Synthesis and crystal structure of 3-(2-{3-[2-(2oxooxazolidin-3-yl)ethoxy]quinoxalin-2-yloxy}ethyl)oxazolidin-2-one

Fatima Ezzahra Aboutofil,^a Nour El Hoda Mustaphi,^a* Olivier Blacque,^b Tuncer Hökelek,^c Ahmed Mazzah,^d Lhoussaine El Ghayati^a and Nada Kheira Sebbar^{e,f}

^aLaboratory of Heterocyclic Organic Chemistry, Medicines Science Research, Center, Pharmacochemistry Competence Center, Mohammed V University in Rabat, Faculté des Sciences, Av. Ibn Battouta, BP 1014, Rabat, Morocco, ^bUniversity of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland, ^cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, ^dScience and Technology of Lille USR 3290, Villeneuve d'ascq cedex, France, ^eLaboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco, and ^fLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta BP 1014 RP., Rabat, Morocco. *Correspondence e-mail: nourelhoda.mustaphi@fsr.um5.ac.ma

In the title compound, $C_{18}H_{20}N_4O_6$, one of the oxazolidine rings adopts a twisted conformation and the other is a shallow envelope. In the crystal, weak $C-H\cdots O$ hydrogen bonds and $\pi-\pi$ stacking interactions help to consolidate a three-dimensional architecture. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from $H\cdots H$ (48.4%) and $H\cdots O/O\cdots H$ (29.1%) contacts.

1. Chemical context

Quinoxaline and its derivatives are widely used in various fields, including medicine (Kaushal *et al.*, 2019; Montana *et al.*, 2019), pharmacology, molecular biology, neuroscience, immunology, microbiology, agriculture, chemistry, toxicology, materials science, and biochemistry (Balderas-Renteria *et al.*, 2012; Pereira *et al.*, 2015; Zeb *et al.*, 2014; Tangherlini *et al.*, 2019; Vieira *et al.*, 2014; Zheng *et al.*, 2002).

The quinoxaline molecule has been utilized as a precursor for synthesizing bioactive derivatives, with several research teams emphasizing its potential applications in the pharmaceutical and therapeutic fields (Raoa *et al.*, 2010; Yousra *et al.*, 2023). Different synthesis methodologies have been detailed in the literature, reflecting extensive research efforts to elucidate these compounds' properties and applications (*e.g.*, Gu *et al.*, 2017). Building on our previous research into the synthesis of quinoxaline derivatives (Yousra *et al.*, 2023), we have synthesized the title compound, $C_{18}H_{20}N_4O_6$ (I), and we now describe its synthesis, crystal structure and Hirshfeld surface.

OPEN OPEN ACCESS

Received 11 April 2025 Accepted 25 April 2025

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; hydrogen bond; π -stacking; quinoxaline.

CCDC reference: 2447382

Supporting information: this article has supporting information at journals.iucr.org/e

The molecular structure of the title molecule with 50% probability ellipsoids.

2. Structural commentary

Compound (I) contains an almost planar quinoxaline fused ring and two oxazolidine rings (Fig. 1), where the oxazolidine (C, N3/O3/C13-C15) and (D, N4/O5/C16-C18) rings are in half-chair [with a puckering parameter value of $\varphi = 305.0 (4)^{\circ}$] and shallow envelope conformations, respectively. In ring D, atom N4 is at the flap position and is 0.0849 (11) Å away from the best least-squares plane of the other four atoms. The almost planar A (N1/N2/C3-C6) and B (C5-C10) rings are oriented at a dihedral angle of 1.46 (4)°. Atoms O1, O2 and C11 are -0.094 (1), 0.059 (1) and 0.070 (1) Å, respectively, away from the best least-squares plane of ring A. The side chains both have *anti-gauche* conformations as indicated by

