

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 1 April 2025 Accepted 5 April 2025

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: metconazole; fungicide; conazole; triazole; crystal structure; Hirshfeld surface analysis.

CCDC reference: 2441232

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of the fungicide metconazole

Thaluru M. Mohan Kumar,^a Chaluvarangaiah Sowbhagya,^a Hemmige S. Yathirajan^b* and Sean Parkin^c

^aDepartment of Physical Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru 560 035, India, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, and ^cDepartment of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA. *Correspondence e-mail: yathirajan@hotmail.com

Metconazole is a systemic triazole fungicide that inhibits the ergosterol biosynthesis pathway. It is widely used in agriculture to control fungal infections, including rusts, fusarium and septoria diseases. The molecular structure is a three-ring system, namely, 5-(4-chlorobenzyl)-2,2-dimethyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentan-1-ol, C17H22CIN3O, consisting of a cyclopentan-1-ol with 1,2,4-triazol-1-ylmethyl, gem-dimethyl and 4-chlorobenzyl groups attached at the 1-, 2- and 5-positions of the cyclopentanol ring. It has two stereocentres (cyclopentanol positions 1 and 5) leading to four stereoisomers, with the (15,5R)form being the most bioactive. Despite its agricultural significance, detailed crystallographic data remain scarce. This study reports the crystal structure and Hirshfeld surface analysis of racemic cis-metconazole [(1S,5R)/(1R,5S)], determined in the monoclinic space group $P2_1/c$ with two independent molecules in the asymmetric unit (Z' = 2). Both exhibit similar conformations, with minor differences in the cyclopentanol ring puckering and the torsion angles between the three rings. The crystal packing consists of 21-screw-related hydrogenbonded chains parallel to the b axis, with additional weak $C-H \cdots N$ and C-H···Cl contacts linking adjacent molecules. Hirshfeld surface analysis indicates that intermolecular interactions are dominated by contacts involving hydrogen (96.1 and 96.7% for the two molecules).

1. Chemical context

Metconazole is an agricultural fungicide discovered by the Kureha Corporation in 1986 (Kumazawa et al., 2000). It is toxic to a broad range of fungal species (Ito et al., 1999) by acting as a demethylation inhibitor (DMI) in the ergosterol biosynthesis pathway. It is used to control a range of fungal infections, including alternaria, rusts, fusarium and septoria diseases. Metconazole is also known to inhibit the synthesis of fungal cell membranes. As a systemic triazole fungicide, metconazole has been proposed for the control of Black Sigatoka disease (Mycosphaerella fijiensis) in bananas. Single and sequential applications of metconazole, alone or in combination with pyraclostrobin, to improve fusarium head blight control and wheat yield in Brazil were described by Spolti et al. (2013). Detailed applications of metconazole are well documented (Tateishi et al., 2014). Enantioselective effects on photosynthetic activity in Microcystis flosaquae were reported by Li et al. (2021). Antifungal activities against the emerging wheat pathogen Fusarium pseudograminearum were recently published by Liu et al. (2023). A review of the pesticide risk assessment of metconazole was given by Álvarez et al. (2023), which suggested that it may cause liver damage in mammals. Recently, in vitro and ex vivo antifungal activities

Table 1	
Conformation defining torsion angles ($^{\circ}$) in metconazole.	

Torsion angle	Molecule A	Molecule B
C2-C5-C6-C7	-152.82 (19)	-151.88 (16)
C5-C6-C7-C8	113.52 (17)	116.02 (16)
O1-C1-C13-N1	-60.01(17)	-56.18 (17)
C1-C13-N1-N2	-109.63 (16)	-102.44 (17)

against the rice blast fungus *Pyricularia oryzae* have been reported (Fei & Hao, 2024). Stereoselective studies of metconazole in four types of fruit, including absolute configuration and SFC–MS/MS enantioseparation, degradation and risk assessment, were published by Diao *et al.* (2024).

The structure of metconazole includes a cyclopentanol ring substituted at the 1-, 2- and 5-positions by 1,2,4-triazol-1ylmethyl, gem-dimethyl and 4-chlorobenzyl groups, respectively. It contains two chiral C atoms (C1 and C5), leading to four stereoisomers, *i.e.* two *cis* forms (1S,5R/1R,5S) and the two *trans* forms (1S,5S) and (1R,5R). The most bioactive is reported to be the (1S,5R) isomer (Ito *et al.*, 1999; He *et al.*, 2021). The crystal structure of the (1S,5R) isomer was reported by Ito *et al.* (1999), but the structure does not appear in either the Cambridge Structural Database (CSD, Version 5.46 of November 2024; Groom *et al.*, 2016) or the Crystallography Open Database (COD, accessed 23 March 2025; Gražulis *et al.*, 2009). In view of the agricultural importance

Figure 1

An ellipsoid plot (50% probability) of *cis*-metconazole. H atoms are drawn as small circles of fixed arbitrary radius.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1A - H1A \cdots N3A^{i}$	0.86	2.08	2.9097 (18)	164
$C11A - H11A \cdots N2B$	0.95	2.62	3.500 (2)	155
$C14A - H14A \cdots Cl1A^{ii}$	0.95	2.98	3.9223 (18)	175
$O1B - H1B \cdot \cdot \cdot N3B^{iii}$	0.87	2.05	2.8956 (18)	163
$C14B - H14B \cdots Cl1B^{iv}$	0.95	2.75	3.6665 (18)	163

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $x, -y + \frac{3}{2}$, $z + \frac{1}{2}$; (iii) -x + 2, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (iv) $x, -y + \frac{1}{2}$, $z + \frac{1}{2}$.

and applications of metconazole, and the lack of readily accessible crystallographic structure details, this article reports the crystal structure and Hirshfeld surface analysis of a racemate of the *cis* forms, *i.e.* the (1S,5R/1R,5S) enantiomorphs.

