar benzene ring with a N1–C12–C19–N1A torsion angle of 135.89 (10)°.

3. Supramolecular features

Dimers of compound I are held together through one C=O··· π interaction (Mooibroek *et al.*, 2008; Li *et al.*, 2019) and two C-H···O hydrogen bonds (Fig. 3; Sutor, 1962, 1963; Steiner, 1996). The C=O··· π interaction C1=O1 and the

Depiction of the C= $0 \cdots \pi$ interaction (orange, dotted line) and C-H···O hydrogen bonds (green, dashed lines) that form dimers of compound I in the solid state. This figure was drawn using a ball-and-stick model with standard CPK colors; only hydrogen atoms that are involved in a hydrogen bond are shown for clarity. Symmetry code: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, *z*.

centroid (*Cg*) of the imide N1A/C1A/C3A/C4A/C2A ring (symmetry code: $-x + \frac{3}{2}$, $y - \frac{1}{2}$, *z*) has an O···*Cg* distance of 2.9964 (12) Å with a C=O···*Cg* angle of 141.18 (9)°. The C-H···O hydrogen bonds are present between C3A(H3A), C9A(H9A) and O2A (symmetry code: $-x + \frac{3}{2}$, $y - \frac{1}{2}$, *z*, Table 1). Each carbonyl oxygen of the N1A/C1A/C3A/C4A/ C2A imide ring hosts an additional C-H···O hydrogen bond that links the dimers into sheets that lie in the *ab* plane (Figs. 4 and 5). These interactions are between atoms C9(H9) and O1A (symmetry code: x, y - 1, z) and C7A(H7A) and O2A (symmetry code: $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$).

Figure 2

The molecular structure of compound I along with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level using standard CPK colors.

Figure 4

The two additional intermolecular C-H···O hydrogen bonds (green, dashed lines) that are present in the crystal of compound I using a standard CPK colors and a ball-and-stick model. Only those hydrogen atoms are shown that are involved in a depicted hydrogen bond. Symmetry codes: (ii) x, y - 1, z; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

Figure 5

A packing diagram of the crystal of compound I viewed down the *b*-axis showing the supramolecular sheets formed *via* intermolecular C= $O \cdots \pi$ interactions (orange, dotted lines) and C- $H \cdots O$ hydrogen bonds (green, dashed lines). Drawn using a ball-and-stick model with standard CPK colors, only hydrogen atoms involved in an interaction are shown for clarity. The outline of one unit cell is drawn with a pink, dashed line.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.45, updates through June 2024; Groom *et al.*, 2016) for structures containing a tricyclo[2.2.2.1^{4,5}]cyclononene ring system resulted in 31 hits. We highlight here three compounds that we found structurally interesting. Structure BOTZIW features four of these tricycles appended to the pyrrole rings of a porphyrin–Pt^{II} complex (Okujima *et al.*, 2019). In TPCDDD, the tricyclic ring system of the title compound is incorporated into a stunning trichloropentacyclodiene structure (Mock *et al.*, 1972). Lastly, Kaftory (1978) crystallized a diadduct formed from two derivatives of the parent tricyclic ring system.

5. Synthesis and crystallization

The anhydride shown in Fig. 1 (205 mg, 1.08 mmol, Kohler *et al.*, 1939, Kurtz & Johnson, 1989) was dissolved in 2.0 mL of xylenes in a vial at ambient temperature, then added to a round-bottom flask equipped with a magnetic stir bar. In a separate vial at ambient temperature, 0.1 mL (0.76 mmol) of *m*-xylenediamine were dissolved in 1.0 mL of xylenes and then transferred dropwise to the round-bottom flask. A precipitate formed immediately. The reaction mixture was heated to reflux using an oil bath for 30 minutes, allowed to cool to room temperature and diluted with 20 mL of hexanes. After standing overnight, the solid was isolated using a Hirsch funnel and recrystallized from hot water. After a few days, orange-yellowish needles appeared in the flask and were isolated. A percentage yield was not determined for this

Crystal data	
Chemical formula	$C_{30}H_{28}N_2O_4$
Mr	480.54
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.26039 (13), 12.26667 (15), 33.0963 (3)
$V(Å^3)$	4571.51 (9)
Z	8
Radiation type	Cu <i>Kα</i>
$\mu (\text{mm}^{-1})$	0.75
Crystal size (mm)	$0.22 \times 0.10 \times 0.04$
Data collection	
Diffractometer	XtaLAB Synergy, Dualflex, HyPix
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Rigaku OD, 2024)
T_{\min}, T_{\max}	0.824, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	32235, 4946, 4324
R _{int}	0.045
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.639
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.117, 1.07
No. of reflections	4946
No. of parameters	325
H-atom treatment	H-atom parameters constrained

Computer programs: CrysAlis PRO (Rigaku OD, 2024), SHELXT (Sheldrick, 2015a), SHELXL2019/2 (Sheldrick, 2015b), CrystalMaker (Palmer, 2007) and OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015).

