

ISSN 2056-9890

Received 17 March 2025 Accepted 25 April 2025

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India

Keywords: crystal structure; perethoxy prism[6] arene; 1,6-dichlorohexane; 1,6-diiodohexane; host–guest systems..

CCDC references: 2431273; 2431272

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures and supramolecular interactions of prism[6]arene-based host-guest systems with dihalohexanes

Mickey Vinodh, Nour O. Abdeljaber, Fatemeh H. Alipour and Talal F. Al-Azemi*

Department of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait. *Correspondence e-mail: t.alazemi@ku.edu.kw

The crystal structures of the supramolecular systems formed by perethoxy prism [6]arene (**PS6**) with 1,6-dichlorohexane (**HexCl2**), $C_{90}H_{96}O_{12}$ ·2C₆H₁₂Cl₂, and 1,6-diiodohexane (**HexI2**), $C_{90}H_{96}O_{12}$ ·2C₆H₁₂I₂, are reported. **PS6** encapsulates these linear dihaloalkanes, creating 1:1 host–guest systems (**PS6·HexCl2** and **PS6·HexI2**). The structural details and host–guest intermolecular interactions within the crystal networks are presented and discussed. In both crystal structures, the prism[6]arene macrocycle adopts a distorted cuboid shape, with the guest positioned perpendicular to its main axis.

1. Chemical context

Prism[*n*]arenes are a class of naphthalene-based macrocyclic systems that have been reported recently (Della Sala *et al.*, 2020, 2021). They are structurally analogous to pillar[*n*]arenes, with the key difference being that the dialkoxybenzene units are replaced by dialkoxy naphthalenes. The five dimethoxy-naphthalene units, linked *via* methylene bridges, adopt a prism-like shape and are thus named permethoxy prism[5] arene. Similarly, the six-membered diethoxynaphthalene units adopt a folded cuboid-shaped conformation and are referred to as perethoxy prism[6]arene.

Currently, the prism[n] arene family remains relatively small, consisting of only two known members: prism[5]arene and prism[6]arene. Suitably designed prism[n]arene macrocycles are expected to possess light-sensitizing properties, making them promising candidates for detection and sensing applications, as naphthalene units exhibit remarkable fluorescence (Yao & Jiang, 2020). Additionally, the large biphenyl π -system of the naphthalene moieties provides a deeper and wider cavity in macrocyclic prism[n]arene derivatives,enhancing their host-guest interactions. Both prism[5]arene and prism[6]arene exhibit a significant degree of conformational flexibility, enabling them to accommodate various guest molecules within their cavities (Yang & Jiang, 2020; Liang et al., 2022; Regno et al., 2022, 2024; Zhang et al., 2024). However, detailed structural investigations of these prism[n]arene systems and their host-guest interactions remain underdeveloped.

Recently, the present authors provided a detailed account of the guest encapsulation characteristics of permethoxy prism [5]arene and perethoxy prism[6]arene with different α,ω -dibromoalkanes (Vinodh *et al.*, 2025). In the present work, we discuss the crystal structures of perethoxy prism[6]arene (**PS6**) co-crystallized with either 1,6-dichlorohexane (**HexCl2**) or 1,6-diiodohexane (**HexI2**). The results show that **PS6** encapsulates these linear dihaloalkanes, forming 1:1 host-guest complexes (**PS6·HexCl2** and **PS6·HexI2**). The structural details and host-guest intermolecular interactions within the crystal network are presented and discussed.

2. Structural commentary

PS6-HexCl2 crystallizes in the monoclinic crystal system, space group C2/c, with its asymmetric unit consisting of half of a prism[6]arene molecule and two halves of 1,6-dichlorohexane moieties. Upon symmetry expansion, one molecule of 1,6-dichlorohexane is encapsulated within the cavity of the perethoxy prism[6]arene, resulting in the formation of a host-guest supramolecular inclusion complex, **PS6-HexCl2**. Additionally, an extra 1,6-dichlorohexane molecule is present for each **PS6-HexCl2**, acting as a space-filling solvent molecule (Fig. 1). Furthermore, two disordered ethoxy groups are observed at the rim of the macrocycle in Fig. 1.

The prism[6]arene macrocycle in **PS6-HexCl2** exhibits a distorted cuboid shape, with its longer sides comprising two naphthalene units each, while the shorter sides consist of a single naphthalene unit. Measuring the distances based on the centroids of the phenyl rings in the naphthalene units, the length of the cuboid is approximately 12.32 Å, and the shortest width is 8.46 Å. Inside this cuboid-shaped prism[6]arene, a single 1,6-dichlorohexane guest is positioned perpendicular to

the main axis of the macrocycle. This orthogonal orientation is quite different from the common threaded encapsulation typically observed in pillar[5]arenes or prism[5]arenes with such linear guest molecules. As a result of this unique arrangement, the chlorine atoms of the encapsulated 1,6-dichlorohexane molecule are aligned in the same direction and project toward the opening of the cuboid. The distance between the terminal chlorine atoms in the encapsulated guest molecule is measured to be 4.83 Å, whereas in the similar 1,6dichlorohexane molecules positioned outside the prism[6] arene as space-filling solvents, the distance is 9.34 Å.

Similarly, **PS6·Hex12** crystallizes in the monoclinic crystal system, space group *C2/c*, with its asymmetric unit consisting of half of a prism[6]arene molecule and two halves of 1,6-diiodohexane moieties. Similar to **PS6·HexC12**, the crystal structure of **PS6·Hex12** includes one molecule of 1,6-diiodohexane encapsulated within the cavity of perethoxy prism[6] arene, forming a host-guest supramolecular inclusion complex, **PS6·Hex12**, along with an additional 1,6-diiodohexane molecule serving as a space-filling solvent (Fig. 2).

The prism[6]arene macrocycle in **PS6·Hex12** also exhibits a distorted cuboid shape, with a length of approximately 12.24 Å and a shortest width of around 8.23 Å. In this inclusion complex, the encapsulated 1,6-diiodohexane guest is also positioned perpendicular to the main axis of the macrocycle, with its iodine atoms aligned in the same direction and projecting toward the opening of the cuboid. The distance between the terminal iodine atoms in the encapsulated guest molecule is measured to be 4.56 Å, whereas in the similar 1,6-diiodohexane molecules positioned outside the prism[6]arene as space-filling solvents, this distance is 9.98 Å. This suggests that the 1,6-diiodohexane guest experiences greater strain within the prism[6]arene cavity compared to the 1,6-diichlorohexane guest.

3. Supramolecular features

The encapsulated guest molecules, 1,6-dichlorohexane or 1,6diiodohexane, engage in multiple non-bonding interactions

Figure 1

Symmetry-expanded crystal structure of **PS6-HexCl2** with displacement ellipsoids (30% probability; only the symmetry independent atoms are labeled). Hydrogen atoms are omitted for clarity.

Figure 2

Symmetry-expanded crystal structure of **PS6-Hex12** with displacement ellipsoids (30% probability; only the symmetry independent atoms are labeled). Hydrogen atoms are omitted for clarity.

Figure 3

Host-guest interactions between the prism[6]arene host and dichlorohexane guest. $\pi 1-\pi 3$ are the centroids of the phenyl rings C1-C5,C10; C16-C21 and C23-C27,C32 respectively. Symmetry code (¹) 1 - x, y, 0.5 - z.

with their prism[6]arene macrocyclic host via $C-H\cdots O$ or $C-H\cdots \pi$ interactions. Fig. 3 illustrates the host-guest interactions between prism[6]arene and 1,6-dichlorohexane in **PS6·HexCl2**, while Fig. 4 depicts the interactions between prism[6]arene and 1,6-diiodohexane in **PS6·HexI2**. The quantitative details of these supramolecular host-guest interactions in **PS6·HexCl2** and **PS6·HexI2** are presented in Tables 1 and 2, respectively.

Additionally, in the **PS6·Hex12** crystal packing, intermolecular $C-H\cdots\pi$ interactions are observed among adjacent prism[6]arene macrocycles, as demonstrated in Fig. 5. The 1,6-diiodohexane molecules present outside the macrocyclic cavity of **PS6·Hex12** are also expected to engage in $C-H\cdots$ I interactions, which are likewise illustrated in Fig. 5. The quantitative details of these intermolecular non-bonding inter-

Figure 4

Host-guest interactions between the prism[6]arene host and diiodohexane guest. $\pi 1-\pi 3$ are the centroids of the phenyl rings C5–C10, C16– C21 and C23–C27,C32, respectively. Symmetry code: (1) 1 – *x*, *y*, $\frac{1}{2}$ – *z*.

Table 1

Non-bonding interactions between prism[6]arene host and dichlorohexane guest (Å, °).

 π 1- π 3 are the centroids of the phenyl rings C1-C5,C10, C16-C21 and C23-C27,C32, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C25-H25···Cl1	0.93	3.28	3.776 (5)	116
$C34-H34A\cdots Cl1$	0.97	3.45	4.380 (4)	160
$C43 - H43C \cdots Cl1$	0.96	3.20	3.809 (2)	123
$C46-H46A\cdots O5^{i}$	0.97	3.19	4.140(7)	166
C46-H46 B ··· π 1	0.97	3.12	3.926 (6)	145
C47-H47 A ··· π 3	0.97	3.23	4.044 (8)	143
C47-H47 B ··· π 2	0.97	3.32	4.079 (7)	137
$C48-H48A\cdots O4^{1}$	0.97	3.34	4.278 (7)	162
C48−H48 <i>B</i> ···O5	0.97	3.16	3.881 (7)	132

Symmetry code: (i) 1 - x, y, $\frac{1}{2} - z$.

Table 2

Non-bonding interactions between prism[6]arene host and diiodohexane guest (Å, $^{\circ}$).

 π 1– π 3 are centroids of the phenyl rings C5–C10, C16–C21 and C23–C27,C32, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C19—H19· · ·I1	0.93	3.38	3.930 (8)	120
$C36 - H36A \cdots I1$	0.97	3.45	4.385 (6)	163
$C41^{i} - H41B^{i} \cdots I1$	0.96	3.37	3.920 (8)	118
$C46 - H46A \cdots O6^{i}$	0.97	3.07	4.015 (12)	166
$C46 - H46B \cdots \pi 1$	0.97	3.28	4.019 (8)	135
C47-H47 A ··· π 2	0.97	3.31	4.098 (10)	139
C47-H47 B ··· π 3	0.97	3.32	4.059 (11)	136
C48−H48A…O3	0.97	3.32	4.271 (10)	165
$C48 - H48B \cdots O6$	0.97	3.20	3.936 (10)	134

Symmetry code: (i) 1 - x, y, $\frac{1}{2} - z$.

Figure 5

Intermolecular non-bonding interactions among **PS6–PS6** and **PS6–Hex12** (space-filling solvent). π is the centroid of the C12–C16, C21 phenyl ring. Symmetry code: (a) 1 - x, y, $\frac{1}{2} - z$; (b) $\frac{3}{2} - x$, $\frac{3}{2} - y$, 1 - z; (c) 1 - x, 2 - y, 1 - z; (d) x, 2 - y, $\frac{1}{2} + z$; (e) $\frac{3}{2} - x$, $-\frac{1}{2} + y$, $\frac{1}{2} - z$; (f) x, 2 - y, $-\frac{1}{2} + z$.

Table 3

Intermolecular non-bonding interactions between adjacent prism[6] arenes as well as prism[6]arene and solvent diiodohexane (Å, $^{\circ}$).

 π is the centroid of the C12–C16phenyl ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$C41 - H41C \cdot \cdot \cdot \pi^{i}$	0.96	2.74	3.492 (8)	136
$C44 - H44B \cdots IZ$	0.97	3.19	3.952 (9)	137

Symmetry code: (i) 1 - x, y, $\frac{1}{2} - z$.

actions are provided in Table 3. The packing features of both **PS6-HexCl2** and **PS6-HexI2** crystals are nearly identical and are shown together in Fig. 6.

4. Hirshfeld surface analysis

Hirshfeld surface analysis using CrystalExplorer (Turner et al., 2017) indicates moderate interactions between the prism[6] arene macrocycle and the 1,6-dichlorohexane/1,6-diiodohexane present in the cavity. The Hirshfeld surfaces of both PS6-HexCl2 and PS6-HexI2 are depicted in Fig. 7, which shows red spots and white regions inside the macrocyclic cavity corresponding to $O \cdots H$ and $C - H \cdots \pi$ bonds, as well as $Cl \cdots H/I \cdots H$ interactions exhibited by the host and guest molecules. These interactions collectively contribute to a tighter fit of the guest molecule within the prism[6]arene cavity. The 2D fingerprint plots (McKinnon et al., 2007) reveal that almost all intermolecular contacts in these crystal systems involve hydrogen, with the vast majority being H...H interactions, which account for 74.0% in PS6-HexCl2 and 73.2% in PS6·HexI2, respectively. In the case of PS6·HexCl2, the other significant interactions are $C \cdots H(16.2\%)$, $Cl \cdots H(6.1\%)$, and $O \cdots H$ (3.1%), whereas for **PS6·HexI2**, they are $C \cdots H$ (16.2%), I···H (7.1%), and O···H (2.9%). Thus, van der

Figure 7 Hirshfeld surfaces (mapped with d_{norm}) illustrating host-guest interactions in **PS6-HexCl2** and **PS6-Hexl2**.

