

Received 17 March 2025 Accepted 15 April 2025

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; hydantoin; alkylation; Hirshfeld surface analysis.

CCDC reference: 2444171

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Abderrazzak El Moutaouakil Ala Allah,^a Chiara Massera,^b Walid Guerrab,^a Abdulsalam Alsubari,^c* Joel T. Mague^d and Youssef Ramli^a*

^aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, ^bDipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A 43124 Parma, Italy, ^cLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and ^dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma

The new phenytoin analogue 5,5-diphenyl-3-(2-propyn-1-yl)imidazolidine-2,4dione, $C_{18}H_{14}N_2O_2$ (3), was obtained through an alkylation reaction with propargyl bromide *via* the phase-transfer catalysis method, and its structure was determined *via* single-crystal X-ray diffraction analysis. The asymmetric unit of 3 consists of two independent molecules differing mainly in the orientation of the propynyl group. Each molecule forms an inversion dimer through pairs of N2-H2···O2 hydrogen bonds. The crystal structure is further consolidated by C-H···O and C-H··· π interactions. The contributions of the different interactions towards the crystal packing were further analysed using Hirshfeld surface and fingerprint plots, showing that the largest contribution comes from the H···H contacts (45%).

1. Chemical context

Hydantoin, also known as glycolylurea or 2,4-imidazolidinedione, is a saturated heterocyclic compound derived from imidazole. Phenytoin, 5,5-diphenylimidazolidine-2,4-dione, is a molecule belonging to the hydantoin group, which is used in pharmacy mainly as an antiepileptic (Giunchi et al., 2019; El Moutaouakil Ala Allah et al., 2024a). The main site of action appears to be the motor cortex, where it inhibits the spread of seizure activity. Phenytoin is indicated for the control of grand mal and psychomotor seizures (Guerrab et al., 2022a). It is also applicable for various diseases, as it has antiarrhythmic (Handzlik et al., 2012), anti-HIV (Vamecq et al., 1998), cytotoxic (Guerrab et al., 2023a), antiproliferative (Aboeldahab et al., 2018) and antibacterial effects (El Moutaouakil Ala Allah et al., 2024b). Various methods for synthesizing hydantoins have been reported, including the reaction of benzyls with urea in an ethanolic solution of potassium or sodium hydroxide (Guerrab et al., 2022b, 2023b; Allah et al., 2024; El Moutaouakil Ala Allah et al., 2023). Moreover, alkylationbased chemical modifications of phenytoin are seen to strengthen and expand its biological activity (Guerrab et al., 2020a). Some analogs have also been synthesized and evaluated for their industrial properties (e.g. Ettahiri et al., 2024). Our interest in hydantoins results from their simple synthesis and the ease with which X-ray quality crystals can be grown. In this context, we present in this study a new phenytoin obtained through an alkylation reaction with propargyl bromide via the phase-transfer catalysis method. This paper presents the crystal structure of novel phenytoin analogue 3. A

Hirshfeld surface analysis was performed to analyze the intermolecular interactions.

Overlay of molecules A (red) and B (blue) present in the asymmetric unit of the title compound.

2. Structural commentary

The asymmetric unit consists of two independent molecules (A and B) differing modestly in the rotational orientations of the phenyl rings and most obviously in the orientation of the propynyl group (Fig. 1). Thus the C2A - N1A - C4A - C41Atorsion angle is $-80.1 (2)^{\circ}$, while C2B-N1B-C4B-C41B is $-68.4 (2)^{\circ}$. The overlay of molecule A (red) and molecule B (blue) is shown in Fig. 2; the r.m.s. deviation for non-H atoms is 0.325 Å. As in many related molecules, the dihedral angles between the mean planes of the five-membered ring and those of the phenyl rings is larger than 50° . In molecule A, these are 53.58 (8) and 56.68 (9)° while in molecule *B*, they are 56.81 (8) and 74.26 $(9)^{\circ}$, another indication of the different conformations of the two independent molecules. Bond lengths and interbond angles are as expected for this type of compound. The five-membered rings C1A-C3A/N1A/N2A (ring A) and C1B-C3B/N1B/N2B (ring B) are both essentially planar, with r.m.s. deviations of 0.010 and 0.044 and Å, respectively. For ring A, atom N1A shows the largest deviation [0.009 (1) Å],

Figure 1

The asymmetric unit with labeling scheme and 50% probability ellipsoids. The C-H···O hydrogen bond is depicted by a dashed line.

while atoms O1A and O2A deviate by -0.035 (1) and 0.028 (1) Å from the mean plane. For ring *B*, the largest deviation of -0.038 (2) Å is shown by atom C2*B*, while atoms O1*B* and O2*B* deviate -0.097 (1) and -0.047 (1) Å from the mean plane.

3. Supramolecular features

In the crystal, each independent molecule forms an inversion dimer through pairs of N2–H2···O2 (A or B) hydrogen bonds (Table 1). For molecule A, these dimers are connected into chains extending along the b-axis direction by inversion-related C4A–H4AA···O1A hydrogen bonds (Table 1 and Fig. 3). The dimers of molecule B are linked to the above-mentioned chains by C15A–H15A···O1B hydrogen bonds and C8B–H8B···Cg2 interactions (Table 1 and Fig. 3). These supramolecular aggregates are in turn connected by C15B–H15B···Cg3 interactions (Table 1). Cg2 and Cg3 are the centroids of the C5A–C10A and C11A–C16A benzene rings, respectively.

Packing viewed along the *a*-axis direction with $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds depicted, respectively, by violet and black dashed lines. The $C-H\cdots \pi$ (ring) interactions are depicted by green dashed lines and non-interacting hydrogen atoms are omitted for clarity.

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg2 and Cg3 are the centroids of the C5A–C10A and C11A–C16A benzene rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N2A - H2A \cdots O2A^{i}$	0.88 (2)	1.99 (2)	2.855 (2)	167 (2)
$N2B - H2BB \cdot \cdot \cdot O2B^{ii}$	0.89 (2)	1.99 (2)	2.847 (1)	163 (2)
$C4A - H4AA \cdots O1A^{iii}$	0.99	2.31	3.253 (2)	160
$C15A - H15A \cdots O1B$	0.95	2.44	3.332 (2)	156
$C8B - H8B \cdot \cdot \cdot Cg2^{i}$	0.95	2.88	3.713 (2)	147
$C15B - H15B \cdot \cdot \cdot Cg3^{iv}$	0.95	2.87	3.742 (3)	153
Symmetry codes: (i)	-r + 1 - v -	+1 <i>−7</i> ; (ii)	-x + 1 - y	-7 ± 1 (iii)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y, -z + 1; (iii) -x + 1, -y + 2, -z; (iv) -x + 2, -y + 1, -z + 1.

4. Database survey

A search of the Cambridge Structural Database (CSD, 2023.3.1; Groom *et al.*, 2016) with the fragment shown in Fig. 4 (R = C) yielded 25 structures, of which 19 were deemed closest to the title molecule, since all of the substituents, R, were mainly hydrocarbon groups. These are listed in Table 2 from which it is apparent that the dihedral angles between the mean planes of the two phenyl groups and that of the five-membered ring to which they are attached range from 51.23 (6)° (WUGCEJ) to as large as 83.89 (16)° (YOFMUE). The two angles may also be nearly equal as in FEHPUG or differ by as much as 31.81° as in WUGCEJ. The range of dihedral angles and the difference between them in a particular molecule is likely due to packing considerations, but there does not appear to be a simple correlation with the space group or the size of the substituent R.

