

Phenyl palladium(II) iodide complexes isolated after Sonogashira coupling of iodobenzenes with terminal alkynes

Eric Bosch*

Chemistry and Biochemistry Department, Missouri State University, 901 South national Avenue, Springfield MO 65897, USA. *Correspondence e-mail: ericbosch@missouristate.edu

The structures of four palladium complexes serendipitously isolated after palladium-catalyzed Sonogashira coupling of aryl iodides with terminal alkynes are reported, namely [3,5-bis(trifluoromethyl)phenyl]iodidobis(triphenylphosphane)palladium(II), $[Pd(C_8H_3F_6)I(C_{18}H_{15}P)_2]$, **1**, (3,5-dinitrophenyl)iodidobis(triphenylphosphane)palladium(II) ethyl acetate monosolvate, $[Pd(C_6H_3N_2O_4)I(C_{18}H_{15}P)_2]\cdot C_4H_8O_2$, **2**, (2,3,4-diffuorophenyl)iodidobis(triphenylphosphane)palladium(II), [Pd(C₆H₂F₃)I(C₁₈H₁₅P)₂], 3, and (2,4,6-difluorophenyl)iodidobis(triphenylphosphane)palladium(II) dichloromethane disolvate, [Pd(C₆H₂F₃)I(C₁₈H₁₅P)₂]·2CH₂Cl₂, 4. These complexes were isolated as red/orange crystals that co-eluted with the organic products of each reaction during flash chromatography. These complexes are oxidative addition products $ArPdI(PPh_3)_2$ where Ar = 3.5-bis(trifluoromethyl)phenyl, 3.5-dinitrophenyl, 2,3,4-trifluorophenyl and 2,4,6-trifluoro-3,5-diiodophenyl. The isolation of these complexes provides some insight into the possible fate of the palladium catalyst.

1. Chemical context

Palladium-catalyzed cross-coupling reactions are widely used in organic synthesis. The coupling reaction of aryl- and vinylhalides with terminal alkynes to form alkynylbenzenes is known as the Sonogashira Reaction (Sonogashira, 2002). A generic equation for the reaction with Cu co-catalysis is shown in Fig. 1 although it should be noted that the reaction can also be performed without copper co-catalysis. The generally accepted mechanism for the Sonogashira coupling involves oxidative addition of an aryl halide, ArX, to a reactive palladium species to form $ArPdXL_2$ where L is a neutral ligand such as triphenyl phosphine. With copper as cocatalyst, a copper acetylide, CuCCR, is proposed to undergo transmetalation with $ArPdXL_2$ to form a palladium complex with both the aryl (Ar) and acetylide (CCR) groups bonded to the palladium center. Reductive elimination then produces the coupled product ArCCR and regenerates the active palladium catalyst PdL_2 . In this report we present the structures of four palladium complexes incidentally isolated after Sonogashira coupling reactions. We noticed that, after column chromatography of the crude reaction product, the coupled products were often contaminated by trace amounts of red crystalline

Figure 1 Reaction equation for Sonogashira coupling.

Received 3 March 2025 Accepted 5 May 2025

Edited by J. Reibenspies, Texas A & M University, USA

Keywords: crystal structure; oxidative addition; aryl palladium iodide.

CCDC references: 2448820; 2448819; 2448818; 2448817

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

material. It is these 'contaminants' that are the subject of this study, providing insight into the fate of the palladium catalyst in these coupling reactions. It should be noted that, in these reactions, the aryl iodide was present in slight excess. Similar compounds have been isolated by stoichiometric reaction of an aryl halide with a palladium complex but this is, to our knowledge, the first X-ray characterization of an oxidative addition complex from a catalytic reaction.

2. Structural commentary

The asymmetric unit of each of the structures is shown in Fig. 2. In each oxidative addition product **1–4**, the palladium has square-planar geometry with the aryl- and iodo- moieties in the *trans* configuration. The C–Pd–I and P–Pd–P angles are essentially linear in each structure, ranging from 171.82 (9) to 180° and from 171.36 (4) to 180°, respectively. Within these structures there is little deviation in the Pd1–I1, Pd1–C1 and Pd–P bond distances with ranges of 2.6626 (3) to 2.6887 (2) Å, 2.005 (4) to 2.088 (4) Å, and 2.3204 (6) to 2.3346 (10) Å, respectively. The C–Pd–P and I–Pd–P angles are clustered close to 90° in all four structures. All distances and angles are collated in Table 1.

3. Supramolecular features

The unit-cell packing of **1** is shown in Fig. 3(*a*). The program *CrystalExplorer21* (Spackman *et al.*, 2021) was used to calculate the Hirshfeld surface of complex **1** within the crystal as shown in Fig. 3(*b*). The red areas labelled *x*, *y* and *z* in Fig. 3(*b*) correspond to contacts less than the sum of the van der Waals radii. Close contact *x* corresponds to the H43–H16ⁱ interaction [symmetry code: (i) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$] with separation 2.227 (4) Å. Contact *y* is the H35–F3ⁱⁱ interaction with separation 2.647 (4) Å [symmetry code: (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$] and contact *z* is a H18–H36ⁱⁱⁱ interaction, separation 2.266 (4) Å [symmetry code: (iii) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$]. These are likely not the result of attractive intermolecular interactions between neighbouring molecules, but rather the result of close packing. Fingerprint plots derived from the Hirshfeld surface provide a breakdown of the intermolecular atom-to-atom

Table 1					
Distances and angles	(Å,	°) in	the	structures	of 1–4 .

Property	1	2	3	4
I1-Pd1	2.6887 (2)	2.6715 (4)	2.6787 (3)	2.6626 (3)
Pd1-P1	2.3206 (6)	2.3240 (10)	2.3239 (5)	2.3221 (9)
Pd1-C1	2.019 (2)	2.005 (4)	2.091 (4)	2.014 (3)
Pd1-P2	2.3240 (6)	2.3347 (10)	2.3239 (5)	2.3203 (9)
P2-Pd1-P1	173.08 (2)	171.36 (4)	179.47 (3)	171.80 (3)
C1-Pd1-I1	176.51 (7)	172.63 (10)	180.0	171.82 (9)
C1-Pd1-P1	89.90 (7)	89.35 (10)	90.263 (13)	89.09 (9)
P2-Pd1-I1	90.764 (15)	91.17 (3)	89.737 (13)	91.72 (2)
P2-Pd1-C1	89.57 (7)	90.00 (10)	90.263 (13)	88.63 (9)
P1-Pd1-I1	90.186 (15)	90.58 (3)	89.737 (13)	91.66 (2)

contacts between atoms within the Hirshfeld surface and atoms outside the surface, including reciprocal interactions. Given the six phenyl rings on the periphery of the complex, it is unsurprising that the Hirshfeld fingerprint analysis reveals that the major atom-to-atom contact is $H \cdots H$, corresponding to 48.3% of the surface area of a single complex **1**. With two peripheral trifluoromethyl groups, $F \cdots H/H \cdots F$ contacts are also abundant at 22.2% of the surface area. $H \cdots C/C \cdots H$ contacts comprise 19.7% of the surface area. These results and those for complexes **2**, **3** and **4** are collated in Table 2. This analysis confirms that there are no strong attractive intermolecular interactions between neighbouring complexes within each structure.