Waals interactions play a particularly prominent role in these crystal structures. The slightly higher contribution of $I \cdots H$ interactions in **PS6·HexI2** compared to the Cl \cdots H contribution in **PS6·HexCl2** suggests the presence of non-bonding C-H \cdots I interactions between the prism[6]arene macrocycle and the 1,6-diiodohexane molecules located outside the macrocyclic cavity, as discussed above.

5. Database survey

A search in the Cambridge Structural Database (version 5.46, last update February 2025; Groom *et al.*, 2016) revealed that the crystal structure of perethoxy prism[6]arene has been reported in six different guest/solvent combinations. However, no prism[6]arene macrocycle has been reported encapsulating either 1,6-dichlorohexane or 1,6-diiodobutane. A structure of perethoxy prism[6]arene without a guest molecule inside has been reported, exhibiting a perfect cuboid shape, where all six faces of the cuboid consist of naphthalene moieties. Dichloromethane and methanol are present in this crystal as space-filling solvents (TOCQUB; Zhang *et al.*, 2023). Similarly,

Figure 6 Packing pattern of PS6-HexCl2 and PS6-HexI2 systems in the crystal network.

 Table 4

 Experimental details.

	PS6·HexCl2	PS6·HexI2
Crystal data		
Chemical formula	$C_{90}H_{96}O_{12} \cdot 2C_6H_{12}Cl_2$	$C_{90}H_{96}O_{12}\cdot 2C_6H_{12}I_2$
$M_{\rm r}$	1679.77	2045.57
Crystal system, space group	Monoclinic, C2/c	Monoclinic, C2/c
Temperature (K)	293	293
a, b, c (Å)	38.722 (3), 10.4622 (7), 23.8910 (16)	38.728 (3), 10.5427 (6), 24.0234 (16)
β (°)	106.978 (8)	106.814 (8)
$V(\dot{A}^3)$	9256.9 (12)	9389.3 (11)
Z	4	4
Radiation type	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	0.19	1.39
Crystal size (mm)	$0.20 \times 0.16 \times 0.06$	$0.20 \times 0.17 \times 0.15$
Data collection		
Diffractometer	Rigaku R-AXIS RAPID	Rigaku R-AXIS RAPID
Absorption correction	Multi-scan (ABSCOR; Higashi, 1995)	Multi-scan (ABSCOR; Higashi, 1995)
T_{\min}, \dot{T}_{\max}	0.546, 0.897	0.452, 0.884
No. of measured, independent and observed $[I > $	31898, 8092, 4016	27851, 8193, 4349
$2\sigma(I)$] reflections		
R _{int}	0.112	0.077
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.594	0.595
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.071, 0.187, 1.00	0.069, 0.192, 1.02
No. of reflections	8092	8193
No. of parameters	556	532
No. of restraints	92	46
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.28, -0.24	0.70, -0.77

Computer programs: CrystalClear (Rigaku, 2016), CrystalStructure (Rigaku, 2017), SHELXL2019/3 (Sheldrick, 2015) and Mercury (Macrae et al., 2020).

perethoxy prism[6]arene with no guest inside also retains a perfect cuboid shape when dichloromethane alone is present as a space-filling solvent. However, when ethyl acetate is present as the space-filling solvent, the cuboid shape becomes distorted at one end, giving perethoxy prism[6]arene a pyramidal shape. In this crystal, the macromolecule does not encapsulate any guest molecule (IVUGUE and IVUGIS; Della Sala et al., 2021). The crystal structure of methoxy prism [6]arene encapsulating a tetraethylammonium ion inside the macrocyclic cavity has also been reported (IVUHOZS; Della Sala et al., 2021). The prism[6]arene in this structure adopts a deformed cuboid shape, almost similar to that of PS6·HexCl2 or **PS6-HexI2**, with all six faces of the cuboid consisting of naphthalene moieties. A tetrakis[3,5-bis(trifluoromethyl) phenyl]borate anion serves as the counter-anion and is located outside the macrocycle. Additionally, dichloromethane is present as another space-filling solvent. A perpropoxy prism [6]arene with no guest inside the cavity has been reported, exhibiting a slightly deformed cuboid shape, with all six faces of the cuboid consisting of naphthalene moieties. Toluene is present as a space-filling solvent in this crystal (IVUHAL; Della Sala et al., 2021). Furthermore, an isopropoxy prism[6] arene macrocycle has been reported, in which the prism[6] arene adopts a perfect cuboid conformation, with four isopropyl chains folded inside the cavity. These branched isopropyl chains on the prism[6]arene rims engage in $C-H\cdots\pi$ interactions with the naphthalene moieties of the macrocycle, thereby filling its internal void and stabilizing the cuboid conformation. Dichloromethane and methanol are present as space-filling solvents in this crystal network (RINQIS; Regno et al., 2023).

6. Synthesis and crystallization

Prism[6]arene was synthesized as reported earlier (Della Sala *et al.*, 2021). Colorless crystals of **PS6·HexCl2** and **PS6·HexI2**, suitable for single-crystal analysis, were grown by dissolving prism[6]arene (10 mg) in a 1,6-dichloromethane: 1,6-dichlorohexane solvent mixture (90:10 ν/ν , 1 mL) and prism[6] arene (10 mg) in a 1,6-dichloromethane: 1,6-diiodohexane solvent mixture (90:10 ν/ν , 1 mL), respectively, and subjecting them to slow solvent evaporation.

7. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 4.

One of the ethoxy fractions of the prism[6]arene molecule in the **PS6-HexCl2** crystal was found to be disordered. Consequently, refinement of this disordered fraction was carried out using the PART command, with 82.3 (19):17.7 (19) % occupancies for the major and minor components, respectively. The DELU and SIMU commands were used to restrain the thermal factors of these disordered components. Additionally, SIMU and RIGU were used to restrain/constrain the thermal displacement parameters, while the DFIX and DANG commands were applied to adjust the geometry of the 1,6dichlorohexane fragment in this crystal. For the **PS6-Hex12** crystal, the DELU and SIMU commands were used to restrain the thermal factors of the carbon atoms belonging to the 1,6-diiodohexane fragments. Furthermore, the geometry of one of the ethoxy components was adjusted using the DFIX command, while SIMU and DELU were used to restrain/constrain the thermal displacement parameters of this fraction.

In both crystals, all hydrogen atoms were positioned geometrically, with C-H distances of 0.96 Å for methyl, 0.97 Å for methylene, and 0.93 Å for aromatic hydrogen atoms. The thermal factors of hydrogen atoms were refined with $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$, except for hydrogen atoms from methyl groups, where $U_{\rm iso}({\rm H})=1.5U_{\rm eq}({\rm C})$ was applied.

Acknowledgements

The support received from Kuwait University Research Administration, made available through Research Grant No. SC05/23 and the Facilities of the RSPU (grant Nos. GS03/08 and GS01/03) are gratefully acknowledged.

Funding information

Funding for this research was provided by: Kuwait University (grant No. GS05/23).

References

- Della Sala, P., Del Regno, R., Talotta, C., Capobianco, A., Hickey, N., Geremia, S., De Rosa, M., Spinella, A., Soriente, A., Neri, P. & Gaeta, C. (2020). J. Am. Chem. Soc. 142, 1752–1756.
- Della Sala, P., Del Regno, R., Di Marino, L., Calabrese, C., Palo, C., Talotta, C., Geremia, S., Hickey, N., Capobianco, A., Neri, P. & Gaeta, C. (2021). *Chem. Sci.* **12**, 9952–9961.

- Del Regno, R., Della Sala, P., Hickey, N., Geremia, S., Talotta, C., Neri, P. & Gaeta, C. (2023). *Eur. J. Org. Chem.* **26**, e202300608.
- Del Regno, R., Palmieri, A., Della Sala, P., Talotta, C., De Rosa, M., Campanile, G., Argenio, C. & Gaeta, C. (2024). *Org. Lett.* **26**, 8228– 8232.
- Del Regno, R., Santonoceta, G. D. G., Della Sala, P., De Rosa, M., Soriente, A., Talotta, C., Spinella, A., Neri, P., Sgarlata, C. & Gaeta, C. (2022). *Org. Lett.* **24**, 2711–2715.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Liang, X., Shen, Y., Zhou, D., Ji, J., Wang, H., Zhao, T., Mori, T., Wu, W. & Yang, C. (2022). *Chem. Commun.* **58**, 13584–13587.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Rigaku (2016). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2017). *CrystalStructure*. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2015). *Acta Cryst*. A**71**, 3–8.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. University of Western Australia.
- Vinodh, M., Abdeljaber, N. O., Alipour, F. H. & Al-Azemi, T. F. (2025). *CrystEngComm* 27, 1873–1878.
- Yang, L. P. & Jiang, W. (2020). Angew. Chem. Int. Ed. 59, 15794– 15796.
- Yao, H. & Jiang, W. (2020). Naphthol-Based Macrocycles. In Handbook of Macrocyclic Supramolecular Assembly edited by Y. Liu, Y. Chen & H.- Y. Zhang. Singapore: Springer. https://doi.org/10.1007/ 978-981-15-2686-2_40.
- Zhang, G., Cheng, C., Li, Z., Zhao, D. & Han, C. (2024). Org. Biomol. *Chem.* 22, 3611–3614.
- Zhang, G., Li, Z., Pan, Z., Zhao, D. & Han, C. (2023). New J. Chem. 47, 18910–18913.

Acta Cryst. (2025). E81 [https://doi.org/10.1107/S2056989025003767]

Crystal structures and supramolecular interactions of prism[6]arene-based host-guest systems with dihalohexanes

Mickey Vinodh, Nour O. Abdeljaber, Fatemeh H. Alipour and Talal F. Al-Azemi

Computing details

Perethoxy-prism[6]arene 1,6-dichlorohexane disolvate (PS6_HexCl2)

Crystal data

 $C_{90}H_{96}O_{12} \cdot 2C_6H_{12}Cl_2$ $M_r = 1679.77$ Monoclinic, C2/c a = 38.722 (3) Å b = 10.4622 (7) Å c = 23.8910 (16) Å $\beta = 106.978$ (8)° V = 9256.9 (12) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer Detector resolution: 10.000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.546, T_{max} = 0.897$ 31898 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.071$ $wR(F^2) = 0.187$ S = 1.008092 reflections 556 parameters 92 restraints F(000) = 3584 $D_x = 1.205 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 14258 reflections $\theta = 3.2-24.9^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.20 \times 0.16 \times 0.06 \text{ mm}$