2. Structural commentary

The structure of cis-metconazole presented here crystallizes in the monoclinic space group $P2_1/c$, with two molecules (A and B in Fig. 1) in the asymmetric unit (Z' = 2). The structure is a three-ring system consisting of a central cyclopentanol with 1,2,4-triazol-1-ylmethyl (and hydroxyl) attached at C1, two methyl groups on C2 and a 4-chlorobenzyl group bonded to C5. Atoms C1 and C5 are stereogenic. In the assigned asymmetric unit, both molecules are (1R,5S), but the crystallographic inversion requires that an equal amount of (1S,5R)must be present. The conformations of the two independent molecules are broadly similar, as is evident in an overlay plot (r.m.s. deviation = 0.187 Å; Fig. 2). There are, however, minor differences. For example, in molecule A, the maximum deviation from planarity of the cyclopentanol ring is 0.2627 (10) Å at atom C1A, whereas for molecule B, it is 0.2618 (11) Å at C2B owing to a slight change in ring pucker. The similarity in the conformations prompted us to check for a simpler structure with Z' = 1 at room temperature, but none was found. The overall molecular conformations are a consequence of rotation about the four rotatable bonds C5-C6, C6-C7, C1-C13 and C13-N1. For ease of comparison, representative torsion angles quantifying the differences are presented in Table 1.

3. Supramolecular features

There are only two conventional hydrogen bonds in the crystal structure, namely, $O1A - H1A \cdots N3A^i$ [$D \cdots A = 2.9097$ (18) Å] and $O1B - H1B \cdots N3B^{iii}$ [$D \cdots A = 2.8956$ (18) Å] (the symmetry codes are available in Table 2). These result in separate helical chains of 2₁-screw-related A and B molecules, each parallel to the b axis, as depicted in Fig. 3. The only noteworthy close contacts between the A and B molecules are of the form $C11A - H11A \cdots N2B$ [$D \cdots A = 3.500$ (2) Å]. The default suggestion for 'potential hydrogen bonds' in SHELXL (Sheldrick, 2015b) also flags weak contacts of the form $C14A - H14A \cdots C11A^{ii}$ [$D \cdots A = 3.9223$ (18) Å] and $C14B - H14B \cdots C11B^{iv}$ [$D \cdots A = 3.6665$ (18) Å] between c-glide-related molecules. These are also shown in Fig. 3 and summarized in Table 2.

Separate Hirshfeld surface analyses of the two independent molecules using *CrystalExplorer* (Spackman *et al.*, 2021) shows that both molecules have very similar environments, with almost all atom-atom contacts (96.1% coverage for molecule *A* and 96.7% for *B*) involving hydrogen. These are depicted pairwise for $H \cdot \cdot \cdot H$, $H \cdot \cdot \cdot Cl$, $H \cdot \cdot \cdot C$ and $H \cdot \cdot \cdot N$ contacts in Fig. 4.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.46 of November 2024; Groom *et al.*, 2016) for the keyword 'conazole' returned 193 hits, while a search with both 'conazole' and 'triazole' produced 23 matches. A search using a molecular fragment consisting of just the three-ring substructure gave two matches: an organic triazolium salt with $[BF_4]^-$ anions in which the heterocycle is fused to a substituted perhydropentalene ring system (CSD refcode AWIGEV; Budny *et al.*, 2021) and a neutral compound (FEPHOA;

Figure 3

A partial packing plot, viewed down [103], showing $O-H\cdots N$ hydrogen bonds, as well as $C-H\cdots N$ and $C-H\cdots Cl$ contacts, as dotted cyan lines.

Budny *et al.*, 2017), which differs from metconazole by the presence of an additional hydroxyl group at the 3-position of the cyclopentanol ring. The crystal structure of the (1S,5R) isomer reported by Ito *et al.* (1999) was not found in either the CSD or the COD.

5. Synthesis and crystallization

The gift sample of metconazole was purified by column chromatography and recrystallized from methanol by slow evaporation to obtain X-ray-quality crystals (m.p. 386–389 K).

Figure 4

Hirshfeld surface two-dimensional fingerprint plots for each independent molecule, arranged in pairs for molecules A and B, respectively. (a)/(b) H \cdots H, (c)/(d) H \cdots Cl, (e)/(f) H \cdots C and (g)/(h) H \cdots N contacts. Reciprocal contacts are included in each case.

6. Data collection and refinement

None of the crystals were single, but appeared to be multiple domain two-component twins by reticular pseudomerohedry (*e.g.* Parkin, 2021). However, data images did not integrate well using two orientation matrices in the manner recommended by Sevvana *et al.* (2019). Nonetheless, it proved possible to excise most of the minor component from one specimen, so that the remaining minor twin fragment had a negligible effect on the measured diffraction maxima. This crystal was used for data collection. A second similarly treated crystal was later re-indexed at several temperatures up to 294 K to check for any transition to a smaller Z' = 1 structure, but no dramatic changes in unit-cell dimensions were observed.

All H atoms were found in difference Fourier maps. Carbon-bound H atoms were subsequently included in the refinement using riding models, with constrained distances set to 0.95 (Csp^2 -H), 0.98 (RCH_3), 0.99 (R_2CH_2) and 1.00 Å (R_3CH). Hydroxyl H atoms were also included using a riding model, but the O-H distances were refined. $U_{iso}(H)$ parameters were set to values of either $1.2U_{eq}$ or $1.5U_{eq}$ (RCH_3) and OH) of the attached atom. Data collection and structure refinement statistics are summarized in Table 3.

Acknowledgements

The authors thank Honeychem Pharma Research Pvt. Ltd, Peenya Industrial Area, Bengaluru 560 058, India, for a gift sample of metconazole.

Funding information

Funding for this research was provided by: NSF MRI program (grant No. MRI CHE1625732).

References

- Álvarez, F., Arena, M., Auteri, D., Binaglia, S. B. L. M., Castoldi, A. F., Chiusolo, A., Colagiorgi, A., Colas, M., Crivellente, F., De Lentdecker, C., De Magistris, I., Egsmose, M., Fait, G., Ferilli, F., Gouliarmou, V., Halling, K., Nogareda, L. H., Ippolito, A., Istace, F., Jarrah, S., Kardassi, D., Kienzler, A., Lanzoni, A., Lava, R., Leuschner, R., Linguadoca, A., Louisse, J., Lythgo, C., Magrans, O., Mangas, I., Miron, I., Molnar, T., Padovani, L., Padricello, V., Panzarea, M., Morte, J. M. P., Rizzuto, S., Romac, A., Rortais, A., Serafimova, R., Sharp, R., Szentes, C., Terron, A., Theobald, A., Tiramani, M., Vianello, G. & Villamar-Bouza, L. (2023). *EFSA J.* 21, 8141.
- Bruker (2023). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA.
- Budny, M., Kozakiewicz, A. & Wolan, A. (2021). Org. Lett. 23, 5123– 5127.
- Budny, M., Włodarczyk, J., Muzioł, T., Bosiak, M. J. & Wolan, A. (2017). *Tetrahedron Lett.* 58, 4285–4288.
- Diao, Z., Di, S., Qi, P., Liu, Z., Wang, Z., Zhao, H., Wang, M., Zhang, C. & Wang, X. (2024). Food Chem. 438, 137944.
- Fei, L. & Hao, L. (2024). Molecules, 29, 1353.
- Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A. (2009). J. Appl. Cryst. 42, 726–729.