Figure 2

A partial packing diagram viewed down the *a*-axis direction. Intermolecular $C-H\cdots O$ hydrogen bonds are shown as dashed lines. H atoms not involved in these interactions are omitted for clarity.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \text{C14}{-}\text{H14}A{\cdots}\text{O6}^{\text{i}} \\ \text{C10}{-}\text{H10}{\cdots}\text{O5}^{\text{ii}} \end{array}$	0.99 0.95	2.37 2.56	3.189 (2) 3.4935 (18)	140 168
Symmetry codes: (i) x –	$\frac{1}{2}, -y + \frac{1}{2}, z +$	$\frac{1}{2}$; (ii) $x - \frac{1}{2}$, -	$-y + \frac{1}{2}, z - \frac{1}{2}.$	

the following torsion angles: C3-O1-C2-C1 = -162.00 (10), O1-C2-C1-N3 = -55.36 (14), C4-O2-C11-C12 = -174.35 (9) and $O2-C11-C12-N4 = -57.76 (13)^{\circ}$. The dihedral angles between the quinoxaline ring and the pendant oxazolidine *C* and *D* rings (all atoms) are 85.72 (6) and 56.91 (7)^{\circ}, respectively; the equivalent angle between the oxazolidine rings is 89.98 (9)^{\circ}.

3. Supramolecular features

In the crystal structure of (I), the molecules are linked by $C-H\cdots O$ hydrogen bonds (Table 1 and Fig. 2). Aromatic $\pi-\pi$ stacking interactions between the quinoxaline *A* and *B* rings of adjacent molecules with a shortest intercentroid distance of 3.5155 (7) Å may help to consolidate the packing. No $C-H\cdots\pi$ interactions could be identified.

4. Hirshfeld surface analysis

A Hirshfeld surface (HS) analysis was carried out using *Crystal Explorer 17.5* (Spackman *et al.*, 2021) to investigate the intermolecular interactions in the crystal of (I). The HS is shown in Fig. 3, where the bright-red spots correspond to the respective donors and/or acceptors. According to the two-dimensional fingerprint plots (McKinnon *et al.*, 2007), the intermolecular $H \cdot \cdot H$ and $H \cdot \cdot O/O \cdot \cdot H$ contacts make the most important contributions to the HS of 48.4% and 29.1%, respectively (Fig. 4). All other contact types contribute 5% or less to the surface.

research communications

Figure 4

The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) $H \cdots H$, (c) $H \cdots O/O \cdots H$, (d) $C \cdots C$, (e) $H \cdots C/C \cdots H$, (f) $H \cdots N/N \cdots H$, (g) $C \cdots N/N \cdots C$, (h) $C \cdots O/O \cdots C$, (i) $N \cdots N$, (j) $N \cdots O/O \cdots N$ and (k) $O \cdots O$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD) (Groom *et al.*, 2016; updated to January 2024) using the search fragment (**II**) yielded 25 hits of which those most similar to the title molecule have the formula (**III**) with R = Me and R' = CH₂CO₂H (CSD refcode DEZJAW; Missioui *et al.*, 2018) or benzyl (DUSHUV; Ramli *et al.*, 2010) with R = CF₃ and R' = *i*-Bu (DUBPUO; Wei *et al.*, 2019), with R = Ph and R' = CH₂(cyclo-CHCH₂O) and R' = benzyl (PUGGII; Benzeid *et al.*, 2009). As expected, in all these hits, the dihydroquinoxaline ring system is essentially planar with the dihedral angle between the constituent rings being less than 1° or having the nitrogen atom bearing the exocyclic substituent less than 0.03 Å from the mean plane of the remaining nine atoms.