5. Hirshfeld surface analysis

CrystalExplorer (Spackman *et al.*, 2021) was used to perform the Hirshfeld surface (HS) analysis. A full description of the procedures and the interpretation of the results obtained has been published (Tan *et al.*, 2019). Fig. 5 presents the d_{norm} surface for molecule A, together with several near neighbors

Table 2

Dihedral angles (°) between the phenyl rings and the five-membered ring for related molecules.

R	Refcode	Dihedral angles	Reference
Me	PEPDUM	59.17 (6), 53.21 (6)	Guerrab et al. (2017a)
Et	FEHPUG	64.03 (5), 63.04 (5)	Guerrab et al. (2017b)
2-bromoethyl	NIBMOE	63.60 (16), 76.45 (16)	Guerrab et al. (2023a)
allyl	BUCDEL	62.07 (13), 64.55 (12)	Guerrab et al. (2020a)
<i>n</i> -propyl	WEMQUD	66.09 (8), 67.12 (8); 64.48 (8), 71.25 (8)	Guerrab et al. (2017c)
<i>n</i> -propyl	WEMQUD01	64.6 (8), 69.3 (8)	Trišović et al. (2019)
<i>i</i> -propyl	YOFMOY	56.86 (11), 79.79 (11)	Trišović et al. (2019)
cyclopropyl	YOFMUE	59.52 (15), 83.89 (16)	Trišović et al., 2019)
<i>i</i> -butyl	QENBET	50.08 (6), 66.31 (5)	Guerrab et al. (2018a)
s-butyl	YEDYOZ	68.42 (5), 73.04 (5)	Guerrab et al. (2022b)
t-butyl	YOFNAL	66.8 (2), 73.8 (2)	Trišović et al. (2019)
<i>n</i> -pentyl	YOFNEP	63.41 (16), 75.12 (16)	Trišović et al. (2019)
<i>n</i> -hexyl	GEMSOJ	63.6 (8), 70.4 (8)	Guerrab et al. (2017d)
n-octyl	QENBOD	69.71 (12), 71.80 (12); 71.24 (11), 67.85 (12)	Guerrab et al. (2018b)
<i>n</i> -nonyl	QAGPAT	76.0 (8), 63.5 (8)	Guerrab et al. (2020b)
n-decyl	PAJMAS	54.03 (7), 60.67 (7)	Guerrab et al. (2021)
benzyl	MESSAH	71.65 (6), 71.62 (6); 76.38 (6), 70.22 (6)	Guerrab et al. (2018c)
phenyl	WUGCEJ	51.23 (6), 83.04 (6)	Berntsen et al. (2020)
<i>m</i> -tolyl	WUGCIN	67.28 (8), 65.51 (8)	Berntsen et al. (2020)

Figure 4

The search fragment used for the database search.

consisting of both molecules A and B. A portion of the chain of dimers formed by the A molecules can be seen in the center of the figure, while at the bottom of the surface the N-H···O hydrogen bonds are shown as two intense red spots. The lighter red spot at the lower right corresponds to the C-H···O hydrogen bond that links molecules A and B. Fig. 6 shows the 2-D fingerprint plots for all intermolecular interactions (a) and those specifically representing $H \cdots H$ (b), $C \cdots H/H \cdots C$ (c) and $O \cdots H/H \cdots O$ (d) interactions. The largest contribution to the intermolecular interactions comes from the $H \cdot \cdot H$ contacts (45%), which is consistent with the periphery of the molecule being largely hydrogen in nature and can be attributed to van der Waals contacts. The $C \cdot \cdot \cdot H/$ $H \cdot \cdot \cdot C$ contacts contribute 32.1% and appear as a pair of blunt peaks at $d_e + d_i \simeq 3.2$ Å. These can be primarily attributed to the C-H··· π (ring) interactions. The last significant contribution is from the $O \cdots H/H \cdots O$ interactions (17.9%) which appear as a pair of sharp spikes at $d_{\rm e} + d_{\rm i} \simeq 2.2$ Å. These represent the N-H···O and the C-H···O hydrogen bonds, respectively. All other intermolecular contacts, e.g. N···H/ $H \cdots N, C \cdots N, O \cdots C, etc.$, contribute less than 2% to the total. The HS surface for molecule B is virtually identical to that for

Figure 5

The d_{norm} surface for molecule A with nearest neighbor molecules A and B. The intermolecular hydrogen bonds are depicted by red dashed lines.

molecule A as are the 2-D fingerprint plots. The only difference is in the percentage contribution to the overall intermolecular interactions. For molecule B these are 40.3% for

Figure 6

Two-dimensional fingerprint plots showing all intermolecular interactions (*a*) and those showing just $H \cdots H$ contacts (*b*), $C \cdots H/H \cdots C$ contacts (*c*) and $O \cdots H/H \cdots O$ contacts (*d*).

Figure 7 Reaction scheme for the formation of the title compound **3**.

 $H \cdots H$ contacts, 34.7% for $C \cdots H/H \cdots C$ contacts and 18.8% for $O \cdots H/H \cdots O$ contacts. Again, other contacts are less than 2% each.

6. Synthesis and crystallization

The reaction scheme for the synthesis of the title compound is shown in Fig. 7. To a solution of phenytoin 1 (0.5 g, 2 mmol) in DMF (10 mL), in the presence of K₂CO₃ (2.2 mmol), propargyl bromide 2 (2.2 mmol) was added dropwise along with a catalytic amount of BTBA (benzyl tributyl ammonium bromide). The mixture was stirred at room temperature for 2 h. After filtration of the salts, the solvent was evaporated, and the resulting residue was purified by recrystallization in ethanol, yielding colorless crystals of **3**.

Yield = 96%, **m.p.** = 408–410 K. **FT-IR** (ATR, cm⁻¹): 3375 (CH propargyl), 3060–3080, (CH aromatic), 1765 (C=O); ¹**H NMR** (500 MHz, DMSO-*d*₆): δ ppm 3.22 (*t*, 1H, CH propargyl), 4,22 (*s*, 2H, N–CH₂), 7.03–7.42 (*m*, 10, Ar–H), 9.78 (*s*, 1H, NH); ¹³C **NMR**: 28.01 (N–CH₂); 74.40 (CH propargyl); 69.71 (C–2Ph); 74.40 (C_q propargyl); 127.25, 128.00, 128.58, 140.15 (C–Ar); 154.57 (C=O); 172.73 (C=O). **HRMS (ESI)**: calculated for C₁₈H₁₄N₂O₂ [*M* + H]⁺ 291.1055; found 291.1122.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The carbon-bound H atoms were placed in calculated positions and refined isotropically using the riding model, with C—H distances ranging from 0.95 to 0.99 Å and $U_{iso}(H)$ set to 1.2–1.5 $U_{eq}(C)$. The H atoms H2A and H2B of the two imidazole rings were found in a difference-Fourier map and refined freely.

Acknowledgements

CM would like to acknowledge the COMP-*R* Initiatives, funded by the "Departments of Excellence" program of the Italian Ministry for University and Research (MUR, 2023– 2027). YR is thankful to the National Center for Scientific and Technical Research of Morocco (CNRST) for its continuous support. The contributions of the authors are as follows: conceptualization, YR; methodology, AA; investigation, AEMAA and WG; writing (original draft), AEMAA; writing (review and editing of the manuscript), YR; formal analysis, JTM and CM; supervision, YR; crystal structure determination, CM.