Figure 2

Asymmetric unit of each of the oxidative addition products 1–4 with displacement ellipsoids drawn at the 50% level. An ethyl acetate solvent molecule is included in the ASU of 2 and two dichloromethane solvent molecules, one disordered, are included in structure 4. The major position of the disordered dichloromethane molecule is shown.

Complex	$H{\cdot}{\cdot}{\cdot}H$	$H{\cdot}{\cdot}{\cdot}C/C{\cdot}{\cdot}{\cdot}H$	$H{\cdot}\cdot{\cdot}F/F{\cdot}\cdot{\cdot}H$	$C \cdot \cdot \cdot C$	$C{\cdots} \cdot F/F{\cdots} \cdot C$	$H{\cdot}\cdot{\cdot}I/I{\cdot}\cdot{\cdot}H$	$I\!\cdot\cdot\cdot F\!/F\!\cdot\cdot\cdot I$
1	48.3	22.2	19.7	1.5	1.5	4.7	1.0
2	49.4	21.1	21.5 ^a	0	_	4.0	-
3	48.7	20.9	18.1	2.8	2.4	6.2	0.5
4	36.8	16.4	11.8	0.2	0.9	19.3	0.1

Hirshfeld surface analysis of each complex 1-4 with an element-by-element delineation of the percentage contribution, including reciprocal contacts.

Note: (a) H···O/O···H contacts corresponding to the nitro groups.

4. Database survey

Table 2

A search of the Cambridge Crystallographic Database (Version 2024.3.0, build 426813; Groom *et al.*, 2016) using Conquest (Bruno *et al.*, 2002) for structures containing *bis*(triphenylphosphine)phenylpalladium iodide, in which the substitution on the phenyl ring is not specified, yielded a total of 23 unique structures. These structures were synthesized by stoichiometric oxidative addition of an iodobenzene to *tetra-kis*(triphenylphosphine)palladium, or a related palladium complex, for specific reactivity studies (Vicente *et al.*, 2004; Xu *et al.*, 2021). The bond distances and bond angles reported here for **1–4** (Table 1) are similar to those previously reported in these 23 structures. Thus the average C–Pd–I and P–Pd–P angles for these 23 structures are 172.70 and 172.84°, respectively, with average C–Pd and Pd–I distances 2.02 and 2.69 Å, respectively.

5. Synthesis and crystallization

The compounds **1–4** were isolated after Sonogashira coupling reactions between an aryl iodide with an alkyne in triethyl-amine and bis(triphenylphosphine)palladium(II) dichloride as

catalyst and copper iodide as cocatalyst (Sonogashira, 2002). The aryl iodides 1-iodo-3,5-bis(trifluoromethyl)benzene, 1-iodo-3,5-dinitrobenzene, 1,2,3-trifluoro-4-iodobenzene and 1.3,5-trifluoro-2,4,6-triiodobenzene were obtained from commercial sources and used as received. The alkynes used in these reactions were commercially available: 2-ethynylpyridine for 1 and 3, and 5-ethynylpyrimidine, which remained from previous projects (Momose & Bosch, 2010), for 2 and 4. In each of these reactions a slight excess of the aryl iodide was used. The product was detected as red/orange crystalline impurity in the bulk product isolated after rapid flash chromatography of the crude product after evaporation of the solvent with progressively more polar mixtures of hexane and ethyl acetate. Manual separation afforded small amounts of the complexes in crystalline form suitable for single-crystal X-ray crystallography.

6. Refinement

Crystal data, data collection and structure refinement details for complexes 1 - 4 are summarized in Table 3. All H atoms were observed in the difference maps during refinement and

Figure 3

(a) View of the crystal packing in structure 1 viewed along the a axis. (b) Plot of the Hirshfeld surface of 1 within the crystal structure with close contacts labelled x, y and z (see text).

research communications

Table 3

Experimental details.

	1	2	3	4
Crystal data				
Chemical formula	$[Pd(C_8H_3F_6)I(C_{18}H_{15}P)_2]$	$[Pd(C_6H_3N_2O4)I-(C_{18}H_{15}P)_2]\cdot C_4H_8O_2$	$[Pd(C_6H_2F_3)I(C_{18}H_{15}P)_2]$	$[Pd(C_6H_2F_3)I(C_{18}H_{15}P)_2] - 2CH_2Cl_2$
M _r	971.01	1013.12	888.99	1310.64
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$	Monoclinic, I2/a	Triclinic, $P\overline{1}$
Temperature (K)	100	100	100	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.4498 (5), 14.5714 (6), 22.1464 (10)	11.7692 (7), 34.870 (2), 10.4381 (6)	11.6327 (5), 12.8059 (5), 23.4327 (9)	11.5608 (5), 11.6437 (5), 18.1311 (8)
$lpha,eta,\gamma(^\circ)$	90, 97.726 (1), 90	90, 99.920 (1), 90	90, 93.218 (2), 90	76.426 (1), 77.722 (1), 81.344 (1)
$V(Å^3)$	3981.1 (3)	4219.7 (4)	3485.2 (2)	2305.16 (17)
Z	4	4	4	2
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})^{51}$	1.38	1.30	1.56	2.76
Crystal size (mm)	$0.2 \times 0.2 \times 0.2$	$0.4 \times 0.25 \times 0.1$	$0.28\times0.27\times0.23$	$0.23\times0.11\times0.10$
Data collection				
Diffractometer	Bruker APEXI CCD	Bruker APEXI CCD	Bruker APEXI CCD	Bruker APEXI CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.703, 0.746	0.663, 0.746	0.705, 0.746	0.674, 0.746
No. of measured, independent and observed $[I \ge 2u(I)]$ reflections	50557, 8829, 8155	53507, 9320, 7734	22427, 3875, 3735	28953, 10132, 8450
R _{int}	0.027	0.073	0.018	0.030
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.643	0.642	0.643	0.642
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.028, 0.068, 1.03	0.045, 0.091, 1.06	0.021, 0.052, 1.05	0.030, 0.062, 1.06
No. of reflections	8829	9320	3875	10132
No. of parameters	487	519	229	542
No. of restraints	12	0	0	2
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.47, -1.17	1.50, -1.32	2.05, -1.12	1.06, -1.03

Computer programs: OLEX2.solve and OLEX2.refine (Bourhis et al., 2015), OLEX2 (Dolomanov et al., 2009), SHELXT (Sheldrick, 2015) and X-SEED 4 (Barbour, 2020).

added to C as riding atoms in geometrically idealized positions with C-H = 0.95 Å (aromatic) and $U_{iso}(H) = 1.2U_{eq}(C)$. In structure 1 there is evidence that trifluoromethyl group (F1-F3) is disordered; however, this could not be satisfactorily resolved as potential alternate positions were observed in the difference map for only two of the three fluorine atoms. Accordingly, an ISOR command was used (F2 and F3). Crystals of 2 formed as a solvate with a single ethyl acetate molecule in the asymmetric unit. During refinement of the structure of 2, an ortho C atom, C2, on the dinitrobenzene tended to NPD unless an EADP command (C1, C2) was included. In the structure of 3, the trifluoroaryl group is disordered over two positions of equal occupancy that are related by a 180° rotation along the C1–C4 axis. Accordingly, EADP and EXYZ were used for C2, C2A and C3, C3A. Furthermore, the residual electron density of 2.05 that is 0.66 Å from C1 and 2.75 Å from Pd1 suggests that there is disorder between the position of the aryl moiety and the iodine atom. This residual electron density then affected refinement of C1 and required that the aryl moiety be refined with the aid of EADP command for atoms C1 and C4. Two dichloromethane solvent molecules are included in the asymmetric unit of 4. One of these is disordered over two major positions and these were refined with the help of a free variable that converged to 0.63087 after using a DFIX command of 1.79 (0.02) for the C–Cl distances.

