

Received 10 March 2025 Accepted 14 May 2025

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; hydrogen bonds; Hirshfeld surface analysis; α , α -dihalo- β -oxoaldehydes; urea.

CCDC references: 2451169; 2451168

Supporting information: this article has supporting information at journals.iucr.org/e

Syntheses and structures of 1-[2,2-dichloro-1hydroxy-3-(4-methylphenyl)-3-oxopropyl]urea and 1-[2,2-dichloro-3-(4-fluorophenyl)-1-hydroxy-3oxopropyl]urea

Firudin I. Guseinov,^{a,b} Tuncer Hökelek,^c Ksenia A. Afanaseva,^{a,b} Elena V. Shuvalova,^b Lev M. Glukhov,^b Aida I. Samigullina^b and Alebel N. Belay^d*

^aKosygin State University of Russia, 117997 Moscow, Russian Federation, ^bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, ^cHacettepe University, Department of Physics, 06800 Beytepe-Ankara, Türkiye, and ^dDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia. *Correspondence e-mail: alebel.nibret@bdu.edu.et

The title compounds, $C_{10}H_9Cl_2FN_2O_3$, (I), and $C_{11}H_{12}Cl_2N_2O_3$, (II), are α, α -dihalo- β -diketone urea derivatives, which contain 4-fluorophenyl and *p*-tolyl groups, respectively. The conformation about the $C_O - C_{Cl2} - C_O - N_u$ (O = keto, Cl2 = dichloro, u = urea) bond is *anti* in (I) and *gauche* in (II). In the crystals of both compounds, $O - H \cdots O$ hydrogen bonds generate inversion dimers and the dimers are linked into (100) layers by $N - H \cdots O$ hydrogen bonds. The Hirshfeld surface analyses of the crystal structures indicate that the most important contributions for the crystal packings are from $H \cdots O/O \cdots H$ (22.3%), $H \cdots H$ (20.9%), $H \cdots Cl/Cl \cdots H$ (15.6%) and $H \cdots Cl/Cl \cdots H$ (10.3%) for (I) and $H \cdots H$ (31.7%), $H \cdots O/O \cdots H$ (25.1%), $H \cdots Cl/Cl \cdots H$ (21.1%) and $H \cdots C/C \cdots H$ (9.5%) for (II).

1. Chemical context

The replacement of hydrogen atoms with halogen atoms at the active methylene group in β -diketones prevents keto-enol tautomerism and impacts on the reactivity of the corresponding α, α -dihalo- β - diketones (e.g., Guseinov et al., 2006). For instance, the reaction of α, α -dihalo- β -oxoaldehydes and their derivatives with N-nucleophilic reagents lead to heteroor macrocyclic compounds (Guseinov et al., 2024). This class of compounds can be used in the spectrophotometric determination of metal ions (Aliyev et al., 2020), decoration of the secondary coordination sphere of metal complexes for catalysis (Aliyeva et al., 2024), crystal growth and design (Naghiyev et al., 2023) and heterogenous catalysis (Mahmudov et al., 2022). In fact, the use of N-compounds has many synthetic advantages (Khalilov, 2021), such as easy modification and functionalization (Huseynov et al., 2021), immobilization on solid materials through supramolecular interactions (Mamedov et al., 2006), and crystal engineering (Hajiyeva et al., 2024).

Herein, we describe the syntheses and crystal structures of the two title compounds, $C_{10}H_9Cl_2FN_2O_3$ (I) and

 $C_{11}H_{12}Cl_2N_2O_3$ (II), which differ in the substituent at the *para* position of the phenyl group.

2. Structural commentary

In (I) (Fig. 1), the dihedral angle between the C7–C12 phenyl group and the C2/N1/N3/O2 urea moiety is 65.19 (8)°. The key torsion angles for the backbone of the molecule are C7-C6-C5-C4 = -179.65(13), C6-C5-C4-N3 =C4 - C5 - C6 - O6= 2.95 (19) -171.20(12),and $C6-C5-C4-O4 = 66.65 (15)^{\circ}$. Atom C4 is a stereogenic centre: in the arbitrarily chosen asymmetric unit it has Rconfiguration, but crystal symmetry generates a racemic mixture. Atoms F1, C6, C5 are displaced by -0.0244 (11), -0.0602 (15) and -0.0879 (15) Å, respectively, from the plane of the phenyl group. The N1-C2-O2, N3-C4-O4, N3-C4-C5, Cl1-C5-Cl2 and C4-C5-C6 bond angles in (I) are enlarged, while the O2-C2-N3 bond angle in (I) is narrowed compared to the corresponding values in (II): these small differences might arise due to steric reasons or 'packing effects'.

In (II) (Fig. 1), the corresponding dihedral angle between the C7–C12 and C2/N1/N3/O2 planes is $62.70 (9)^{\circ}$ and the equivalent backbone torsion angles are C7–C6–C5–C4 = 162.65 (14), C6–C5–C4–N3 = -62.41 (16), C4–C5–C6–O6 = -17.42 (19) and C6–C5–C4–O4 =

Figure 1

The asymmetric units of compounds (a) (I) and (b) (II) with 50% probability ellipsoids.