0.30, -0.21

reaction as the amount of product obtained was quite small. Crystals suitable for X-ray diffraction were grown by layering a roughly equal volume of water on top of a dilute sample of the product in DMSO- d_6 in an NMR tube and allowing the solution to sit for two weeks. LR-MS (ESI) m/z: $[M + H]^+$ calculated for $[C_{30}H_{28}N_2O_4H]^+$ 480.2; found, 480.8.

6. Refinement

 $\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$

Table 2

Experimental details.

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ for methylene, methine, aromatic and alkene groups.

Acknowledgements

We are grateful to GVSU's Weldon Fund for financial support of this work. We thank Dr Randy Winchester (GVSU) for sharing these experiments with the Fall 2024 CHM 480 course, Dr Stephanie Billinovich (GVSU) for help with instrumentation, and Brianna Gordon for her wisdom and support as a TA for this course.

References

Bailey, T. R., Rippin, S. R., Opsitnick, E., Burns, C. J., Pevear, D. C., Collett, M. S., Rhodes, G., Tohan, S., Huggins, J. W., Baker, R. O., Kern, E. R., Keith, K. A., Dai, D., Yang, G., Hruby, D. & Jordan, R. (2007). J. Med. Chem. 50, 1442–1444.

- Bajko, J. P., Staples, R. J. & Biros, S. M. (2024). Acta Cryst. E80, 1318– 1321.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hughes, D. L. (2019). Org. Process Res. Dev. 23, 1298-1307.
- Hulsman, A., Lorenzana, I., Schultz, T., Squires, B., Stenfors, B. A., Tolonen, M., Staples, R. J., Biros, S. M. & Winchester, W. R. (2020). *Acta Cryst.* E76, 1311–1315.
- Kaftory, M. (1978). Acta Cryst. B34, 306-308.
- Kohler, E. P., Tishler, M., Potter, H. & Thompson, H. (1939). J. Am. Chem. Soc. 61, 1057–1061.
- Kurtz, D. W. & Johnson, R. P. (1989). J. Chem. Educ. 66, 873-874.

- Li, P., Vik, E. C., Maier, J. M., Karki, I., Strickland, S. M. S., Umana, J. M., Smith, M. D., Pellechia, P. J. & Shimizu, K. D. (2019). J. Am. Chem. Soc. 141, 12513–12517.
- Mock, W. L., Sprecher, C. M., Stewart, R. F. & Northolt, M. G. (1972). J. Am. Chem. Soc. 94, 2015–2020.
- Mooibroek, T. J., Gamez, P. & Reedijk, J. (2008). *CrystEngComm*, **10**, 1501–1515.
- Okujima, T., Hashimoto, Y., Furuta, T., Yamanaka, R., Jin, G., Otsubo, S., Aramaki, S., Mori, S., Yamada, H., Uno, H. & Ono, N. (2019). Bull. Chem. Soc. Jpn, 92, 1370–1378.
- Palmer, D. (2007). Crystal Maker. CrystalMaker Software, Bicester, England.
- Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Steiner, T. (1996). Crystallogr. Rev. 6, 1-51.
- Sutor, D. J. (1962). Nature, 195, 68-69.
- Sutor, D. J. (1963). J. Chem. Soc. pp. 1105-1110.

Acta Cryst. (2025). E81, 425-428 [https://doi.org/10.1107/S2056989025003500]

Crystal structure of a bis-4-azatetracyclo[5.3.2.0^{2,6}.0^{8,10}]dodec-11-ene-3,5-dione compound

Christina Yu Jiang, Richard J. Staples and Shannon M. Biros

Computing details

4-({3-[(3,5-Dioxo-4-azatetracyclo[5.3.2.0^{2,6}.0^{8,10}]dodec-11-en-4-yl)methyl]phenyl}methyl)-4azatetracyclo[5.3.2.0^{2,6}.0^{8,10}]dodec-11-ene-3,5-dione

Crystal data

 $C_{30}H_{28}N_2O_4$ $M_r = 480.54$ Orthorhombic, *Pbca* a = 11.26039 (13) Å b = 12.26667 (15) Å c = 33.0963 (3) Å $V = 4571.51 (9) \text{ Å}^3$ Z = 8F(000) = 2032