8092 independent reflections 4016 reflections with $I > 2\sigma(I)$ $R_{int} = 0.112$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 3.2^{\circ}$ $h = -42 \rightarrow 45$ $k = -12 \rightarrow 12$ $l = -28 \rightarrow 28$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0844P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.24 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1	0.56472 (5)	0.59286 (18)	0.29326 (8)	0.1364 (6)	
01	0.66007 (7)	0.5601 (2)	0.46893 (11)	0.0558 (7)	
C1	0.65386 (8)	0.3419 (3)	0.44409 (15)	0.0384 (8)	
O2	0.66298 (7)	-0.0535 (2)	0.28958 (11)	0.0579 (7)	
C2	0.66023 (9)	0.4651 (3)	0.42885 (15)	0.0415 (9)	
Cl2	0.75364 (4)	0.66424 (12)	0.57427 (7)	0.1020 (5)	
03	0.68655 (7)	0.4117 (3)	0.20064 (12)	0.0676 (8)	
C3	0.66764 (10)	0.4906 (3)	0.37609 (16)	0.0476 (9)	
Н3	0.672201	0.574234	0.367057	0.057*	
C4	0.66830 (9)	0.3950 (3)	0.33767 (16)	0.0472 (9)	
H4	0.673150	0.414788	0.302763	0.057*	
05	0.47899 (6)	0.4852 (2)	0.40860 (12)	0.0580 (7)	
C5	0.66178 (8)	0.2668 (3)	0.34972 (15)	0.0390 (8)	
C6	0.66318 (9)	0.1658 (3)	0.31055 (15)	0.0409 (9)	
O6	0.64885 (7)	0.0852 (3)	0.56017 (12)	0.0671 (8)	
C7	0.65982 (9)	0.0426 (3)	0.32739 (16)	0.0457 (9)	
C10	0.65495 (8)	0.2409 (3)	0.40455 (15)	0.0384 (8)	
C9	0.65053 (9)	0.1118 (3)	0.41814 (16)	0.0461 (9)	
H9	0.645875	0.091879	0.453179	0.055*	
C8	0.65293 (10)	0.0156 (3)	0.38086 (17)	0.0504 (10)	
H8	0.649992	-0.068679	0.390899	0.061*	
C12	0.64242 (9)	0.2576 (3)	0.20262 (15)	0.0430 (9)	
C11	0.67070 (9)	0.1915 (3)	0.25260 (15)	0.0472 (9)	
H11A	0.676156	0.109986	0.237826	0.057*	
H11B	0.692539	0.242525	0.261022	0.057*	
C13	0.65262 (9)	0.3629 (4)	0.17603 (16)	0.0490 (10)	
C15	0.59554 (10)	0.3656 (4)	0.10091 (17)	0.0534 (10)	
H15	0.580666	0.402366	0.066958	0.064*	
C14	0.62879 (10)	0.4144 (4)	0.12512 (17)	0.0565 (11)	
H14	0.636150	0.484363	0.107480	0.068*	
C16	0.58271 (9)	0.2596 (3)	0.12598 (15)	0.0426 (9)	
C17	0.54758 (9)	0.2068 (3)	0.10158 (15)	0.0450 (9)	
C18	0.53695 (9)	0.1050 (3)	0.12930 (17)	0.0476 (9)	
C20	0.59445 (10)	0.1009 (4)	0.20321 (16)	0.0519 (10)	
H20	0.609824	0.062348	0.236216	0.062*	
C19	0.56058 (10)	0.0530 (4)	0.18043 (18)	0.0579 (11)	
H19	0.552971	-0.014967	0.198969	0.069*	
C21	0.60705 (9)	0.2069 (3)	0.17852 (15)	0.0419 (9)	
C22	0.52281 (9)	0.2503 (4)	0.04232 (15)	0.0493 (10)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H22A	0.535923	0.311378	0.025730	0.059*	
H22B	0.517556	0.176867	0.016425	0.059*	
C24	0.51238 (10)	0.4320 (3)	0.43228 (15)	0.0459 (9)	
C23	0.51300 (9)	0.3112 (3)	0.45722 (15)	0.0440 (9)	
C27	0.57991 (9)	0.3132 (3)	0.48233 (14)	0.0395 (8)	
C26	0.57686 (10)	0.4357 (3)	0.45583 (15)	0.0449 (9)	
H26	0.597767	0.477681	0.454480	0.054*	
C25	0.54456 (10)	0.4935 (3)	0.43243 (16)	0.0468 (9)	
H25	0.543728	0.574720	0.416301	0.056*	
C30	0.58361 (10)	0.0823 (4)	0.54138 (17)	0.0537 (10)	
H30	0.585058	0.007079	0.562668	0.064*	
C29	0.61525 (10)	0.1394 (4)	0.53691 (16)	0.0485 (9)	
C28	0.61390 (9)	0 2544 (3)	0 50677 (15)	0.0416 (9)	
C40	0.01050()	0.2911(5) 0.4994(5)	0.1687(2)	0.0822(15)	
H40A	0.686704	0 576914	0 161429	0.099*	
H40B	0.700923	0.462680	0.131394	0.099*	
04	0.700925 0.50337 (7)	0.402000	0.10384(13)	0.0658 (8)	
C38A	0.30337(7)	-0.0208(11)	0.10304(13) 0.1382(4)	0.001(3)	0.823(10)
U38A	0.4002(2)	0.0298 (11)	0.1382 (4)	0.091 (3)	0.823(19)
1136A 1138A	0.492301	-0.112824	0.177188	0.109*	0.023(19) 0.922(10)
П30D С20А	0.499780	-0.112034	0.141090 0.1007 (7)	0.109°	0.823(19)
C39A	0.4466 (3)	-0.0440(10)	0.1097 (7)	0.134 (0)	0.823(19)
П 39А	0.438738	-0.099904	0.152620	0.231*	0.823(19)
НЗУВ	0.43/433	0.038211	0.100030	0.231*	0.823 (19)
H39C	0.444898	-0.0/94/4	0.0/1236	0.231*	0.823 (19)
C38B	0.4/8/(/)	0.041 (4)	0.1381 (13)	0.074 (8)	0.177 (19)
H38C	0.461905	0.111628	0.131336	0.089*	0.177 (19)
H38D	0.491575	0.036377	0.179484	0.089*	0.177 (19)
C39B	0.4593 (12)	-0.082 (3)	0.118 (3)	0.091 (12)	0.177 (19)
H39D	0.442150	-0.097576	0.138746	0.136*	0.177 (19)
H39E	0.446972	-0.076001	0.076526	0.136*	0.177 (19)
H39F	0.476442	-0.150743	0.124349	0.136*	0.177 (19)
C37	0.65758 (16)	-0.2586 (4)	0.2485 (2)	0.1072 (19)	
H37A	0.650488	-0.345044	0.252785	0.161*	
H37B	0.682274	-0.257160	0.247908	0.161*	
H37C	0.642414	-0.223880	0.212443	0.161*	
C36	0.65381 (14)	-0.1801 (4)	0.29858 (19)	0.0790 (14)	
H36A	0.629178	-0.184071	0.300598	0.095*	
H36B	0.669731	-0.212431	0.335087	0.095*	
C35	0.64472 (17)	0.7641 (4)	0.4955 (2)	0.108 (2)	
H35A	0.643353	0.853238	0.485541	0.161*	
H35B	0.663125	0.751231	0.531924	0.161*	
H35C	0.621878	0.736144	0.499213	0.161*	
C34	0.65372 (12)	0.6891 (3)	0.44855 (19)	0.0677 (12)	
H34A	0.633875	0.692308	0.412696	0.081*	
H34B	0.675091	0.723778	0.440774	0.081*	
C33	0.64855 (9)	0.3169 (3)	0.50395 (14)	0.0401 (9)	
H33A	0.668445	0.263923	0.525957	0.048*	
H33B	0.650637	0.398196	0.524205	0.048*	

C22	0.54601(0)	0.2518(2)	0 49290 (15)	0.0421(0)
C32	0.54091(9)	0.2318(3) 0.1242(2)	0.46369(13) 0.51521(16)	0.0431(9)
	0.53082 (10)	0.1343 (3)	0.51551 (10)	0.0303 (10)
П31 С42	0.330230	0.092100	0.31/99/	0.000°
C42	0.47097 (10)	0.0130(4)	0.38383 (18)	0.0582 (11)
H42A	0.48/302	0.010032	0.353526	0.070*
H42B	0.490389	0.6/1011	0.4160/3	0.070*
C41	0.73890 (14)	0.5289 (6)	0.2042 (2)	0.121 (2)
H4IA	0.749934	0.584029	0.182258	0.182*
H41B	0.752453	0.450936	0.213341	0.182*
H41C	0.738602	0.570720	0.239849	0.182*
C43	0.43802 (11)	0.6519 (4)	0.3653 (2)	0.0727 (13)
H43A	0.436186	0.737654	0.350444	0.109*
H43B	0.427902	0.647991	0.397504	0.109*
H43C	0.425036	0.595007	0.334930	0.109*
C46	0.56990 (18)	0.4348 (6)	0.2688 (3)	0.146 (3)
H46A	0.561218	0.433492	0.226397	0.175*
H46B	0.595433	0.414268	0.280079	0.175*
C45	0.69531 (13)	-0.0236 (6)	0.6281 (2)	0.112 (2)
H45A	0.700078	-0.088174	0.657956	0.168*
H45B	0.708396	0.052689	0.643610	0.168*
H45C	0.702857	-0.053650	0.595564	0.168*
C44	0.65571 (13)	0.0049 (5)	0.60819 (19)	0.0855 (15)
H44A	0.642098	-0.073782	0.597683	0.103*
H44B	0.648476	0.045697	0.639444	0.103*
C47	0.55092 (19)	0.3345 (5)	0.2916 (3)	0.142 (2)
H47A	0.561860	0.329454	0.333579	0.171*
H47B	0.555356	0.253517	0.275156	0.171*
C48	0.51000 (19)	0.3486 (6)	0.2801 (2)	0.134 (2)
H48A	0.501464	0.279013	0.299374	0.161*
H48B	0.505258	0.427828	0.297572	0.161*
C49	0.75588 (12)	0.5492 (4)	0.5202 (2)	0.0775 (13)
H49A	0.737641	0.569163	0.483734	0.093*
H49B	0.779309	0.554796	0.513270	0.093*
C50	0.75018 (11)	0.4155 (4)	0.5381 (2)	0.0656(12)
H50A	0.726613	0.409246	0.544408	0.079*
H50B	0.768259	0.395474	0.574659	0.079*
C51	0.75267 (11)	0.3188 (3)	0.4914 (2)	0.0637(11)
H51A	0 734467	0 338918	0 454969	0.076*
H51R	0 776137	0 326242	0 484808	0.076*
11210	0.110131	0.520272	0.101000	0.070

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1564 (16)	0.1473 (15)	0.1135 (13)	-0.0262 (12)	0.0518 (12)	-0.0044 (12)
01	0.0794 (19)	0.0372 (15)	0.0552 (17)	-0.0047 (12)	0.0266 (14)	-0.0015 (13)
C1	0.0360 (19)	0.042 (2)	0.037 (2)	0.0002 (15)	0.0098 (16)	0.0022 (18)
02	0.082 (2)	0.0433 (16)	0.0501 (16)	0.0053 (13)	0.0222 (14)	-0.0016 (14)
C2	0.049 (2)	0.035 (2)	0.041 (2)	0.0003 (16)	0.0141 (17)	-0.0005 (18)

Cl2	0.1175 (12)	0.0737 (8)	0.1200 (12)	-0.0091 (7)	0.0429 (9)	-0.0068 (8)
O3	0.0536 (17)	0.087 (2)	0.0581 (18)	-0.0188 (15)	0.0091 (14)	0.0205 (16)
C3	0.064 (3)	0.032 (2)	0.049 (2)	-0.0042(17)	0.0204 (19)	0.0078 (19)
C4	0.061 (2)	0.043 (2)	0.040 (2)	-0.0003 (18)	0.0190 (18)	0.008 (2)
05	0.0463 (16)	0.0552 (16)	0.0690 (19)	0.0048 (13)	0.0114 (14)	0.0084 (14)
C5	0.035 (2)	0.042 (2)	0.039 (2)	0.0023 (15)	0.0093 (16)	0.0055 (18)
C6	0.040 (2)	0.041 (2)	0.041 (2)	0.0044 (16)	0.0105 (17)	0.0039 (18)
06	0.0591 (18)	0.0735 (19)	0.0720 (19)	0.0137 (14)	0.0241 (15)	0.0383 (16)
C7	0.051 (2)	0.047 (2)	0.039 (2)	0.0070 (17)	0.0113 (18)	0.000 (2)
C10	0.036 (2)	0.041 (2)	0.037 (2)	0.0002 (15)	0.0086 (16)	0.0061 (18)
C9	0.056 (2)	0.045 (2)	0.040 (2)	-0.0002 (17)	0.0174 (18)	0.0021 (19)
C8	0.066 (3)	0.032 (2)	0.052 (2)	-0.0003(17)	0.016 (2)	0.006 (2)
C12	0.044 (2)	0.049 (2)	0.039 (2)	0.0046 (17)	0.0168 (17)	0.0003 (19)
C11	0.047 (2)	0.050 (2)	0.045 (2)	0.0076 (17)	0.0145 (18)	0.0045 (19)
C13	0.040 (2)	0.065 (3)	0.045 (2)	-0.0018 (19)	0.0152 (18)	0.011 (2)
C15	0.046 (2)	0.068 (3)	0.046 (2)	0.003 (2)	0.0134 (19)	0.017 (2)
C14	0.051 (3)	0.069 (3)	0.053 (2)	0.001 (2)	0.019 (2)	0.027 (2)
C16	0.042 (2)	0.049 (2)	0.041 (2)	0.0036 (17)	0.0187 (17)	0.0034 (19)
C17	0.045 (2)	0.050 (2)	0.043 (2)	0.0093 (18)	0.0178 (18)	0.0012 (19)
C18	0.040 (2)	0.044 (2)	0.059 (3)	0.0008 (18)	0.0141 (19)	-0.001(2)
C20	0.053 (2)	0.053 (2)	0.045 (2)	0.0017 (19)	0.0072 (19)	0.008 (2)
C19	0.057 (3)	0.053 (2)	0.063 (3)	-0.002(2)	0.016 (2)	0.015 (2)
C21	0.047 (2)	0.042 (2)	0.040 (2)	0.0069 (17)	0.0173 (18)	0.0056 (18)
C22	0.043 (2)	0.063 (2)	0.041 (2)	0.0040 (18)	0.0124 (17)	-0.001 (2)
C24	0.045 (2)	0.052 (2)	0.040 (2)	0.0049 (18)	0.0114 (18)	-0.0011 (18)
C23	0.044 (2)	0.051 (2)	0.038 (2)	-0.0048 (17)	0.0139 (17)	-0.0068 (19)
C27	0.043 (2)	0.044 (2)	0.0330 (19)	-0.0028 (16)	0.0125 (16)	-0.0017 (17)
C26	0.043 (2)	0.046 (2)	0.047 (2)	-0.0028 (17)	0.0160 (18)	0.0006 (19)
C25	0.046 (2)	0.048 (2)	0.049 (2)	-0.0033 (18)	0.0163 (18)	0.0033 (19)
C30	0.057 (3)	0.050 (2)	0.057 (3)	-0.001 (2)	0.023 (2)	0.016 (2)
C29	0.048 (2)	0.057 (2)	0.043 (2)	0.0053 (19)	0.0179 (19)	0.007 (2)
C28	0.045 (2)	0.043 (2)	0.037 (2)	-0.0023 (17)	0.0130 (17)	0.0002 (18)
C40	0.072 (3)	0.111 (4)	0.066 (3)	-0.033 (3)	0.024 (3)	0.002 (3)
O4	0.0505 (17)	0.0667 (18)	0.076 (2)	-0.0090 (14)	0.0121 (15)	0.0088 (16)
C38A	0.068 (5)	0.078 (6)	0.117 (5)	-0.029 (4)	0.014 (4)	0.016 (5)
C39A	0.074 (6)	0.191 (13)	0.183 (10)	-0.040(8)	0.015 (6)	0.081 (10)
C38B	0.020 (12)	0.086 (17)	0.109 (17)	-0.001 (12)	0.008 (10)	0.010 (16)
C39B	0.09 (2)	0.038 (13)	0.15 (3)	0.010 (12)	0.05 (2)	0.030 (17)
C37	0.192 (6)	0.056 (3)	0.084 (4)	-0.013 (3)	0.055 (4)	-0.018 (3)
C36	0.138 (4)	0.042 (2)	0.060 (3)	-0.006 (2)	0.033 (3)	-0.010 (2)
C35	0.193 (6)	0.052 (3)	0.106 (4)	0.015 (3)	0.087 (4)	0.002 (3)
C34	0.104 (4)	0.037 (2)	0.072 (3)	0.001 (2)	0.041 (3)	0.003 (2)
C33	0.043 (2)	0.042 (2)	0.035 (2)	0.0000 (16)	0.0112 (16)	0.0022 (17)
C32	0.046 (2)	0.050 (2)	0.034 (2)	-0.0037 (17)	0.0132 (17)	0.0001 (18)
C31	0.050 (2)	0.049 (2)	0.053 (2)	-0.0102 (18)	0.0171 (19)	0.004 (2)
C42	0.057 (3)	0.057 (3)	0.058 (3)	0.012 (2)	0.013 (2)	0.004 (2)
C41	0.076 (4)	0.176 (6)	0.103 (4)	-0.059 (4)	0.013 (3)	0.002 (4)
C43	0.073 (3)	0.067 (3)	0.071 (3)	0.008 (2)	0.010 (2)	-0.002 (2)