Table 3	
Experimental	details.

Crystal data	
Chemical formula	C17H22CIN3O
M _r	319.82
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	21.1989 (6), 9.5096 (3), 17.6330 (5)
β (°)	110.483 (1)
$V(\dot{A}^3)$	3329.95 (17)
Z	8
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.24
Crystal size (mm)	$0.22 \times 0.20 \times 0.11$
Data collection	
Diffractometer	Bruker D8 Venture dual source
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.903, 0.971
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	60403, 7671, 6719
R _{int}	0.040
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.651
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.100, 1.15
No. of reflections	7671
No. of parameters	406
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.32, -0.24

Computer programs: *APEX5* (Bruker, 2023), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2019* (Sheldrick, 2015*b*), *XP in SHELXTL* (Sheldrick, 2008), *Mercury* (Macrae *et al.*, 2020), *SHELX* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- He, R., Guo, D., Huang, Z., Kong, Y., Ji, C., Gu, J., Zhang, Z.-B., Diao, J., Zhou, Z., Zhao, M., Fan, J. & Zhang, W. (2021). *Sci. Total Environ.* **784**, 147194.
- Ito, A., Saishoji, T., Kumazawa, S. & Chuman, H. (1999). J. Pestic. Sci. 24, 262–269.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Kumazawa, S., Ito, A., Saishoji, T. & Chuman, H. (2000). J. Pestic. Sci. 25, 321331.
- Li, L., Huang, P. & Li, J. (2021). Ecotoxicol. Environ. Saf. 211, 111894.
- Liu, X., Wang, S., Fan, Z., Wu, J., Wang, L., He, D., Mohamed, S. R., Dawood, D. H., Shi, J., Gao, T. & Xu, J. (2023). *Pestic. Biochem. Physiol.* **190**, 105298.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Parkin, S. R. (2021). Acta Cryst. E77, 452-465.
- Sevvana, M., Ruf, M., Usón, I., Sheldrick, G. M. & Herbst-Irmer, R. (2019). Acta Cryst. D75, 1040–1050.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Spolti, P., Guerra, D. S., Badiale–Furlong, E. & Del Ponte, E. M. (2013). *Trop. Plant Pathol.* **38**, 085–096.
- Tateishi, H., Miyake, T., Mori, M., Sakuma, Y. & Saishoji, T. (2014). J. Pestic. Sci. 39, 16.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2025). E81 [https://doi.org/10.1107/S205698902500310X]

Crystal structure and Hirshfeld surface analysis of the fungicide metconazole

Thaluru M. Mohan Kumar, Chaluvarangaiah Sowbhagya, Hemmige S. Yathirajan and Sean Parkin

Computing details

5-[(4-Chlorophenyl)methyl]-2,2-dimethyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentan-1-ol

Crystal data

 $C_{17}H_{22}CIN_{3}O$ $M_{r} = 319.82$ Monoclinic, $P2_{1}/c$ a = 21.1989 (6) Å b = 9.5096 (3) Å c = 17.6330 (5) Å $\beta = 110.483 (1)^{\circ}$ $V = 3329.95 (17) Å^{3}$ Z = 8

Data collection

Bruker D8 Venture dual source diffractometer Radiation source: microsource Detector resolution: 7.41 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015) $T_{\min} = 0.903$, $T_{\max} = 0.971$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.100$ S = 1.157671 reflections 406 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 1360 $D_x = 1.276 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9892 reflections $\theta = 2.8-27.5^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 100 KSlab, colourless $0.22 \times 0.20 \times 0.11 \text{ mm}$

60403 measured reflections 7671 independent reflections 6719 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -27 \rightarrow 25$ $k = -12 \rightarrow 12$ $l = -22 \rightarrow 22$

Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0277P)^2 + 2.5387P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.32$ e Å⁻³ $\Delta\rho_{min} = -0.24$ e Å⁻³ Extinction correction: *SHELXL2019* (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0014 (3)

Special details

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 100K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using *PLATON* (Spek, 2020) and by an *R*-tensor (Parkin, 2000). The final model was further checked with the IUCr utility *checkCIF*.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1A	0.68175 (2)	0.71920 (4)	0.40138 (2)	0.02457 (10)
O1A	0.52795 (5)	0.05539 (12)	0.62641 (7)	0.0196 (2)
H1A	0.5127 (4)	-0.008 (2)	0.6496 (11)	0.029*
N1A	0.60358 (7)	0.20248 (14)	0.77571 (8)	0.0195 (3)
N2A	0.64966 (7)	0.30544 (16)	0.80922 (9)	0.0277 (3)
N3A	0.54519 (7)	0.37624 (15)	0.79895 (9)	0.0252 (3)
C1A	0.59973 (7)	0.05243 (16)	0.65730 (9)	0.0172 (3)
C2A	0.62713 (8)	-0.08738 (16)	0.63359 (10)	0.0197 (3)
C3A	0.61181 (10)	-0.06495 (18)	0.54219 (10)	0.0268 (4)
H3AA	0.645341	-0.114896	0.524671	0.032*
H3AB	0.566442	-0.101316	0.510573	0.032*
C4A	0.61530 (9)	0.09397 (18)	0.52911 (10)	0.0234 (3)
H4AA	0.573718	0.126703	0.486173	0.028*
H4AB	0.654268	0.116655	0.512683	0.028*
C5A	0.62298 (8)	0.16560 (16)	0.61033 (9)	0.0185 (3)
H5A	0.671963	0.183740	0.639758	0.022*
C6A	0.58581 (9)	0.30658 (17)	0.59845 (10)	0.0230 (3)
H6AA	0.536953	0.290105	0.571100	0.028*
H6AB	0.592595	0.348816	0.652054	0.028*
C7A	0.61005 (8)	0.40847 (16)	0.54868 (10)	0.0198 (3)
C8A	0.56811 (8)	0.45113 (17)	0.47216 (10)	0.0207 (3)
H8A	0.523805	0.413879	0.450445	0.025*
C9A	0.58951 (8)	0.54694 (17)	0.42676 (10)	0.0213 (3)
H9A	0.560076	0.575885	0.374879	0.026*
C10A	0.65406 (8)	0.59929 (16)	0.45817 (9)	0.0196 (3)
C11A	0.69756 (8)	0.55970 (17)	0.53428 (10)	0.0215 (3)
H11A	0.741887	0.596966	0.555497	0.026*
C12A	0.67496 (8)	0.46467 (17)	0.57866 (10)	0.0221 (3)
H12A	0.704390	0.437069	0.630823	0.027*
C13A	0.62454 (8)	0.07077 (17)	0.74931 (9)	0.0207 (3)
H13A	0.607522	-0.008482	0.773112	0.025*
H13B	0.674336	0.066043	0.770581	0.025*
C14A	0.61194 (9)	0.40646 (19)	0.82161 (11)	0.0285 (4)