Acknowledgements

EB acknowledges the Missouri State University Provost Incentive Fund for the purchase of the X-ray diffractometer used in this contribution.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE1606556).

References

- Barbour, L. J. (2020). J. Appl. Cryst. 53, 1141-1146.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389– 397.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. *Appl. Cryst.* **48**, 3–10.
- Momose, A. A. & Bosch, E. (2010). Cryst. Growth Des. 10, 4043-4049.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.

- Sonogashira, K. (2002). J. Organomet. Chem. 653, 46-49.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.
- Vicente, J., Abad, J. A., López-Serrano, J. & Jones, P. G. (2004). Organometallics, 23, 4711–4722.
- Xu, J. C., Yin, Y. Z. & Han, Z. Y. (2021). Org. Lett. 23, 3834–3838.

Acta Cryst. (2025). E81 [https://doi.org/10.1107/S2056989025004025]

Phenyl palladium(II) iodide complexes isolated after Sonogashira coupling of iodobenzenes with terminal alkynes

Eric Bosch

Computing details

(1)

```
Crystal data

[Pd(C<sub>8</sub>H<sub>3</sub>F<sub>6</sub>)I(C<sub>18</sub>H<sub>15</sub>P)<sub>2</sub>]

M_r = 971.01

Monoclinic, P2_1/c

a = 12.4498 (5) Å

b = 14.5714 (6) Å

c = 22.1464 (10) Å

\beta = 97.726 (1)°

V = 3981.1 (3) Å<sup>3</sup>

Z = 4
```

Data collection

Bruker APEXI CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\min} = 0.703, \ T_{\max} = 0.746$
50557 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.068$ S = 1.028829 reflections 487 parameters 12 restraints F(000) = 1916.447 $D_x = 1.620 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9932 reflections $\theta = 2.3-27.2^{\circ}$ $\mu = 1.38 \text{ mm}^{-1}$ T = 100 KCube, clear red $0.2 \times 0.2 \times 0.2 \text{ mm}$

8829 independent reflections 8155 reflections with $I \ge 2u(I)$ $R_{int} = 0.027$ $\theta_{max} = 27.2^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -16 \rightarrow 15$ $k = -18 \rightarrow 18$ $l = -28 \rightarrow 28$

66 constraints Primary atom site location: iterative H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0307P)^2 + 8.078P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = -0.001$ $\Delta\rho_{max} = 1.47$ e Å⁻³ $\Delta\rho_{min} = -1.17$ e Å⁻³

(Fractional	l atomic	coordinates	and	isotropic	or	equivalent	isotropic	displacement	parameters	(Å	2
---	------------	----------	-------------	-----	-----------	----	------------	-----------	--------------	------------	----	---

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
I1	0.953448 (12)	0.427718 (10)	0.310946 (7)	0.01685 (5)
Pd1	0.738937 (13)	0.403556 (11)	0.280333 (7)	0.01142 (5)
P1	0.75605 (5)	0.43206 (4)	0.17898 (3)	0.01270 (11)

F1	0.42586 (14)	0.19004 (12)	0.14520 (8)	0.0364 (4)
C1	0.57665 (19)	0.39363 (16)	0.25832 (10)	0.0157 (4)
P2	0.72222 (5)	0.35632 (4)	0.37887 (3)	0.01365 (11)
C2	0.52665 (19)	0.31934 (16)	0.22612 (11)	0.0163 (4)
H2	0.56971 (19)	0.27070 (16)	0.21386 (11)	0.0195 (5)*
C3	0.4143 (2)	0.31576 (17)	0.21175 (12)	0.0215 (5)
F4	0.34414 (17)	0.61366 (13)	0.24281 (11)	0.0534 (6)
C4	0.3495 (2)	0.38559 (19)	0.22879 (12)	0.0228 (5)
H4	0.2729 (2)	0.38266 (19)	0.21892 (12)	0.0274 (6)*
F5	0.36128 (18)	0.56763 (15)	0.33453 (10)	0.0527 (6)
C5	0.3979 (2)	0.45965 (18)	0.26040 (12)	0.0229 (5)
F6	0.22636(15)	0.52208 (15)	0.26987(13)	0.0613(7)
C6	0.51119(19)	0.46379(17)	0.27507(11)	0.0195(5)
Н6	0.54341(19)	0.10379(17) 0.51528(17)	0 29675 (11)	$0.0199(6)^{*}$
C7	0.3633(2)	0.2336(2)	0.17918 (16)	0.0251(0) 0.0354(7)
C8	0.3318(2)	0.2390(2) 0.5391(2)	0.27750 (16)	0.0361(7)
C9	0.85351(18)	0.34876(16)	0.27738(10) 0.15738(10)	0.0300(7) 0.0148(4)
C10	0.8432(2)	0.34070(10) 0.25782(17)	0.17649 (11)	0.0140(4)
H10	0.0432(2) 0.7845(2)	0.23782(17) 0.24137(17)	0.1765(11)	0.0207(5)
C11	0.7845(2)	0.24137(17) 0.10181(17)	0.19703(11) 0.16484(12)	0.0249(0)
UП H11	0.9170(2) 0.9097(2)	0.19101(17) 0.13036(17)	0.10484(12) 0.17788(12)	0.0240(5)
C12	1.0036(2)	0.13030(17) 0.21518(10)	0.17780(12) 0.13421(13)	0.0295(0)
U12	1.0030(2) 1.0548(2)	0.21318(19) 0.16002(10)	0.13421(13) 0.12624(13)	0.0203(0) 0.0318(7)*
C12	1.0346(2)	0.10992(19) 0.2047(2)	0.12024(13) 0.11526(14)	0.0318(7)
U13	1.0140(2) 1.0726(2)	0.3047(2)	0.11320(14) 0.00420(14)	0.0288(0)
ніз С14	1.0730(2)	0.3207(2)	0.09430(14) 0.12(52(12))	$0.0345(7)^{*}$
U14	0.9401(2)	0.3/1/4(18)	0.12035(12) 0.11221(12)	0.0223(3)
H14	0.9483(2)	0.43300 (18)	0.11321(12) 0.15072(11)	$0.02/0(6)^{*}$
	0.80299 (18)	0.54531 (16)	0.15972 (11)	0.0154 (4)
	0.8012 (2)	0.5/116(1/)	0.09857(11)	0.0191 (5)
HIO	0.7725(2)	0.53029 (17)	0.06704 (11)	0.0230 (6)*
C1/	0.8409 (2)	0.65579(18)	0.08390 (12)	0.0239 (5)
HI7	0.8407 (2)	0.67245 (18)	0.04241 (12)	0.0287 (6)*
C18	0.8810 (2)	0.71640 (18)	0.12988 (13)	0.0243 (5)
HI8	0.9091 (2)	0.77415 (18)	0.11975 (13)	0.0292 (6)*
C19	0.8802 (2)	0.69309 (17)	0.19026 (12)	0.0230 (5)
H19	0.9061 (2)	0.73538 (17)	0.22151 (12)	0.0276 (6)*
C20	0.84132 (19)	0.60752 (16)	0.20539 (11)	0.0184 (5)
H20	0.84098 (19)	0.59157 (16)	0.24696 (11)	0.0221 (6)*
C21	0.63591 (19)	0.41706 (18)	0.12270 (11)	0.0184 (5)
C22	0.6201 (2)	0.3401 (2)	0.08494 (11)	0.0249 (6)
H22	0.6749 (2)	0.2945 (2)	0.08626 (11)	0.0299 (7)*
C23	0.5236 (2)	0.3301 (3)	0.04523 (13)	0.0368 (7)
H23	0.5130 (2)	0.2778 (3)	0.01956 (13)	0.0442 (9)*
C24	0.4443 (2)	0.3958 (3)	0.04325 (14)	0.0414 (8)
H24	0.3790 (2)	0.3887 (3)	0.01610 (14)	0.0496 (10)*
C25	0.4588 (2)	0.4726 (2)	0.08064 (15)	0.0381 (7)
H25	0.4034 (2)	0.5178 (2)	0.07906 (15)	0.0457 (9)*
C26	0.5542 (2)	0.4834 (2)	0.12030 (13)	0.0271 (6)