C46	0.129 (6)	0.144 (6)	0.177 (7)	0.038 (5)	0.063 (5)	0.003 (6)
C45	0.077 (4)	0.177 (6)	0.077 (4)	0.031 (4)	0.015 (3)	0.058 (4)
C44	0.079 (3)	0.123 (4)	0.055 (3)	0.021 (3)	0.022 (3)	0.036 (3)
C47	0.167 (6)	0.118 (5)	0.146 (6)	0.033 (5)	0.053 (5)	-0.005 (5)
C48	0.175 (6)	0.134 (5)	0.100 (5)	-0.012 (5)	0.051 (5)	-0.005 (4)
C49	0.074 (3)	0.071 (3)	0.086 (4)	0.000 (2)	0.021 (3)	0.003 (3)
C50	0.048 (2)	0.067 (3)	0.079 (3)	0.000 (2)	0.015 (2)	0.003 (3)
C51	0.044 (2)	0.069 (3)	0.076 (3)	0.003 (2)	0.015 (2)	0.007 (3)

Geometric parameters (Å, °)

Cl1—C46	1.784 (6)	C40—C41	1.495 (6)
O1—C2	1.382 (4)	C40—H40A	0.9700
O1—C34	1.431 (4)	C40—H40B	0.9700
C1—C2	1.381 (4)	O4—C38B	1.435 (17)
C1—C10	1.426 (5)	O4—C38A	1.439 (7)
C1—C33	1.526 (4)	C38A—C39A	1.483 (11)
O2—C7	1.381 (4)	C38A—H38A	0.9700
O2—C36	1.404 (4)	C38A—H38B	0.9700
C2—C3	1.398 (5)	С39А—Н39А	0.9600
Cl2—C49	1.787 (5)	С39А—Н39В	0.9600
O3—C13	1.371 (4)	С39А—Н39С	0.9600
O3—C40	1.410 (5)	C38B—C39B	1.492 (19)
C3—C4	1.363 (5)	C38B—H38C	0.9700
С3—Н3	0.9300	C38B—H38D	0.9700
C4—C5	1.410 (4)	C39B—H39D	0.9600
C4—H4	0.9300	С39В—Н39Е	0.9600
O5—C24	1.369 (4)	C39B—H39F	0.9600
O5—C42	1.436 (4)	C37—C36	1.494 (6)
C5—C6	1.423 (5)	С37—Н37А	0.9600
C5—C10	1.436 (4)	С37—Н37В	0.9600
C6—C7	1.368 (5)	С37—Н37С	0.9600
C6—C11	1.520 (5)	С36—Н36А	0.9700
O6—C29	1.379 (4)	С36—Н36В	0.9700
O6—C44	1.384 (5)	C35—C34	1.491 (6)
C7—C8	1.407 (5)	С35—Н35А	0.9600
C10—C9	1.411 (5)	С35—Н35В	0.9600
C9—C8	1.365 (5)	С35—Н35С	0.9600
С9—Н9	0.9300	C34—H34A	0.9700
С8—Н8	0.9300	C34—H34B	0.9700
C12—C13	1.386 (5)	С33—Н33А	0.9700
C12—C21	1.424 (5)	С33—Н33В	0.9700
C12—C11	1.529 (5)	C32—C31	1.425 (5)
C11—H11A	0.9700	C31—H31	0.9300
C11—H11B	0.9700	C42—C43	1.500 (5)
C13—C14	1.402 (5)	C42—H42A	0.9700
C15—C14	1.348 (5)	C42—H42B	0.9700
C15—C16	1.417 (5)	C41—H41A	0.9600

C15—H15	0.9300	C41—H41B	0.9600
C14—H14	0.9300	C41—H41C	0.9600
C16—C17	1.426 (5)	C43—H43A	0.9600
C16—C21	1.441 (5)	C43—H43B	0.9600
C17—C18	1.379 (5)	C43—H43C	0.9600
C17—C22	1.529 (5)	C46—C47	1.473 (6)
C18-04	1.373 (4)	C46—H46A	0.9700
C18—C19	1.404 (5)	C46—H46B	0.9700
C20—C19	1.361 (5)	C45—C44	1,497 (6)
$C_{20} - C_{21}$	1 408 (5)	C45—H45A	0.9600
C20—H20	0.9300	C45—H45B	0.9600
C19—H19	0.9300	C45 - H45C	0.9600
$C_{22} - C_{23^{i}}$	1 529 (5)	C44—H44A	0.9700
C22—H22A	0.9700	C44—H44B	0.9700
C22_H22B	0.9700	C47_C48	1.534(7)
$C_{22} = \Pi_{22} D$	1 395 (5)	C47 - C48	0.9700
$C_{24} = C_{25}$	1.393(3)	C47 = H47R	0.9700
$C_{24} - C_{23}$	1.402(5)	C47 - H47B	0.9700
$C_{23} - C_{32}$	1.424(3) 1.416(5)	C40 - C48	1.419 (11)
$C_{27} = C_{28}$	1.410(3)	C40— $H40A$	0.9700
$C_{27} = C_{20}$	1.418(3)	С48—П48В	0.9700
$C_2/-C_{32}$	1.440(3)	C49 - C30	1.498 (3)
C_{20}	1.334 (5)	C49—H49A	0.9700
C20—H26	0.9300	C49—H49B	0.9700
C25—H25	0.9300	C50-C51	1.529 (6)
$C_{30} - C_{31}$	1.354 (5)	C50—H50A	0.9700
C30—C29	1.395 (5)	С50—Н50В	0.9700
C30—H30	0.9300	C51—C51"	1.526 (7)
C29—C28	1.395 (5)	С51—Н51А	0.9700
C28—C33	1.512 (4)	C51—H51B	0.9700
C2—O1—C34	118.5 (3)	С38А—С39А—Н39С	109.5
C2-C1-C10	118.3 (3)	H39A—C39A—H39C	109.5
C2-C1-C33	119.4 (3)	H39B—C39A—H39C	109.5
C10—C1—C33	122.1 (3)	O4—C38B—C39B	105 (2)
C7—O2—C36	120.8 (3)	O4—C38B—H38C	110.8
C1—C2—O1	116.8 (3)	C39B—C38B—H38C	110.8
C1—C2—C3	121.0 (3)	O4—C38B—H38D	110.8
O1—C2—C3	122.1 (3)	C39B—C38B—H38D	110.8
C13—O3—C40	119.5 (3)	H38C—C38B—H38D	108.9
C4—C3—C2	121.1 (3)	C38B—C39B—H39D	109.5
С4—С3—Н3	119.5	C38B—C39B—H39E	109.5
С2—С3—Н3	119.5	H39D—C39B—H39E	109.5
C3—C4—C5	121.4 (3)	C38B—C39B—H39F	109.5
С3—С4—Н4	119.3	H39D—C39B—H39F	109.5
C5—C4—H4	119.3	H39E—C39B—H39F	109.5
C24—O5—C42	118.4 (3)	С36—С37—Н37А	109.5
C4—C5—C6	121.9 (3)	С36—С37—Н37В	109.5
C4—C5—C10	117.2 (3)	H37A—C37—H37B	109.5

C6—C5—C10	120.8 (3)	С36—С37—Н37С	109.5
C7—C6—C5	118.8 (3)	Н37А—С37—Н37С	109.5
C7—C6—C11	119.7 (3)	Н37В—С37—Н37С	109.5
C5—C6—C11	121.5 (3)	O2—C36—C37	107.9 (4)
C29—O6—C44	121.0 (3)	O2—C36—H36A	110.1
C6—C7—O2	117.3 (3)	С37—С36—Н36А	110.1
C6—C7—C8	121.0 (3)	O2—C36—H36B	110.1
O2—C7—C8	121.6 (3)	С37—С36—Н36В	110.1
C9—C10—C1	121.9 (3)	H36A—C36—H36B	108.4
C9—C10—C5	117.2 (3)	С34—С35—Н35А	109.5
C1—C10—C5	120.9 (3)	С34—С35—Н35В	109.5
C8—C9—C10	121.3 (3)	H35A—C35—H35B	109.5
С8—С9—Н9	119.4	С34—С35—Н35С	109.5
С10—С9—Н9	119.4	H35A—C35—H35C	109.5
C9—C8—C7	120.8 (3)	H35B—C35—H35C	109.5
С9—С8—Н8	119.6	O1—C34—C35	107.2 (3)
С7—С8—Н8	119.6	O1—C34—H34A	110.3
C13—C12—C21	118.7 (3)	С35—С34—Н34А	110.3
C13—C12—C11	118.8 (3)	O1—C34—H34B	110.3
C21—C12—C11	122.2 (3)	C35—C34—H34B	110.3
C6-C11-C12	120.5 (3)	H34A—C34—H34B	108.5
C6—C11—H11A	107.2	C28—C33—C1	118.7 (3)
C12—C11—H11A	107.2	С28—С33—Н33А	107.6
C6—C11—H11B	107.2	С1—С33—Н33А	107.6
C12—C11—H11B	107.2	С28—С33—Н33В	107.6
H11A—C11—H11B	106.8	С1—С33—Н33В	107.6
O3—C13—C12	117.7 (3)	H33A—C33—H33B	107.1
O3—C13—C14	122.3 (3)	C23—C32—C31	123.6 (3)
C12—C13—C14	120.0 (3)	C23—C32—C27	120.2 (3)
C14—C15—C16	121.6 (3)	C31—C32—C27	116.1 (3)
C14—C15—H15	119.2	C30—C31—C32	122.0 (3)
C16—C15—H15	119.2	С30—С31—Н31	119.0
C15—C14—C13	122.1 (4)	С32—С31—Н31	119.0
C15—C14—H14	119.0	O5—C42—C43	108.4 (3)
C13—C14—H14	119.0	O5—C42—H42A	110.0
C15—C16—C17	122.7 (3)	C43—C42—H42A	110.0
C15—C16—C21	116.5 (3)	O5—C42—H42B	110.0
C17—C16—C21	120.7 (3)	C43—C42—H42B	110.0
C18—C17—C16	119.1 (3)	H42A—C42—H42B	108.4
C18—C17—C22	118.7 (3)	C40—C41—H41A	109.5
C16—C17—C22	121.9 (3)	C40—C41—H41B	109.5
O4—C18—C17	117.7 (3)	H41A—C41—H41B	109.5
O4—C18—C19	121.8 (3)	C40—C41—H41C	109.5
C17—C18—C19	120.4 (3)	H41A—C41—H41C	109.5
C19—C20—C21	122.3 (3)	H41B—C41—H41C	109.5
С19—С20—Н20	118.9	C42—C43—H43A	109.5
C21—C20—H20	118.9	C42—C43—H43B	109.5
C20—C19—C18	120.8 (4)	H43A—C43—H43B	109.5