Table 2	
---------	--

Experimental of	details.
-----------------	----------

Crystal data	
Chemical formula	$C_{18}H_{20}N_4O_6$
Mr	388.38
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	160
a, b, c (Å)	6.6576 (1), 17.1463 (2), 15.8105 (2)
β (°)	98.935 (1)
$V(Å^3)$	1782.92 (4)
Ζ	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	0.93
Crystal size (mm)	$0.25 \times 0.21 \times 0.10$
Data collection	
Diffractometer	XtaLAB Synergy, Dualflex, HyPix
Absorption correction	Analytical (<i>CrysAlis PRO</i> ; Rigaku OD, 2024)
T_{\min}, T_{\max}	0.845, 0.932
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	23056, 3781, 3577
R _{int}	0.027
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.633
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.099, 1.06
No. of reflections	3781
No. of parameters	254
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.35, -0.29

Computer programs: CrysAlis PRO (Rigaku OD, 2024), SHELXT (Sheldrick, 2015a), SHELXL2019/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

6. Synthesis and crystallization

A solution of quinoxaline-2,3-dione (0.29 g, 1.00 mmol) in dimethylformamide (15 ml) was prepared. To this solution, tetra-*n*-butylammonium bromide (0.1 mmol), 2.2 equivalents of bis(2-chloroethyl)amine hydrochloride, and 2.00 equivalents of potassium carbonate were added. The mixture was stirred at 353 K for 6 h. After stirring, the salts were removed by filtration, and the solution was evaporated under reduced pressure. The resulting residue was dissolved in dichloromethane. The remaining salts were extracted with distilled water. The mixture obtained was then chromatographed on a silica gel column using an eluent of ethyl acetate and hexane in a 4:1 ratio. The solid isolate was recrystallized from an ethanol solution, resulting in crystals of (**I**) with a yield of 56%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound hydrogen-atom positions were calculated geometrically at distances of 0.95 Å (for aromatic CH) and 0.99 Å (for CH₂) and they were refined using a riding model by applying the constraint $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C)$.

Acknowledgements

TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

- Balderas-Renteria, I., Gonzalez-Barranco, P., Garcia, A., Banik, B. K. & Rivera, G. (2012). *Curr. Med. Chem.* **19**, 4377–4398.
- Benzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, 02685.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gu, W., Wang, S., Jin, X., Zhang, Y., Hua, D., Miao, T., Tao, X. & Wang, S. (2017). *Molecules*, 22, 1154.
- Kaushal, T., Srivastava, G., Sharma, A. & Singh Negi, A. (2019). Bioorg. Med. Chem. 27, 16–35.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Missioui, M., El Fal, M., Taoufik, J., Essassi, E. M., Mague, J. T. & Ramli, Y. (2018). *IUCrData* **3**, x180882.
- Montana, M., Mathias, F., Terme, T. & Vanelle, P. (2019). Eur. J. Med. Chem. 163, 136–147.
- Pereira, J. A., Pessoa, A. M., Cordeiro, M. N. D. S., Fernandes, R., Prudêncio, C., Noronha, J. P. & Vieira, M. (2015). *Eur. J. Med. Chem.* 97, 664–672.
- Ramli, Y., Moussaif, A., Zouihri, H., Lazar, S. & Essassi, E. M. (2010). Acta Cryst. E66, o1922.

- Raoa, G. K., Kotnal, R. B. & Sanjay Paib, P. N. (2010). J. Chem. Pharm. Res. 2, 368–373.
- Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Tangherlini, G., Kalinin, D. V., Schepmann, D., Che, T., Mykicki, N., Ständer, S., Loser, K. & Wünsch, B. (2019). *J. Med. Chem.* 62, 893– 907.
- Vieira, M., Pinheiro, C., Fernandes, R., Noronha, J. P. & Prudêncio, C. (2014). *Microbiol. Res.* 169, 287–293.
- Wei, Z., Qi, S., Xu, Y., Liu, H., Wu, J., Li, H., Xia, C. & Duan, G. (2019). Adv. Synth. Catal. 361, 5490–5498.
- Yousra, S., El Ghayati, L., Hökelek, T., Ouazzani Chahdi, F., Mague, J. T., Kandri Rodi, Y. & Sebbar, N. K. (2023). *Acta Cryst.* E79, 895– 898.
- Zeb, A., Hameed, A., Khan, L., Khan, I. K., Dalvandi, K., Choudhary, M. I. & Basha, F. Z. (2014). *Med. Chem.* 10, 724–729.
- Zheng, H., Jiang, C., Chiu, M. H., Covey, J. M. & Chan, K. K. (2002). Drug Metab. Dispos. 30, 344–348.