H14A	0.630073	0.494312	0.844747	0.034*
C15A	0.54260 (8)	0.24617 (18)	0.77086 (10)	0.0223 (3)
H15A	0.502680	0.191605	0.750096	0.027*
C16A	0.70333 (8)	-0.10486 (18)	0.67767 (11)	0.0249 (3)
H16A	0.719344	-0.186311	0.655534	0.037*
H16B	0.712545	-0.119355	0.735586	0.037*
H16C	0.726673	-0.020057	0.670003	0.037*
C17A	0.59222 (9)	-0.21937 (17)	0.64933 (11)	0.0254 (3)
H17A	0.607908	-0.301802	0.627642	0.038*
H17B	0.543382	-0.209774	0.622694	0.038*
H17C	0.603015	-0.231026	0.707740	0.038*
Cl1B	0.81854 (2)	0.26865 (4)	0.24588 (2)	0.02863 (11)
O1B	0.96960 (5)	0.92837 (12)	0.60315 (7)	0.0201 (2)
H1B	0.9829 (3)	0.993 (2)	0.6401 (13)	0.030*
N1B	0.89595 (7)	0.76902 (14)	0.68325 (8)	0.0192(3)
N2B	0.85737 (7)	0.65081 (16)	0.66925 (9)	0.0288(3)
N3B	0.96104 (7)	0.60789 (15)	0.76048 (9)	0.0252(3)
C1B	0.89788 (7)	0.92607 (16)	0.57054 (9)	0.0170(3)
C2B	0.86934 (8)	1.06611 (16)	0.52487(10)	0.0203(3)
C3B	0 88597 (9)	1 04776 (18)	0.44722(10)	0.0261(4)
H3BA	0.856431	1 107926	0 403284	0.031*
H3BB	0.933450	1 073313	0.457056	0.031*
C4B	0.87378 (10)	0.89232 (19)	0.4246(1)	0.031 0.0302(4)
H4BA	0 908484	0.856557	0.403812	0.036*
H4BB	0.828929	0.879158	0.382263	0.036*
C5B	0.87770 (8)	0.81331 (16)	0.50303 (9)	0.030
H5B	0.831491	0 779048	0.496496	0.023*
C6B	0.92474 (8)	0.68569(17)	0.51927(10)	0.023 0.0218(3)
H6BA	0.970392	0.716866	0.523445	0.026*
H6BR	0.927925	0.642304	0.571523	0.026*
C7B	0.89944 (8)	0.57752 (16)	0.371323 0.45240(9)	0.020
C8B	0.03544 (0)	0.54384(17)	0.40351(10)	0.0193(3) 0.0213(3)
H8B	0.978630	0.587934	0.413145	0.0215 (5)
C9B	0.91278 (8)	0.367994 0.44719 (17)	0.34086 (10)	0.020
H9B	0.938695	0.424459	0.308174	0.0220 (3)
C10B	0.85096 (8)	0.38482(17)	0.300174 0.32705 (9)	0.020
C11B	0.81342(8)	0.30402(17) 0.41252(17)	0.32703())	0.0211(3) 0.0213(3)
H11B	0.771604	0.366651	0.366632	0.0215 (5)
C12B	0.83852 (8)	0.500051 0.50919 (17)	0.43823 (10)	0.020
H12B	0.813303	0.529015	0.472143	0.0211(3)
C13B	0.87017 (8)	0.329013 0.89825 (17)	0.63853 (9)	0.025
HISC	0.881943	0.078517	0.676690	0.0178 (3)
нізе нізр	0.820441	0.802601	0.614957	0.024
C14B	0.820441 0.80867 (0)	0.392091 0.55808 (10)	0.014957 0.71736(11)	0.024 0.0308 (4)
H14B	0.885667	0.35050 (19)	0.71/50(11)	0.037*
C15R	0.005007	0.74128 (17)	0.721024	0.037° 0.0214(2)
U15B	0.95000 (0)	0.74120(17)	0.755079	0.0214 (3)
C16R	0.992200	1 07684 (19)	0.733770 0.50287(11)	0.020
CIUD	0.19239(0)	1.07004 (10)	0.30387 (11)	0.0204 (4)