References

- Aboeldahab, A. M. A., Beshr, E. A. M., Shoman, M. E., Rabea, S. M. & Aly, O. M. (2018). Eur. J. Med. Chem. 146, 79-92.
- Akrad, R., Guerrab, W., Lazrak, F., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2018c). IUCrData, 3, x180934.
- Allah, A. E. M. A., Temel, E., Guerrab, W., Nchioua, I., Mague, J. T., Talbaoui, A., Alzahrani, A. Y. A. & Ramli, Y. (2024). J. Mol. Struct. 1312, 138572.
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3 and SAINT. Bruker AXS, Madison, Wisconsin, USA.
- El Moutaouakil Ala Allah, A., Guerrab, W., Alsubari, A., Mague, J. T. & Ramli, Y. (2023). IUCrData, 8, x230208.
- El Moutaouakil Ala Allah, A., Guerrab, W., Maatallah, M., Mague, J. T., Talbaoui, A., Alzahrani, A. Y. A. & Ramli, Y. (2024a). J. Mol. Struct. 1310, 138324.
- El Moutaouakil Ala Allah, A., Said, M. A., Al-Kaff, N. S., Mague, J. T., Demirtaş, G. & Ramli, Y. (2024b). J. Mol. Struct. 1318, 139430.
- Ettahiri, W., El Moutaouakil Ala Allah, A., Lazrak, J., Safir, E. H., Yadav, K. K., Hammouti, B., Obaidullah, A. J., Rais, Z., Ramli, Y. & Taleb, M. (2024). J. Ind. Eng. Chem. 140, 631-646.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Giunchi, A., Rivalta, A., Bedoya-Martínez, N., Schrode, B., Braun, D. E., Werzer, O., Venuti, E. & Della Valle, R. G. (2019). Cryst. Growth Des. 19, 6067-6073.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.
- Guerrab, W., Akachar, J., Jemli, M. E., Abudunia, A.-M., Ouaabou, R., Alaoui, K., Ibrahimi, A. & Ramli, Y. (2023b). J. Biomol. Struct. Dyn. 41, 4592-4600.
- Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017a). IUCrData, 2, x171534.
- Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017b). IUCrData, 2, x171591.
- Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017d). IUCrData, 2, x171693.
- Guerrab, W., El Jemli, M., Akachar, J., Demirtas, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2021). J. Biomol. Struct. Dyn. 40, 8765-8782.
- Guerrab, W., El Jemli, M., Akachar, J., Demirtas, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2022a). J. Biomol. Struct. Dyn. 40, 8765-8782.
- Guerrab, W., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T. & Ramli, Y. (2022b). IUCrData, 7, x220598.
- Guerrab, W., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T. & Ramli, Y. (2023a). IUCrData, 8, x230060.
- Guerrab, W., Lgaz, H., Kansiz, S., Mague, J. T., Dege, N., Ansar, M., Marzouki, R., Taoufik, J., Ali, I. H., Chung, I. & Ramli, Y. (2020a). J. Mol. Struct. 1205, 127630.
- Guerrab, W., Mague, J. T., Akrad, R., Ansar, M., Taoufik, J. & Ramli, Y. (2017c). IUCrData, 2, x171808.
- Guerrab, W., Mague, J. T. & Ramli, Y. (2020b). Z. Kristallogr. New Cryst. Struct. 235, 1425-1427.
- Guerrab, W., Mague, J. T., Taoufik, J. & Ramli, Y. (2018b). IUCrData, x180057.
- Guerrab, W., Mague, J. T., Akrad, R., Ansar, M., Taoufik, J. & Ramli, Y. (2018a). IUCrData, 3, x180050.

Table 3

Experimental details.

Crystal data	
Chemical formula	$C_{18}H_{14}N_2O_2$
Mr	290.31
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	200
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.3526 (3), 12.0162 (3),
	13.3087 (3)
α, β, γ (°)	97.080 (1), 114.406 (1), 107.335 (1)
$V(Å^3)$	1513.47 (7)
Ζ	4
Radiation type	Cu Kα
$\mu (\text{mm}^{-1})$	0.68
Crystal size (mm)	$0.17\times0.15\times0.10$
Data collection	
Diffractometer	Bruker D8 Venture PhotonII
Absorption correction	Multi-scan (<i>SADABS</i> ; Krause et al., 2015)
T_{\min}, T_{\max}	0.639, 0.754
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	17923, 5879, 5126
R _{int}	0.040
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.618
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.117, 1.02
No. of reflections	5879
No. of parameters	406
H-atom treatment	H atoms treated by a mixture of independent and constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.23, -0.23

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2019/2 (Sheldrick, 2015b), Mercury (Macrae et al., 2020) DIAMOND (Brandenburg & Putz, 2012), WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

- Handzlik, J., Bajda, M., Zygmunt, M., Maciąg, D., Dybała, M., Bednarski, M., Filipek, B., Malawska, B. & Kieć-Kononowicz, K. (2012). Bioorg. Med. Chem. 20, 2290-2303.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
- Neerbye Berntsen, L., Nova, A., Wragg, D. S. & Sandtorv, A. H. (2020). Org. Lett. 22, 2687-2691.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.
- Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.
- Trišović, N., Radovanović, L., Janjić, G. V., Jelić, S. T. & Rogan, J. (2019). Cryst. Growth Des. 19, 2163-2174.
- Vamecq, J., Van derpoorten, K., Poupaert, J. H., Balzarini, J., De Clercq, E. & Stables, J. P. (1998). Life Sci. 63, L267-P, L274.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2025). E81, 412-416 [https://doi.org/10.1107/S2056989025003391]

Synthesis, crystal structure and Hirshfeld surface analysis of 5,5-diphenyl-3-(prop-2-yn-1-yl)imidazolidine-2,4-dione

Abderrazzak El Moutaouakil Ala Allah, Chiara Massera, Walid Guerrab, Abdulsalam Alsubari, Joel T. Mague and Youssef Ramli

Z = 4F(000) = 608

 $D_{\rm x} = 1.274 {\rm Mg m^{-3}}$

Prismatic, colourless

 $0.17 \times 0.15 \times 0.10 \text{ mm}$

 $\theta = 3.8 - 72.3^{\circ}$

 $\mu = 0.68 \text{ mm}^{-1}$

T = 200 K

Cu *K* α radiation, $\lambda = 1.54178$ Å

Cell parameters from 1278 reflections

Computing details

5,5-Diphenyl-3-(2-propyn-1-yl)imidazolidine-2,4-dione

Crystal data

 $C_{18}H_{14}N_2O_2$ $M_r = 290.31$ Triclinic, *P*1 a = 11.3526 (3) Å b = 12.0162 (3) Å c = 13.3087 (3) Å $a = 97.080 (1)^{\circ}$ $\beta = 114.406 (1)^{\circ}$ $\gamma = 107.335 (1)^{\circ}$ $V = 1513.47 (7) \text{ Å}^{3}$