H26	0.5641 (2)	0.5360 (2)	0.14585 (13)	0.0325 (7)*
C27	0.5847 (2)	0.34407 (17)	0.39776 (11)	0.0188 (5)
C28	0.5216 (2)	0.26974 (17)	0.37417 (11)	0.0200 (5)
H28	0.5532 (2)	0.22330 (17)	0.35212 (11)	0.0240 (6)*
C29	0.4137 (2)	0.26292 (18)	0.38253 (12)	0.0236 (5)
H29	0.3715 (2)	0.21221 (18)	0.36610 (12)	0.0283 (6)*
C30	0.3671 (2)	0.3304 (2)	0.41501 (14)	0.0317 (6)
H30	0.2933 (2)	0.3254 (2)	0.42116 (14)	0.0380 (8)*
C31	0.4281 (2)	0.4047 (2)	0.43836 (14)	0.0356 (7)
H31	0.3959 (2)	0.4510(2)	0.46022 (14)	0.0427 (9)*
C32	0.5367 (2)	0.4118 (2)	0.42990 (13)	0.0280 (6)
H32	0.5784 (2)	0.4629 (2)	0.44608 (13)	0.0336 (7)*
C33	0.78511 (19)	0.43655 (16)	0.43603 (10)	0.0159 (4)
C34	0.7724 (2)	0.52981 (17)	0.42266 (11)	0.0200 (5)
H34	0.7352 (2)	0.54844 (17)	0.38434 (11)	0.0240 (6)*
C35	0.8135 (2)	0.59552 (18)	0.46483 (12)	0.0236 (5)
H35	0.8030 (2)	0.65889 (18)	0.45582 (12)	0.0283 (6)*
C36	0.8697 (2)	0.56859 (19)	0.51989 (12)	0.0267 (6)
H36	0.8993 (2)	0.61353 (19)	0.54848 (12)	0.0321 (7)*
C37	0.8832 (2)	0.4761 (2)	0.53369 (12)	0.0307 (6)
H37	0.9216 (2)	0.4579 (2)	0.57181 (12)	0.0369 (7)*
C38	0.8410 (2)	0.41012 (19)	0.49217 (12)	0.0246 (5)
H38	0.8501 (2)	0.34685 (19)	0.50189 (12)	0.0296 (6)*
C39	0.77923 (19)	0.24282 (16)	0.39698 (11)	0.0177 (5)
C40	0.8394 (2)	0.19755 (17)	0.35779 (12)	0.0209 (5)
H40	0.8537 (2)	0.22686 (17)	0.32139 (12)	0.0251 (6)*
C41	0.8791 (2)	0.10941 (19)	0.37135 (14)	0.0276 (6)
H41	0.9192 (2)	0.07855 (19)	0.34395 (14)	0.0331 (7)*
C42	0.8598 (2)	0.06684 (19)	0.42476 (15)	0.0321 (6)
H42	0.8878 (2)	0.00718 (19)	0.43443 (15)	0.0385 (8)*
C43	0.7999 (2)	0.1115 (2)	0.46389 (14)	0.0326 (6)
H43	0.7870 (2)	0.0823 (2)	0.50059 (14)	0.0392 (8)*
C44	0.7584 (2)	0.19844 (19)	0.45023 (12)	0.0254 (5)
H44	0.7158 (2)	0.22789 (19)	0.47703 (12)	0.0304 (7)*
F2	0.3380 (3)	0.16952 (18)	0.21762 (13)	0.0886 (9)
F3	0.2740 (2)	0.2539 (2)	0.14237 (17)	0.1024 (10)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01334 (8)	0.01817 (8)	0.01806 (8)	-0.00094 (5)	-0.00148 (6)	0.00035 (5)
Pd1	0.01028 (8)	0.01240 (9)	0.01125 (8)	-0.00042 (6)	0.00020 (6)	-0.00016 (6)
P1	0.0127 (3)	0.0130 (3)	0.0121 (3)	-0.0007 (2)	0.0007 (2)	0.0007 (2)
F1	0.0375 (10)	0.0327 (9)	0.0395 (10)	-0.0128 (8)	0.0073 (8)	-0.0185 (8)
C1	0.0162 (11)	0.0176 (11)	0.0134 (10)	-0.0013 (9)	0.0026 (8)	0.0015 (9)
P2	0.0138 (3)	0.0150 (3)	0.0121 (3)	-0.0013 (2)	0.0013 (2)	0.0001 (2)
C2	0.0149 (11)	0.0147 (11)	0.0193 (11)	-0.0008 (9)	0.0028 (9)	-0.0006 (9)
C3	0.0193 (12)	0.0200 (12)	0.0247 (13)	-0.0033 (9)	0.0012 (10)	-0.0026 (10)