H16D	0.774938	1.154796	0.466017	0.040*	
H16E	0.782738	1.093744	0.553416	0.040*	
H16F	0.771280	0.988803	0.478829	0.040*	
C17B	0.90242 (9)	1.19719 (17)	0.57190 (11)	0.0267 (4)	
H17D	0.882680	1.281180	0.540294	0.040*	
H17E	0.950893	1.194861	0.581955	0.040*	
H17F	0.894934	1.199755	0.623668	0.040*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1A	0.0309 (2)	0.01992 (19)	0.0269 (2)	-0.00292 (15)	0.01513 (16)	0.00167 (15)
O1A	0.0175 (5)	0.0193 (6)	0.0224 (5)	-0.0014 (4)	0.0075 (4)	0.0021 (4)
N1A	0.0222 (7)	0.0195 (7)	0.0175 (6)	0.0002 (5)	0.0076 (5)	-0.0022 (5)
N2A	0.0254 (7)	0.0280 (8)	0.0289 (8)	-0.0042 (6)	0.0086 (6)	-0.0110 (6)
N3A	0.0281 (7)	0.0237 (7)	0.0265 (7)	0.0016 (6)	0.0129 (6)	-0.0043 (6)
C1A	0.0165 (7)	0.0167 (7)	0.0187 (7)	-0.0001 (6)	0.0066 (6)	-0.0013 (6)
C2A	0.0224 (8)	0.0165 (7)	0.0214 (8)	-0.0004 (6)	0.0091 (6)	-0.0033 (6)
C3A	0.0369 (10)	0.0215 (8)	0.0222 (8)	0.0004 (7)	0.0106 (7)	-0.0044 (7)
C4A	0.0290 (9)	0.0237 (8)	0.0205 (8)	0.0002 (7)	0.0125 (7)	-0.0015 (6)
C5A	0.0203 (7)	0.0170 (7)	0.0199 (7)	-0.0012 (6)	0.0093 (6)	-0.0004 (6)
C6A	0.0276 (8)	0.0202 (8)	0.0262 (8)	0.0019 (6)	0.0155 (7)	0.0020 (6)
C7A	0.0234 (8)	0.0160 (7)	0.0231 (8)	0.0022 (6)	0.0121 (6)	-0.0009 (6)
C8A	0.0203 (7)	0.0201 (8)	0.0230 (8)	-0.0023 (6)	0.0092 (6)	-0.0033 (6)
C9A	0.0221 (8)	0.0227 (8)	0.0191 (7)	0.0019 (6)	0.0073 (6)	-0.0003 (6)
C10A	0.0249 (8)	0.0155 (7)	0.0217 (7)	-0.0010 (6)	0.0121 (6)	-0.0010 (6)
C11A	0.0198 (7)	0.0214 (8)	0.0234 (8)	-0.0019 (6)	0.0078 (6)	-0.0033 (6)
C12A	0.0240 (8)	0.0211 (8)	0.0201 (7)	0.0029 (6)	0.0064 (6)	0.0001 (6)
C13A	0.0230 (8)	0.0186 (8)	0.0203 (7)	0.0047 (6)	0.0072 (6)	-0.0009 (6)
C14A	0.0320 (9)	0.0247 (9)	0.0305 (9)	-0.0032 (7)	0.0133 (8)	-0.0100 (7)
C15A	0.0231 (8)	0.0234 (8)	0.0226 (8)	0.0006 (6)	0.0108 (6)	-0.0018 (6)
C16A	0.0231 (8)	0.0209 (8)	0.0322 (9)	0.0016 (6)	0.0117 (7)	-0.0035 (7)
C17A	0.0271 (8)	0.0175 (8)	0.0330 (9)	-0.0017 (6)	0.0124 (7)	-0.0030 (7)
Cl1B	0.0338 (2)	0.0224 (2)	0.0239 (2)	0.00359 (17)	0.00284 (16)	-0.00667 (16)
O1B	0.0182 (5)	0.0196 (6)	0.0208 (5)	-0.0008(4)	0.0048 (4)	-0.0024 (4)
N1B	0.0215 (6)	0.0175 (6)	0.0188 (6)	-0.0008 (5)	0.0073 (5)	0.0014 (5)
N2B	0.0233 (7)	0.0231 (7)	0.0361 (8)	-0.0051 (6)	0.0055 (6)	0.0065 (6)
N3B	0.0261 (7)	0.0231 (7)	0.0251 (7)	0.0007 (6)	0.0074 (6)	0.0065 (6)
C1B	0.0169 (7)	0.0158 (7)	0.0180 (7)	0.0006 (6)	0.0057 (6)	0.0006 (6)
C2B	0.0235 (8)	0.0158 (7)	0.0209 (7)	0.0014 (6)	0.0070 (6)	0.0027 (6)
C3B	0.0363 (10)	0.0207 (8)	0.0224 (8)	0.0021 (7)	0.0117 (7)	0.0048 (7)
C4B	0.0478 (11)	0.0230 (9)	0.0185 (8)	0.0039 (8)	0.0102 (8)	0.0015 (7)
C5B	0.0208 (7)	0.0178 (7)	0.0180 (7)	-0.0002 (6)	0.0054 (6)	-0.0009 (6)
C6B	0.0235 (8)	0.0195 (8)	0.0199 (7)	0.0026 (6)	0.0043 (6)	-0.0029 (6)
C7B	0.0237 (8)	0.0165 (7)	0.0165 (7)	0.0037 (6)	0.0048 (6)	0.0014 (6)
C8B	0.0204 (7)	0.0208 (8)	0.0217 (8)	0.0013 (6)	0.0062 (6)	0.0016 (6)
C9B	0.0250 (8)	0.0224 (8)	0.0195 (7)	0.0053 (6)	0.0089 (6)	0.0006 (6)
C10B	0.0259 (8)	0.0161 (7)	0.0176 (7)	0.0040 (6)	0.0030 (6)	-0.0006 (6)

C11B	0.0216 (8)	0.0170 (7)	0.0233 (8)	0.0017 (6)	0.0055 (6)	0.0019 (6)
C12B	0.0236 (8)	0.0201 (8)	0.0209 (7)	0.0046 (6)	0.0093 (6)	0.0020 (6)
C13B	0.0215 (7)	0.0179 (7)	0.0201 (7)	0.0032 (6)	0.0075 (6)	0.0022 (6)
C14B	0.0296 (9)	0.0225 (9)	0.0369 (10)	-0.0032 (7)	0.0074 (8)	0.0092 (7)
C15B	0.0219 (8)	0.0220 (8)	0.0186 (7)	-0.0009 (6)	0.0051 (6)	0.0010 (6)
C16B	0.0253 (8)	0.0222 (8)	0.0288 (9)	0.0048 (7)	0.0059 (7)	0.0051 (7)
C17B	0.0321 (9)	0.0164 (8)	0.0285 (9)	0.0006 (7)	0.0068 (7)	0.0017 (7)

Geometric parameters (Å, °)