3. Supramolecular features

In the crystals of both compounds, $O-H\cdots O$ hydrogen bonds (Tables 1 and 2) generate inversion dimers featuring $R_2^2(12)$ loops. In both structures, $N-H\cdots O$ hydrogen bonds link the dimers into (100) layers, although they are not isostuctural. The hydrogen-bond network encloses $R_3^3(14)$ loops in (**I**) (Fig. 2*a*) and $R_2^2(8)$ and $R_3^3(8)$ loops in (**II**) (Fig. 2*b*).

Figure 2

The partial packing diagrams of compounds (a) (I) and (b) (II). Intermolecular $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds are shown as dashed lines. H atoms not involved in these interactions have been omitted for clarity.

research communications

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$) for (I).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots O4^{i}$	0.90 (3)	2.06 (3)	2.9488 (19)	172 (2)
$N1 - H1B \cdot \cdot \cdot O2^{ii}$	0.86(2)	2.48 (2)	3.297 (2)	158 (2)
N3-H3···O6 ⁱⁱⁱ	0.87(2)	2.06 (2)	2.9055 (18)	167 (2)
$O4-H4\cdots O2^{iv}$	0.78 (3)	1.91 (3)	2.6596 (16)	161 (3)

Symmetry codes: (i) x, y + 1, z; (ii) $x, -y + \frac{5}{2}, z - \frac{1}{2}$; (iii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (iv) -x + 2, -y + 2, -z + 1.

Table 2					
Hydrogen-bond	geometry	(Å,	°)	for	(II).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots O4^{i}$	0.82 (3)	2.27 (3)	3.0261 (19)	153 (2)
$N1 - H1B \cdots O4^{ii}$	0.84 (3)	2.14 (3)	2.9798 (18)	177 (2)
$N3-H3\cdots O2^{iii}$	0.81 (3)	2.19 (3)	2.9445 (18)	156 (2)
$O4-H4\cdots O2^{iv}$	0.78(3)	1.83 (3)	2.5979 (16)	168 (3)

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) -x, -y + 1, -z + 1.

Figure 3

Views of the three-dimensional Hirshfeld surfaces of compounds (a) (I) and (b) (II) plotted over d_{norm} .

Figure 4

The two-dimensional fingerprint plots for compound (I), showing (a) all interactions, and delineated into different contact types (b)–(i). The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.

 Table 3

 Comparison of the fingerprint percentages for compounds (I) and (II).

Contacts	(I)	(II)
$\overline{H \cdots O/O \cdots H}$	22.3	25.1
$H \cdots H$	20.9	31.7
$H \cdot \cdot \cdot Cl/Cl \cdot \cdot \cdot H$	15.6	21.1
$H \cdots C/C \cdots H$	10.3	9.5
$H \cdots F/F \cdots H$	8.3	-
$C \cdots Cl/Cl \cdots C$	6.4	2.8
$C \cdots F/F \cdots C$	3.1	-
$F \cdot \cdot \cdot Cl/Cl \cdot \cdot \cdot F$	2.8	-
Cl···Cl	2.4	1.9
$H{\cdots}N/N{\cdots}H$	2.4	1.3
$C \cdots C$	1.8	3.0
00	1.4	-
$F \cdot \cdot \cdot F$	0.7	-
$O \cdots C l / C l \cdots O$	0.7	0.2
$C \cdots O / O \cdots C$	0.6	1.9
$N \cdots O / O \cdots N$	0.3	0.1
$C \cdots N/N \cdots C$	0.1	-
$N \cdots Cl/Cl \cdots N$	0.1	1.3

4. Hirshfeld surface analysis

For visualizing the intermolecular interactions in the crystals of (I) and (II), Hirshfeld surface (HS) analyses were carried out using *Crystal Explorer 17.5* (Spackman *et al.*, 2021). In the HSs plotted over d_{norm} (Fig. 3a and b), the contact distances equal, shorter and longer with respect to the sum of van der Waals radii are shown by the white, red and blue colours, respectively. According to the two-dimensional fingerprint plots, $H \cdots O/O \cdots H$, $H \cdots H$ and $H \cdots Cl/Cl \cdots H$ contacts make the most important contributions to the HSs (Table 3, Figs. 4

Figure 5

The two-dimensional fingerprint plots for compound (II), showing (a) all interactions, and delineated into different contact types (b)–(i). The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.