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2024)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.117$ S = 1.074946 reflections 325 parameters 0 restraints $D_x = 1.396 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 15558 reflections $\theta = 2.7-79.2^{\circ}$ $\mu = 0.75 \text{ mm}^{-1}$ T = 100 KNeedle, colourless $0.22 \times 0.10 \times 0.04 \text{ mm}$

 $T_{\min} = 0.824, T_{\max} = 1.000$ 32235 measured reflections
4946 independent reflections
4324 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.045$ $\theta_{\text{max}} = 80.0^{\circ}, \theta_{\text{min}} = 2.7^{\circ}$ $h = -14 \rightarrow 14$ $k = -15 \rightarrow 15$ $l = -27 \rightarrow 42$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.056P)^2 + 1.9036P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.30$ e Å⁻³ $\Delta\rho_{min} = -0.21$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.65542 (9)	0.22161 (9)	0.35506 (3)	0.0280 (2)	
O2	0.64114 (9)	0.24129 (8)	0.49249 (3)	0.0270 (2)	
N1	0.66306 (10)	0.25121 (9)	0.42358 (3)	0.0214 (2)	
C1	0.62872 (12)	0.19453 (11)	0.38916 (4)	0.0214 (3)	
C2	0.62238 (12)	0.20430 (11)	0.45908 (4)	0.0213 (3)	
C3	0.55555 (12)	0.09689 (11)	0.40195 (4)	0.0209 (3)	
Н3	0.595702	0.028144	0.393166	0.025*	
C4	0.55262 (12)	0.10284 (10)	0.44859 (4)	0.0203 (3)	
H4	0.592615	0.037261	0.460293	0.024*	
C5	0.42197 (12)	0.10868 (11)	0.46364 (4)	0.0219 (3)	
Н5	0.417830	0.115687	0.493710	0.026*	
C6	0.36415 (12)	0.20413 (11)	0.44290 (4)	0.0239 (3)	
H6	0.328886	0.262805	0.457289	0.029*	
C7	0.36653 (12)	0.19948 (11)	0.40267 (4)	0.0248 (3)	
H7	0.333527	0.254937	0.386074	0.030*	
C8	0.42562 (12)	0.09943 (11)	0.38556 (4)	0.0228 (3)	
H8	0.423454	0.098893	0.355357	0.027*	
C9	0.36814 (12)	-0.00344 (11)	0.40349 (4)	0.0243 (3)	
H9	0.390834	-0.074758	0.391057	0.029*	
C10	0.36600 (12)	0.00170 (11)	0.44909 (4)	0.0236 (3)	
H10	0.387699	-0.066222	0.464081	0.028*	
C11	0.25107 (13)	0.00056 (12)	0.42566 (4)	0.0274 (3)	
H11A	0.204812	0.069108	0.424354	0.033*	
H11B	0.202722	-0.066814	0.426447	0.033*	
C12	0.73641 (12)	0.34996 (11)	0.42292 (4)	0.0240 (3)	
H12A	0.785149	0.350056	0.398026	0.029*	
H12B	0.791177	0.348634	0.446316	0.029*	
C13	0.66361 (12)	0.45373 (11)	0.42439 (4)	0.0223 (3)	
C14	0.61529 (12)	0.49699 (11)	0.38902 (4)	0.0226 (3)	
H14	0.628213	0.460844	0.364018	0.027*	
C15	0.54809 (12)	0.59283 (11)	0.38990 (4)	0.0227 (3)	
C16	0.53009 (13)	0.64554 (12)	0.42667 (4)	0.0263 (3)	
H16	0.485926	0.711479	0.427569	0.032*	
C17	0.57654 (14)	0.60192 (12)	0.46204 (4)	0.0294 (3)	
H17	0.562699	0.637477	0.487103	0.035*	
C18	0.64301 (13)	0.50677 (12)	0.46097 (4)	0.0263 (3)	
H18	0.674638	0.477605	0.485287	0.032*	