С20—С19—Н19	119.6	C42—C43—H43C	109.5
С18—С19—Н19	119.6	H43A—C43—H43C	109.5
C20—C21—C12	122.3 (3)	H43B—C43—H43C	109.5
C20—C21—C16	116.6 (3)	C47—C46—C11	115.0 (5)
C12—C21—C16	121.1 (3)	C47—C46—H46A	108.5
C23 ⁱ —C22—C17	116.3 (3)	Cl1—C46—H46A	108.5
C23 ⁱ —C22—H22A	108.2	C47—C46—H46B	108.5
C17—C22—H22A	108.2	Cl1—C46—H46B	108.5
C23 ⁱ —C22—H22B	108.2	H46A—C46—H46B	107.5
С17—С22—Н22В	108.2	C44—C45—H45A	109.5
H22A—C22—H22B	107.4	C44—C45—H45B	109.5
O5—C24—C23	116.2 (3)	H45A—C45—H45B	109.5
Q5—C24—C25	123.1 (3)	C44—C45—H45C	109.5
C23—C24—C25	120.7 (3)	H45A—C45—H45C	109.5
C_{24} C_{23} C_{32}	119.0 (3)	H45B—C45—H45C	109.5
C_{24} C_{23} $C_{22^{i}}$	118.6 (3)	06-C44-C45	108.4 (4)
C_{32} C_{23} C_{22}^{i}	122.4 (3)	O6-C44-H44A	110.0
C_{28} C_{27} C_{26}	122.1(3) 121.5(3)	C45-C44-H44A	110.0
$C_{28} = C_{27} = C_{20}$	121.3(3) 121.4(3)	O6-C44-H44B	110.0
$C_{26} = C_{27} = C_{32}$	121.1(3)	C45-C44-H44B	110.0
$C_{25} = C_{26} = C_{27}$	117.1(5) 122 3 (3)	H44A - C44 - H44B	108.4
$C_{25} = C_{26} = C_{26} = H_{26}$	118.9	$C_{46} - C_{47} - C_{48}$	117.8 (6)
$C_{23} = C_{20} = H_{20}$	118.9	$C_{46} - C_{47} - C_{43}$	107.9
$C_{27} = C_{20} = H_{20}$	120.6(4)	$C_{40} = C_{47} = \Pi_{47} \Lambda$	107.9
$C_{20} = C_{20} = C$	120.0 (4)	$C_{46} = C_{47} = H_{47R}$	107.9
$C_{20} = C_{20} = H_{20}$	119.7	$C_{40} = C_{47} = H_{47B}$	107.9
$C_{24} = C_{23} = 1123$	119.7 121.3(A)	$H_{47A} = C_{47} = H_{47B}$	107.2
$C_{31} = C_{30} = C_{23}$	121.3 (4)	$C_{A8i} C_{A8} C_{A7}$	107.2
$C_{20} = C_{30} = H_{30}$	119.4	$C_{48}^{i} = C_{48}^{i} = H_{48}^{i}$	108.7
$C_{29} = C_{30} = C_{130}$	119.4	C40 - C40 - H40A	108.7
06 C29 C20	110.9(3)	C_{4}^{i} C_{48}^{i} C_{48}^{i} H_{48}^{i}	108.7
$C_{29} = C_{30}$	122.0(3) 120.5(3)	C47 C48 H48P	108.7
$C_{28} = C_{29} = C_{30}$	120.3(3)	$\begin{array}{c} \mathbf{C}_{4} \\ \mathbf{C}$	108.7
$C_{29} = C_{20} = C_{27}$	110.0(3)	H40A - C40 - H40D	107.0
$C_{29} = C_{20} = C_{33}$	119.8(3)	$C_{50} = C_{49} = C_{12}$	112.5 (5)
$C_2/-C_{20}-C_{33}$	121.0(3)	C_{30} C_{49} H_{49A}	109.1
03 - 040 - 041	107.9 (4)	C_{12} C_{49} H_{49} C_{50} C_{40} H_{40} C_{50} C_{40} C_{50} C_{40} H_{40} C_{50} C_{40} C_{50} C_{40} H_{40} C_{50} C_{40} C_{50} C_{40} C_{50} C_{40} C_{50} C_{40} C_{50} C_{40} C_{50} C_{50} C_{40} C_{50} C	109.1
C_{40} H_{40A}	110.1	C_{30} C_{49} H_{49B} C_{12} C_{40} H_{40B}	109.1
C41 - C40 - H40A	110.1	C_{12} C_{49} C	109.1
C_{40} H_{40} H_{40}	110.1	$\begin{array}{c} \mathbf{H49A} \\ -\mathbf{C49} \\ -\mathbf{H49B} \\ \mathbf{C40} \\ \mathbf{C50} \\ \mathbf{C51} \\ \mathbf$	107.9
C41 - C40 - H40B	110.1	C49 - C50 - C51	111.4 (4)
H40A - C40 - H40B	108.4	C49—C50—H50A	109.4
C18-04-C38B	119.2 (12)	C31-C30-H50A	109.4
C18 - 04 - C38A	118.5 (4)	C49—C50—H50B	109.4
U4—C38A—C39A	109.6 (8)	C51—C50—H50B	109.4
U4—U38A—H38A	109.8	H50A—C50—H50B	108.0
C39A—C38A—H38A	109.8	$C51^{\mu}$ $C51$ $C50$	112.7 (5)
04—C38A—H38B	109.8	C51 ^{II} —C51—H51A	109.1
C39A—C38A—H38B	109.8	C50—C51—H51A	109.1

H38A—C38A—H38B	108.2	C51 ⁱⁱ —C51—H51B	109.1
С38А—С39А—Н39А	109.5	С50—С51—Н51В	109.1
С38А—С39А—Н39В	109.5	H51A—C51—H51B	107.8
H39A—C39A—H39B	109.5		
C10—C1—C2—O1	-178.0 (3)	C11—C12—C21—C20	7.2 (5)
C33—C1—C2—O1	-2.3 (5)	C13—C12—C21—C16	2.8 (5)
C10—C1—C2—C3	-0.1 (5)	C11—C12—C21—C16	-170.6 (3)
C33—C1—C2—C3	175.6 (3)	C15—C16—C21—C20	-179.5 (3)
C34—O1—C2—C1	-158.2 (3)	C17—C16—C21—C20	1.0 (5)
C34—O1—C2—C3	23.9 (5)	C15—C16—C21—C12	-1.6(5)
C1—C2—C3—C4	1.0 (5)	C17—C16—C21—C12	178.9 (3)
O1—C2—C3—C4	178.8 (3)	C18-C17-C22-C23 ⁱ	68.2 (5)
C2—C3—C4—C5	-0.4 (5)	C16-C17-C22-C23 ⁱ	-118.3 (4)
C3—C4—C5—C6	-178.6 (3)	C42—O5—C24—C23	175.9 (3)
C3—C4—C5—C10	-0.9 (5)	C42—O5—C24—C25	-3.6 (5)
C4—C5—C6—C7	174.2 (3)	O5—C24—C23—C32	-178.5(3)
C10—C5—C6—C7	-3.5 (5)	C25—C24—C23—C32	1.1 (5)
C4C5C6C11	-1.9 (5)	O5-C24-C23-C22 ⁱ	-1.6(5)
C10—C5—C6—C11	-179.5 (3)	C25-C24-C23-C22 ⁱ	178.0 (3)
C5—C6—C7—O2	-177.0 (3)	C28—C27—C26—C25	-179.8(3)
C11—C6—C7—O2	-1.0 (5)	C32—C27—C26—C25	-0.4 (5)
C5—C6—C7—C8	3.8 (5)	C27—C26—C25—C24	-1.6(6)
C11—C6—C7—C8	179.9 (3)	O5—C24—C25—C26	-179.2(3)
C36—O2—C7—C6	-169.0 (4)	C23—C24—C25—C26	1.3 (5)
C36—O2—C7—C8	10.2 (5)	C44—O6—C29—C28	154.1 (4)
C2-C1-C10-C9	176.8 (3)	C44—O6—C29—C30	-27.5 (6)
C33—C1—C10—C9	1.2 (5)	C31—C30—C29—O6	-176.3 (4)
C2-C1-C10-C5	-1.2 (5)	C31—C30—C29—C28	2.0 (6)
C33—C1—C10—C5	-176.9 (3)	O6—C29—C28—C27	-179.9 (3)
C4—C5—C10—C9	-176.4 (3)	C30—C29—C28—C27	1.7 (5)
C6—C5—C10—C9	1.3 (5)	O6—C29—C28—C33	-3.5 (5)
C4—C5—C10—C1	1.7 (5)	C30—C29—C28—C33	178.1 (3)
C6—C5—C10—C1	179.4 (3)	C26—C27—C28—C29	174.1 (3)
C1—C10—C9—C8	-177.6 (3)	C32—C27—C28—C29	-5.2 (5)
C5—C10—C9—C8	0.5 (5)	C26—C27—C28—C33	-2.2(5)
C10—C9—C8—C7	-0.2 (5)	C32—C27—C28—C33	178.5 (3)
C6—C7—C8—C9	-2.0 (5)	C13—O3—C40—C41	-176.1 (4)
O2—C7—C8—C9	178.8 (3)	C17—C18—O4—C38B	-127 (2)
C7—C6—C11—C12	113.3 (4)	C19—C18—O4—C38B	56 (2)
C5—C6—C11—C12	-70.7 (4)	C17—C18—O4—C38A	-165.0 (7)
C13—C12—C11—C6	128.5 (4)	C19—C18—O4—C38A	17.6 (8)
C_{21} C_{12} C_{11} C_{6}	-58.1 (5)	C18-04-C38A-C39A	163.8 (12)
C40—O3—C13—C12	166.1 (4)	C18—O4—C38B—C39B	-143(3)
C40—O3—C13—C14	-12.6 (6)	C7—O2—C36—C37	176.0 (4)
C21—C12—C13—O3	178.7 (3)	C2—O1—C34—C35	164.4 (4)
C11—C12—C13—O3	-7.6 (5)	C29—C28—C33—C1	121.5 (4)
C_{21} C_{12} C_{13} C_{14}	-2.5(5)	C_{27} C_{28} C_{33} C_{1}	-62.1(4)
021 012 013 014	2.0 (0)	$C_{2}, C_{2}, C_{3}, C_{3}, C_{1}$	02.1 (7)

C11—C12—C13—C14	171.2 (3)	C2-C1-C33-C28	122.4 (3)
C16—C15—C14—C13	0.4 (6)	C10-C1-C33-C28	-62.0 (4)
O3—C13—C14—C15	179.6 (4)	C24—C23—C32—C31	174.0 (3)
C12—C13—C14—C15	0.9 (6)	C22 ⁱ —C23—C32—C31	-2.8(5)
C14—C15—C16—C17	179.5 (4)	C24—C23—C32—C27	-3.2(5)
C14—C15—C16—C21	-0.1 (6)	C22 ⁱ —C23—C32—C27	-179.9 (3)
C15—C16—C17—C18	-178.8 (3)	C28—C27—C32—C23	-177.9 (3)
C21—C16—C17—C18	0.7 (5)	C26—C27—C32—C23	2.8 (5)
C15—C16—C17—C22	7.6 (5)	C28—C27—C32—C31	4.8 (5)
C21—C16—C17—C22	-172.8 (3)	C26—C27—C32—C31	-174.5 (3)
C16—C17—C18—O4	-178.2 (3)	C29—C30—C31—C32	-2.3 (6)
C22-C17-C18-O4	-4.5 (5)	C23—C32—C31—C30	-178.3 (3)
C16—C17—C18—C19	-0.8 (5)	C27—C32—C31—C30	-1.0(5)
C22-C17-C18-C19	172.9 (3)	C24—O5—C42—C43	-177.2 (3)
C21—C20—C19—C18	2.6 (6)	C29—O6—C44—C45	-172.2 (4)
O4—C18—C19—C20	176.5 (4)	Cl1—C46—C47—C48	57.0 (9)
C17—C18—C19—C20	-0.8 (6)	$C46-C47-C48-C48^{i}$	61.7 (7)
C19—C20—C21—C12	179.5 (4)	Cl2—C49—C50—C51	-179.3 (3)
C19—C20—C21—C16	-2.6 (6)	C49—C50—C51—C51 ⁱⁱ	179.4 (4)
C13-C12-C21-C20	-179.4 (3)		

Symmetry codes: (i) -x+1, y, -z+1/2; (ii) -x+3/2, -y+1/2, -z+1.