 Table 4

 Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$C_{10}H_9Cl_2FN_2O_3$	$C_{11}H_{12}Cl_2N_2O_3$
$M_{\rm r}$	295.09	291.13
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
Temperature (K)	100	100
a, b, c (Å)	15.6136 (1), 7.2214 (1), 10.7929 (1)	12.62183 (13), 8.77585 (9), 11.59930 (11)
β (°)	104.622 (1)	94.8294 (9)
$V(\text{\AA}^3)$	1177.51 (2)	1280.26 (2)
Ζ	4	4
Radiation type	Cu <i>Kα</i>	Cu <i>Kα</i>
$\mu \text{ (mm}^{-1})$	5.14	4.60
Crystal size (mm)	$0.32 \times 0.15 \times 0.05$	$0.45 \times 0.35 \times 0.16$
Data collection		
Diffractometer	XtaLAB Synergy, Dualflex, HyPix	XtaLAB Synergy, Dualflex, HyPix
Absorption correction	Gaussian (CrysAlis PRO; Rigaku OD, 2024)	Gaussian (CrysAlis PRO; Rigaku OD, 2024)
T_{\min}, T_{\max}	0.408, 1.000	0.277, 1.000
No. of measured, independent and	16149, 2562, 2494	17344, 2808, 2738
observed $[I > 2\sigma(I)]$ reflections		
R _{int}	0.035	0.050
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.640	0.640
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.031, 0.082, 1.06	0.037, 0.104, 1.06
No. of reflections	2562	2808
No. of parameters	179	180
H-atom treatment	H atoms treated by a mixture of independent	H atoms treated by a mixture of independent
	and constrained refinement	and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.40, -0.31	0.51, -0.43

Computer programs: CrysAlis PRO (Rigaku OD, 2024), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

and 5), and they have significant differences due to the different numbers and values of the close contacts in (I) and (II).

5. Synthesis and crystallization

A solution of 2,2-dichloro-3-oxo-3-(p-tolyl)propanal (231 mg) for (I) or 2,2-dichloro-3-(4-fluorophenyl)-3-oxopropanal (235 mg) for (II) and urea (60 mg) in 15 ml of dry acetonitrile was stirred at room temperature for 6 h. The solvent was removed *in vacuo*, and the remaining white powder was recrystallized from acetone solution and the title compounds were isolated. The reaction scheme is shown in Fig. 6.

(I): yield 82%; m.p. 378–380 K. Analysis calculated (%) for $C_{11}H_{12}Cl_2N_2O_3$: C 45.38, H 4.15, N 9.62; found C 45.36, H 4.11, N 9.60. ¹H NMR (300MHz, DMSO-*d*₆): 2.41 (*s*, CH₃), 5.94 (*s*, 2H, NH₂), 6.01–6.08 (*d.d*, CH), 6.72 (*d*, OH), 6.85 (*d.* NH), 7.38 (*d.* 2H, Ar), 7.95 (*d*, 2H, Ar). ¹³C NMR (75 MHz, DMSO-*d*₆): 21.32, 88.03, 104.05, 128.74, 128.91, 133.77, 142.81, 162.72, 186.95.

Figure 6 The synthesis of the title compounds.

(II): yield 78%; m.p. 397–398 K. Analysis calculated (%) for $C_{10}H_9Cl_2FN_2O_3$: C 40.70, H 3.07, N 9.49; found C 40.65, H 3.02, N 9.45. ¹H NMR (300MHz, DMSO- d_6): 5.96 (*s*, 2H, NH₂), 6.03–6.08 (*d.d.*, CH), 6.78 (*d.*, OH), 6.93 (*d.*, NH), 7.46 (*t*, 2H, Ar), 8.12 (*d.d.*, 2H, Ar). ¹³C NMR (75 MHz, DMSO- d_6): 88.10, 104.12, 115.46, 130.49, 132.37, 162.74, 167.35, 186.92.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. The OH and NH₂ hydrogen atoms were located in difference-Fourier maps, and refined isotropically. The C-bond hydrogen-atom positions were placed geometrically (C-H = 0.95–1.00 Å) and refined using a riding model by applying the constraint $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C)$ or $1.5U_{eq}(\rm methyl C)$.

Acknowledgements

The crystal structure determinations were performed in the Department of Structural Studies of Zelinsky Institute of Organic Chemistry, Moscow. This work was supported by the Western Caspian University and Azerbaijan Medical University in Azerbaijan. The authors' contributions are as follows. Conceptualization, FIG, TH and ANB; synthesis, KAA, EVS and LMG; X-ray analysis, AIS; Hirshfeld surface analyses, crystal voids, interaction energies and energy frameworks, TH; writing (review and editing of the manuscript) FIG and TH; funding acquisition, KIH; supervision, FIG, TH and ANB.

References

- Aliyeva, V. A., Gurbanov, A. V., Huseynov, F. E., Hajiyeva, S. R., Conceiçao, N. R., Nunes, A. V. M., Pombeiro, A. J. L. & Mahmudov, K. T. (2024). *Polyhedron*, 255, 116955.
- Aliyev, E. H., Bahmanova, F. N., Hamidov, S. Z. & Chyragov, F. M. (2020). Izvest. Vuzov-Prikladnaya Khim. Biotek. 10, 107–113.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Guseinov, F. I., Ovsyannikov, V. O., Shuvalova, E. V., Kustov, L. M., Kobrakov, K. I., Samigullina, A. I. & Mahmudov, K. T. (2024). New J. Chem. 48, 12869–12872.
- Guseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). *Chem. Heterocycl. Compd.* 42, 943–947.
- Hajiyeva, S. R., Huseynov, F. E., Atioğlu, Z., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 110–116.
- Huseynov, F. E., Mahmoudi, G., Hajiyeva, S. R., Shamilov, N. T., Zubkov, F. I., Nikitina, E. V., Prisyazhnyuk, E. D. & Kopylovich, M. N. (2021). *Polyhedron*, **209**, 115453.

- Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719.
- Mahmudov, K. T., Kerimli, F. Sh., Mammadov, E. S., Gurbanov, A. V., Akhmedova, N. F. & Mammadov, S. E. (2022). *Pet. Chem.* 62, 933– 941.
- Mamedov, S. E., Akhmedov, E. I., Kerimli, F. S. & Makhmudova, M. I. (2006). *Russ. J. Appl. Chem.* **79**, 1723–1725.
- Naghiyev, F. N., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Bhattarai, A., Kerimli, F. S. & Mamedov, İ. G. (2023). *Acta Cryst.* E**79**, 494–498.
- Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.

Acta Cryst. (2025). E81, 538-542 [https://doi.org/10.1107/S2056989025004359]

Syntheses and structures of 1-[2,2-dichloro-1-hydroxy-3-(4-methylphenyl)-3oxopropyl]urea and 1-[2,2-dichloro-3-(4-fluorophenyl)-1-hydroxy-3-oxopropyl]urea

Firudin I. Guseinov, Tuncer Hökelek, Ksenia A. Afanaseva, Elena V. Shuvalova, Lev M. Glukhov, Aida I. Samigullina and Alebel N. Belay

Computing details

1-[2,2-Dichloro-1-hydroxy-3-(4-methylphenyl)-3-oxopropyl]urea (I)

Crystal data

C₁₀H₉Cl₂FN₂O₃ $M_r = 295.09$ Monoclinic, $P2_1/c$ a = 15.6136 (1) Å b = 7.2214 (1) Å c = 10.7929 (1) Å $\beta = 104.622$ (1)° V = 1177.51 (2) Å³ Z = 4

Data collection

XtaLAB Synergy, Dualflex, HyPix
diffractometer
Radiation source: micro-focus sealed X-ray
tube, PhotonJet (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.0000 pixels mm ⁻¹
ω scans
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2024)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.082$ S = 1.062562 reflections 179 parameters 0 restraints Primary atom site location: dual F(000) = 600 $D_x = 1.665 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 10775 reflections $\theta = 2.9-80.5^{\circ}$ $\mu = 5.14 \text{ mm}^{-1}$ T = 100 KPrism, colorless $0.32 \times 0.15 \times 0.05 \text{ mm}$

 $T_{\min} = 0.408, T_{\max} = 1.000$ 16149 measured reflections 2562 independent reflections 2494 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 80.7^{\circ}, \theta_{min} = 2.9^{\circ}$ $h = -19 \rightarrow 19$ $k = -9 \rightarrow 9$ $l = -10 \rightarrow 13$

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0418P)^2 + 0.7639P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.40$ e Å⁻³ $\Delta\rho_{min} = -0.31$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.75812 (2)	0.64065 (5)	0.20981 (3)	0.02166 (11)
C12	0.71108 (2)	0.90786 (5)	0.38664 (3)	0.02237 (11)
F1	0.45932 (7)	0.18867 (16)	0.44559 (10)	0.0321 (2)
O2	0.91429 (7)	1.16468 (16)	0.49959 (11)	0.0231 (2)
O4	0.93636 (8)	0.66517 (16)	0.38219 (11)	0.0216 (2)
H4	0.9848 (18)	0.692 (4)	0.417 (2)	0.038 (7)*
O6	0.83823 (7)	0.53628 (16)	0.55147 (10)	0.0220 (2)
N1	0.91321 (10)	1.2742 (2)	0.30188 (16)	0.0279 (3)
H1A	0.9206 (17)	1.389 (4)	0.334 (2)	0.040 (7)*
H1B	0.9071 (15)	1.259 (4)	0.221 (2)	0.032 (6)*
N3	0.88523 (9)	0.96745 (19)	0.32966 (13)	0.0222 (3)
Н3	0.8796 (15)	0.958 (4)	0.248 (2)	0.035 (6)*
C2	0.90498 (10)	1.1385 (2)	0.38332 (16)	0.0204 (3)
C4	0.87990 (10)	0.8058 (2)	0.40405 (14)	0.0195 (3)
H4A	0.896975	0.839528	0.496915	0.023*
C5	0.78496 (10)	0.7248 (2)	0.37028 (13)	0.0185 (3)
C6	0.77450 (10)	0.5688 (2)	0.46381 (14)	0.0178 (3)
C7	0.68898 (10)	0.4691 (2)	0.45000 (14)	0.0187 (3)
C8	0.61114 (10)	0.5077 (2)	0.35608 (15)	0.0220 (3)
H8	0.611405	0.600113	0.293538	0.026*
C9	0.53355 (11)	0.4121 (2)	0.35358 (16)	0.0239 (3)
H9	0.480694	0.437166	0.289650	0.029*
C10	0.53522 (11)	0.2797 (2)	0.44634 (16)	0.0238 (3)
C11	0.61052 (11)	0.2368 (2)	0.54016 (16)	0.0261 (3)
H11	0.609462	0.144287	0.602320	0.031*
C12	0.68768 (11)	0.3321 (2)	0.54142 (15)	0.0228 (3)
H12	0.740343	0.304306	0.605008	0.027*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.02614 (19)	0.0226 (2)	0.01572 (18)	-0.00771 (14)	0.00426 (13)	-0.00293 (12)
Cl2	0.02389 (19)	0.01773 (19)	0.0245 (2)	0.00268 (13)	0.00429 (14)	0.00032 (13)
F1	0.0255 (5)	0.0325 (6)	0.0395 (6)	-0.0097 (4)	0.0100 (4)	0.0007 (5)
02	0.0221 (5)	0.0199 (6)	0.0272 (6)	-0.0036 (4)	0.0059 (4)	-0.0061 (4)
04	0.0204 (5)	0.0172 (5)	0.0271 (6)	-0.0031 (4)	0.0057 (4)	-0.0057 (4)
06	0.0226 (5)	0.0229 (6)	0.0188 (5)	0.0006 (4)	0.0023 (4)	0.0011 (4)
N1	0.0359 (8)	0.0167 (7)	0.0321 (8)	-0.0040 (6)	0.0103 (6)	-0.0020 (6)
N3	0.0285 (7)	0.0174 (7)	0.0200 (6)	-0.0056 (5)	0.0046 (5)	-0.0023 (5)