F4	0.0491 (12)	0.0278 (10)	0.0807 (16)	0.0168 (9)	-0.0006(11)	-0.0011 (10)
C4	0.0115 (11)	0.0273 (13)	0.0282 (13)	-0.0004 (10)	-0.0026 (9)	-0.0009 (11)
F5	0.0505 (12)	0.0528 (13)	0.0549 (13)	0.0235 (10)	0.0069 (10)	-0.0256(10)
C5	0.0175 (12)	0.0212 (12)	0.0297 (13)	0.0040 (10)	0.0022 (10)	-0.0040 (10)
F6	0.0206 (9)	0.0466 (12)	0.118 (2)	0.0061 (8)	0.0127 (11)	-0.0308(13)
C6	0.0164 (11)	0.0183 (11)	0.0226 (12)	-0.0004 (9)	-0.0018 (9)	-0.0008(9)
C7	0.0173 (13)	0.0323 (15)	0.056 (2)	-0.0077 (11)	0.0044 (12)	-0.0179 (14)
C8	0.0214 (14)	0.0300 (15)	0.0549 (19)	0.0044 (12)	-0.0009(13)	-0.0145 (14)
C9	0.0163 (11)	0.0146 (11)	0.0130 (10)	-0.0002(8)	-0.0002(8)	-0.0027(8)
C10	0.0242 (12)	0.0162 (11)	0.0228 (12)	-0.0015 (9)	0.0074 (10)	0.0009 (9)
C11	0.0310 (14)	0.0145 (11)	0.0285 (13)	0.0012 (10)	0.0054 (11)	-0.0022(10)
C12	0.0255 (13)	0.0224 (13)	0.0322 (14)	0.0075 (10)	0.0058 (11)	-0.0048 (11)
C13	0.0233 (13)	0.0286 (14)	0.0370 (15)	0.0028 (11)	0.0138 (11)	0.0031 (12)
C14	0.0222 (12)	0.0195 (12)	0.0264 (13)	-0.0014 (10)	0.0060 (10)	0.0025 (10)
C15	0.0140 (10)	0.0143 (10)	0.0177 (11)	0.0010 (8)	0.0016 (8)	0.0020 (9)
C16	0.0203 (12)	0.0192 (12)	0.0180 (12)	0.0008 (9)	0.0029 (9)	0.0008 (9)
C17	0.0227 (13)	0.0252 (13)	0.0238 (13)	0.0011 (10)	0.0027 (10)	0.0098 (10)
C18	0.0190 (12)	0.0173 (12)	0.0355 (14)	-0.0027 (9)	-0.0009 (10)	0.0100 (10)
C19	0.0226 (12)	0.0158 (12)	0.0287 (13)	-0.0012 (9)	-0.0037 (10)	0.0015 (10)
C20	0.0176 (11)	0.0171 (11)	0.0196 (12)	0.0013 (9)	-0.0007 (9)	0.0015 (9)
C21	0.0152 (11)	0.0268 (13)	0.0126 (11)	-0.0045 (9)	0.0000 (9)	0.0053 (9)
C22	0.0206 (12)	0.0377 (15)	0.0163 (12)	-0.0068 (11)	0.0017 (10)	-0.0037 (10)
C23	0.0300 (15)	0.059 (2)	0.0199 (13)	-0.0176 (14)	-0.0027 (11)	-0.0039 (13)
C24	0.0226 (14)	0.067 (2)	0.0299 (16)	-0.0144 (15)	-0.0121 (12)	0.0148 (15)
C25	0.0211 (14)	0.0486 (19)	0.0414 (17)	0.0008 (13)	-0.0070 (12)	0.0222 (15)
C26	0.0215 (13)	0.0285 (14)	0.0298 (14)	-0.0012 (11)	-0.0017 (11)	0.0101 (11)
C27	0.0184 (11)	0.0239 (12)	0.0145 (11)	-0.0022 (9)	0.0032 (9)	0.0022 (9)
C28	0.0209 (12)	0.0198 (12)	0.0199 (12)	-0.0005 (9)	0.0046 (9)	0.0003 (9)
C29	0.0210 (12)	0.0224 (13)	0.0275 (13)	-0.0054 (10)	0.0040 (10)	-0.0017 (10)
C30	0.0190 (13)	0.0437 (17)	0.0344 (15)	-0.0065 (12)	0.0109 (11)	-0.0095 (13)
C31	0.0247 (14)	0.0468 (18)	0.0376 (16)	-0.0048 (13)	0.0127 (12)	-0.0219 (14)
C32	0.0228 (13)	0.0355 (15)	0.0268 (14)	-0.0073 (11)	0.0070 (11)	-0.0145 (11)
C33	0.0148 (11)	0.0197 (11)	0.0134 (11)	-0.0023 (9)	0.0022 (8)	-0.0011 (9)
C34	0.0227 (12)	0.0203 (12)	0.0165 (11)	0.0001 (10)	0.0009 (9)	-0.0004 (9)
C35	0.0286 (14)	0.0191 (12)	0.0236 (13)	-0.0014 (10)	0.0050 (11)	-0.0045 (10)
C36	0.0275 (14)	0.0291 (14)	0.0224 (13)	-0.0012 (11)	-0.0010 (11)	-0.0145 (11)
C37	0.0361 (15)	0.0337 (15)	0.0188 (13)	0.0033 (12)	-0.0090 (11)	-0.0042 (11)
C38	0.0302 (14)	0.0227 (13)	0.0193 (12)	0.0027 (10)	-0.0029 (10)	-0.0004 (10)
C39	0.0150 (11)	0.0167 (11)	0.0202 (11)	-0.0036 (9)	-0.0015 (9)	0.0025 (9)
C40	0.0199 (12)	0.0196 (12)	0.0233 (12)	-0.0006 (9)	0.0032 (10)	0.0024 (10)
C41	0.0234 (13)	0.0211 (13)	0.0385 (16)	0.0040 (10)	0.0053 (11)	0.0020 (11)
C42	0.0280 (14)	0.0196 (13)	0.0476 (18)	0.0018 (11)	0.0007 (13)	0.0103 (12)
C43	0.0364 (16)	0.0272 (14)	0.0338 (16)	-0.0027 (12)	0.0031 (12)	0.0149 (12)
C44	0.0294 (14)	0.0246 (13)	0.0225 (13)	-0.0005 (11)	0.0049 (11)	0.0066 (10)
F2	0.132 (2)	0.0553 (14)	0.0952 (18)	-0.0607 (13)	0.0757 (15)	-0.0352 (12)
F3	0.0467 (13)	0.0751 (16)	0.166 (3)	0.0176 (11)	-0.0553 (13)	-0.0687 (15)

Geometric parameters (Å, °)