C19	0.49046 (12)	0.63590 (11)	0.35169 (4)	0.0243 (3)	
H19A	0.451709	0.574514	0.337436	0.029*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H19B	0.427710	0.688583	0.359291	0.029*
O1A	0.54311 (10)	0.86502 (8)	0.34502 (3)	0.0302 (2)
O2A	0.63097 (10)	0.53584 (8)	0.28983 (3)	0.0315 (2)
N1A	0.57312 (10)	0.68934 (9)	0.32389 (3)	0.0214 (2)
C1A	0.58996 (12)	0.80106 (11)	0.32221 (4)	0.0219 (3)
C2A	0.63556 (12)	0.63386 (11)	0.29434 (4)	0.0229 (3)
C3A	0.67160 (12)	0.82669 (11)	0.28732 (4)	0.0214 (3)
H3A	0.744287	0.865214	0.297186	0.026*
C4A	0.70497 (12)	0.71488 (11)	0.26934 (4)	0.0215 (3)
H4A	0.792121	0.701612	0.272446	0.026*
C5A	0.66956 (13)	0.71028 (11)	0.22382 (4)	0.0238 (3)
H5A	0.689249	0.638089	0.211481	0.029*
C6A	0.53899 (13)	0.73366 (12)	0.22192 (4)	0.0258 (3)
H6A	0.483456	0.684407	0.210359	0.031*
C7A	0.50724 (13)	0.82896 (12)	0.23773 (4)	0.0260 (3)
H7A	0.427000	0.852806	0.238485	0.031*
C8A	0.60774 (13)	0.89626 (11)	0.25435 (4)	0.0239 (3)
H8A	0.579303	0.967581	0.265335	0.029*
C9A	0.70274 (13)	0.91170 (12)	0.22165 (4)	0.0265 (3)
H9A	0.767960	0.964581	0.227680	0.032*
C10A	0.73880 (13)	0.80335 (12)	0.20376 (4)	0.0262 (3)
H10A	0.825524	0.791281	0.199034	0.031*
C11A	0.67816 (15)	0.88829 (12)	0.17785 (4)	0.0301 (3)
H11C	0.726822	0.926744	0.157413	0.036*
H11D	0.594763	0.874818	0.169802	0.036*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0300 (5)	0.0369 (6)	0.0171 (4)	-0.0039 (4)	0.0019 (4)	0.0026 (4)
O2	0.0357 (5)	0.0285 (5)	0.0168 (4)	-0.0029 (4)	-0.0039 (4)	-0.0007 (4)
N1	0.0236 (5)	0.0237 (5)	0.0169 (5)	-0.0009(4)	-0.0013 (4)	0.0019 (4)
C1	0.0208 (6)	0.0259 (6)	0.0174 (6)	0.0022 (5)	-0.0004(5)	0.0004 (5)
C2	0.0234 (6)	0.0227 (6)	0.0178 (6)	0.0024 (5)	-0.0014 (5)	0.0023 (5)
C3	0.0242 (6)	0.0227 (6)	0.0159 (6)	0.0011 (5)	0.0009 (5)	-0.0004 (4)
C4	0.0252 (6)	0.0207 (6)	0.0151 (5)	0.0014 (5)	-0.0009(5)	0.0017 (4)
C5	0.0271 (6)	0.0224 (6)	0.0161 (5)	0.0002 (5)	0.0024 (5)	0.0006 (5)
C6	0.0245 (6)	0.0217 (6)	0.0256 (7)	0.0019 (5)	0.0029 (5)	-0.0011 (5)
C7	0.0240 (6)	0.0249 (6)	0.0255 (6)	0.0018 (5)	-0.0015 (5)	0.0059 (5)
C8	0.0258 (6)	0.0278 (7)	0.0149 (5)	-0.0008(5)	-0.0005(5)	0.0005 (5)
C9	0.0270 (7)	0.0252 (6)	0.0208 (6)	-0.0026 (5)	-0.0003(5)	-0.0028 (5)
C10	0.0268 (7)	0.0241 (6)	0.0197 (6)	-0.0016 (5)	0.0011 (5)	0.0024 (5)
C11	0.0265 (7)	0.0298 (7)	0.0257 (6)	-0.0043(5)	0.0007 (5)	0.0008 (5)
C12	0.0240 (6)	0.0249 (7)	0.0230 (6)	-0.0027 (5)	-0.0015 (5)	0.0025 (5)
C13	0.0220 (6)	0.0227 (6)	0.0221 (6)	-0.0051 (5)	0.0011 (5)	0.0019 (5)
C14	0.0256 (6)	0.0243 (6)	0.0179 (6)	-0.0035 (5)	0.0021 (5)	0.0003 (5)
C15	0.0228 (6)	0.0245 (6)	0.0209 (6)	-0.0046 (5)	0.0025 (5)	0.0026 (5)
C16	0.0272 (7)	0.0242 (7)	0.0275 (7)	-0.0023 (5)	0.0035 (5)	-0.0022 (5)