C2	0.0147 (6)	0.0177 (7)	0.0281 (8)	-0.0015 (5)	0.0041 (6)	-0.0038 (6)
C4	0.0219 (7)	0.0151 (7)	0.0210(7)	-0.0024 (6)	0.0043 (5)	-0.0024 (6)
C5	0.0214 (7)	0.0158 (7)	0.0171 (6)	-0.0011 (6)	0.0029 (5)	-0.0017 (5)
C6	0.0215 (7)	0.0160 (7)	0.0164 (7)	0.0001 (5)	0.0057 (5)	-0.0024 (5)
C7	0.0218 (7)	0.0165 (7)	0.0186 (7)	-0.0008 (6)	0.0063 (5)	-0.0019 (5)
C8	0.0239 (7)	0.0211 (7)	0.0204 (7)	-0.0011 (6)	0.0045 (6)	0.0014 (6)
C9	0.0219 (7)	0.0254 (8)	0.0237 (7)	-0.0007 (6)	0.0042 (6)	-0.0014 (6)
C10	0.0236 (7)	0.0207 (8)	0.0285 (8)	-0.0058 (6)	0.0093 (6)	-0.0045 (6)
C11	0.0297 (8)	0.0227 (8)	0.0269 (8)	-0.0032 (7)	0.0088 (6)	0.0052 (6)
C12	0.0233 (7)	0.0210 (8)	0.0231 (7)	-0.0001 (6)	0.0040 (6)	0.0028 (6)

Geometric parameters (Å, °)

Cl1—C5	1.7826 (14)	C4—C5	1.549 (2)
Cl2—C5	1.7923 (16)	C5—C6	1.549 (2)
F1—C10	1.3534 (18)	C6—C7	1.491 (2)
O2—C2	1.241 (2)	C7—C8	1.400 (2)
O4—H4	0.78 (3)	C7—C12	1.401 (2)
O4—C4	1.4032 (19)	C8—H8	0.9500
O6—C6	1.2103 (19)	C8—C9	1.389 (2)
N1—H1A	0.90 (3)	С9—Н9	0.9500
N1—H1B	0.86 (2)	C9—C10	1.380 (2)
N1—C2	1.344 (2)	C10—C11	1.379 (2)
N3—H3	0.87 (2)	C11—H11	0.9500
N3—C2	1.366 (2)	C11—C12	1.385 (2)
N3—C4	1.431 (2)	C12—H12	0.9500
C4—H4A	1.0000		
C4—O4—H4	108.1 (19)	O6—C6—C5	116.71 (13)
H1A—N1—H1B	119 (2)	O6—C6—C7	121.55 (14)
C2—N1—H1A	116.4 (17)	C7—C6—C5	121.69 (13)
C2—N1—H1B	124.6 (17)	C8—C7—C6	124.60 (14)
C2—N3—H3	117.2 (17)	C8—C7—C12	119.10 (14)
C2—N3—C4	122.60 (14)	C12—C7—C6	116.26 (14)
C4—N3—H3	120.1 (17)	С7—С8—Н8	119.7
O2—C2—N1	122.99 (15)	C9—C8—C7	120.56 (15)
O2—C2—N3	121.50 (15)	С9—С8—Н8	119.7
N1	115.50 (15)	С8—С9—Н9	120.9
O4—C4—N3	111.59 (13)	C10—C9—C8	118.28 (15)
O4—C4—H4A	109.0	С10—С9—Н9	120.9
O4—C4—C5	106.95 (12)	F1-C10-C9	118.43 (15)
N3—C4—H4A	109.0	F1-C10-C11	118.56 (15)
N3—C4—C5	111.33 (13)	C11—C10—C9	123.01 (15)
C5—C4—H4A	109.0	C10—C11—H11	120.9
Cl1—C5—Cl2	110.35 (8)	C10-C11-C12	118.29 (15)
C4—C5—Cl1	109.49 (10)	C12—C11—H11	120.9
C4—C5—Cl2	107.43 (10)	C7—C12—H12	119.6
C6—C5—Cl1	110.36 (10)	C11—C12—C7	120.75 (15)