supporting information

Acta Cryst. (2025). E81 [https://doi.org/10.1107/S2056989025003755]

Synthesis and crystal structure of 3-(2-{3-[2-(2-oxooxazolidin-3-yl)ethoxy]quinoxalin-2-yloxy}ethyl)oxazolidin-2-one

Fatima Ezzahra Aboutofil, Nour El Hoda Mustaphi, Olivier Blacque, Tuncer Hökelek, Ahmed Mazzah, Lhoussaine El Ghayati and Nada Kheira Sebbar

Computing details

3-(2-{3-[2-(2-Oxooxazolidin-3-yl)ethoxy]quinoxalin-2-yloxy}ethyl)oxazolidin-2-one

Crystal data

 $C_{18}H_{20}N_4O_6$ $M_r = 388.38$ Monoclinic, $P2_1/n$ a = 6.6576 (1) Å b = 17.1463 (2) Å c = 15.8105 (2) Å $\beta = 98.935$ (1)° V = 1782.92 (4) Å³ Z = 4

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2024)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.099$ S = 1.063781 reflections 254 parameters 0 restraints Primary atom site location: dual Hydrogen site location: inferred from neighbouring sites F(000) = 816 $D_x = 1.447 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 17516 reflections $\theta = 3.8-79.5^{\circ}$ $\mu = 0.93 \text{ mm}^{-1}$ T = 160 KPlate, colourless $0.25 \times 0.21 \times 0.10 \text{ mm}$

 $T_{\min} = 0.845, T_{\max} = 0.932$ 23056 measured reflections
3781 independent reflections
3577 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$ $\theta_{\text{max}} = 77.4^{\circ}, \theta_{\text{min}} = 3.8^{\circ}$ $h = -8 \rightarrow 8$ $k = -21 \rightarrow 21$ $l = -17 \rightarrow 19$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0447P)^2 + 0.6483P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.35 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.29 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL2019/3* (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0023 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.34531 (13)	0.47199 (5)	0.72202 (5)	0.02841 (19)
O2	0.29395 (12)	0.35049 (4)	0.62370 (5)	0.02608 (19)
03	0.35795 (16)	0.33324 (6)	0.96229 (7)	0.0444 (3)
O4	0.66392 (15)	0.37070 (6)	0.93404 (7)	0.0451 (3)
05	0.74284 (18)	0.16514 (7)	0.76528 (7)	0.0527 (3)
06	0.62002 (19)	0.11202 (8)	0.63787 (7)	0.0587 (3)
N1	0.28423 (15)	0.55758 (6)	0.60819 (6)	0.0269 (2)
N2	0.25336 (14)	0.42434 (6)	0.50000 (6)	0.0253 (2)
N3	0.37902 (16)	0.44689 (6)	0.89855 (7)	0.0322 (2)
N4	0.44993 (17)	0.20867 (6)	0.69704 (7)	0.0331 (2)
C1	0.4760 (2)	0.51244 (7)	0.86354 (8)	0.0342 (3)
H1A	0.616539	0.497667	0.857060	0.041*
H1B	0.484189	0.556502	0.904393	0.041*
C2	0.3645 (2)	0.53887 (7)	0.77796 (8)	0.0328 (3)
H2A	0.228380	0.559210	0.784233	0.039*
H2B	0.441442	0.580793	0.754216	0.039*
C3	0.30273 (16)	0.48736 (7)	0.63769 (7)	0.0252 (2)
C4	0.28227 (16)	0.41917 (6)	0.58255 (7)	0.0241 (2)
C5	0.23938 (16)	0.49903 (7)	0.46633 (8)	0.0261 (2)
C6	0.25158 (16)	0.56504 (7)	0.51985 (8)	0.0266 (2)
C7	0.23349 (18)	0.64004 (7)	0.48354 (9)	0.0316 (3)
H7	0.240283	0.684707	0.519426	0.038*
C8	0.20594 (18)	0.64869 (8)	0.39597 (9)	0.0354 (3)
H8	0.193559	0.699445	0.371627	0.043*
C9	0.19602 (19)	0.58335 (8)	0.34250 (9)	0.0358 (3)
H9	0.178341	0.590080	0.282161	0.043*
C10	0.21172 (18)	0.50923 (8)	0.37678 (8)	0.0314 (3)
H10	0.203901	0.465090	0.340091	0.038*
C11	0.27737 (18)	0.28136 (6)	0.57133 (7)	0.0266 (2)
H11A	0.395000	0.277258	0.540209	0.032*
H11B	0.151217	0.282899	0.528962	0.032*
C12	0.27329 (19)	0.21297 (7)	0.63101 (8)	0.0298 (3)
H12A	0.149795	0.216567	0.658525	0.036*
H12B	0.263947	0.164211	0.597081	0.036*
C13	0.4844 (2)	0.38405 (7)	0.93076 (8)	0.0335 (3)
C14	0.1517 (2)	0.36156 (10)	0.94072 (11)	0.0483 (4)
H14A	0.077858	0.356549	0.990193	0.058*
H14B	0.077252	0.332043	0.891836	0.058*
C15	0.1730(2)	0.44643 (9)	0.91721 (10)	0.0429 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supporting information