C17	0.0350 (7)	0.0323 (7)	0.0208 (6)	-0.0054 (6)	0.0040 (5)	-0.0063 (5)
C18	0.0300 (7)	0.0296 (7)	0.0192 (6)	-0.0061 (6)	-0.0006 (5)	0.0013 (5)
C19	0.0233 (6)	0.0263 (6)	0.0234 (6)	-0.0015 (5)	0.0012 (5)	0.0042 (5)
O1A	0.0408 (6)	0.0263 (5)	0.0234 (5)	0.0027 (4)	0.0073 (4)	-0.0045 (4)
O2A	0.0453 (6)	0.0211 (5)	0.0281 (5)	0.0023 (4)	0.0044 (4)	-0.0010 (4)
N1A	0.0245 (5)	0.0213 (5)	0.0182 (5)	0.0002 (4)	0.0012 (4)	0.0006 (4)
C1A	0.0265 (6)	0.0218 (6)	0.0173 (6)	-0.0001 (5)	-0.0032 (5)	-0.0007 (5)
C2A	0.0265 (6)	0.0238 (6)	0.0185 (6)	0.0031 (5)	-0.0024 (5)	-0.0005 (5)
C3A	0.0255 (6)	0.0216 (6)	0.0172 (6)	-0.0013 (5)	-0.0006 (5)	-0.0015 (5)
C4A	0.0227 (6)	0.0235 (6)	0.0182 (6)	0.0021 (5)	-0.0001 (5)	0.0001 (5)
C5A	0.0302 (7)	0.0237 (6)	0.0174 (6)	0.0018 (5)	-0.0004 (5)	-0.0019 (5)
C6A	0.0285 (7)	0.0303 (7)	0.0186 (6)	-0.0033 (5)	-0.0040 (5)	0.0007 (5)
C7A	0.0255 (7)	0.0325 (7)	0.0200 (6)	0.0040 (6)	-0.0016 (5)	0.0037 (5)
C8A	0.0303 (7)	0.0215 (6)	0.0199 (6)	0.0025 (5)	-0.0001 (5)	0.0012 (5)
C9A	0.0331 (7)	0.0271 (7)	0.0193 (6)	-0.0029 (6)	0.0003 (5)	0.0024 (5)
C10A	0.0289 (7)	0.0310 (7)	0.0185 (6)	-0.0001 (6)	0.0013 (5)	0.0004 (5)
C11A	0.0397 (8)	0.0312 (7)	0.0195 (6)	-0.0004 (6)	0.0022 (6)	0.0035 (5)

Geometric parameters (Å, °)

01—C1	1.2142 (16)	C15—C19	1.5162 (18)
O2—C2	1.2137 (16)	С16—Н16	0.9500
N1—C1	1.3895 (17)	C16—C17	1.389 (2)
N1—C2	1.3861 (16)	С17—Н17	0.9500
N1—C12	1.4662 (17)	C17—C18	1.387 (2)
C1—C3	1.5141 (18)	C18—H18	0.9500
C2—C4	1.5122 (18)	С19—Н19А	0.9900
С3—Н3	1.0000	С19—Н19В	0.9900
C3—C4	1.5458 (17)	C19—N1A	1.4640 (17)
C3—C8	1.5605 (18)	O1A—C1A	1.2098 (17)
C4—H4	1.0000	O2A—C2A	1.2127 (17)
C4—C5	1.5548 (18)	N1A—C1A	1.3845 (17)
С5—Н5	1.0000	N1A—C2A	1.3834 (17)
C5—C6	1.5052 (18)	C1A—C3A	1.5093 (18)
C5—C10	1.5334 (18)	C2A—C4A	1.5110 (19)
С6—Н6	0.9500	СЗА—НЗА	1.0000
C6—C7	1.333 (2)	C3A—C4A	1.5415 (18)
С7—Н7	0.9500	C3A—C8A	1.5606 (18)
C7—C8	1.5065 (19)	C4A—H4A	1.0000
С8—Н8	1.0000	C4A—C5A	1.5596 (17)
C8—C9	1.5373 (19)	C5A—H5A	1.0000
С9—Н9	1.0000	C5A—C6A	1.499 (2)
C9—C10	1.5108 (18)	C5A—C10A	1.5336 (19)
C9—C11	1.5095 (19)	С6А—Н6А	0.9500
C10—H10	1.0000	C6A—C7A	1.330 (2)
C10—C11	1.509 (2)	C7A—H7A	0.9500
C11—H11A	0.9900	C7A—C8A	1.505 (2)
C11—H11B	0.9900	C8A—H8A	1.0000