C6—C5—C12 C6—C5—C4	107.22 (10) 111.93 (12)	C11—C12—H12	119.6
C11-C5-C6-O6 $C11-C5-C6-C7$ $C12-C5-C6-O6$ $C12-C5-C6-C7$ $F1-C10-C11-C12$ $O4-C4-C5-C11$ $O4-C4-C5-C12$ $O4-C4-C5-C6$ $O6-C6-C7-C12$ $N3-C4-C5-C11$ $N3-C4-C5-C12$ $N3-C4-C5-C12$ $N3-C4-C5-C12$ $N3-C4-C5-C6$ $C2-N3-C4-O4$ $C2-N3-C4-C5$	$125.15 (13) \\ -57.44 (16) \\ -114.62 (13) \\ 62.78 (15) \\ -179.17 (15) \\ -56.04 (14) \\ -175.90 (10) \\ 66.65 (15) \\ 175.69 (15) \\ -2.1 (2) \\ 66.10 (14) \\ -53.75 (14) \\ -171.20 (12) \\ -124.46 (15) \\ 116.12 (15) \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4.3 (2) 175.81 (14) 2.95 (19) -179.65 (13) -1.6 (2) -179.34 (13) -177.53 (15) 177.33 (15) 0.5 (2) -0.5 (2) 178.80 (15) -0.8 (3) 0.4 (3) 0.3 (3) 0.2 (2)
	× /		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H····A	$D \cdots A$	D—H···A
N1—H1A····O4 ⁱ	0.90 (3)	2.06 (3)	2.9488 (19)	172 (2)
N1—H1 <i>B</i> ····O2 ⁱⁱ	0.86 (2)	2.48 (2)	3.297 (2)	158 (2)
N3—H3…O6 ⁱⁱⁱ	0.87 (2)	2.06 (2)	2.9055 (18)	167 (2)
O4—H4···O2 ^{iv}	0.78 (3)	1.91 (3)	2.6596 (16)	161 (3)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*, -*y*+5/2, *z*-1/2; (iii) *x*, -*y*+3/2, *z*-1/2; (iv) -*x*+2, -*y*+2, -*z*+1.

1-[2,2-Dichloro-3-(4-fluorophenyl)-1-hydroxy-3-oxopropyl]urea (II)

Crystal data

$C_{11}H_{12}Cl_2N_2O_3$	F(000) = 600
$M_r = 291.13$	$D_{\rm x} = 1.510 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Cu K α radiation, $\lambda = 1.54184$ Å
a = 12.62183 (13) Å	Cell parameters from 11708 reflections
b = 8.77585(9) Å	$\theta = 3.5 - 80.3^{\circ}$
c = 11.59930 (11) Å	$\mu = 4.60 \text{ mm}^{-1}$
$\beta = 94.8294 \ (9)^{\circ}$	T = 100 K
V = 1280.26 (2) Å ³	Prism, colourless
Z=4	$0.45 \times 0.35 \times 0.16 \text{ mm}$
Data collection	
XtaLAB Synergy, Dualflex, HyPix	$T_{\min} = 0.277, T_{\max} = 1.000$
diffractometer	17344 measured reflections
Radiation source: micro-focus sealed X-ray	2808 independent reflections
tube, PhotonJet (Cu) X-ray Source	2738 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.050$
Detector resolution: 10.0000 pixels mm ⁻¹	$\theta_{\rm max} = 80.7^{\circ}, \theta_{\rm min} = 3.5^{\circ}$
ω scans	$h = -13 \rightarrow 16$
Absorption correction: gaussian	$k = -11 \rightarrow 11$
(CrysAlisPro; Rigaku OD, 2024)	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $w P(F^2) = 0.104$	Secondary atom site location: difference Fourier map Hydrogen site location: mixed
$WR(P^2) = 0.104$ S = 1.06 2808 reflections 180 parameters	and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0655P)^2 + 0.6302P]$ where $P = (F_o^2 + 2F_c^2)/3$
0 restraints Primary atom site location: dual	$(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.51 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.43 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C11	0.22629 (3)	0.88241 (4)	0.40687 (3)	0.02066 (13)
Cl2	0.24819 (3)	0.70279 (5)	0.61915 (3)	0.02309 (13)
O2	0.02392 (10)	0.37516 (13)	0.31405 (10)	0.0221 (3)
O4	0.03286 (9)	0.72384 (13)	0.48926 (10)	0.0192 (2)
O6	0.27591 (10)	0.45882 (14)	0.39418 (11)	0.0259 (3)
N1	0.03826 (12)	0.49974 (17)	0.14562 (12)	0.0212 (3)
N3	0.08327 (11)	0.62287 (15)	0.31617 (12)	0.0180 (3)
C2	0.04683 (12)	0.49344 (18)	0.26185 (13)	0.0181 (3)
C4	0.10682 (12)	0.63031 (17)	0.43899 (13)	0.0176 (3)
H4A	0.103457	0.525355	0.472057	0.021*
C5	0.22071 (13)	0.69474 (17)	0.46569 (13)	0.0185 (3)
C6	0.30485 (13)	0.58690 (19)	0.41747 (13)	0.0204 (3)
C7	0.41441 (13)	0.6404 (2)	0.40165 (14)	0.0225 (3)
C8	0.46819 (15)	0.5634 (2)	0.31877 (16)	0.0279 (4)
H8	0.433483	0.484415	0.274165	0.033*
C9	0.57245 (15)	0.6024 (2)	0.30150 (17)	0.0321 (4)
Н9	0.607516	0.551826	0.243057	0.039*
C10	0.62617 (15)	0.7138 (2)	0.36820 (18)	0.0325 (4)
C11	0.57243 (15)	0.7900 (2)	0.45141 (18)	0.0326 (4)
H11	0.608274	0.866470	0.497716	0.039*
C12	0.46717 (15)	0.7555 (2)	0.46742 (16)	0.0275 (4)
H12	0.431028	0.810101	0.523000	0.033*
C13	0.74130 (16)	0.7514 (3)	0.3535 (2)	0.0440 (5)
H13A	0.762750	0.702446	0.283178	0.066*
H13B	0.786149	0.713990	0.420656	0.066*
H13C	0.749543	0.862022	0.347188	0.066*
H1A	0.059 (2)	0.574 (3)	0.110 (2)	0.030 (6)*
H1B	0.0183 (19)	0.420 (3)	0.110 (2)	0.028 (6)*