I1—Pd1	2.6887 (2)	C19—C20	1.394 (3)
Pd1—P1	2.3206 (6)	C20—H20	0.9500
Pd1—C1	2.019 (2)	C21—C22	1.397 (4)
Pd1—P2	2.3240 (6)	C21—C26	1.399 (4)
Р1—С9	1.825 (2)	C22—H22	0.9500
P1—C15	1.820 (2)	C22—C23	1.397 (4)
P1—C21	1.827 (2)	С23—Н23	0.9500
F1—C7	1.316 (3)	C23—C24	1.371 (5)
C1—C2	1.396 (3)	C24—H24	0.9500
C1—C6	1.389 (3)	C24—C25	1.390 (5)
P2—C27	1.825 (2)	С25—Н25	0.9500
P2—C33	1.821 (2)	C25—C26	1.388 (4)
P2—C39	1.823 (2)	C26—H26	0.9500
С2—Н2	0.9500	C27—C28	1.397 (3)
C2—C3	1.394 (3)	C27—C32	1.397 (4)
C3—C4	1.382 (4)	C28—H28	0.9500
C3—C7	1.494 (4)	C28—C29	1.385 (3)
F4—C8	1.351 (4)	С29—Н29	0.9500
C4—H4	0.9500	C29—C30	1.390 (4)
C4—C5	1.380 (4)	С30—Н30	0.9500
F5—C8	1.333 (4)	C30—C31	1.382 (4)
C5—C6	1.405 (3)	C31—H31	0.9500
C5—C8	1.498 (4)	C31—C32	1.394 (4)
F6—C8	1.324 (3)	С32—Н32	0.9500
С6—Н6	0.9500	C33—C34	1.395 (3)
C7—F2	1.330 (4)	C33—C38	1.395 (3)
C7—F3	1.321 (4)	C34—H34	0.9500
C9—C10	1.402 (3)	C34—C35	1.387 (3)
C9—C14	1.392 (3)	С35—Н35	0.9500
C10—H10	0.9500	C35—C36	1.379 (4)
C10—C11	1.384 (4)	С36—Н36	0.9500
C11—H11	0.9500	C36—C37	1.388 (4)
C11—C12	1.384 (4)	С37—Н37	0.9500
C12—H12	0.9500	C37—C38	1.384 (4)
C12—C13	1.383 (4)	C38—H38	0.9500
C13—H13	0.9500	C39—C40	1.387 (3)
C13—C14	1.392 (4)	C39—C44	1.400 (3)
C14—H14	0.9500	C40—H40	0.9500
C15—C16	1.403 (3)	C40—C41	1.394 (4)
C15—C20	1.394 (3)	C41—H41	0.9500
C16—H16	0.9500	C41—C42	1.385 (4)
C16—C17	1.383 (3)	C42—H42	0.9500
С17—Н17	0.9500	C42—C43	1.380 (4)
C17—C18	1.389 (4)	C43—H43	0.9500
C18—H18	0.9500	C43—C44	1.387 (4)
C18—C19	1.381 (4)	C44—H44	0.9500

С19—Н19	0.9500		
D1 D41 11	00 186 (15)	H10 C10 C18	110.08 (15)
$\Gamma = \Gamma = \Gamma$	90.180(13) 176 51 (7)	$C_{10} = C_{10} = C_{18}$	119.98(13)
C1 - Pd1 - P1	89 90 (7)	C_{20} C_{19} H_{19}	120.0(2) 119.98(15)
$C_1 - 1 d_1 - 1 1$ $D_2 D_4 1 I_1$	89.90(7)	$C_{20} = C_{10} = C_{10}$	119.98(15) 120.2(2)
12 - 101 - 11 12 - 101 - 11 12 - 101 - 11	90.704(13) 173.08(2)	$H_{20} = C_{20} = C_{15}$	120.2(2)
12 - 101 - 11 12 - 101 - 11	173.08(2)	$H_{20} = C_{20} = C_{10}$	119.90(14)
$r_2 - r_0 - c_1$	09.37 (7) 106.57 (9)	$H_{20} = C_{20} = C_{19}$	119.90(13)
C_{9} $-r_{1}$ $-r_{01}$	100.37(0) 117.59(9)	$C_{22} = C_{21} = F_1$	122.0(2)
C_{15} P_{1} C_{0}	117.30(0) 107.21(11)	$C_{20} = C_{21} = F_{1}$	117.9(2)
C_{13} F_{1} C_{24} C_{21} C_{24} $C_$	107.21(11) 117.72(9)	$H_{22} = C_{21} = C_{22}$	119.3(2)
C_{21} r_{1} r_{1} r_{0}	117.75(0) 104.70(11)	$H_{22} = C_{22} = C_{21}$	119.96(13)
$C_{21} = F_{1} = C_{9}$	104.70(11) 101.00(11)	$C_{23} = C_{22} = C_{21}$	120.0(3)
$C_2 = C_1 = D_1$	101.99(11) 122.82(17)	123 - 122 - 1122	120.0(2)
$C_2 = C_1 = F_{d_1}$	122.02(17)	123 - 223 - 222	120.0(2)
C_{0}	119.13(17) 118.0(2)	$C_{24} = C_{23} = C_{22}$	120.1(3)
$C_0 - C_1 - C_2$	116.0(2)	C_{24} C_{23} H_{23} C_{24} C_{23}	119.90(18)
C_{27} P_{2} P_{1} P_{1}	110.71(8) 112.22(8)	$H_{24} = C_{24} = C_{23}$	119.72(18)
C_{22} P2 C_{27}	112.22(0) 102.42(11)	$C_{25} = C_{24} = C_{25}$	120.0(3)
$C_{33} = F_2 = C_2 / C_{20} = P_2 = P_4 I$	103.43(11) 112.20(8)	$C_{23} = C_{24} = H_{24}$	119.72(18) 120.02(18)
C_{20} P2 C_{27}	113.20(6) 102.14(11)	$H_{23} = C_{23} = C_{24}$	120.02(18)
$C_{39} = F_2 = C_2 / C_{39}$	102.14(11) 108.13(11)	$C_{20} = C_{23} = C_{24}$	120.0(3)
$C_{39} - F_2 - C_{33}$	100.13(11) 110.64(14)	$C_{20} = C_{23} = H_{23}$	120.0(2)
12 - 02 - 01	119.04(14) 120.7(2)	225 - 220 - 221	120.1(3)
$C_3 = C_2 = C_1$	120.7(2)	$H_{20} = C_{20} = C_{21}$	119.93(10)
$C_3 = C_2 = 112$	119.04(14) 1210(2)	$C_{20} = C_{20} = C_{23}$	119.9(2)
$C_{4} - C_{3} - C_{2}$	121.0(2) 110.2(2)	$C_{20} = C_{27} = F_{2}$	119.10(19) 121.75(10)
$C_{7} = C_{3} = C_{4}$	119.2(2) 110.7(2)	C_{32} C_{27} C_{28}	121.73(19) 118.7(2)
$H_{4} = C_{4} = C_{4}$	119.7(2) 120.58(15)	$C_{32} = C_{27} = C_{28}$	110.7(2) 110.58(14)
$C_{5} = C_{4} = C_{5}$	120.38(13) 118.8(2)	$C_{20} = C_{20} = C_{27}$	119.38(14) 120.8(2)
C_{3}	110.0(2)	$C_{29} = C_{28} = C_{27}$	120.8(2)
$C_{5} - C_{4} - H_{4}$	120.38(13) 120.5(2)	$H_{29} = C_{20} = C_{28}$	119.38(15) 120.06(15)
C_{0}	120.3(2) 1210(2)	(23) (23) (23) (23) (23) (23) (23) (23)	120.00(13)
$C_{3} - C_{5} - C_{6}$	121.0(2) 118 5 (2)	C_{30} C_{29} C_{28} C_{30} C_{29} H_{29}	119.9(2)
$C_{5} - C_{6} - C_{1}$	120.9(2)	H_{30} C_{30} C_{29}	119.96 (16)
H6-C6-C1	120.9(2) 119.56(14)	$C_{31} - C_{30} - C_{29}$	1201(2)
H6-C6-C5	119.56 (15)	$C_{31} - C_{30} - H_{30}$	120.1(2) 119.96(17)
$C_{3}-C_{7}-F_{1}$	119.50 (15)	$H_{31} - C_{31} - C_{30}$	119.90(17) 119.93(17)
F_{2} C_{7} F_{1}	103.7(3)	C_{32} C_{31} C_{30}	1201(3)
$F_{2} = C_{7} = C_{3}$	103.7(3) 112.0(3)	C_{32} C_{31} H_{31}	120.1(3) 119.93(17)
$F_{2} = C_{7} = C_{3}$	105.6(3)	$C_{31} - C_{32} - C_{27}$	120.3(3)
F_{3} C_{7} C_{3}	103.0(3) 112.7(3)	H_{32} C_{32} C_{27}	120.3(3) 119.84(15)
F_{3} C_{7} F_{2}	107.5(3)	$H_{32} = C_{32} = C_{31}$	119.84 (17)
F5-C8-F4	104 5 (2)	C34—C33—P2	116 86 (18)
C5-C8-F4	111.7 (3)	C38—C33—P2	123.97 (19)
C_{5} C_{8} F_{5}	112.9 (3)	C_{38} C_{33} C_{34}	119 1 (2)
F6-C8-F4	105 3 (3)	H_{34} C_{34} C_{33}	119.1(2) 119.72(14)
10-00-14	105.5 (5)	1137-037-033	119.72 (14)