H15A	0.073565	0.461243	0.866518	0.051*	
H15B	0.157556	0.481479	0.965547	0.051*	
C16	0.6022 (2)	0.15857 (8)	0.69375 (8)	0.0366 (3)	
C17	0.6778 (4)	0.22219 (12)	0.82074 (12)	0.0720 (6)	
H17A	0.773792	0.266660	0.828125	0.086*	
H17B	0.670734	0.199276	0.877681	0.086*	
C18	0.4690 (3)	0.24899 (9)	0.77867 (9)	0.0520 (4)	
H18A	0.361999	0.232637	0.811984	0.062*	
H18B	0.463720	0.306297	0.771004	0.062*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0383 (5)	0.0205 (4)	0.0264 (4)	0.0002 (3)	0.0047 (3)	-0.0015 (3)
O2	0.0325 (4)	0.0185 (4)	0.0268 (4)	0.0001 (3)	0.0032 (3)	0.0000 (3)
03	0.0531 (6)	0.0357 (5)	0.0436 (5)	-0.0012 (4)	0.0054 (4)	0.0096 (4)
04	0.0414 (6)	0.0437 (6)	0.0480 (6)	0.0111 (4)	-0.0001 (4)	0.0032 (5)
05	0.0546 (7)	0.0533 (6)	0.0442 (6)	0.0125 (5)	-0.0111 (5)	0.0030 (5)
O6	0.0615 (7)	0.0665 (8)	0.0468 (6)	0.0281 (6)	0.0044 (5)	-0.0123 (6)
N1	0.0261 (5)	0.0223 (5)	0.0326 (5)	0.0002 (4)	0.0051 (4)	0.0015 (4)
N2	0.0236 (5)	0.0241 (5)	0.0280 (5)	0.0001 (3)	0.0028 (4)	0.0012 (4)
N3	0.0364 (6)	0.0299 (5)	0.0304 (5)	0.0043 (4)	0.0053 (4)	0.0020 (4)
N4	0.0451 (6)	0.0238 (5)	0.0285 (5)	0.0043 (4)	-0.0010 (4)	-0.0016 (4)
C1	0.0425 (7)	0.0263 (6)	0.0330 (6)	-0.0020 (5)	0.0034 (5)	-0.0029 (5)
C2	0.0464 (7)	0.0216 (5)	0.0300 (6)	0.0009 (5)	0.0051 (5)	-0.0039 (5)
C3	0.0233 (5)	0.0232 (5)	0.0295 (6)	0.0001 (4)	0.0054 (4)	0.0003 (4)
C4	0.0220 (5)	0.0207 (5)	0.0297 (6)	0.0002 (4)	0.0047 (4)	0.0011 (4)
C5	0.0202 (5)	0.0262 (6)	0.0318 (6)	-0.0001 (4)	0.0042 (4)	0.0044 (4)
C6	0.0204 (5)	0.0255 (6)	0.0342 (6)	0.0005 (4)	0.0053 (4)	0.0042 (4)
C7	0.0263 (6)	0.0252 (6)	0.0436 (7)	0.0005 (4)	0.0061 (5)	0.0059 (5)
C8	0.0275 (6)	0.0324 (6)	0.0464 (7)	0.0019 (5)	0.0057 (5)	0.0153 (5)
C9	0.0300 (6)	0.0417 (7)	0.0354 (6)	0.0012 (5)	0.0042 (5)	0.0130 (5)
C10	0.0281 (6)	0.0348 (6)	0.0310 (6)	-0.0006 (5)	0.0032 (5)	0.0040 (5)
C11	0.0305 (6)	0.0205 (5)	0.0280 (5)	-0.0003 (4)	0.0024 (4)	-0.0025 (4)
C12	0.0343 (6)	0.0217 (5)	0.0328 (6)	-0.0017 (4)	0.0032 (5)	-0.0002 (4)
C13	0.0436 (7)	0.0298 (6)	0.0257 (6)	0.0017 (5)	0.0007 (5)	-0.0019 (5)
C14	0.0453 (8)	0.0538 (9)	0.0464 (8)	-0.0081 (7)	0.0084 (6)	0.0063 (7)
C15	0.0377 (7)	0.0479 (8)	0.0438 (8)	0.0052 (6)	0.0090 (6)	0.0029 (6)
C16	0.0415 (7)	0.0344 (7)	0.0331 (6)	0.0043 (5)	0.0033 (5)	0.0041 (5)
C17	0.1003 (15)	0.0538 (10)	0.0487 (9)	0.0250 (10)	-0.0297 (10)	-0.0142 (8)
C18	0.0775 (11)	0.0436 (8)	0.0309 (7)	0.0155 (8)	-0.0045 (7)	-0.0085 (6)