H3	0.0725 (18)	0.701 (3)	0.280 (2)	0.023 (5)*	
H4	0.014 (2)	0.683 (3)	0.543 (3)	0.034 (6)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0239 (2)	0.0173 (2)	0.0211 (2)	-0.00221 (12)	0.00407 (14)	0.00018 (12)
Cl2	0.0263 (2)	0.0291 (2)	0.01385 (19)	0.00153 (14)	0.00155 (14)	-0.00215 (13)
O2	0.0313 (6)	0.0194 (6)	0.0164 (5)	-0.0060(4)	0.0065 (4)	-0.0001 (4)
O4	0.0229 (5)	0.0207 (5)	0.0150 (5)	0.0016 (4)	0.0073 (4)	0.0021 (4)
O6	0.0270 (6)	0.0222 (6)	0.0290 (6)	0.0015 (5)	0.0057 (5)	-0.0049 (5)
N1	0.0304 (7)	0.0189 (6)	0.0144 (6)	-0.0061 (5)	0.0037 (5)	-0.0009(5)
N3	0.0253 (6)	0.0152 (6)	0.0139 (6)	-0.0010 (5)	0.0032 (5)	0.0016 (5)
C2	0.0199 (7)	0.0179 (7)	0.0168 (7)	0.0003 (5)	0.0043 (5)	0.0001 (5)
C4	0.0217 (7)	0.0176 (7)	0.0139 (7)	-0.0012 (5)	0.0042 (5)	0.0008 (5)
C5	0.0225 (7)	0.0182 (7)	0.0150 (7)	-0.0007 (6)	0.0035 (5)	-0.0005 (5)
C6	0.0235 (7)	0.0226 (7)	0.0156 (7)	0.0027 (6)	0.0039 (5)	-0.0006 (6)
C7	0.0215 (7)	0.0258 (8)	0.0203 (7)	0.0026 (6)	0.0030 (6)	0.0021 (6)
C8	0.0277 (8)	0.0307 (9)	0.0258 (8)	0.0044 (7)	0.0061 (6)	-0.0006 (7)
C9	0.0279 (9)	0.0390 (10)	0.0308 (9)	0.0081 (8)	0.0105 (7)	0.0065 (7)
C10	0.0231 (8)	0.0377 (10)	0.0372 (10)	0.0018 (7)	0.0063 (7)	0.0162 (8)
C11	0.0269 (9)	0.0346 (10)	0.0358 (10)	-0.0041 (7)	0.0000 (7)	0.0040 (8)
C12	0.0263 (8)	0.0305 (9)	0.0260 (8)	-0.0010 (7)	0.0039 (6)	-0.0010 (7)
C13	0.0258 (10)	0.0529 (14)	0.0546 (13)	-0.0018 (9)	0.0104 (9)	0.0210 (11)

Geometric parameters (Å, °)