F6—C8—F5	108.7 (3)	C35—C34—C33	120.6 (2)
F6—C8—C5	113.1 (2)	С35—С34—Н34	119.72 (15)
C10—C9—P1	117.26 (18)	H35—C35—C34	120.11 (15)
C14—C9—P1	123.67 (18)	C36—C35—C34	119.8 (2)
C14—C9—C10	119.0 (2)	С36—С35—Н35	120.11 (15)
H10—C10—C9	119.69 (14)	H36—C36—C35	119.89 (15)
С11—С10—С9	120.6 (2)	C37—C36—C35	120.2 (2)
C11—C10—H10	119.69 (15)	С37—С36—Н36	119.89 (15)
H11—C11—C10	119.94 (15)	Н37—С37—С36	119.85 (15)
C12—C11—C10	120.1 (2)	C38—C37—C36	120.3 (2)
C12—C11—H11	119.94 (15)	С38—С37—Н37	119.85 (16)
H12—C12—C11	120.15 (15)	C37—C38—C33	120.0 (2)
C13—C12—C11	119.7 (2)	H38—C38—C33	120.00 (15)
C13—C12—H12	120.15 (16)	H38—C38—C37	120.00 (16)
H13—C13—C12	119.61 (16)	C40—C39—P2	121.38 (18)
C14—C13—C12	120.8 (2)	C44—C39—P2	119.6 (2)
С14—С13—Н13	119.61 (16)	C44—C39—C40	119.0 (2)
C13-C14-C9	119.9 (2)	H40—C40—C39	119.72 (14)
H14—C14—C9	120.07(14)	C41 - C40 - C39	120.6(2)
H14-C14-C13	120.07 (16)	C41-C40-H40	119.72 (16)
C16—C15—P1	120.36 (18)	H41-C41-C40	120.00 (16)
C_{20} — C_{15} — P_{1}	120.60 (18)	C42-C41-C40	120.0(3)
C20—C15—C16	119.0 (2)	C42—C41—H41	120.00 (17)
H16—C16—C15	119.79 (14)	H42-C42-C41	120.16(17)
C17—C16—C15	120.4 (2)	C43-C42-C41	119.7 (3)
C17—C16—H16	119.79 (15)	C43—C42—H42	120.16 (16)
H17—C17—C16	120.03 (15)	H43—C43—C42	119.63 (16)
C18—C17—C16	119.9 (2)	C44—C43—C42	120.7 (3)
С18—С17—Н17	120.03 (15)	C44—C43—H43	119.63 (17)
H18—C18—C17	119.85 (15)	C43—C44—C39	120.0 (3)
C19—C18—C17	120.3 (2)	H44—C44—C39	120.00 (15)
C19—C18—H18	119.85 (15)	H44—C44—C43	120.00 (17)
Pd1—C1—C2—C3	-179.72 (19)	C4—C5—C8—F5	136.1 (3)
Pd1—C1—C6—C5	179.74 (19)	C4—C5—C8—F6	12.1 (3)
P1C9C10C11	-176.36 (19)	F5—C8—C5—C6	-46.4 (3)
P1-C9-C14-C13	175.9 (2)	C9-C10-C11-C12	0.2 (3)
P1-C15-C16-C17	-177.40 (19)	C9—C14—C13—C12	0.2 (3)
P1-C15-C20-C19	178.06 (19)	C10-C11-C12-C13	-0.1 (3)
P1-C21-C22-C23	176.3 (2)	C11—C12—C13—C14	-0.1 (3)
P1-C21-C26-C25	-176.5 (2)	C15—C16—C17—C18	-1.2 (3)
F1—C7—C3—C2	-26.8 (3)	C15—C20—C19—C18	-0.2 (3)
F1—C7—C3—C4	155.1 (3)	C16—C17—C18—C19	-0.9 (3)
C1—C2—C3—C4	0.2 (3)	C17—C18—C19—C20	1.5 (3)
C1—C2—C3—C7	-177.8 (3)	C21—C22—C23—C24	0.0 (3)
C1—C6—C5—C4	-0.2 (3)	C21—C26—C25—C24	0.0 (3)
C1—C6—C5—C8	-177.6 (3)	C22—C23—C24—C25	-0.1 (3)
P2-C27-C28-C29	-173.66 (19)	C23—C24—C25—C26	0.2 (4)

P2-C27-C32-C31	173.6 (2)	C27—C28—C29—C30	-0.3 (3)
P2-C33-C34-C35	177.09 (19)	C27—C32—C31—C30	0.1 (4)
P2-C33-C38-C37	-177.9 (2)	C28—C29—C30—C31	0.7 (3)
P2-C39-C40-C41	-177.7 (2)	C29—C30—C31—C32	-0.6 (4)
P2-C39-C44-C43	178.9 (2)	C33—C34—C35—C36	1.5 (3)
C2—C3—C4—C5	0.1 (3)	C33—C38—C37—C36	0.3 (3)
C2—C3—C7—F2	91.0 (3)	C34—C35—C36—C37	-1.4 (3)
C2—C3—C7—F3	-147.7 (3)	C35—C36—C37—C38	0.4 (3)
C3—C4—C5—C6	-0.1 (3)	C39—C40—C41—C42	-1.0 (3)
C3—C4—C5—C8	177.3 (3)	C39—C44—C43—C42	-1.5 (3)
F4—C8—C5—C4	-106.4 (3)	C40—C41—C42—C43	1.0 (3)
F4—C8—C5—C6	71.0 (3)	C41—C42—C43—C44	0.2 (3)