Data collection

Bruker D8 Venture PhotonII	17923 measured reflections
diffractometer	5879 independent reflections
Radiation source: fine-focus sealed tube	5126 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.040$
phi & ω scan	$\theta_{\rm max} = 72.3^\circ, \theta_{\rm min} = 3.8^\circ$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$
(SADABS; Krause et al., 2015)	$k = -14 \rightarrow 14$
$T_{\min} = 0.639, \ T_{\max} = 0.754$	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.117$ S = 1.025879 reflections 406 parameters 0 restraints Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0647P)^2 + 0.2418P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.23$ e Å⁻³ $\Delta\rho_{min} = -0.23$ e Å⁻³ Extinction correction: SHELXL-2019/2 (Sheldrick 2015*b*), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}Extinction coefficient: 0.0056 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
O1A	0.59193 (10)	0.95473 (8)	0.14741 (8)	0.0443 (2)	
O2A	0.38335 (12)	0.56618 (9)	-0.08410 (9)	0.0588 (3)	
N1A	0.46487 (12)	0.76899 (9)	0.01292 (9)	0.0390 (2)	
N2A	0.59068 (12)	0.66309 (10)	0.08644 (10)	0.0436 (3)	
C1A	0.47235 (15)	0.65472 (11)	-0.00263 (12)	0.0426 (3)	
C2A	0.57528 (13)	0.85052 (10)	0.11236 (11)	0.0361 (3)	
C3A	0.67094 (13)	0.78384 (10)	0.16927 (10)	0.0360 (3)	
C4A	0.35230 (15)	0.79744 (12)	-0.06815 (11)	0.0424 (3)	
H4AA	0.392791	0.878766	-0.076517	0.051*	
H4AB	0.306232	0.737385	-0.144406	0.051*	
C41A	0.24764 (17)	0.79629 (13)	-0.03154 (13)	0.0513 (4)	
C42A	0.1633 (2)	0.7962 (2)	-0.0025 (2)	0.0825 (6)	
H42A	0.094924	0.796197	0.021040	0.099*	
C5A	0.81762 (14)	0.84068 (12)	0.18064 (10)	0.0391 (3)	
C6A	0.87396 (15)	0.95894 (13)	0.17795 (12)	0.0481 (3)	
H6A	0.819765	1.007611	0.166135	0.058*	
C7A	1.00935 (18)	1.00670 (17)	0.19244 (15)	0.0630 (4)	
H7A	1.046191	1.087114	0.188360	0.076*	
C8A	1.09019 (18)	0.9387 (2)	0.21258 (15)	0.0672 (5)	
H8A	1.183203	0.972144	0.223631	0.081*	
C9A	1.03585 (19)	0.8221 (2)	0.21666 (16)	0.0667 (5)	
H9A	1.091751	0.774849	0.230654	0.080*	
C10A	0.90012 (17)	0.77223 (16)	0.20059 (14)	0.0543 (4)	
H10A	0.863499	0.691147	0.203234	0.065*	
C11A	0.68600 (13)	0.78422 (11)	0.28908 (11)	0.0366 (3)	
C12A	0.74629 (18)	0.89481 (13)	0.37237 (12)	0.0505 (3)	
H12A	0.773528	0.968502	0.353196	0.061*	
C13A	0.7670(2)	0.89859 (15)	0.48275 (13)	0.0564 (4)	
H13A	0.807925	0.974694	0.538940	0.068*	
C14A	0.72841 (16)	0.79222 (15)	0.51154 (13)	0.0516 (4)	
H14A	0.742334	0.794838	0.587398	0.062*	
C15A	0.66983 (16)	0.68256 (15)	0.43028 (14)	0.0528 (4)	
H15A	0.643701	0.609288	0.450356	0.063*	
C16A	0.64825 (14)	0.67748 (12)	0.31873 (13)	0.0443 (3)	
H16A	0.607769	0.601082	0.263057	0.053*	
O1B	0.67935 (10)	0.46416 (8)	0.56167 (8)	0.0430 (2)	
O2B	0.58550 (10)	0.10049 (8)	0.64236 (8)	0.0450 (2)	
N1B	0.65081 (11)	0.29799 (9)	0.63038 (9)	0.0367 (2)	
N2B	0.58273 (12)	0.14933 (9)	0.47865 (9)	0.0370 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C1B	0.60271 (12)	0.17176 (11)	0.58711 (10)	0.0357 (3)
C2B	0.65096 (13)	0.35657 (10)	0.54846 (10)	0.0342 (3)
C3B	0.61432 (13)	0.25927 (10)	0.44140 (10)	0.0335 (3)
C4B	0.69356 (16)	0.35873 (13)	0.74856 (11)	0.0461 (3)
H4BA	0.641547	0.411788	0.748697	0.055*
H4BB	0.669560	0.297129	0.787415	0.055*
C41B	0.84330 (18)	0.43143 (14)	0.81171 (12)	0.0557 (4)
C42B	0.9646 (2)	0.4894 (2)	0.86070 (17)	0.0882 (7)
H42B	1.062699	0.536214	0.900302	0.106*
C5B	0.48929 (12)	0.24919 (10)	0.33036 (10)	0.0330 (3)
C6B	0.41792 (14)	0.32636 (11)	0.32142 (11)	0.0393 (3)
H6B	0.446357	0.390018	0.386763	0.047*
C7B	0.30456 (15)	0.31056 (13)	0.21666 (13)	0.0473 (3)
H7B	0.255485	0.363157	0.211075	0.057*
C8B	0.26317 (15)	0.21903 (14)	0.12106 (12)	0.0488 (3)
H8B	0.186476	0.209149	0.049625	0.059*
C9B	0.33373 (16)	0.14167 (13)	0.12955 (12)	0.0477 (3)
H9B	0.305049	0.078260	0.063919	0.057*
C10B	0.44609 (14)	0.15641 (12)	0.23347 (11)	0.0405 (3)
H10B	0.494054	0.102919	0.238765	0.049*
C11B	0.74665 (13)	0.28834 (11)	0.42686 (10)	0.0369 (3)
C12B	0.77757 (15)	0.37651 (13)	0.37318 (12)	0.0454 (3)
H12B	0.716546	0.417811	0.345115	0.054*
C13B	0.89756 (17)	0.40443 (15)	0.36044 (14)	0.0567 (4)
H13B	0.918590	0.465199	0.324107	0.068*
C14B	0.98625 (18)	0.34451 (17)	0.40019 (17)	0.0660 (5)
H14B	1.066874	0.362105	0.389500	0.079*
C15B	0.9570 (2)	0.25872 (19)	0.4557 (2)	0.0767 (6)
H15B	1.018882	0.218367	0.484605	0.092*
C16B	0.83838 (17)	0.23106 (15)	0.46947 (17)	0.0584 (4)
H16B	0.819719	0.172392	0.508422	0.070*
H2A	0.613 (2)	0.5994 (18)	0.0919 (16)	0.062 (5)*
H2B	0.5382 (19)	0.0745 (17)	0.4319 (15)	0.052 (4)*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0576 (6)	0.0257 (4)	0.0468 (5)	0.0196 (4)	0.0199 (4)	0.0109 (4)
0.0652 (7)	0.0305 (5)	0.0486 (6)	0.0210 (5)	-0.0007 (5)	0.0020 (4)
0.0456 (6)	0.0270 (5)	0.0393 (5)	0.0178 (4)	0.0128 (5)	0.0107 (4)
0.0508 (6)	0.0253 (5)	0.0426 (6)	0.0194 (5)	0.0092 (5)	0.0058 (4)
0.0514 (7)	0.0281 (6)	0.0403 (7)	0.0183 (5)	0.0128 (6)	0.0088 (5)
0.0445 (7)	0.0270 (6)	0.0387 (6)	0.0158 (5)	0.0193 (5)	0.0125 (5)
0.0430 (6)	0.0248 (5)	0.0367 (6)	0.0148 (5)	0.0146 (5)	0.0089 (4)
0.0497 (7)	0.0347 (6)	0.0410 (7)	0.0221 (6)	0.0147 (6)	0.0155 (5)
0.0560 (8)	0.0432 (7)	0.0516 (8)	0.0255 (7)	0.0188 (7)	0.0121 (6)
0.0821 (14)	0.0934 (15)	0.0926 (15)	0.0474 (12)	0.0511 (12)	0.0238 (12)
0.0444 (7)	0.0429 (7)	0.0286 (6)	0.0176 (5)	0.0155 (5)	0.0101 (5)
	U^{11} 0.0576 (6) 0.0652 (7) 0.0456 (6) 0.0508 (6) 0.0514 (7) 0.0445 (7) 0.0430 (6) 0.0497 (7) 0.0560 (8) 0.0821 (14) 0.0444 (7)	U^{11} U^{22} 0.0576 (6) 0.0257 (4) 0.0652 (7) 0.0305 (5) 0.0456 (6) 0.0270 (5) 0.0508 (6) 0.0253 (5) 0.0514 (7) 0.0281 (6) 0.0445 (7) 0.0270 (6) 0.0430 (6) 0.0248 (5) 0.0497 (7) 0.0347 (6) 0.0560 (8) 0.0432 (7) 0.0821 (14) 0.0934 (15) 0.0444 (7) 0.0429 (7)	U^{11} U^{22} U^{33} 0.0576 (6) 0.0257 (4) 0.0468 (5) 0.0652 (7) 0.0305 (5) 0.0486 (6) 0.0456 (6) 0.0270 (5) 0.0393 (5) 0.0508 (6) 0.0253 (5) 0.0426 (6) 0.0514 (7) 0.0281 (6) 0.0403 (7) 0.0445 (7) 0.0270 (6) 0.0387 (6) 0.0430 (6) 0.0248 (5) 0.0367 (6) 0.0497 (7) 0.0347 (6) 0.0410 (7) 0.0560 (8) 0.0432 (7) 0.0516 (8) 0.0821 (14) 0.0934 (15) 0.0286 (6)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U^{11} U^{22} U^{33} U^{12} U^{13} $0.0576(6)$ $0.0257(4)$ $0.0468(5)$ $0.0196(4)$ $0.0199(4)$ $0.0652(7)$ $0.0305(5)$ $0.0486(6)$ $0.0210(5)$ $-0.0007(5)$ $0.0456(6)$ $0.0270(5)$ $0.0393(5)$ $0.0178(4)$ $0.0128(5)$ $0.0508(6)$ $0.0253(5)$ $0.0426(6)$ $0.0194(5)$ $0.0092(5)$ $0.0514(7)$ $0.0281(6)$ $0.0403(7)$ $0.0183(5)$ $0.0128(6)$ $0.0445(7)$ $0.0270(6)$ $0.0387(6)$ $0.0158(5)$ $0.0193(5)$ $0.0430(6)$ $0.0248(5)$ $0.0367(6)$ $0.0148(5)$ $0.0146(5)$ $0.0497(7)$ $0.0347(6)$ $0.0410(7)$ $0.0221(6)$ $0.0147(6)$ $0.0560(8)$ $0.0432(7)$ $0.0516(8)$ $0.0255(7)$ $0.0188(7)$ $0.0821(14)$ $0.0934(15)$ $0.0926(15)$ $0.0176(5)$ $0.0155(5)$