Cl1—C5	1.7864 (16)	C6—C7	1.486 (2)
Cl2—C5	1.7861 (16)	C7—C8	1.397 (2)
O2—C2	1.248 (2)	C7—C12	1.400 (3)
O4—C4	1.4060 (18)	C8—H8	0.9500
O4—H4	0.78 (3)	C8—C9	1.390 (3)
O6—C6	1.205 (2)	С9—Н9	0.9500
N1—C2	1.345 (2)	C9—C10	1.388 (3)
N1—H1A	0.82 (3)	C10—C11	1.396 (3)
N1—H1B	0.84 (3)	C10—C13	1.514 (2)
N3—C2	1.360 (2)	C11—H11	0.9500
N3—C4	1.432 (2)	C11—C12	1.390 (3)
N3—H3	0.81 (3)	C12—H12	0.9500
C4—H4A	1.0000	C13—H13A	0.9800
C4—C5	1.551 (2)	C13—H13B	0.9800
C5—C6	1.561 (2)	C13—H13C	0.9800
C4—O4—H4	109 (2)	C8—C7—C6	116.30 (16)
C2—N1—H1A	121.9 (18)	C8—C7—C12	119.18 (16)
C2—N1—H1B	117.0 (16)	C12—C7—C6	124.44 (15)
H1A—N1—H1B	121 (2)	С7—С8—Н8	120.0
C2—N3—C4	122.18 (13)	C9—C8—C7	120.07 (18)

C2—N3—H3	115.9 (17)	С9—С8—Н8	120.0
C4—N3—H3	118.9 (17)	С8—С9—Н9	119.4
O2—C2—N1	121.23 (15)	C10—C9—C8	121.10 (18)
O2—C2—N3	123.58 (14)	С10—С9—Н9	119.4
N1—C2—N3	115.19 (14)	C9—C10—C11	118.69 (17)
O4—C4—N3	110.47 (13)	C9—C10—C13	121.3 (2)
O4—C4—H4A	109.1	C11—C10—C13	120.0 (2)
O4—C4—C5	109.93 (12)	C10-C11-H11	119.6
N3—C4—H4A	109.1	C12—C11—C10	120.89 (19)
N3—C4—C5	109.05 (12)	C12—C11—H11	119.6
C5—C4—H4A	109.1	C7—C12—H12	120.0
Cl2—C5—Cl1	109.48 (8)	C11—C12—C7	120.02 (17)
C4—C5—C11	108.99 (11)	C11—C12—H12	120.0
C4—C5—Cl2	108.20 (10)	C10-C13-H13A	109.5
C4—C5—C6	110.76 (13)	С10—С13—Н13В	109.5
C6—C5—C11	111.85 (11)	C10—C13—H13C	109.5
C6—C5—Cl2	107.47 (11)	H13A—C13—H13B	109.5
O6—C6—C5	116.31 (14)	H13A—C13—H13C	109.5
O6—C6—C7	122.32 (15)	H13B—C13—H13C	109.5
C7—C6—C5	121.38 (14)		
Cl1—C5—C6—O6	-139.23 (13)	C4—N3—C2—N1	-173.78 (14)
Cl1—C5—C6—C7	40.85 (18)	C4—C5—C6—O6	-17.42 (19)
Cl2—C5—C6—O6	100.57 (15)	C4—C5—C6—C7	162.65 (14)
Cl2—C5—C6—C7	-79.35 (16)	C5—C6—C7—C8	-155.04 (15)
O4—C4—C5—C11	-60.19 (14)	C5—C6—C7—C12	28.2 (2)
O4—C4—C5—Cl2	58.79 (14)	C6—C7—C8—C9	-177.58 (17)
O4—C4—C5—C6	176.34 (12)	C6—C7—C12—C11	175.43 (17)
O6—C6—C7—C8	25.0 (2)	C7—C8—C9—C10	2.2 (3)
O6—C6—C7—C12	-151.71 (18)	C8—C7—C12—C11	-1.2 (3)
N3—C4—C5—C11	61.06 (14)	C8—C9—C10—C11	-1.9 (3)
N3—C4—C5—Cl2	-179.97 (10)	C8—C9—C10—C13	177.11 (18)
N3—C4—C5—C6	-62.41 (16)	C9—C10—C11—C12	-0.1 (3)
C2—N3—C4—O4	-110.90 (16)	C10—C11—C12—C7	1.6 (3)
C2—N3—C4—C5	128.18 (15)	C12—C7—C8—C9	-0.6 (3)
C4—N3—C2—O2	5.2 (2)	C13—C10—C11—C12	-179.03 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1A····O4 ⁱ	0.82 (3)	2.27 (3)	3.0261 (19)	153 (2)
N1—H1 <i>B</i> ····O4 ⁱⁱ	0.84 (3)	2.14 (3)	2.9798 (18)	177 (2)
N3—H3···O2 ⁱⁱⁱ	0.81 (3)	2.19 (3)	2.9445 (18)	156 (2)
O4—H4…O2 ^{iv}	0.78 (3)	1.83 (3)	2.5979 (16)	168 (3)

Symmetry codes: (i) *x*, -*y*+3/2, *z*-1/2; (ii) -*x*, *y*-1/2, -*z*+1/2; (iii) -*x*, *y*+1/2, -*z*+1/2; (iv) -*x*, -*y*+1, -*z*+1.