Cl1A—C10A	1.7490 (16)	Cl1B—C10B	1.7473 (16)
O1A—C1A	1.4259 (18)	O1B—C1B	1.4250 (18)
O1A—H1A	0.86 (2)	O1B—H1B	0.87 (2)
N1A—C15A	1.332 (2)	N1B—C15B	1.333 (2)
N1A—N2A	1.3631 (19)	N1B—N2B	1.3610 (19)
N1A—C13A	1.459 (2)	N1B—C13B	1.459 (2)
N2A—C14A	1.316 (2)	N2B—C14B	1.315 (2)
N3A—C15A	1.326 (2)	N3B—C15B	1.327 (2)
N3A—C14A	1.360 (2)	N3B—C14B	1.356 (2)
C1A—C13A	1.530 (2)	C1B—C13B	1.532 (2)
C1A—C5A	1.540 (2)	C1B—C5B	1.547 (2)
C1A—C2A	1.565 (2)	C1B—C2B	1.564 (2)
C2A—C17A	1.531 (2)	C2B—C17B	1.525 (2)
C2A—C16A	1.537 (2)	C2B—C3B	1.539 (2)
C2A—C3A	1.543 (2)	C2B—C16B	1.540 (2)
C3A—C4A	1.535 (2)	C3B—C4B	1.529 (2)
СЗА—НЗАА	0.9900	C3B—H3BA	0.9900
СЗА—НЗАВ	0.9900	C3B—H3BB	0.9900
C4A—C5A	1.542 (2)	C4B—C5B	1.550 (2)
C4A—H4AA	0.9900	C4B—H4BA	0.9900
C4A—H4AB	0.9900	C4B—H4BB	0.9900
C5A—C6A	1.532 (2)	C5B—C6B	1.533 (2)
C5A—H5A	1.0000	C5B—H5B	1.0000
C6A—C7A	1.513 (2)	C6B—C7B	1.514 (2)
С6А—Н6АА	0.9900	C6B—H6BA	0.9900
C6A—H6AB	0.9900	C6B—H6BB	0.9900
C7A—C8A	1.391 (2)	C7B—C12B	1.388 (2)
C7A—C12A	1.396 (2)	C7B—C8B	1.389 (2)
C8A—C9A	1.390 (2)	C8B—C9B	1.389 (2)
C8A—H8A	0.9500	C8B—H8B	0.9500
C9A—C10A	1.377 (2)	C9B—C10B	1.380 (2)
С9А—Н9А	0.9500	С9В—Н9В	0.9500
C10A—C11A	1.388 (2)	C10B—C11B	1.385 (2)
C11A—C12A	1.386 (2)	C11B—C12B	1.390 (2)
C11A—H11A	0.9500	C11B—H11B	0.9500
C12A—H12A	0.9500	C12B—H12B	0.9500
C13A—H13A	0.9900	C13B—H13C	0.9900
C13A—H13B	0.9900	C13B—H13D	0.9900

C14A—H14A	0.9500	C14B—H14B	0.9500
C15A—H15A	0.9500	C15B—H15B	0.9500
C16A—H16A	0.9800	C16B—H16D	0.9800
C16A—H16B	0.9800	C16B—H16E	0.9800
C16A—H16C	0.9800	C16B—H16F	0.9800
С17А—Н17А	0.9800	C17B—H17D	0.9800
C17A—H17B	0.9800	C17B—H17E	0.9800
C17A—H17C	0.9800	C17B—H17F	0.9800
	0.9000		0.9000
C1A—O1A—H1A	109 5	C1B-01B-H1B	109 5
C15A = N1A = N2A	109.64 (13)	C15B $N1B$ $N2B$	109.64 (13)
C15A = N1A = C13A	$130\ 13\ (14)$	C15B $N1B$ $C13B$	129 60 (14)
N2A $N1A$ $C13A$	120.10(14)	N2B N1B C13B	129.66 (13)
C14A N2A N1A	120.20(13) 102.20(14)	C14B N2B N1B	120.00(13) 102.00(14)
C15A N3A $C14A$	102.20(14) 102.11(14)	C15P N2P $C14P$	102.09(14) 101.03(14)
C13A = N3A = C14A	102.11(14) 100.12(12)	C13D $N3D$ $C14DO1P$ $C1P$ $C13P$	101.93(14) 100.52(12)
OIA - CIA - CIA	109.12(12) 106.28(12)	OIB-CIB-CISB	109.32(12)
CI2A CIA C5A	106.28 (12)	CIB-CIB-CSB	100.80 (12)
CI3A—CIA—CSA	115.75 (13)	CI3B—CIB—C3B	113.83 (13)
OIA—CIA—C2A	111.16 (12)	OIB—CIB—C2B	111.13 (12)
CI3A—CIA—C2A	110.99 (12)	CI3B—CIB—C2B	111.39 (12)
C5A—C1A—C2A	103.38 (12)	C5B—C1B—C2B	103.94 (12)
C17A—C2A—C16A	107.99 (13)	C17B—C2B—C3B	111.82 (14)
C17A—C2A—C3A	111.36 (14)	C17B—C2B—C16B	108.81 (14)
C16A—C2A—C3A	110.06 (13)	C3B—C2B—C16B	110.20 (14)
C17A—C2A—C1A	113.57 (13)	C17B—C2B—C1B	113.23 (13)
C16A—C2A—C1A	112.29 (13)	C3B—C2B—C1B	101.17 (12)
C3A—C2A—C1A	101.50 (12)	C16B—C2B—C1B	111.46 (13)
C4A—C3A—C2A	106.83 (13)	C4B—C3B—C2B	105.74 (13)
С4А—С3А—НЗАА	110.4	C4B—C3B—H3BA	110.6
С2А—С3А—НЗАА	110.4	С2В—С3В—Н3ВА	110.6
С4А—С3А—НЗАВ	110.4	C4B—C3B—H3BB	110.6
С2А—С3А—НЗАВ	110.4	C2B—C3B—H3BB	110.6
НЗАА—СЗА—НЗАВ	108.6	НЗВА—СЗВ—НЗВВ	108.7
C3A—C4A—C5A	106.87 (13)	C3B—C4B—C5B	106.52 (13)
СЗА—С4А—Н4АА	110.3	C3B—C4B—H4BA	110.4
С5А—С4А—Н4АА	110.3	C5B—C4B—H4BA	110.4
СЗА—С4А—Н4АВ	110.3	C3B—C4B—H4BB	110.4
С5А—С4А—Н4АВ	110.3	C5B—C4B—H4BB	110.4
H4AA—C4A—H4AB	108.6	H4BA—C4B—H4BB	108.6
C6A - C5A - C1A	116.03 (12)	C6B-C5B-C1B	114 73 (13)
C6A - C5A - C4A	112.03(12) 112.17(13)	C6B-C5B-C4B	112 25 (13)
C1A - C5A - C4A	103.95(12)	C1B-C5B-C4B	105 34 (13)
C6A = C5A = H5A	108.1	C6B - C5B - H5B	108.1
C14 - C54 - H5A	108.1	C1B - C5B + 45B	108.1
	108.1	CAB CSB USB	100.1
$C_{TA} = C_{JA} = H_{JA}$	100.1 112 14 (12)	$C_{1D} = C_{3D} = D_{3D}$	100.1
$C_{A} C_{A} C_{A} U_{A}$	112.14(13)	C/D = COD = COD	111.23(13)
	109.2	C/D - COD - HOBA	109.4
UJA-UOA-HOAA	109.2	Сэв—Сов—новА	109.4