supporting information

C6A	0.0473 (7)	0.0449 (7)	0.0413 (7)	0.0109 (6)	0.0165 (6)	0.0115 (6)
C7A	0.0527 (9)	0.0662 (10)	0.0514 (9)	0.0051 (8)	0.0209 (7)	0.0149 (7)
C8A	0.0474 (9)	0.0962 (14)	0.0509 (9)	0.0189 (9)	0.0241 (7)	0.0170 (9)
C9A	0.0580 (10)	0.0944 (14)	0.0610 (10)	0.0422 (10)	0.0305 (8)	0.0248 (9)
C10A	0.0572 (9)	0.0604 (9)	0.0570 (9)	0.0320 (7)	0.0294 (7)	0.0228 (7)
C11A	0.0398 (6)	0.0322 (6)	0.0412 (6)	0.0167 (5)	0.0188 (5)	0.0158 (5)
C12A	0.0766 (10)	0.0347 (7)	0.0447 (7)	0.0206 (7)	0.0322 (7)	0.0162 (6)
C13A	0.0808 (11)	0.0509 (8)	0.0451 (8)	0.0290 (8)	0.0331 (8)	0.0176 (6)
C14A	0.0557 (8)	0.0652 (9)	0.0489 (8)	0.0288 (7)	0.0307 (7)	0.0302 (7)
C15A	0.0506 (8)	0.0533 (8)	0.0632 (9)	0.0196 (7)	0.0296 (7)	0.0367 (7)
C16A	0.0434 (7)	0.0346 (6)	0.0525 (8)	0.0132 (5)	0.0200 (6)	0.0199 (6)
O1B	0.0573 (6)	0.0272 (4)	0.0411 (5)	0.0150 (4)	0.0212 (4)	0.0092 (3)
O2B	0.0517 (5)	0.0347 (5)	0.0369 (5)	0.0087 (4)	0.0145 (4)	0.0155 (4)
N1B	0.0423 (5)	0.0299 (5)	0.0317 (5)	0.0109 (4)	0.0142 (4)	0.0084 (4)
N2B	0.0461 (6)	0.0243 (5)	0.0351 (5)	0.0105 (4)	0.0164 (4)	0.0094 (4)
C1B	0.0343 (6)	0.0295 (6)	0.0350 (6)	0.0089 (5)	0.0111 (5)	0.0102 (5)
C2B	0.0365 (6)	0.0286 (6)	0.0335 (6)	0.0114 (5)	0.0139 (5)	0.0083 (4)
C3B	0.0401 (6)	0.0242 (5)	0.0344 (6)	0.0111 (5)	0.0167 (5)	0.0093 (4)
C4B	0.0565 (8)	0.0412 (7)	0.0344 (6)	0.0142 (6)	0.0202 (6)	0.0079 (5)
C41B	0.0659 (10)	0.0440 (8)	0.0355 (7)	0.0108 (7)	0.0134 (7)	0.0062 (6)
C42B	0.0675 (12)	0.0817 (14)	0.0557 (11)	-0.0076 (11)	0.0054 (9)	0.0042 (9)
C5B	0.0357 (6)	0.0294 (5)	0.0341 (6)	0.0096 (5)	0.0181 (5)	0.0115 (4)
C6B	0.0458 (7)	0.0348 (6)	0.0397 (6)	0.0167 (5)	0.0212 (5)	0.0126 (5)
C7B	0.0504 (8)	0.0481 (8)	0.0487 (8)	0.0255 (6)	0.0217 (6)	0.0212 (6)
C8B	0.0439 (7)	0.0570 (8)	0.0387 (7)	0.0173 (6)	0.0139 (6)	0.0176 (6)
C9B	0.0509 (8)	0.0478 (7)	0.0351 (7)	0.0141 (6)	0.0172 (6)	0.0053 (5)
C10B	0.0432 (7)	0.0381 (6)	0.0384 (6)	0.0157 (5)	0.0186 (5)	0.0082 (5)
C11B	0.0373 (6)	0.0303 (6)	0.0353 (6)	0.0093 (5)	0.0145 (5)	0.0038 (5)
C12B	0.0433 (7)	0.0454 (7)	0.0433 (7)	0.0119 (6)	0.0200 (6)	0.0142 (6)
C13B	0.0489 (8)	0.0583 (9)	0.0491 (8)	0.0026 (7)	0.0253 (7)	0.0089 (7)
C14B	0.0443 (8)	0.0671 (10)	0.0767 (11)	0.0096 (8)	0.0330 (8)	0.0020 (9)
C15B	0.0524 (10)	0.0679 (11)	0.1175 (17)	0.0294 (9)	0.0429 (11)	0.0260 (11)
C16B	0.0499 (8)	0.0485 (8)	0.0838 (11)	0.0233 (7)	0.0332 (8)	0.0257 (8)

Geometric parameters (Å, °)