C12—H12A	0.9900	C8A—C9A	1.5335 (19)
C12—H12B	0.9900	С9А—Н9А	1.0000
C12—C13	1.5149 (19)	C9A—C10A	1.511 (2)
C13—C14	1.3958 (18)	C9A—C11A	1.5035 (18)
C13—C18	1 3938 (19)	C10A - H10A	1 0000
C14—H14	0.9500	C10A - C11A	1 512 (2)
C14-C15	1 3984 (19)	C11A—H11C	0.9900
C15-C16	1 3930 (19)	C11A—H11D	0.9900
	1.5950 (19)		0.9900
C1 - N1 - C12	123 91 (11)	C15—C16—H16	119 9
C2-N1-C1	113 28 (11)	C17—C16—C15	120 18 (14)
C_2 N1-C12	122.80 (11)	C17—C16—H16	119.9
01	123.80 (13)	C16—C17—H17	119.8
01-C1-C3	127.65(12)	C18 - C17 - C16	120 38 (13)
N1-C1-C3	108.55(10)	C18 - C17 - H17	119.8
$\Omega^2 - \Omega^2 - N1$	$124\ 02\ (12)$	C13 - C18 - H18	119.8
02 - 02 - 04	127.39(12)	C17 - C18 - C13	120.32 (13)
N1 - C2 - C4	108 59 (11)	C17 - C18 - H18	110.8
C1 - C3 - H3	100.09 (11)	C_{15} C_{10} H_{104}	108.7
C1 - C3 - C4	104.68 (10)	C_{15} C_{19} H_{19R}	108.7
C1 - C3 - C4	113 41 (10)	H19A - C19 - H19B	107.6
C4-C3-H3	100.0	N1A - C19 - C15	114.09(11)
C4-C3-C8	109.03 (10)	N1A - C19 - H19A	108 7
C8-C3-H3	109.05 (10)	N1A - C19 - H19B	108.7
$C_2 - C_4 - C_3$	104.89 (10)	C14 N14 $C19$	100.7 123.74(11)
$C_2 - C_4 - H_4$	109.8	C_{1}^{2} C_{1	123.74(11) 123.18(11)
$C_2 - C_4 - C_5$	112 34 (10)	C_{2A} N1A C_{1A}	123.10(11) 112.90(11)
$C_2 - C_4 - H_4$	109.8	O1A - C1A - N1A	12.90 (11)
C_{3} C_{4} C_{5}	110.02 (10)	01A - C1A - C3A	125.67(15) 127.44(12)
$C_{2} = C_{4} = C_{2}$	109.8	N1A - C1A - C3A	127.44(12) 108.67(11)
C4—C5—H5	111.5	$\Omega^2 A = C^2 A = N^1 A$	100.07(11) 123.57(13)
C_{6} C_{5} C_{4}	107 40 (10)	O2A - C2A - C4A	127.37(12)
C6-C5-H5	111 5	N1A - C2A - C4A	127.37(12) 109.05(11)
C6-C5-C10	110.16(11)	C1A - C3A - H3A	110.3
C10-C5-C4	104 41 (10)	C1A - C3A - C4A	104.98(10)
C10-C5-H5	111 5	C1A - C3A - C8A	111 61 (11)
C5—C6—H6	122.8	C4A - C3A - H3A	110.3
C7 - C6 - C5	114 43 (12)	C4A - C3A - C8A	109 21 (10)
C7—C6—H6	122.8	C8A - C3A - H3A	110.3
C6-C7-H7	122.6	$C^2A - C^4A - C^3A$	104.35(10)
C6-C7-C8	114 78 (12)	$C^2A - C^4A - H^4A$	110.1
C8—C7—H7	122.6	C2A - C4A - C5A	111 89 (11)
C3—C8—H8	111.7	C3A - C4A - H4A	110.1
C7—C8—C3	107.44 (11)	C3A - C4A - C5A	110.04 (10)
С7—С8—Н8	111.7	C5A—C4A—H4A	110.1
C7—C8—C9	109.73 (11)	C4A—C5A—H5A	111.7
C9—C8—C3	104.14 (10)	C6A—C5A—C4A	106.52 (11)
С9—С8—Н8	111.7	С6А—С5А—Н5А	111.7