Geometric parameters (Å, °)

01—C2	1.4416 (14)	C5—C6	1.4079 (17)
O1—C3	1.3454 (14)	C5—C10	1.4100 (17)
O2—C4	1.3418 (13)	C6—C7	1.4057 (16)
O2—C11	1.4403 (13)	С7—Н7	0.9500

supporting information

O3—C13	1.3589 (17)	С7—С8	1.3762 (19)
O3—C14	1.447 (2)	С8—Н8	0.9500
O4—C13	1.2101 (17)	C8—C9	1.399 (2)
O5—C16	1.3563 (17)	С9—Н9	0.9500
05—C17	1.425 (2)	C9—C10	1.3792 (18)
06—C16	1,2100(18)	C10—H10	0.9500
N1-C3	1 2901 (15)	C11—H11A	0.9900
N1—C6	1 3857 (16)	C11—H11B	0.9900
N2-C4	1.2924 (15)	C11-C12	1 5080 (16)
N2	1.2921(15) 1 3846 (15)	C12—H12A	0.9900
N3—C1	1.3010(13) 1 4483(17)	C12—H12B	0.9900
N3-C13	1 3421 (16)	C12 H12D C14—H14A	0.9900
N3C15	1.3421(10) 1.4474(18)	C14—H14B	0.9900
N4_C12	1.4480 (16)	C14 $C15$	1.514(2)
N4 C16	1 3350 (17)	C15 H15A	0.9900
N4 C18	1.5559(17) 1.4522(17)	C15 H15B	0.9900
	0.0000	C17 H17A	0.9900
	0.9900	C17_H17R	0.9900
	0.9900	$C1/\pi1/B$	0.9900
$C_1 = C_2$	1.3064 (16)	C17 - C18	1.510 (5)
C2—H2A	0.9900	C18—H18A	0.9900
C2—H2B	0.9900	C18—H18B	0.9900
03-04	1.4521 (15)		
$C_{3} = 0_{1} = C_{2}^{2}$	115 92 (9)	C5-C10-H10	120.0
C4-O2-C11	116 75 (9)	C9-C10-C5	119.93(12)
$C_{13} = O_{3} = C_{14}$	108.53(11)	C9 - C10 - H10	120.0
C16-05-C17	100.55(11) 109.50(12)	0^{2} - C11 - H11A	110.4
$C_3 = N_1 = C_6$	116 22 (10)	Ω^2 C11—H11B	110.1
C4-N2-C5	116.22 (10)	02 - C11 - C12	106 71 (9)
$C_{13} - N_{3} - C_{1}$	122 03 (11)	H11A-C11-H11B	108.6
C_{13} N_{3} C_{15}	111 99 (11)	C12—C11—H11A	110.4
C_{15} N_{3} C_{15}	125 10 (11)	C12 $C11$ $H11B$	110.1
$C_{12} - N_{4} - C_{18}$	125.10(11) 124.44(11)	N4-C12-C11	113 52 (10)
$C_{12} = N_4 = C_{12}$	124.44(11) 122 74 (11)	$N4 - C12 - H12 \Delta$	108.9
$C_{16} - N_{4} - C_{18}$	122.74(11) 112.25(11)	N4—C12—H12R	108.9
N3_C1_H1A	109.0	C11 - C12 - H12A	108.9
N3—C1—H1B	109.0	C11—C12—H12B	108.9
$N_3 - C_1 - C_2$	112.93 (11)	H12A - C12 - H12B	107.7
$H_1 A = C_1 = H_1 B$	107.8	04-013-03	107.7 121.80(12)
$C_2 - C_1 - H_1 A$	107.0	04 - C13 - N3	121.00(12) 128.51(13)
C_2 C_1 H_1B	109.0	N_{3} C_{13} C_{3}	120.51(13) 109.68(12)
$01 - C^2 - C^1$	107.19(10)	03 - C14 - H14A	110.7
$01 - C^2 - H^2 \Delta$	110 3	$O_3 - C_1 4 - H_1 A B$	110.7
01 - 02 - H2R	110.3	03-014-015	105 00 (12)
C1 - C2 - H2A	110.3	H144 - C14 H14B	108.8
C1 - C2 - H2R	110.3	$\begin{array}{c} 11177 \\$	110.0
$H_2 A C_2 H_2 B$	108.5	C15-C14 $H14R$	110.7
01 - C3 - C4	115.02(10)	N3 - C15 - C14	100.55 (11)
	110.02 (10)		100.55 (11)