01A—C2A	1.2098 (15)	O1B—C2B	1.2062 (15)
O2A—C1A	1.2240 (16)	O2B—C1B	1.2192 (15)
N1A—C2A	1.3638 (16)	N1B—C2B	1.3690 (16)
N1A—C1A	1.3962 (15)	N1B—C1B	1.4006 (15)
N1A—C4A	1.4581 (16)	N1B—C4B	1.4550 (16)
N2A—C1A	1.3394 (18)	N2B—C1B	1.3434 (16)
N2A—C3A	1.4624 (15)	N2B—C3B	1.4647 (14)
N2A—H2A	0.88 (2)	N2B—H2B	0.885 (18)
C2A—C3A	1.5438 (16)	C2B—C3B	1.5427 (16)
C3A—C11A	1.5311 (18)	C3B—C5B	1.5276 (16)
C3A—C5A	1.5332 (19)	C3B—C11B	1.5365 (17)
C4A—C41A	1.456 (2)	C4B—C41B	1.454 (2)

supporting information

С4А—Н4АА	0.9900	C4B—H4BA	0.9900
C4A—H4AB	0.9900	C4B—H4BB	0.9900
C41A—C42A	1.171 (3)	C41B—C42B	1.175 (3)
C42A—H42A	0.9500	C42B—H42B	0.9500
C5A—C6A	1.385 (2)	C5B—C6B	1.3877 (18)
C5A-C10A	1.390 (2)	C5B—C10B	1.3941 (17)
C6A—C7A	1.390 (2)	C6B—C7B	1.3936 (19)
С6А—Н6А	0.9500	С6В—Н6В	0.9500
C7A—C8A	1.371 (3)	C7B—C8B	1.379 (2)
С7А—Н7А	0.9500	С7В—Н7В	0.9500
C8A—C9A	1.370 (3)	C8B—C9B	1.383 (2)
C8A—H8A	0.9500	C8B—H8B	0.9500
C9A—C10A	1.387 (2)	C9B—C10B	1.3851 (19)
C9A—H9A	0.9500	C9B—H9B	0.9500
C10A—H10A	0.9500	C10B—H10B	0.9500
C11A - C16A	1 3861 (17)	C11B— $C16B$	1.384(2)
C11A - C12A	1 3896 (19)	C11B $C12B$	1.3886(18)
C12A - C13A	1 381 (2)	C12B $C12B$	1 389 (2)
C12A - H12A	0.9500	C12B—H12B	0.9500
C13A - C14A	1 378 (2)	C13B— $C14B$	1.378(3)
C13A - H13A	0.9500	C13B—H13B	0.9500
$C_{14A} - C_{15A}$	1 371 (2)	C14B— $C15B$	1380(3)
C_{14A} H_{14A}	0.9500	C14B— $H14B$	0.9500
C15A - C16A	1 391 (2)	C15B-C16B	1.382(2)
C_{15A} H_{15A}	0.9500	C15B—H15B	0.9500
C_{16A} H16A	0.9500	C16B—H16B	0.9500
	0.9500		0.9500
C2A—N1A—C1A	112.05 (10)	C2B—N1B—C1B	112.22 (10)
C2A—N1A—C4A	124.18 (10)	C2B—N1B—C4B	124.32 (10)
C1A—N1A—C4A	123.76 (11)	C1B—N1B—C4B	123.46 (10)
C1A—N2A—C3A	113.62 (10)	C1B—N2B—C3B	113.42 (10)
C1A—N2A—H2A	120.4 (13)	C1B—N2B—H2B	121.1 (11)
C3A—N2A—H2A	126.0 (13)	C3B—N2B—H2B	124.3 (11)
O2A—C1A—N2A	128.83 (12)	O2B—C1B—N2B	129.21 (11)
O2A—C1A—N1A	123.93 (12)	O2B—C1B—N1B	123.82 (12)
N2A—C1A—N1A	107.24 (11)	N2B—C1B—N1B	106.96 (10)
O1A—C2A—N1A	125.27 (11)	O1B—C2B—N1B	125.31 (11)
O1A—C2A—C3A	127.78 (11)	O1B—C2B—C3B	128.21 (11)
N1A—C2A—C3A	106.95 (9)	N1B—C2B—C3B	106.44 (9)
N2A—C3A—C11A	113.17 (10)	N2B—C3B—C5B	110.86 (9)
N2A—C3A—C5A	111.85 (11)	N2B—C3B—C11B	112.38 (10)
C11A—C3A—C5A	108.63 (10)	C5B—C3B—C11B	110.51 (9)
N2A—C3A—C2A	100.12 (9)	N2B—C3B—C2B	100.51 (9)
C11A—C3A—C2A	110.22 (10)	C5B—C3B—C2B	115.22 (10)
C5A—C3A—C2A	112.73 (10)	C11B—C3B—C2B	107.02 (9)
C41A—C4A—N1A	112.40 (11)	C41B—C4B—N1B	111.36 (13)
С41А—С4А—Н4АА	109.1	C41B—C4B—H4BA	109.4
N1A—C4A—H4AA	109.1	N1B—C4B—H4BA	109.4