С8—С9—Н9	116.8	C6A—C5A—C10A	109.76 (11)
C10—C9—C8	110.98 (11)	C10A—C5A—C4A	105.14 (11)
С10—С9—Н9	116.8	C10A—C5A—H5A	111.7
C11—C9—C8	121.91 (12)	С5А—С6А—Н6А	122.7
С11—С9—Н9	116.8	C7A—C6A—C5A	114.54 (13)
C11—C9—C10	59.94 (9)	С7А—С6А—Н6А	122.7
С5—С10—Н10	117.2	С6А—С7А—Н7А	122.5
C9—C10—C5	110.05 (11)	C6A—C7A—C8A	115.08 (13)
С9—С10—Н10	117.2	С8А—С7А—Н7А	122.5
C11—C10—C5	121.46 (12)	СЗА—С8А—Н8А	111.8
C11—C10—C9	59.99 (9)	C7A—C8A—C3A	107.58 (11)
C11—C10—H10	117.2	С7А—С8А—Н8А	111.8
С9—С11—Н11А	117.8	C7A—C8A—C9A	109.53 (11)
C9—C11—H11B	117.8	C9A—C8A—C3A	103.86 (11)
C10—C11—C9	60.07 (9)	С9А—С8А—Н8А	111.8
C10—C11—H11A	117.8	С8А—С9А—Н9А	116.8
C10—C11—H11B	117.8	C10A—C9A—C8A	110.82 (11)
H11A—C11—H11B	114.9	С10А—С9А—Н9А	116.8
N1—C12—H12A	109.0	C11A—C9A—C8A	121.91 (13)
N1—C12—H12B	109.0	С11А—С9А—Н9А	116.8
N1—C12—C13	112.89 (11)	C11A—C9A—C10A	60.24 (9)
H12A—C12—H12B	107.8	C5A-C10A-H10A	117.0
C13—C12—H12A	109.0	C9A—C10A—C5A	110.41 (11)
C13—C12—H12B	109.0	C9A—C10A—H10A	117.0
C14—C13—C12	120.23 (12)	C9A—C10A—C11A	59.65 (9)
C18—C13—C12	120.68 (12)	C11A—C10A—C5A	121.92 (13)
C18—C13—C14	119.09 (13)	C11A—C10A—H10A	117.0
C13—C14—H14	119.6	C9A-C11A-C10A	60.11 (9)
C13—C14—C15	120.87 (12)	C9A—C11A—H11C	117.8
C15—C14—H14	119.6	C9A—C11A—H11D	117.8
C14—C15—C19	120.48 (12)	C10A—C11A—H11C	117.8
C16—C15—C14	119.15 (12)	C10A—C11A—H11D	117.8
C16—C15—C19	120.31 (13)	H11C—C11A—H11D	114.9
O1—C1—C3—C4	179.09 (13)	C14—C15—C16—C17	-1.2 (2)
O1—C1—C3—C8	-62.18 (18)	C14—C15—C19—N1A	-76.21 (16)
O2—C2—C4—C3	178.79 (13)	C15—C16—C17—C18	1.2 (2)
O2—C2—C4—C5	59.30 (17)	C15—C19—N1A—C1A	-97.03 (15)
N1—C1—C3—C4	-0.66 (14)	C15—C19—N1A—C2A	88.29 (15)
N1—C1—C3—C8	118.07 (11)	C16—C15—C19—N1A	106.82 (14)
N1—C2—C4—C3	-0.93 (14)	C16—C17—C18—C13	-0.2 (2)
N1—C2—C4—C5	-120.42 (11)	C18—C13—C14—C15	0.7 (2)
N1—C12—C13—C14	-83.59 (15)	C19—C15—C16—C17	175.77 (13)
N1—C12—C13—C18	95.83 (15)	C19—N1A—C1A—O1A	4.3 (2)
C1—N1—C2—O2	-179.17 (13)	C19—N1A—C1A—C3A	-174.23 (11)
C1—N1—C2—C4	0.56 (15)	C19—N1A—C2A—O2A	-2.9 (2)
C1—N1—C12—C13	95.96 (15)	C19—N1A—C2A—C4A	175.83 (11)
C1—C3—C4—C2	0.94 (13)	O1A—C1A—C3A—C4A	179.52 (13)
	< - /		()