Perethoxy-prism[6]arene 1,6-diiodohexane disolvate (PS6_HexI2)

Crystal data

 $C_{90}H_{96}O_{12}:2C_{6}H_{12}I_{2}$ $M_{r} = 2045.57$ Monoclinic, C2/c a = 38.728 (3) Å b = 10.5427 (6) Å c = 24.0234 (16) Å $\beta = 106.814$ (8)° V = 9389.3 (11) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer Detector resolution: 10.000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.452, T_{\max} = 0.884$ 27851 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.069$ $wR(F^2) = 0.192$ S = 1.028193 reflections F(000) = 4160 $D_x = 1.447 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 15264 reflections $\theta = 3.2-25.0^{\circ}$ $\mu = 1.39 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.20 \times 0.17 \times 0.15 \text{ mm}$

8193 independent reflections 4349 reflections with $I > 2\sigma(I)$ $R_{int} = 0.077$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 3.2^{\circ}$ $h = -44 \rightarrow 46$ $k = -12 \rightarrow 12$ $l = -28 \rightarrow 28$

532 parameters46 restraintsPrimary atom site location: structure-invariant direct methodsHydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0908P)^2 + 16.5419P]$	$\Delta \rho_{\rm max} = 0.70 \text{ e} \text{ Å}^{-3}$
where $P = (F_0^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.77 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
I1	0.56133 (2)	1.12590 (7)	0.29126 (3)	0.0893 (3)
01	0.68726 (12)	0.9155 (5)	0.2043 (2)	0.0639 (14)
C1	0.66315 (16)	0.6730 (6)	0.3135 (3)	0.0377 (15)
C4	0.64994 (17)	0.6201 (6)	0.4197 (3)	0.0432 (16)
H4	0.645166	0.600207	0.454496	0.052*
O4	0.65571 (12)	1.0642 (4)	0.46814 (19)	0.0494 (11)
C5	0.65374 (15)	0.7480 (5)	0.4062 (3)	0.0350 (14)
05	0.64596 (12)	0.5905 (5)	0.5595 (2)	0.0595 (13)
C6	0.65149 (15)	0.8480 (5)	0.4446 (3)	0.0355 (15)
O6	0.47670 (11)	0.9847 (4)	0.40813 (19)	0.0506 (11)
C7	0.65716 (15)	0.9700 (6)	0.4293 (3)	0.0366 (14)
C8	0.66516 (17)	0.9956 (6)	0.3773 (3)	0.0434 (16)
H8	0.669578	1.078700	0.368333	0.052*
С9	0.66660 (16)	0.9010 (6)	0.3395 (3)	0.0390 (15)
H9	0.671337	0.920996	0.304671	0.047*
C51	0.7525 (2)	0.8183 (8)	0.4926 (4)	0.080 (2)
H51A	0.734746	0.839372	0.456215	0.096*
H51B	0.776216	0.827867	0.487069	0.096*
C50	0.7490 (2)	0.9106 (8)	0.5388 (4)	0.082 (2)
H50A	0.725478	0.900458	0.544926	0.098*
H50B	0.767105	0.890904	0.575155	0.098*
C3	0.65303 (18)	0.5244 (6)	0.3835 (3)	0.0467 (17)
Н3	0.650445	0.440814	0.393951	0.056*
03	0.49439 (13)	0.5548 (5)	0.3944 (2)	0.0629 (13)
C2	0.66008 (17)	0.5502 (6)	0.3305 (3)	0.0416 (15)
I2	0.74942 (2)	1.18026 (7)	0.58573 (4)	0.1109 (3)
O2	0.66407 (12)	0.4562 (4)	0.29368 (19)	0.0505 (12)
C12	0.61111 (16)	0.7585 (6)	0.5057 (3)	0.0361 (14)
C11	0.64584 (16)	0.8221 (6)	0.5036 (3)	0.0377 (14)
H11A	0.665739	0.769788	0.525533	0.045*
H11B	0.647612	0.902444	0.523862	0.045*
C10	0.66105 (15)	0.7741 (6)	0.3520 (2)	0.0341 (14)
C14	0.58096 (19)	0.5845 (6)	0.5379 (3)	0.0492 (17)
H14	0.582407	0.508483	0.558060	0.059*
C13	0.61251 (17)	0.6438 (6)	0.5351 (3)	0.0433 (16)
C15	0.54843 (18)	0.6352 (6)	0.5120 (3)	0.0461 (16)

H15	0.527919	0.591971	0.514124	0.055*
C17	0.51062 (17)	0.8104 (6)	0.4553 (3)	0.0412 (15)
C16	0.54417 (16)	0.7520 (6)	0.4814 (3)	0.0378 (15)
C22	0.47517 (16)	0.7504 (7)	0.4547 (3)	0.0441 (16)
H22A	0.462031	0.810364	0.471469	0.053*
H22B	0.480318	0.676923	0.480069	0.053*
C21	0.57746 (16)	0.8140 (6)	0.4802 (2)	0.0355 (14)
C20	0.57429 (16)	0.9373 (6)	0.4551 (2)	0.0387 (15)
H20	0.595136	0.980109	0.454276	0.046*
C19	0.54171 (17)	0.9947 (6)	0.4322 (3)	0.0424 (15)
H19	0.540712	1.076104	0.416913	0.051*
C18	0.50957 (16)	0.9314 (6)	0.4315 (3)	0.0392 (15)
C24	0.46082 (17)	0.6063 (6)	0.3684 (3)	0.0452 (16)
C23	0.45027 (16)	0.7080 (6)	0.3959 (3)	0.0414 (15)
C27	0.60851 (16)	0.7086 (6)	0.1808 (3)	0.0389 (15)
C26	0.59565 (18)	0.6043 (6)	0.2051 (3)	0.0474 (16)
H26	0.610700	0.567616	0.238564	0.057*
C25	0.56240 (18)	0.5545 (6)	0.1821 (3)	0.0533 (18)
H25	0.554985	0.485669	0.199943	0.064*
C30	0.63019 (18)	0.9153 (7)	0.1283 (3)	0.0531 (18)
H30	0.637265	0.985529	0.110921	0.064*
C29	0.65376 (17)	0.8672 (6)	0.1789 (3)	0.0464 (17)
C28	0.64354 (16)	0.7607 (6)	0.2060 (3)	0.0389 (15)
C34	0.6522 (2)	0.3342 (7)	0.2997 (3)	0.067 (2)
H34A	0.627115	0.336511	0.299598	0.080*
H34B	0.666312	0.298299	0.336365	0.080*
C33	0.67158 (17)	0.6974 (6)	0.2566 (3)	0.0400 (15)
H33A	0.677646	0.616446	0.242728	0.048*
H33B	0.693189	0.749212	0.265380	0.048*
C32	0.58404 (16)	0.7601 (6)	0.1283 (2)	0.0369 (14)
C31	0.59773 (18)	0.8648 (6)	0.1037 (3)	0.0495 (17)
H31	0.583479	0.899302	0.069052	0.059*
C40	0.47465 (18)	1.1141 (6)	0.3889 (3)	0.0514 (17)
H40A	0.484876	1.121769	0.356627	0.062*
H40B	0.488366	1.167970	0.420239	0.062*
C39	0.6919 (2)	0.4877 (11)	0.6297 (4)	0.106 (4)
H39A	0.696510	0.431617	0.662493	0.159*
H39B	0.700599	0.450062	0.599956	0.159*
H39C	0.703933	0.566984	0.641498	0.159*
C38	0.6522 (2)	0.5101 (9)	0.6064 (3)	0.075 (2)
H38A	0.639816	0.430254	0.594661	0.089*
H38B	0.643160	0.547550	0.636336	0.089*
C37	0.6393 (3)	1.2653 (7)	0.4923 (4)	0.079 (3)
H37A	0.635691	1.352246	0.480115	0.118*
H37B	0.617099	1.231123	0.496139	0.118*
H37C	0.657543	1.260496	0.529035	0.118*
C36	0.6507 (2)	1.1922 (6)	0.4489 (3)	0.0521 (18)
H36A	0.632396	1.196804	0.411572	0.062*

H36B	0.672993	1.226287	0.444593	0.062*
C35	0.6559 (3)	0.2548 (8)	0.2510 (4)	0.093 (3)
H35A	0.647661	0.170337	0.255099	0.139*
H35B	0.641662	0.290255	0.214843	0.139*
H35C	0.680752	0.252148	0.251509	0.139*
C42	0.5097 (2)	0.4753 (11)	0.3589 (5)	0.114 (4)
H42A	0.507684	0.517106	0.322153	0.137*
H42B	0.496467	0.395986	0.350856	0.137*
C41	0.43599 (19)	1.1554 (7)	0.3701 (3)	0.061 (2)
H41A	0.434534	1.241933	0.357194	0.092*
H41B	0.422582	1.102313	0.338820	0.092*
H41C	0.426063	1.148385	0.402255	0.092*
C43	0.5483 (3)	0.4491 (14)	0.3894 (6)	0.157 (6)
H43A	0.558290	0.396076	0.365400	0.236*
H43B	0.561426	0.527635	0.396890	0.236*
H43C	0.550233	0.406771	0.425532	0.236*
C45	0.7358 (3)	1.0574 (11)	0.2155 (5)	0.118 (4)
H45A	0.744594	1.128269	0.198495	0.177*
H45B	0.734272	1.080433	0.253380	0.177*
H45C	0.752081	0.987119	0.218952	0.177*
C44	0.6990 (2)	1.0202 (8)	0.1774 (3)	0.069 (2)
H44A	0.682302	1.090484	0.173563	0.083*
H44B	0.700191	0.996753	0.138981	0.083*
C46	0.5677 (2)	0.9358 (10)	0.2635 (5)	0.097 (3)
H46A	0.557385	0.931225	0.221638	0.116*
H46B	0.593289	0.917814	0.272127	0.116*
C49	0.7535 (2)	1.0452 (8)	0.5228 (5)	0.093 (3)
H49A	0.735317	1.064157	0.486455	0.112*
H49B	0.776919	1.054199	0.516084	0.112*
C48	0.5108 (2)	0.8462 (8)	0.2812 (3)	0.074 (2)
H48A	0.503209	0.775195	0.300553	0.088*
H48B	0.505687	0.923420	0.299276	0.088*
C47	0.5511 (3)	0.8370 (9)	0.2904 (4)	0.094 (3)
H47A	0.562902	0.837729	0.331884	0.112*
H47B	0.556070	0.755456	0.275659	0.112*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0947 (5)	0.1068 (5)	0.0699 (4)	-0.0250 (4)	0.0291 (3)	-0.0089 (4)
O1	0.048 (3)	0.075 (3)	0.062 (3)	-0.015 (2)	0.005 (2)	0.025 (3)
C1	0.040 (4)	0.040 (4)	0.032 (3)	0.004 (3)	0.010 (3)	0.008 (3)
C4	0.061 (4)	0.036 (4)	0.037 (4)	0.004 (3)	0.022 (3)	0.008 (3)
O4	0.073 (3)	0.036 (3)	0.045 (3)	-0.005 (2)	0.027 (2)	-0.001 (2)
C5	0.038 (4)	0.031 (4)	0.034 (3)	0.004 (3)	0.009 (3)	0.001 (3)
05	0.055 (3)	0.063 (3)	0.064 (3)	0.011 (2)	0.023 (2)	0.037 (3)
C6	0.031 (3)	0.038 (4)	0.038 (4)	-0.001 (3)	0.010 (3)	0.007 (3)
06	0.047 (3)	0.049 (3)	0.053 (3)	0.000 (2)	0.011 (2)	0.005 (2)