N1A—C4A—H4AB109.1N1B—C4B—H4BB109.4H4AA—C4A—H4AB107.9H4BA—C4B—H4BB108.0C42A—C41A—C4A179.38 (19)C42B—C41B—C4B178.6 (C41A—C42A—H42A180.0C41B—C42B—H42B180.0C6A—C5A—C10A118.73 (14)C6B—C5B—C10B119.12C6A—C5A—C3A122.97 (12)C6B—C5B—C3B123.80C10A—C5A—C3A118.21 (12)C10B—C5B—C3B117.08C5A—C6A—C7A120.32 (15)C5B—C6B—C7B120.06C5A—C6A—H6A119.8C5B—C6B—H6B120.0C7A—C6A—H6A119.8C7B—C6B—H6B120.0C8A—C7A—H7A119.7C8B—C7B—H7B119.8C6A—C7A—H7A119.7C6B—C7B—H7B119.8C9A—C8A—C7A119.53 (16)C7B—C8B—C9B119.77C9A—C8A—H8A120.2C7B—C8B—H8B120.1	 (11) (11) (11) (12) (13) (13)
H4AA—C4A—H4AB107.9H4BA—C4B—H4BB108.0C42A—C41A—C4A179.38 (19)C42B—C41B—C4B178.6 (C41A—C42A—H42A180.0C41B—C42B—H42B180.0C6A—C5A—C10A118.73 (14)C6B—C5B—C10B119.12C6A—C5A—C3A122.97 (12)C6B—C5B—C3B123.80C10A—C5A—C3A118.21 (12)C10B—C5B—C3B117.08C5A—C6A—C7A120.32 (15)C5B—C6B—C7B120.06C5A—C6A—H6A119.8C5B—C6B—H6B120.0C7A—C6A—H6A119.8C7B—C6B—H6B120.0C8A—C7A—C6A120.52 (17)C8B—C7B—C6B120.41C8A—C7A—H7A119.7C6B—C7B—H7B119.8C6A—C7A—H7A119.71C6B—C7B—H7B119.8C9A—C8A—H8A120.2C7B—C8B—H8B120.1	 (11) (11) (11) (12) (13) (13)
C42A—C41A—C4A179.38 (19)C42B—C41B—C4B178.6 (C41A—C42A—H42A180.0C41B—C42B—H42B180.0C6A—C5A—C10A118.73 (14)C6B—C5B—C10B119.12C6A—C5A—C3A122.97 (12)C6B—C5B—C3B123.80C10A—C5A—C3A118.21 (12)C10B—C5B—C3B117.08C5A—C6A—C7A120.32 (15)C5B—C6B—C7B120.06C5A—C6A—H6A119.8C5B—C6B—H6B120.0C7A—C6A—H6A119.8C7B—C6B—H6B120.0C8A—C7A—C6A120.52 (17)C8B—C7B—C6B120.41C8A—C7A—H7A119.7C6B—C7B—H7B119.8C9A—C8A—C7A120.2C7B—C8B—C9B119.77C9A—C8A—H8A120.2C7B—C8B—H8B120.1	 2) (11) (11) (11) (12) (13) (13)
C41A—C42A—H42A180.0C41B—C42B—H42B180.0C6A—C5A—C10A118.73 (14)C6B—C5B—C10B119.12C6A—C5A—C3A122.97 (12)C6B—C5B—C3B123.80C10A—C5A—C3A118.21 (12)C10B—C5B—C3B117.08C5A—C6A—C7A120.32 (15)C5B—C6B—C7B120.06C5A—C6A—H6A119.8C5B—C6B—H6B120.0C7A—C6A—H6A119.8C7B—C6B—H6B120.0C8A—C7A—C6A120.52 (17)C8B—C7B—C6B120.41C8A—C7A—H7A119.7C6B—C7B—H7B119.8C6A—C7A—H7A119.7C6B—C7B—H7B119.8C9A—C8A—C7A120.2C7B—C8B—H8B120.1	 (11) (11) (11) (12) (13) (13)
C6A—C5A—C10A118.73 (14)C6B—C5B—C10B119.12C6A—C5A—C3A122.97 (12)C6B—C5B—C3B123.80C10A—C5A—C3A118.21 (12)C10B—C5B—C3B117.08C5A—C6A—C7A120.32 (15)C5B—C6B—C7B120.06C5A—C6A—H6A119.8C5B—C6B—H6B120.0C7A—C6A—H6A119.8C7B—C6B—H6B120.0C8A—C7A—C6A120.52 (17)C8B—C7B—C6B120.41C8A—C7A—H7A119.7C8B—C7B—H7B119.8C6A—C7A—H7A119.7C6B—C7B—H7B119.8C9A—C8A—C7A119.53 (16)C7B—C8B—C9B119.77C9A—C8A—H8A120.2C7B—C8B—H8B120.1	 (11) (11) (11) (12) (13) (13)
C6A—C5A—C3A122.97 (12)C6B—C5B—C3B123.80C10A—C5A—C3A118.21 (12)C10B—C5B—C3B117.08C5A—C6A—C7A120.32 (15)C5B—C6B—C7B120.06C5A—C6A—H6A119.8C5B—C6B—H6B120.0C7A—C6A—H6A119.8C7B—C6B—H6B120.0C8A—C7A—C6A120.52 (17)C8B—C7B—C6B120.41C8A—C7A—H7A119.7C8B—C7B—H7B119.8C6A—C7A—H7A119.7C6B—C7B—H7B119.8C9A—C8A—C7A119.53 (16)C7B—C8B—C9B119.77C9A—C8A—H8A120.2C7B—C8B—H8B120.1	(11) (11) (12) (13) (13)
C10A—C5A—C3A118.21 (12)C10B—C5B—C3B117.08C5A—C6A—C7A120.32 (15)C5B—C6B—C7B120.06C5A—C6A—H6A119.8C5B—C6B—H6B120.0C7A—C6A—H6A119.8C7B—C6B—H6B120.0C8A—C7A—C6A120.52 (17)C8B—C7B—C6B120.41C8A—C7A—H7A119.7C8B—C7B—H7B119.8C6A—C7A—H7A119.7C6B—C7B—H7B119.8C9A—C8A—C7A119.53 (16)C7B—C8B—C9B119.77C9A—C8A—H8A120.2C7B—C8B—H8B120.1	(11) (12) (13) (13)
C5A—C6A—C7A120.32 (15)C5B—C6B—C7B120.06C5A—C6A—H6A119.8C5B—C6B—H6B120.0C7A—C6A—H6A119.8C7B—C6B—H6B120.0C8A—C7A—C6A120.52 (17)C8B—C7B—C6B120.41C8A—C7A—H7A119.7C8B—C7B—H7B119.8C6A—C7A—H7A119.7C6B—C7B—H7B119.8C9A—C8A—C7A119.53 (16)C7B—C8B—C9B119.77C9A—C8A—H8A120.2C7B—C8B—H8B120.1	(12)(13)(13)
C5A—C6A—H6A119.8C5B—C6B—H6B120.0C7A—C6A—H6A119.8C7B—C6B—H6B120.0C8A—C7A—C6A120.52 (17)C8B—C7B—C6B120.41C8A—C7A—H7A119.7C8B—C7B—H7B119.8C6A—C7A—H7A119.7C6B—C7B—H7B119.8C9A—C8A—C7A119.53 (16)C7B—C8B—C9B119.77C9A—C8A—H8A120.2C7B—C8B—H8B120.1	(13)
C7A—C6A—H6A119.8C7B—C6B—H6B120.0C8A—C7A—C6A120.52 (17)C8B—C7B—C6B120.41C8A—C7A—H7A119.7C8B—C7B—H7B119.8C6A—C7A—H7A119.7C6B—C7B—H7B119.8C9A—C8A—C7A119.53 (16)C7B—C8B—C9B119.77C9A—C8A—H8A120.2C7B—C8B—H8B120.1	(13) (13)
C8A—C7A—C6A 120.52 (17) C8B—C7B—C6B 120.41 C8A—C7A—H7A 119.7 C8B—C7B—H7B 119.8 C6A—C7A—H7A 119.7 C6B—C7B—H7B 119.8 C9A—C8A—C7A 119.53 (16) C7B—C8B—C9B 119.77 C9A—C8A—H8A 120.2 C7B—C8B—H8B 120.1	(13)
C8A—C7A—H7A 119.7 C8B—C7B—H7B 119.8 C6A—C7A—H7A 119.7 C6B—C7B—H7B 119.8 C9A—C8A—C7A 119.53 (16) C7B—C8B—C9B 119.77 C9A—C8A—H8A 120.2 C7B—C8B—H8B 120.1	(13)
C6A—C7A—H7A119.7C6B—C7B—H7B119.8C9A—C8A—C7A119.53 (16)C7B—C8B—C9B119.77C9A—C8A—H8A120.2C7B—C8B—H8B120.1	(13)
C9A—C8A—C7A 119.53 (16) C7B—C8B—C9B 119.77 C9A—C8A—H8A 120.2 C7B—C8B—H8B 120.1	(13)
C9A—C8A—H8A 120.2 C7B—C8B—H8B 120.1	(15)
C7A—C8A—H8A 120.2 C9B—C8B—H8B 120.1	
C8A_C9A_C10A 120.2 C9B_C9B_C10B 120.1 120.12 C8B_C9B_C10B 120.18	(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(15)
C10A_C9A_H9A 119.6 C10B_C9B_H9B 119.9	
C9A—C10A—C5A 120 14 (16) C9B—C10B—C5B 120 45	(12)
C9A_C10A_H10A 119.9 C9B_C10B_H10B 119.8	(12)
C5A_C10A_H10A 119.9 C5B_C10B_H10B 119.8	
C16A_C11A_C12A 119.00 (12) C16B_C11B_C12B 119.12	(13)
C16A = C11A = C12A = 117.00 (12) = C16B = C11B = C12B = 117.12 C16A = C11A = C3A = 121.02 (12) = C16B = C11B = C3B = 121.20	(13)
C12A - C11A - C3A 118 98 (11) $C12B - C11B - C3B$ 119 56	(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(14)
C11A C12A H12A 110.7 C12B H12B 110.0	
C14A = C12A = I112A 119.7 $C13B = C12B = I112B$ 119.7 C14A = C12A = C12A 120.14 (15) $C14B = C12B = C12B$ 120.28	(15)
C14A - C12A - C12A = 120.14 (13) = C14D - C12D = 110.0 = 110	(13)
C12A C12A H12A 1100 C12D C12D H12D 110.8	
C12A - C13A - H13A 119.9 $C12D - C13D - H13D$ 119.8 C15A - C14A - C12A 110.74 (14) $C12P - C14P - C15P$ 110.45	(15)
C15A - C14A - C15A = 119.74 (14) = C15D - C14D - C15D = 119.43 C15A - C14A - U14A = 120.1 = C12D - C14D - U14D = 120.2	(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
C13A C15A C16A 120.1 C13D C14D II14D 120.5	(17)
C14A - C15A - C10A 120.70 (13) $C14D - C15B - C10B$ 120.52 C14A - C15A - H15A 110.7 $C14B - C15B - H15B$ 110.7	(17)
C14A—C15A—H15A 119.7 C14D—C15B—H15B 119.7	
C11A C16A C15A 119.7 C10D—C15D—II13D 119.7	(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(10)
CITA—CIOA—HIOA I20.1 CI3B—CIOB—HIOB I19.8	
CI5A—CI6A—HI6A 120.1 CI1B—CI6B—HI6B 119.8	
C3A—N2A—C1A—O2A –178.94 (16) C3B—N2B—C1B—O2B 179.76	(13)
C3A—N2A—C1A—N1A 0.59 (17) C3B—N2B—C1B—N1B -0.82 (14)
C2A—N1A—C1A—O2A 178.13 (15) C2B—N1B—C1B—O2B -175.4	1 (12)
C4A—N1A—C1A—O2A -2.1 (2) C4B—N1B—C1B—O2B 3.8 (2)	. /
C2A—N1A—C1A—N2A -1.43 (17) C2B—N1B—C1B—N2B 5.13 (1	4)
C4A—N1A—C1A—N2A 178.33 (12) C4B—N1B—C1B—N2B -175.6	7 (12)