NI C2 O1	122.22 (10)	NO C15 1115A	111 7
N1 - C3 - C4	122.32(10) 122.65(11)	N3-C15-H15A	111./
N1 = C3 = C4	122.03(11) 115.00(10)	$N_{3} = C_{13} = H_{15} M_{15}$	111.7
02-04-03	113.00(10) 122.56(10)	C14 - C15 - H15A	111.7
$N_2 - C_4 - C_2$	122.56 (10)		111./
N2-C4-C3	122.44 (10)	HISA—CIS—HISB	109.4
N2-C5-C6	121.22 (10)	06-016-05	122.03 (13)
N2-C5-C10	119.43 (11)	06—C16—N4	127.85 (13)
C6—C5—C10	119.35 (11)	N4—C16—O5	110.11 (12)
NI	121.12 (10)	05—C17—H17A	110.4
N1—C6—C7	119.09 (11)	O5—C17—H17B	110.4
C7—C6—C5	119.78 (11)	O5—C17—C18	106.47 (13)
С6—С7—Н7	120.0	H17A—C17—H17B	108.6
C8—C7—C6	119.93 (12)	C18—C17—H17A	110.4
С8—С7—Н7	120.0	C18—C17—H17B	110.4
С7—С8—Н8	119.7	N4—C18—C17	101.14 (13)
C7—C8—C9	120.54 (11)	N4—C18—H18A	111.5
С9—С8—Н8	119.7	N4—C18—H18B	111.5
С8—С9—Н9	119.8	C17—C18—H18A	111.5
C10—C9—C8	120.46 (12)	C17—C18—H18B	111.5
С10—С9—Н9	119.8	H18A—C18—H18B	109.4
O1—C3—C4—O2	4.66 (14)	C6—C5—C10—C9	-0.28(17)
O1—C3—C4—N2	-175.86 (10)	C6—C7—C8—C9	-0.10(18)
02-C11-C12-N4	-57.76(13)	C7—C8—C9—C10	0.64 (19)
03-C14-C15-N3	19.93 (15)	C8-C9-C10-C5	-0.44(19)
05	-62(2)	C10-C5-C6-N1	-17823(10)
N1 - C3 - C4 - O2	-17622(10)	C10-C5-C6-C7	0.82 (16)
N1 - C3 - C4 - N2	3 25 (18)	$C_{11} = 0^{2} = C_{4} = N^{2}$	1.41(15)
N1-C6-C7-C8	178 43 (10)	$C_{11} = 0^2 = C_1 = 1^2$	-179 12 (9)
$N_{1} = C_{0} = C_{1} = C_{0}$	1 00 (16)	$C_{12} = 0.2 = 0.4 = 0.5$	-177.58(11)