C7	0.040 (4)	0.033 (4)	0.036 (4)	0.000 (3)	0.010 (3)	-0.003(3)
C8	0.061 (4)	0.026 (3)	0.047 (4)	-0.004 (3)	0.022 (3)	0.009 (3)
C9	0.051 (4)	0.037 (4)	0.031 (3)	-0.004(3)	0.015 (3)	0.004 (3)
C51	0.059 (5)	0.087 (5)	0.088 (6)	0.003 (5)	0.011 (5)	0.020 (5)
C50	0.068 (5)	0.080 (5)	0.089 (6)	-0.002(4)	0.011 (5)	0.005 (5)
C3	0.062 (4)	0.029 (4)	0.051 (4)	0.006 (3)	0.020 (3)	0.015 (3)
03	0.054 (3)	0.061 (3)	0.067 (3)	0.005 (2)	0.007 (3)	-0.012(3)
C2	0.052 (4)	0.032 (4)	0.040 (4)	0.012 (3)	0.013 (3)	0.001 (3)
I2	0.1102 (6)	0.0870 (5)	0.1344 (7)	-0.0032(4)	0.0338 (5)	0.0104 (5)
02	0.075 (3)	0.031 (3)	0.050 (3)	0.007 (2)	0.026 (2)	0.002 (2)
C12	0.044 (4)	0.034(3)	0.034(3)	-0.004(3)	0.017(3)	-0.002(3)
C11	0.046(4)	0.037(4)	0.031(3)	0.000(3)	0.019(3)	0.002(3)
C10	0.034(3)	0.037(1)	0.032(3)	-0.003(3)	0.019(3)	0.005(3)
C14	0.051(5)	0.030(3)	0.031(3) 0.047(4)	-0.004(3)	0.000(3)	0.003(3)
C13	0.000(3) 0.049(4)	0.046(4)	0.017(1) 0.038(4)	0.001(3)	0.013(3)	0.012(3)
C15	0.047(4)	0.046(4)	0.030(4) 0.047(4)	-0.010(3)	0.015(3)	0.010(3)
C17	0.047(4)	0.040(4)	0.047(4)	-0.010(3)	0.013(3)	-0.001(4)
C16	0.030(4)	0.047(4)	0.031(3)	-0.003(3)	0.018(3)	-0.004(3)
C10	0.043(4)	0.038(4)	0.031(3)	-0.005(3)	0.009(3)	0.003(3)
C22	0.043(4)	0.032(4)	0.037(4)	-0.000(3)	0.013(3)	0.000(3)
C21	0.043(4)	0.039(4)	0.023(3)	-0.002(3)	0.010(3)	0.001(3)
C20	0.040(4)	0.044(4)	0.031(3)	-0.007(3)	0.010(3)	-0.001(3)
C19	0.034(4)	0.034(3)	0.039(4)	0.005(3)	0.014(3)	0.010(3)
C18	0.036(4)	0.049(4)	0.031(3)	0.000(3)	0.006(3)	-0.002(3)
C24	0.046 (4)	0.045 (4)	0.044 (4)	0.002(3)	0.013(3)	-0.003(3)
C23	0.040 (4)	0.044 (4)	0.041 (4)	-0.008(3)	0.013(3)	0.002(3)
C27	0.049 (4)	0.039 (4)	0.035 (4)	0.006 (3)	0.021 (3)	0.008 (3)
C26	0.051 (4)	0.047 (4)	0.041 (4)	0.001 (3)	0.008 (3)	0.003 (3)
C25	0.056 (5)	0.046 (4)	0.059 (5)	0.001 (3)	0.018 (4)	0.014 (4)
C30	0.047 (4)	0.061 (5)	0.052 (4)	-0.006 (3)	0.017 (4)	0.024 (4)
C29	0.042 (4)	0.058 (4)	0.042 (4)	-0.003(3)	0.017 (3)	0.007 (4)
C28	0.041 (4)	0.047 (4)	0.033 (3)	0.008 (3)	0.017 (3)	0.006 (3)
C34	0.102 (6)	0.046 (5)	0.058 (5)	0.001 (4)	0.034 (5)	0.003 (4)
C33	0.047 (4)	0.044 (4)	0.033 (3)	0.009 (3)	0.017 (3)	0.007 (3)
C32	0.045 (4)	0.039 (4)	0.029 (3)	0.007 (3)	0.015 (3)	-0.001 (3)
C31	0.045 (4)	0.059 (4)	0.044 (4)	0.003 (3)	0.013 (3)	0.020 (4)
C40	0.061 (5)	0.048 (4)	0.041 (4)	0.004 (3)	0.008 (3)	-0.003 (3)
C39	0.071 (6)	0.150 (9)	0.092 (7)	0.035 (6)	0.015 (5)	0.065 (7)
C38	0.087 (6)	0.099 (7)	0.044 (4)	0.022 (5)	0.028 (4)	0.029 (5)
C37	0.131 (8)	0.041 (4)	0.078 (6)	0.014 (5)	0.053 (6)	0.005 (4)
C36	0.069 (5)	0.033 (4)	0.057 (5)	-0.002 (3)	0.023 (4)	0.001 (3)
C35	0.155 (9)	0.057 (5)	0.076 (6)	-0.011 (5)	0.050 (6)	-0.014 (5)
C42	0.089 (7)	0.112 (8)	0.123 (9)	0.045 (6)	0.003 (6)	-0.032 (7)
C41	0.055 (5)	0.069 (5)	0.060 (5)	0.016 (4)	0.017 (4)	-0.001 (4)
C43	0.103 (8)	0.196 (14)	0.153 (12)	0.069 (9)	0.005 (7)	-0.071 (10)
C45	0.078 (7)	0.130 (9)	0.128 (9)	-0.044 (6)	0.000 (6)	0.020 (8)
C44	0.068 (5)	0.074 (5)	0.065 (5)	-0.015 (4)	0.020 (4)	0.014 (4)
C46	0.074 (6)	0.116 (8)	0.105 (8)	0.014 (5)	0.035 (5)	-0.009 (6)
C49	0.058 (5)	0.088 (5)	0.121 (8)	-0.003 (5)	0.006 (5)	0.027 (6)

C48	0.109 (6)	0.062 (5)	0.054 (4)	-0.003 (4)	0.030 (5)	-0.001 (4)
C47	0.106 (6)	0.090 (7)	0.081 (7)	0.027 (5)	0.021 (6)	-0.008 (5)

Geometric parameters (Å, °)

I1—C46	2.149 (10)	C27—C26	1.402 (9)
O1—C29	1.363 (8)	C27—C28	1.426 (8)
O1—C44	1.418 (8)	C27—C32	1.446 (8)
C1—C2	1.373 (8)	C26—C25	1.352 (9)
C1-C10	1.428 (8)	C26—H26	0.9300
C1—C33	1.516 (8)	C25—H25	0.9300
C4—C3	1.360 (9)	C30—C31	1.336 (9)
C4—C5	1.406 (8)	C30—C29	1.387 (9)
C4—H4	0.9300	С30—Н30	0.9300
O4—C7	1.375 (7)	C29—C28	1.410 (9)
O4—C36	1.421 (7)	C28—C33	1.529 (8)
C5—C6	1.421 (8)	C34—C35	1.479 (11)
C5—C10	1.436 (8)	C34—H34A	0.9700
O5—C38	1.375 (8)	C34—H34B	0.9700
O5—C13	1.378 (8)	С33—Н33А	0.9700
C6—C7	1.373 (8)	С33—Н33В	0.9700
C6—C11	1.519 (8)	C32—C31	1.425 (9)
O6—C18	1.355 (7)	C31—H31	0.9300
O6—C40	1.435 (8)	C40—C41	1.498 (9)
С7—С8	1.398 (8)	C40—H40A	0.9700
С8—С9	1.360 (8)	C40—H40B	0.9700
C8—H8	0.9300	C39—C38	1.492 (11)
C9—C10	1.402 (8)	С39—Н39А	0.9600
С9—Н9	0.9300	С39—Н39В	0.9600
C51-C51 ⁱ	1.509 (16)	С39—Н39С	0.9600
C51—C50	1.511 (13)	C38—H38A	0.9700
C51—H51A	0.9700	C38—H38B	0.9700
C51—H51B	0.9700	C37—C36	1.462 (10)
C50—C49	1.495 (12)	С37—Н37А	0.9600
C50—H50A	0.9700	С37—Н37В	0.9600
С50—Н50В	0.9700	С37—Н37С	0.9600
C3—C2	1.403 (9)	C36—H36A	0.9700
С3—Н3	0.9300	C36—H36B	0.9700
O3—C24	1.380 (8)	C35—H35A	0.9600
O3—C42	1.440 (10)	C35—H35B	0.9600
C2—O2	1.367 (7)	C35—H35C	0.9600
I2—C49	2.116 (11)	C42—C43	1.490 (8)
O2—C34	1.388 (8)	C42—H42A	0.9700
C12—C13	1.394 (9)	C42—H42B	0.9700
C12—C21	1.398 (8)	C41—H41A	0.9600
C12—C11	1.517 (8)	C41—H41B	0.9600
C11—H11A	0.9700	C41—H41C	0.9600
C11—H11B	0.9700	C43—H43A	0.9600

C14—C15	1.344 (9)	C43—H43B	0.9600
C14—C13	1.391 (9)	C43—H43C	0.9600
C14—H14	0.9300	C45—C44	1 508 (11)
C15-C16	1 418 (9)	C_{45} H45A	0.9600
C15—H15	0.9300	C45—H45B	0.9600
C17 C18	1 30/ (0)	C_{45} H45C	0.9600
C17 - C16	1.394(9)		0.9000
C17 = C10	1.411(9)		0.9700
$C_{17} = C_{22}$	1.508 (8)	C_{44} C_{44} C_{47}	1.460(13)
C_{10} C_{21} C_{22}	1.433 (8)	$C_{46} = U_{46}$	0.0700
$C_{22} = C_{23}$	0.0700	C_{40} II46A	0.9700
C22—H22A	0.9700	C40 = H40A	0.9700
C22—H22B	0.9700	C49—H49A	0.9700
$C_{21} = C_{20}$	1.423 (9)	C49—H49B	0.9700
C20—C19	1.364 (8)		1.490 (16)
C20—H20	0.9300	C48—C47	1.514 (12)
C19—C18	1.408 (8)	C48—H48A	0.9700
С19—Н19	0.9300	C48—H48B	0.9700
C24—C23	1.382 (9)	C47—H47A	0.9700
$C24$ — $C25^{ii}$	1.395 (9)	C47—H47B	0.9700
C23—C32 ⁱⁱ	1.399 (8)		
C29—O1—C44	118.4 (5)	C29—C28—C27	118.1 (5)
C2-C1-C10	119.0 (5)	C29—C28—C33	119.0 (5)
C2—C1—C33	119.2 (6)	C27—C28—C33	122.6 (5)
C10—C1—C33	121.6 (5)	O2—C34—C35	109.4 (6)
C3—C4—C5	121.9 (6)	O2—C34—H34A	109.8
C3—C4—H4	119.0	С35—С34—Н34А	109.8
C5—C4—H4	119.0	O2—C34—H34B	109.8
C7—O4—C36	119.6 (5)	С35—С34—Н34В	109.8
C4—C5—C6	122.1 (5)	H34A—C34—H34B	108.2
C4—C5—C10	117.0 (5)	C1—C33—C28	120.2 (5)
C6—C5—C10	120.9 (5)	C1—C33—H33A	107.3
C38—O5—C13	121.4 (5)	C28—C33—H33A	107.3
C7—C6—C5	118.4 (5)	C1—C33—H33B	107.3
C7—C6—C11	119.7 (5)	C28—C33—H33B	107.3
C5—C6—C11	121.7(5)	H33A—C33—H33B	106.9
C18—O6—C40	119.0 (5)	$C_{23i} - C_{32} - C_{31}$	123.6 (6)
C6-C7-O4	117.0 (5)	$C_{23i} - C_{32} - C_{27}$	121.3(5)
C6-C7-C8	120.9 (6)	$C_{31} - C_{32} - C_{27}$	1151(6)
04-C7-C8	12213(5)	C_{30} C_{31} C_{32}	122.7 (6)
C9-C8-C7	121.2 (6)	C_{30} C_{31} H_{31}	118.6
C9-C8-H8	119.4	C_{32} C_{31} H_{31}	118.6
C7-C8-H8	119.4	06-C40-C41	109.3 (6)
$C_{8} - C_{9} - C_{10}$	117.4	06 - C40 - H40A	109.5 (0)
C8-C9-H9	119.4	C41 - C40 - H40A	109.0
C10_C9_H9	119.4	06-C40-H40R	109.8
C_{51}^{i} C_{51} C_{50}^{i}	113.4 (10)	C41 - C40 - H40B	109.0
$C51^{i}$ $C51_{-}$ $H51^{A}$	108.9	$H40\Delta$ $C40$ $H40R$	109.0
UJ1-UJ1-11JIA	100.7	11TUA-0TU-11TUD	100.5