C1A—N1A—C2A—O1A	-178.06 (13)	C1B—N1B—C2B—O1B	175.24 (12)
C4A—N1A—C2A—O1A	2.2 (2)	C4B—N1B—C2B—O1B	-3.9 (2)
C1A—N1A—C2A—C3A	1.63 (15)	C1B—N1B—C2B—C3B	-7.01 (14)
C4A—N1A—C2A—C3A	-178.13 (12)	C4B—N1B—C2B—C3B	173.80 (12)
C1A—N2A—C3A—C11A	117.61 (13)	C1B—N2B—C3B—C5B	-125.40 (11)
C1A—N2A—C3A—C5A	-119.29 (13)	C1B—N2B—C3B—C11B	110.38 (12)
C1A—N2A—C3A—C2A	0.34 (15)	C1B—N2B—C3B—C2B	-3.09 (13)
O1A—C2A—C3A—N2A	178.52 (13)	O1B—C2B—C3B—N2B	-176.45 (13)
N1A—C2A—C3A—N2A	-1.16 (13)	N1B—C2B—C3B—N2B	5.88 (12)
O1A—C2A—C3A—C11A	59.07 (17)	O1B—C2B—C3B—C5B	-57.26 (17)
N1A—C2A—C3A—C11A	-120.61 (11)	N1B—C2B—C3B—C5B	125.07 (11)
O1A—C2A—C3A—C5A	-62.49 (17)	O1B-C2B-C3B-C11B	66.05 (16)
N1A—C2A—C3A—C5A	117.83 (11)	N1B-C2B-C3B-C11B	-111.62 (11)
C2A—N1A—C4A—C41A	-80.14 (16)	C2B—N1B—C4B—C41B	-68.42 (17)
C1A—N1A—C4A—C41A	100.12 (16)	C1B—N1B—C4B—C41B	112.48 (14)
N2A—C3A—C5A—C6A	132.60 (12)	N2B-C3B-C5B-C6B	117.89 (12)
C11A—C3A—C5A—C6A	-101.77 (13)	C11B—C3B—C5B—C6B	-116.84 (12)
C2A—C3A—C5A—C6A	20.69 (16)	C2B-C3B-C5B-C6B	4.61 (16)
N2A-C3A-C5A-C10A	-50.88 (15)	N2B-C3B-C5B-C10B	-62.07 (14)
C11A—C3A—C5A—C10A	74.75 (14)	C11B-C3B-C5B-C10B	63.20 (13)
C2A-C3A-C5A-C10A	-162.79 (12)	C2B-C3B-C5B-C10B	-175.35 (10)
C10A—C5A—C6A—C7A	1.4 (2)	C10B—C5B—C6B—C7B	0.08 (19)
C3A—C5A—C6A—C7A	177.91 (13)	C3B—C5B—C6B—C7B	-179.87 (12)
C5A—C6A—C7A—C8A	-1.7 (2)	C5B—C6B—C7B—C8B	-0.5 (2)
C6A—C7A—C8A—C9A	1.0 (3)	C6B—C7B—C8B—C9B	0.7 (2)
C7A—C8A—C9A—C10A	0.0 (3)	C7B—C8B—C9B—C10B	-0.4 (2)
C8A—C9A—C10A—C5A	-0.3 (3)	C8B—C9B—C10B—C5B	-0.1 (2)
C6A—C5A—C10A—C9A	-0.4 (2)	C6B—C5B—C10B—C9B	0.22 (19)
C3A—C5A—C10A—C9A	-177.07 (14)	C3B—C5B—C10B—C9B	-179.82 (12)
N2A—C3A—C11A—C16A	10.63 (17)	N2B—C3B—C11B—C16B	-13.23 (17)
C5A—C3A—C11A—C16A	-114.22 (13)	C5B—C3B—C11B—C16B	-137.64 (13)
C2A—C3A—C11A—C16A	121.81 (13)	C2B—C3B—C11B—C16B	96.18 (14)
N2A—C3A—C11A—C12A	-172.91 (12)	N2B—C3B—C11B—C12B	168.84 (11)
C5A—C3A—C11A—C12A	62.23 (15)	C5B—C3B—C11B—C12B	44.43 (15)
C2A—C3A—C11A—C12A	-61.73 (16)	C2B—C3B—C11B—C12B	-81.75 (13)
C16A—C11A—C12A—C13A	-0.7 (2)	C16B—C11B—C12B—C13B	1.4 (2)
C3A—C11A—C12A—C13A	-177.27 (14)	C3B—C11B—C12B—C13B	179.41 (12)
C11A—C12A—C13A—C14A	0.3 (3)	C11B—C12B—C13B—C14B	0.4 (2)
C12A—C13A—C14A—C15A	0.2 (3)	C12B—C13B—C14B—C15B	-1.8 (3)
C13A—C14A—C15A—C16A	-0.3 (2)	C13B—C14B—C15B—C16B	1.3 (3)
C12A—C11A—C16A—C15A	0.6 (2)	C14B—C15B—C16B—C11B	0.6 (3)
C3A—C11A—C16A—C15A	177.08 (12)	C12B—C11B—C16B—C15B	-1.9 (2)
C14A—C15A—C16A—C11A	-0.1 (2)	C3B—C11B—C16B—C15B	-179.86 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2A—H2A···O2A ⁱ	0.88 (2)	1.99 (2)	2.855 (2)	167 (2)
$N2B$ — $H2BB$ ···O $2B^{ii}$	0.89 (2)	1.99 (2)	2.847 (1)	163 (2)
$C4A$ — $H4AA$ ···O1 A^{iii}	0.99	2.31	3.253 (2)	160
C15A—H15A…O1B	0.95	2.44	3.332 (2)	156
$C8B$ — $H8B$ ···· $Cg2^{i}$	0.95	2.88	3.713 (2)	147
C15B—H15B····Cg 3^{iv}	0.95	2.87	3.742 (3)	153

Cg2 and Cg3 are the centroids of the C5A–C10A and C11A–C16A benzene rings, respectively.

Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+2, -z; (iv) -x+2, -y+1, -z+1.