$N_2 = C_5 = C_6 = C_7$	-178.06(10)	$C_{12} = N_4 = C_{16} = 0.05$	1/7.30(11)
$N_2 = C_5 = C_1 = C_7$	170.50(10)	$C_{12} = N_4 = C_{10} = 00$	1.7(2)
$N_2 = C_3 = C_{10} = C_9$	-55.26(14)	C12 - 104 - C10 - C17	1/0.93(14) -17.07(15)
$N_{3} = C_{1} = C_{2} = C_{1}$	-33.30(14)	C13 - 03 - C14 - C13	-17.07(13)
C1 = N3 = C13 = O3	1/7.45 (11)	C13 - N3 - C1 - C2	132.78 (12)
C1 = N3 = C13 = O4	-2.1(2)	C13 - N3 - C15 - C14	-17.38 (15)
C1 = N3 = C15 = C14	1/3.26 (12)	C14 - 03 - C13 - 04	-1/3.94(13)
C2_01_C3_N1	1.41 (16)	C14 - 03 - C13 - N3	6.47 (15)
C2-01-C3-C4	-1/9.46 (10)	C15—N3—C1—C2	-58.87 (16)
C3—O1—C2—C1	-162.00 (10)	C15—N3—C13—O3	7.71 (15)
C3—N1—C6—C5	0.10 (16)	C15—N3—C13—O4	-171.84 (14)
C3—N1—C6—C7	-178.95 (10)	C16—O5—C17—C18	3.4 (2)
C4—O2—C11—C12	-174.35 (9)	C16—N4—C12—C11	-102.91 (14)
C4—N2—C5—C6	-1.41 (16)	C16—N4—C18—C17	7.40 (18)
C4—N2—C5—C10	178.81 (10)	C17—O5—C16—O6	-177.74 (17)
C5—N2—C4—O2	178.41 (9)	C17—O5—C16—N4	1.34 (19)
C5—N2—C4—C3	-1.03 (16)	C18—N4—C12—C11	86.40 (16)
C5—C6—C7—C8	-0.63 (17)	C18—N4—C16—O5	-5.86 (17)
C6—N1—C3—O1	176.48 (9)	C18—N4—C16—O6	173.16 (16)

C6—N1—C3—C4 –2.57 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C14—H14 <i>A</i> ···O6 ⁱ	0.99	2.37	3.189 (2)	140
С10—Н10…О5іі	0.95	2.56	3.4935 (18)	168

Symmetry codes: (i) x-1/2, -y+1/2, z+1/2; (ii) x-1/2, -y+1/2, z-1/2.