C1—C3—C4—C5	121.97 (11)	O1A—C1A—C3A—C8A	-62.29 (18)
C1—C3—C8—C7	-61.47 (13)	O2A—C2A—C4A—C3A	176.86 (14)
C1—C3—C8—C9	-177.84 (10)	O2A—C2A—C4A—C5A	57.92 (19)
C2-N1-C1-01	-179.68 (13)	N1A—C1A—C3A—C4A	-2.04 (14)
C2—N1—C1—C3	0.08 (15)	N1A—C1A—C3A—C8A	116.15 (12)
C2—N1—C12—C13	-84.97 (15)	N1A—C2A—C4A—C3A	-1.85 (14)
C2—C4—C5—C6	61.26 (13)	N1A—C2A—C4A—C5A	-120.80 (12)
C2-C4-C5-C10	178.23 (10)	C1A—N1A—C2A—O2A	-178.14 (13)
C3—C4—C5—C6	-55.19 (13)	C1A—N1A—C2A—C4A	0.63 (15)
C3-C4-C5-C10	61.77 (12)	C1A—C3A—C4A—C2A	2.29 (13)
C3—C8—C9—C10	62.45 (13)	C1A—C3A—C4A—C5A	122.48 (11)
C3—C8—C9—C11	129.29 (12)	C1A—C3A—C8A—C7A	-62.90 (14)
C4—C3—C8—C7	54.72 (13)	C1A—C3A—C8A—C9A	-178.96 (11)
C4—C3—C8—C9	-61.65 (12)	C2A—N1A—C1A—O1A	179.45 (13)
C4—C5—C6—C7	57.67 (15)	C2A—N1A—C1A—C3A	0.93 (15)
C4—C5—C10—C9	-62.34 (13)	C2A—C4A—C5A—C6A	58.52 (14)
C4—C5—C10—C11	-128.70 (12)	C2A—C4A—C5A—C10A	174.98 (11)
C5—C6—C7—C8	0.46 (18)	C3A—C4A—C5A—C6A	-57.00 (14)
C5—C10—C11—C9	96.36 (13)	C3A—C4A—C5A—C10A	59.46 (14)
C6—C5—C10—C9	52.70 (14)	C3A—C8A—C9A—C10A	62.70 (14)
C6-C5-C10-C11	-13.66 (16)	C3A—C8A—C9A—C11A	129.81 (13)
C6—C7—C8—C3	-58.46 (15)	C4A—C3A—C8A—C7A	52.73 (14)
C6—C7—C8—C9	54.16 (16)	C4A—C3A—C8A—C9A	-63.33 (13)
C7—C8—C9—C10	-52.31 (14)	C4A—C5A—C6A—C7A	58.06 (15)
C7—C8—C9—C11	14.54 (17)	C4A—C5A—C10A—C9A	-61.42 (14)
C8—C3—C4—C2	-120.71 (11)	C4A—C5A—C10A—C11A	-127.63 (13)
C8—C3—C4—C5	0.32 (14)	C5A—C6A—C7A—C8A	0.41 (17)
C8—C9—C10—C5	0.10 (15)	C5A—C10A—C11A—C9A	96.39 (14)
C8—C9—C10—C11	115.61 (13)	C6A—C5A—C10A—C9A	52.79 (14)
C8—C9—C11—C10	-97.29 (13)	C6A—C5A—C10A—C11A	-13.42 (17)
C10—C5—C6—C7	-55.47 (16)	C6A—C7A—C8A—C3A	-58.00 (15)
C11—C9—C10—C5	-115.51 (13)	C6A—C7A—C8A—C9A	54.27 (15)
C12—N1—C1—O1	-0.5 (2)	C7A—C8A—C9A—C10A	-51.98 (15)
C12—N1—C1—C3	179.24 (12)	C7A—C8A—C9A—C11A	15.13 (18)
C12—N1—C2—O2	1.7 (2)	C8A—C3A—C4A—C2A	-117.51 (11)
C12—N1—C2—C4	-178.61 (11)	C8A—C3A—C4A—C5A	2.69 (15)
C12—C13—C14—C15	-179.88 (12)	C8A—C9A—C10A—C5A	-0.12 (16)
C12—C13—C18—C17	179.82 (13)	C8A—C9A—C10A—C11A	115.72 (14)
C13—C14—C15—C16	0.3 (2)	C8A—C9A—C11A—C10A	-97.25 (15)
C13—C14—C15—C19	-176.71 (12)	C10A—C5A—C6A—C7A	-55.27 (15)
C14—C13—C18—C17	-0.8 (2)	C11A—C9A—C10A—C5A	-115.84 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
$C3A$ — $H3A$ ···O2 A^{i}	1.00	2.53	3.3958 (17)	144
$C9A$ — $H9A$ ···O2 A^{i}	1.00	2.51	3.3041 (17)	136

			supporting	supporting information	
C9—H9…O1 <i>A</i> ⁱⁱ	1.00	2.41	3.1985 (17)	135	
C7 <i>A</i> —H7 <i>A</i> ···O2 <i>A</i> ⁱⁱⁱ	0.95	2.52	3.1135 (18)	121	

Symmetry codes: (i) -*x*+3/2, *y*+1/2, *z*; (ii) *x*, *y*-1, *z*; (iii) -*x*+1, *y*+1/2, -*z*+1/2.