C7A—C6A—H6AB	109.2	C7B—C6B—H6BB	109.4
C5A—C6A—H6AB	109.2	C5B—C6B—H6BB	109.4
Н6АА—С6А—Н6АВ	107.9	H6BA—C6B—H6BB	108.0
C8A—C7A—C12A	117.79 (15)	C12B—C7B—C8B	118.08 (15)
C8A—C7A—C6A	121.18 (15)	C12B—C7B—C6B	120.77 (14)
C12A—C7A—C6A	121.02 (15)	C8B—C7B—C6B	121.14 (15)
C9A—C8A—C7A	121.54 (15)	C9B—C8B—C7B	121.52 (15)
С9А—С8А—Н8А	119.2	C9B—C8B—H8B	119.2
C7A - C8A - H8A	119.2	C7B-C8B-H8B	119.2
C_{10A} C_{0A} C_{8A}	119.2	C_{10}^{10} C_{00}^{10} C_{00}^{10} C_{00}^{10}	119.2
$C_{10A} = C_{9A} = C_{8A}$	120.5	C10D = C9D = C0D	120.7
$C_{10A} - C_{9A} - H_{9A}$	120.5	$C^{0}D$ $C^{0}D$ $H^{0}D$	120.7
C8A—C9A—H9A	120.5	C8B—C9B—H9B	120.7
C9A—C10A—C11A	121.41 (15)	C9B—C10B—C11B	121.67 (15)
C9A—C10A—CI1A	119.39 (12)	C9B—C10B—C11B	119.56 (12)
C11A—C10A—Cl1A	119.20 (12)	C11B—C10B—C11B	118.77 (13)
C12A—C11A—C10A	118.61 (15)	C10B—C11B—C12B	118.28 (15)
C12A—C11A—H11A	120.7	C10B—C11B—H11B	120.9
C10A—C11A—H11A	120.7	C12B—C11B—H11B	120.9
C11A—C12A—C7A	121.69 (15)	C7B—C12B—C11B	121.73 (15)
C11A—C12A—H12A	119.2	C7B—C12B—H12B	119.1
C7A—C12A—H12A	119.2	C11B—C12B—H12B	119.1
N1A—C13A—C1A	113.96 (13)	N1B—C13B—C1B	113.25 (13)
N1A—C13A—H13A	108.8	N1B—C13B—H13C	108.9
C1A - C13A - H13A	108.8	C1B-C13B-H13C	108.9
NIA CI3A HI3B	108.8	NIB CI3B HI3D	108.9
$C_{1A} = C_{13A} = H_{13B}$	108.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.9
$U_{12} = C_{12} = U_{12} = U_{12}$	108.8		103.3
	10/./		10/./
N2A - C14A - N3A	115.29 (15)	N2B - C14B - N3B	115.61 (16)
N2A—C14A—H14A	122.4	N2B—C14B—H14B	122.2
N3A—C14A—H14A	122.4	N3B—C14B—H14B	122.2
N3A—C15A—N1A	110.76 (15)	N3B—C15B—N1B	110.73 (15)
N3A—C15A—H15A	124.6	N3B—C15B—H15B	124.6
N1A—C15A—H15A	124.6	N1B—C15B—H15B	124.6
C2A-C16A-H16A	109.5	C2B—C16B—H16D	109.5
C2A—C16A—H16B	109.5	C2B-C16B-H16E	109.5
H16A—C16A—H16B	109.5	H16D—C16B—H16E	109.5
C2A—C16A—H16C	109.5	C2B—C16B—H16F	109.5
H16A—C16A—H16C	109.5	H16D—C16B—H16F	109.5
H16B—C16A—H16C	109.5	H16E—C16B—H16F	109.5
C_{2A} C_{17A} H_{17A}	109.5	C2B-C17B-H17D	109.5
C_{2A} C_{17A} H_{17B}	109.5	C2B $C17B$ $H17E$	109.5
$H_{17A} = C_{17A} = H_{17B}$	109.5	$H_{17D} = C_{17B} = H_{17E}$	109.5
$\frac{\Pi}{A} = \frac{\Pi}{A} = \frac{\Pi}{A}$	107.5	$\frac{111}{D} - \frac{17}{D} - \frac{117}{D}$	107.5
U_{2A} $U_{1/A}$ $H_{1/U}$	109.5	$U_{D} = U_{I} D = H_{I} T_{I}$	109.3
$\Pi I/A - UI/A - HI/U$	109.5	HI/D - UI/B - HI/F	109.5
H1/B—C1/A—H1/C	109.5	H1/E—C1/B—H1/F	109.5
	-0.61 (19)	CISD NID NOD CLAD	0.57(10)
$C12A \rightarrow N1A \rightarrow N2A \rightarrow C14A$	-0.01(10)	$C12D \qquad N1D \qquad N2D \qquad C14B$	0.37(19)
UIJA—NIA—NZA—UI4A	1//.39(14)	U13B—N1B—N2B—U14B	1//.23(13)