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C50—C51—H51A	108.9	С38—С39—Н39А	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C51 ⁱ —C51—H51B	108.9	С38—С39—Н39В	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C50—C51—H51B	108.9	H39A—C39—H39B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H51A—C51—H51B	107.7	С38—С39—Н39С	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C49—C50—C51	112.3 (8)	Н39А—С39—Н39С	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C49—C50—H50A	109.1	H39B—C39—H39C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С51—С50—Н50А	109.1	O5—C38—C39	108.8 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C49—C50—H50B	109.1	O5—C38—H38A	109.9
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С51—С50—Н50В	109.1	С39—С38—Н38А	109.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H50A—C50—H50B	107.9	O5—C38—H38B	109.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C3—C2	120.9 (6)	C39—C38—H38B	109.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С3—Н3	119.6	H38A—C38—H38B	108.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3—Н3	119.6	С36—С37—Н37А	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C24—O3—C42	117.1 (6)	С36—С37—Н37В	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—C2—C1	117.1 (5)	Н37А—С37—Н37В	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—C2—C3	122.3 (5)	С36—С37—Н37С	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C3	120.6 (6)	Н37А—С37—Н37С	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—O2—C34	120.1 (5)	Н37В—С37—Н37С	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C12—C21	118.7 (5)	O4—C36—C37	108.1 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C12—C11	119.7 (5)	O4—C36—H36A	110.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21—C12—C11	121.6 (5)	С37—С36—Н36А	110.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—C6	118.6 (5)	O4—C36—H36B	110.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—H11A	107.7	С37—С36—Н36В	110.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C11—H11A	107.7	H36A—C36—H36B	108.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—H11B	107.7	С34—С35—Н35А	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C11—H11B	107.7	С34—С35—Н35В	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H11A—C11—H11B	107.1	H35A—C35—H35B	109.5
C9-C10-C5 117.4 (5) $H35A-C35-H35C$ 109.5 C1-C10-C5 120.5 (5) $H35B-C35-H35C$ 109.5 C15-C14-C13 121.2 (6) $O3-C42-C43$ 110.1 (8)C15-C14-H14 119.4 $O3-C42-H42A$ 109.6 C13-C14-H14 119.4 $C43-C42-H42A$ 109.6 O5-C13-C14 121.8 (6) $O3-C42-H42B$ 109.6 O5-C13-C12 117.6 (5) $C43-C42-H42B$ 109.6 C14-C13-C12 120.6 (6) $H42A-C42-H42B$ 109.6 C14-C15-C16 122.5 (6) $C40-C41-H41B$ 109.5 C14-C15-H15 118.7 $C40-C41-H41B$ 109.5 C16-C15-H15 118.7 $C40-C41-H41B$ 109.5 C18-C17-C16 119.7 (5) $C40-C41-H41C$ 109.5 C17-C16-C15 122.7 (6) $H41B-C41-H41C$ 109.5 C17-C16-C15 124.3 (6) $C42-C43-H43A$ 109.5 C17-C16-C21 120.2 (6) $C42-C43-H43B$ 109.5 C17-C22-C23 117.4 (5) $C42-C43-H43C$ 109.5 C17-C22-H22A 107.9 $H43B-C43-H43C$ 109.5	C9—C10—C1	122.1 (5)	С34—С35—Н35С	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—C5	117.4 (5)	H35A—C35—H35C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C10—C5	120.5 (5)	H35B—C35—H35C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—C14—C13	121.2 (6)	O3—C42—C43	110.1 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—C14—H14	119.4	O3—C42—H42A	109.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C14—H14	119.4	C43—C42—H42A	109.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—C13—C14	121.8 (6)	O3—C42—H42B	109.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—C13—C12	117.6 (5)	C43—C42—H42B	109.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C13—C12	120.6 (6)	H42A—C42—H42B	108.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C15—C16	122.5 (6)	C40—C41—H41A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C15—H15	118.7	C40—C41—H41B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—C15—H15	118.7	H41A—C41—H41B	109.5
C18—C17—C22 117.5 (6) H41A—C41—H41C 109.5 C16—C17—C22 122.7 (6) H41B—C41—H41C 109.5 C17—C16—C15 124.3 (6) C42—C43—H43A 109.5 C17—C16—C21 120.2 (6) C42—C43—H43B 109.5 C15—C16—C21 115.4 (5) H43A—C43—H43B 109.5 C17—C22—C23 117.4 (5) C42—C43—H43C 109.5 C17—C22—H22A 107.9 H43A—C43—H43C 109.5 C23—C22—H22A 107.9 H43B—C43—H43C 109.5	C18—C17—C16	119.7 (5)	C40—C41—H41C	109.5
C16—C17—C22 122.7 (6) H41B—C41—H41C 109.5 C17—C16—C15 124.3 (6) C42—C43—H43A 109.5 C17—C16—C21 120.2 (6) C42—C43—H43B 109.5 C15—C16—C21 115.4 (5) H43A—C43—H43B 109.5 C17—C22—C23 117.4 (5) C42—C43—H43C 109.5 C17—C22—H22A 107.9 H43A—C43—H43C 109.5 C23—C22—H22A 107.9 H43B—C43—H43C 109.5	C18—C17—C22	117.5 (6)	H41A—C41—H41C	109.5
C17—C16—C15 124.3 (6) C42—C43—H43A 109.5 C17—C16—C21 120.2 (6) C42—C43—H43B 109.5 C15—C16—C21 115.4 (5) H43A—C43—H43B 109.5 C17—C22—C23 117.4 (5) C42—C43—H43C 109.5 C17—C22—H22A 107.9 H43A—C43—H43C 109.5 C23—C22—H22A 107.9 H43B—C43—H43C 109.5	C16—C17—C22	122.7 (6)	H41B—C41—H41C	109.5
C17—C16—C21 120.2 (6) C42—C43—H43B 109.5 C15—C16—C21 115.4 (5) H43A—C43—H43B 109.5 C17—C22—C23 117.4 (5) C42—C43—H43C 109.5 C17—C22—H22A 107.9 H43A—C43—H43C 109.5 C23—C22—H22A 107.9 H43B—C43—H43C 109.5	C17—C16—C15	124.3 (6)	C42—C43—H43A	109.5
C15—C16—C21115.4 (5)H43A—C43—H43B109.5C17—C22—C23117.4 (5)C42—C43—H43C109.5C17—C22—H22A107.9H43A—C43—H43C109.5C23—C22—H22A107.9H43B—C43—H43C109.5	C17—C16—C21	120.2 (6)	C42—C43—H43B	109.5
C17—C22—C23117.4 (5)C42—C43—H43C109.5C17—C22—H22A107.9H43A—C43—H43C109.5C23—C22—H22A107.9H43B—C43—H43C109.5	C15—C16—C21	115.4 (5)	H43A—C43—H43B	109.5
C17—C22—H22A 107.9 H43A—C43—H43C 109.5 C23—C22—H22A 107.9 H43B—C43—H43C 109.5	C17—C22—C23	117.4 (5)	C42—C43—H43C	109.5
C23—C22—H22A 107.9 H43B—C43—H43C 109.5	C17—C22—H22A	107.9	H43A—C43—H43C	109.5
	C23—C22—H22A	107.9	H43B—C43—H43C	109.5

C17—C22—H22B	107.9	C44—C45—H45A	109.5
C23—C22—H22B	107.9	C44—C45—H45B	109.5
H22A—C22—H22B	107.2	H45A—C45—H45B	109.5
C12—C21—C20	121.5 (5)	C44—C45—H45C	109.5
C12—C21—C16	121.6 (6)	H45A—C45—H45C	109.5
C20—C21—C16	116.8 (5)	H45B—C45—H45C	109.5
C19—C20—C21	122.2 (6)	O1—C44—C45	107.3 (7)
С19—С20—Н20	118.9	O1—C44—H44A	110.3
C21—C20—H20	118.9	C45—C44—H44A	110.3
C20—C19—C18	120.4 (6)	O1—C44—H44B	110.3
С20—С19—Н19	119.8	C45—C44—H44B	110.3
C18—C19—H19	119.8	H44A—C44—H44B	108.5
O6—C18—C17	117.5 (5)	C47—C46—I1	114.9 (7)
O6—C18—C19	122.0 (6)	C47—C46—H46A	108.6
C17—C18—C19	120.5 (6)	I1—C46—H46A	108.6
O3—C24—C23	117.3 (6)	C47—C46—H46B	108.6
O3—C24—C25 ⁱⁱ	121.7 (6)	I1—C46—H46B	108.6
C23—C24—C25 ⁱⁱ	120.9 (6)	H46A—C46—H46B	107.5
C24—C23—C32 ⁱⁱ	118.8 (6)	C50—C49—I2	114.6 (7)
C24—C23—C22	118.3 (6)	С50—С49—Н49А	108.6
C32 ⁱⁱ —C23—C22	122.7 (6)	I2—C49—H49A	108.6
C26—C27—C28	122.3 (6)	С50—С49—Н49В	108.6
C26—C27—C32	115.8 (6)	I2—C49—H49B	108.6
C28—C27—C32	121.9 (5)	H49A—C49—H49B	107.6
C25—C26—C27	123.0 (6)	C48 ⁱⁱ —C48—C47	113.6 (9)
C25—C26—H26	118.5	C48 ⁱⁱ —C48—H48A	108.8
С27—С26—Н26	118.5	C47—C48—H48A	108.8
C26—C25—C24 ⁱⁱ	120.1 (6)	C48 ⁱⁱ —C48—H48B	108.8
C26—C25—H25	119.9	C47—C48—H48B	108.8
C24 ⁱⁱ —C25—H25	119.9	H48A—C48—H48B	107.7
C31—C30—C29	122.6 (6)	C46—C47—C48	117.1 (8)
С31—С30—Н30	118.7	C46—C47—H47A	108.0
С29—С30—Н30	118.7	C48—C47—H47A	108.0
O1—C29—C30	123.7 (6)	C46—C47—H47B	108.0
O1—C29—C28	116.7 (6)	C48—C47—H47B	108.0
C30—C29—C28	119.6 (6)	H47A—C47—H47B	107.3
C3—C4—C5—C6	-178.2 (6)	C11—C12—C21—C16	178.9 (5)
C3—C4—C5—C10	0.1 (9)	C17—C16—C21—C12	-179.9 (6)
C4—C5—C6—C7	177.0 (6)	C15—C16—C21—C12	2.4 (8)
C10—C5—C6—C7	-1.2 (8)	C17—C16—C21—C20	3.9 (8)
C4—C5—C6—C11	1.7 (9)	C15—C16—C21—C20	-173.8 (5)
C10-C5-C6-C11	-176.6 (5)	C12—C21—C20—C19	-177.3 (6)
C5—C6—C7—O4	-178.4 (5)	C16—C21—C20—C19	-1.1 (8)
C11—C6—C7—O4	-2.9 (8)	C21—C20—C19—C18	-1.4 (9)
C5—C6—C7—C8	-0.4 (9)	C40—O6—C18—C17	173.5 (5)
C11—C6—C7—C8	175.1 (5)	C40—O6—C18—C19	-6.5 (8)
C36—O4—C7—C6	-161.5 (5)	C16—C17—C18—O6	-178.5 (5)

C36—O4—C7—C8	20.5 (8)	C22—C17—C18—O6	-1.9(8)
C6—C7—C8—C9	1.9 (9)	C16—C17—C18—C19	1.6 (9)
O4—C7—C8—C9	179.8 (6)	C22—C17—C18—C19	178.1 (5)
C7—C8—C9—C10	-1.7 (9)	C20—C19—C18—O6	-178.7 (6)
C51 ⁱ —C51—C50—C49	-179.0 (9)	C20-C19-C18-C17	1.2 (9)
C5—C4—C3—C2	-0.2 (10)	C42—O3—C24—C23	-162.7 (7)
C10—C1—C2—O2	-176.8 (5)	C42—O3—C24—C25 ⁱⁱ	20.4 (10)
C33—C1—C2—O2	-1.5 (8)	O3—C24—C23—C32 ⁱⁱ	-178.1 (5)
C10—C1—C2—C3	3.4 (9)	C25 ⁱⁱ —C24—C23—C32 ⁱⁱ	-1.1 (9)
C33—C1—C2—C3	178.7 (6)	O3—C24—C23—C22	-4.0 (9)
C4—C3—C2—O2	178.6 (6)	C25 ⁱⁱ —C24—C23—C22	173.0 (6)
C4—C3—C2—C1	-1.6 (10)	C17—C22—C23—C24	68.8 (8)
C1—C2—O2—C34	-162.9 (6)	C17—C22—C23—C32 ⁱⁱ	-117.3 (7)
C3—C2—O2—C34	16.9 (9)	C28—C27—C26—C25	179.4 (6)
C13—C12—C11—C6	121.2 (6)	C32—C27—C26—C25	-0.9 (9)
C21—C12—C11—C6	-60.6 (8)	C27—C26—C25—C24 ⁱⁱ	0.6 (11)
C7—C6—C11—C12	121.4 (6)	C44—O1—C29—C30	-0.7(10)
C5—C6—C11—C12	-63.3 (8)	C44—O1—C29—C28	178.0 (6)
C8—C9—C10—C1	-178.7 (6)	C31—C30—C29—O1	178.7 (7)
C8—C9—C10—C5	0.1 (8)	C31—C30—C29—C28	0.1 (11)
C2-C1-C10-C9	175.2 (6)	O1—C29—C28—C27	179.3 (6)
C33—C1—C10—C9	0.1 (9)	C30—C29—C28—C27	-1.9 (9)
C2-C1-C10-C5	-3.6 (8)	O1—C29—C28—C33	-7.1 (9)
C33—C1—C10—C5	-178.8 (5)	C30—C29—C28—C33	171.6 (6)
C4—C5—C10—C9	-177.0 (5)	C26—C27—C28—C29	-178.8 (6)
C6—C5—C10—C9	1.3 (8)	C32—C27—C28—C29	1.5 (9)
C4—C5—C10—C1	1.9 (8)	C26—C27—C28—C33	7.9 (9)
C6—C5—C10—C1	-179.8 (5)	C32—C27—C28—C33	-171.8 (5)
C38—O5—C13—C14	-27.6 (10)	C2—O2—C34—C35	173.8 (7)
C38—O5—C13—C12	154.1 (7)	C2-C1-C33-C28	113.4 (7)
C15—C14—C13—O5	-177.4 (6)	C10-C1-C33-C28	-71.5 (8)
C15—C14—C13—C12	0.8 (10)	C29—C28—C33—C1	128.3 (6)
C21—C12—C13—O5	179.6 (5)	C27—C28—C33—C1	-58.4 (8)
C11—C12—C13—O5	-2.2 (9)	C26—C27—C32—C23 ⁱⁱ	0.2 (8)
C21—C12—C13—C14	1.3 (9)	C28—C27—C32—C23 ⁱⁱ	180.0 (6)
C11—C12—C13—C14	179.5 (6)	C26—C27—C32—C31	-179.0 (6)
C13—C14—C15—C16	-1.3 (10)	C28—C27—C32—C31	0.7 (8)
C18—C17—C16—C15	173.3 (6)	C29—C30—C31—C32	2.3 (11)
C22—C17—C16—C15	-3.0 (9)	C23 ⁱⁱ —C32—C31—C30	178.1 (7)
C18—C17—C16—C21	-4.1 (9)	C27—C32—C31—C30	-2.6(9)
C22—C17—C16—C21	179.5 (5)	C18—O6—C40—C41	-174.7 (5)
C14—C15—C16—C17	-177.9 (6)	C13—O5—C38—C39	-169.5 (7)
C14—C15—C16—C21	-0.3 (9)	C7—O4—C36—C37	163.0 (6)
C18—C17—C22—C23	70.8 (8)	C24—O3—C42—C43	168.7 (9)
C16—C17—C22—C23	-112.8 (7)	C29—O1—C44—C45	177.6 (7)
C13—C12—C21—C20	173.1 (6)	C51—C50—C49—I2	-179.5 (6)

C11—C12—C21—C20	-5.1 (9)	I1—C46—C47—C48	59.3 (10)	
C13—C12—C21—C16	-2.9 (9)	C48 ⁱⁱ —C48—C47—C46	57.8 (9)	

Symmetry codes: (i) -x+3/2, -y+3/2, -z+1; (ii) -x+1, y, -z+1/2.