01A—C1A—C2A—C17A	-47.47 (17)	O1B—C1B—C2B—C17B	-45.87 (17)
C13A—C1A—C2A—C17A	74.17 (17)	C13B—C1B—C2B—C17B	76.54 (17)
C5A—C1A—C2A—C17A	-161.11 (13)	C5B—C1B—C2B—C17B	-160.47 (13)
O1A—C1A—C2A—C16A	-170.35 (13)	O1B—C1B—C2B—C3B	73.94 (15)
C13A—C1A—C2A—C16A	-48.71 (17)	C13B—C1B—C2B—C3B	-163.65 (13)
C5A—C1A—C2A—C16A	76.01 (15)	C5B—C1B—C2B—C3B	-40.67 (15)
O1A—C1A—C2A—C3A	72.15 (15)	O1B-C1B-C2B-C16B	-168.95 (13)
C13A—C1A—C2A—C3A	-166.21 (13)	C13B—C1B—C2B—C16B	-46.53 (17)
C5A—C1A—C2A—C3A	-41.49 (15)	C5B-C1B-C2B-C16B	76.45 (15)
C17A—C2A—C3A—C4A	151.19 (14)	C17B—C2B—C3B—C4B	159.06 (14)
C16A—C2A—C3A—C4A	-89.09 (16)	C16B—C2B—C3B—C4B	-79.78 (17)
C1A—C2A—C3A—C4A	30.01 (17)	C1B—C2B—C3B—C4B	38.25 (17)
C2A—C3A—C4A—C5A	-7.56 (18)	C2B—C3B—C4B—C5B	-21.50 (19)
O1A—C1A—C5A—C6A	43.87 (17)	O1B-C1B-C5B-C6B	34.43 (17)
C13A—C1A—C5A—C6A	-77.44 (17)	C13B—C1B—C5B—C6B	-86.60 (16)
C2A—C1A—C5A—C6A	161.00 (13)	C2B-C1B-C5B-C6B	152.03 (13)
O1A—C1A—C5A—C4A	-79.78 (14)	O1B—C1B—C5B—C4B	-89.54 (15)
C13A—C1A—C5A—C4A	158.91 (13)	C13B—C1B—C5B—C4B	149.44 (14)
C2A—C1A—C5A—C4A	37.35 (15)	C2B—C1B—C5B—C4B	28.07 (16)
C3A—C4A—C5A—C6A	-144.71 (14)	C3B—C4B—C5B—C6B	-129.92 (15)
C3A—C4A—C5A—C1A	-18.58 (17)	C3B—C4B—C5B—C1B	-4.40 (18)
C1A—C5A—C6A—C7A	-177.53 (13)	C1B—C5B—C6B—C7B	177.16 (13)
C4A—C5A—C6A—C7A	-58.26 (18)	C4B—C5B—C6B—C7B	-62.64 (18)
C5A—C6A—C7A—C8A	113.52 (17)	C5B—C6B—C7B—C12B	-63.93 (19)
C5A—C6A—C7A—C12A	-67.59 (19)	C5B—C6B—C7B—C8B	116.02 (16)
C12A—C7A—C8A—C9A	-0.3 (2)	C12B—C7B—C8B—C9B	1.5 (2)
C6A—C7A—C8A—C9A	178.62 (14)	C6B—C7B—C8B—C9B	-178.49 (15)
C7A—C8A—C9A—C10A	0.8 (2)	C7B—C8B—C9B—C10B	0.6 (2)
C8A—C9A—C10A—C11A	-0.8(2)	C8B—C9B—C10B—C11B	-2.4(2)
C8A—C9A—C10A—C11A	179.64 (12)	C8B—C9B—C10B—C11B	177.23 (12)
C9A—C10A—C11A—C12A	0.4 (2)	C9B—C10B—C11B—C12B	2.0 (2)
Cl1A—C10A—C11A—C12A	179.96 (12)	Cl1B—C10B—C11B—C12B	-177.58(12)
C10A—C11A—C12A—C7A	0.0 (2)	C8B—C7B—C12B—C11B	-1.8(2)
C8A—C7A—C12A—C11A	-0.1 (2)	C6B—C7B—C12B—C11B	178.13 (14)
C6A—C7A—C12A—C11A	-179.04 (15)	C10B—C11B—C12B—C7B	0.1 (2)
C15A—N1A—C13A—C1A	68.1 (2)	C15B—N1B—C13B—C1B	73.5 (2)
N2A—N1A—C13A—C1A	-109.63(16)	N2B—N1B—C13B—C1B	-102.44(17)
01A—C1A—C13A—N1A	-60.01 (17)	O1B—C1B—C13B—N1B	-56.18 (17)
C5A—C1A—C13A—N1A	59.77 (18)	C5B—C1B—C13B—N1B	63.35 (17)
C2A— $C1A$ — $C13A$ — $N1A$	177.17 (12)	C2B— $C1B$ — $C13B$ — $N1B$	-179.52(12)
N1A—N2A—C14A—N3A	0.3 (2)	N1B—N2B—C14B—N3B	-0.8(2)
C15A—N3A—C14A—N2A	0.2 (2)	C15B—N3B—C14B—N2B	0.7 (2)
C14A - N3A - C15A - N1A	-0.59(18)	C14B— $N3B$ — $C15B$ — $N1B$	-0.28(18)
N2A—N1A—C15A—N3A	0.79 (19)	N2B—N1B—C15B—N3B	-0.19(19)
C13A—N1A—C15A—N3A	-177.17 (15)	C13B—N1B—C15B—N3B	-176.45(15)
	- , , , , , ()		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
O1A—H1A···N3A ⁱ	0.86	2.08	2.9097 (18)	164
C11 <i>A</i> —H11 <i>A</i> ···N2 <i>B</i>	0.95	2.62	3.500(2)	155
$C14A$ — $H14A$ ··· $C11A^{ii}$	0.95	2.98	3.9223 (18)	175
$O1B$ —H1 B ····N3 B^{iii}	0.87	2.05	2.8956 (18)	163
C14 B —H14 B ···Cl1 B^{iv}	0.95	2.75	3.6665 (18)	163

Symmetry codes: (i) -x+1, y-1/2, -z+3/2; (ii) x, -y+3/2, z+1/2; (iii) -x+2, y+1/2, -z+3/2; (iv) x, -y+1/2, z+1/2.