(3,5-Dinitrophenyl)iodidobis(triphenylphosphane)palladium(II) ethyl acetate monosolvate (2)

Crystal	data
---------	------

$[Pd(C_6H_3N_2O4)I(C_{18}H_{15}P)_2] \cdot C_4H_8O_2$	F(000) = 2028.373
$M_r = 1013.12$	$D_{\rm x} = 1.595 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 11.7692 (7) Å	Cell parameters from 6764 reflections
b = 34.870 (2) Å	$\theta = 2.3 - 24.5^{\circ}$
c = 10.4381 (6) Å	$\mu = 1.30 \text{ mm}^{-1}$
$\beta = 99.920 \ (1)^{\circ}$	T = 100 K
V = 4219.7 (4) Å ³	Block, clear yellow
Z = 4	$0.4 \times 0.25 \times 0.1 \text{ mm}$
Data collection	
Bruker APEXI CCD	9320 independent reflections
diffractometer	7734 reflections with $I \ge 2u(I)$
φ and ω scans	$R_{\rm int} = 0.073$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.1^\circ, \theta_{\rm min} = 1.2^\circ$
(SADABS; Krause et al., 2015)	$h = -15 \rightarrow 15$
$T_{\min} = 0.663, \ T_{\max} = 0.746$	$k = -44 \longrightarrow 44$
53507 measured reflections	$l = -13 \rightarrow 13$
Refinement	
Refinement on F^2	78 constraints
Least-squares matrix: full	Primary atom site location: iterative
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.091$	$w = 1/[\sigma^2(F_o^2) + (0.0221P)^2 + 15.765P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
9320 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
519 parameters	$\Delta \rho_{\rm max} = 1.50 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.32 \text{ e } \text{\AA}^{-3}$

where $P = ($
$(\Delta/\sigma)_{\rm max} = 0.00$
$\Delta \rho_{\rm max} = 1.50 \ {\rm e}$
$\Delta \rho_{\min} = -1.32$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.40258 (2)	0.413322 (8)	0.22478 (3)	0.01801 (8)	
Pd1	0.59200 (2)	0.373950 (8)	0.32437 (3)	0.01022 (7)	
P1	0.70748 (9)	0.42072 (3)	0.25352 (10)	0.0120 (2)	
01	0.8235 (3)	0.35967 (10)	0.8178 (3)	0.0306 (8)	

N1	0.8900 (3)	0.34076 (11)	0.7649 (4)	0.0226 (8)
C1	0.7341 (3)	0.34829 (10)	0.4201 (4)	0.0068 (5)
P2	0.48101 (8)	0.32165 (3)	0.36841 (10)	0.0103 (2)
02	0.9761 (3)	0.32500 (10)	0.8243 (3)	0.0342 (9)
N2	0.9728 (3)	0.28312 (10)	0.3628 (4)	0.0194 (8)
C2	0.7994 (3)	0.32503 (10)	0.3576 (4)	0.0068 (5)
H2	0.7792(3)	0.32071 (10)	0.2666 (4)	0.0082 (6)*
03	1.0625 (3)	0.27056 (10)	0.4255(3)	0.0326 (8)
C3	0.8990(3)	0.30722(11)	0.4311(4)	0.0160(9)
04	0.9426(3)	0.27755(10)	0.2460(3)	0.0275 (8)
C4	0.9321(4)	0.27755(12) 0.31185(12)	0.5643(4)	0.0275(0)
С 1 Н4	0.9921(4) 0.9980(4)	0.31103(12) 0.29947(12)	0.6119 (4)	0.0105(9)
05	1.0288(3)	0.27747(12) 0.40709(10)	0.0117(4) 0.7260(3)	0.0222(11)
C5	0.8628(3)	0.40709(10) 0.33565(12)	0.7200(3)	0.0350(9)
06	1,0202,(3)	0.33303(12) 0.45708(0)	0.0230(4)	0.0104(9)
00	1.0202(3)	0.43796(9) 0.25425(11)	0.6543(3)	0.0308(8)
	0.7004(3)	0.33433(11)	0.5347(4)	0.0131(6)
HO	0.7227(3)	0.3/115(11)	0.3989 (4)	$0.0182(10)^{*}$
C7	0.3783(3)	0.31053 (11)	0.2213(4)	0.0111 (8)
C8	0.4196 (4)	0.31309 (11)	0.1038 (4)	0.0151 (8)
H8	0.4986 (4)	0.31887 (11)	0.1042 (4)	0.0181 (10)*
C9	0.3462 (4)	0.30727 (11)	-0.0130 (4)	0.0163 (9)
H9	0.3747 (4)	0.30899 (11)	-0.0926 (4)	0.0196 (10)*
C10	0.2316 (4)	0.29895 (11)	-0.0138 (4)	0.0160 (8)
H10	0.1809 (4)	0.29528 (11)	-0.0940 (4)	0.0192 (10)*
C11	0.1905 (3)	0.29594 (12)	0.1024 (4)	0.0167 (9)
H11	0.1115 (3)	0.29016 (12)	0.1015 (4)	0.0200 (10)*
C12	0.2641 (3)	0.30131 (11)	0.2199 (4)	0.0141 (8)
H12	0.2359 (3)	0.29865 (11)	0.2994 (4)	0.0169 (10)*
C13	0.5555 (3)	0.27629 (11)	0.4127 (4)	0.0115 (8)
C14	0.5513 (4)	0.24542 (12)	0.3294 (4)	0.0197 (9)
H14	0.5016 (4)	0.24607 (12)	0.2474 (4)	0.0237 (11)*
C15	0.6200 (4)	0.21314 (13)	0.3653 (5)	0.0273 (11)
H15	0.6160 (4)	0.19186 (13)	0.3078 (5)	0.0327 (13)*
C16	0.6932 (4)	0.21195 (13)	0.4828 (5)	0.0263 (11)
H16	0.7417 (4)	0.19033 (13)	0.5052 (5)	0.0316 (13)*
C17	0.6961 (4)	0.24229 (13)	0.5682 (5)	0.0225 (10)
H17	0.7452 (4)	0.24129 (13)	0.6505 (5)	0.0271 (12)*
C18	0.6274 (3)	0.27425 (12)	0.5341 (4)	0.0163 (9)
H18	0.6292 (3)	0.29493 (12)	0.5936 (4)	0.0196 (10)*
C19	0.3964 (3)	0.32934 (11)	0.4967 (4)	0.0131 (8)
C20	0.3388 (3)	0.29901(12)	0.5443(4)	0.0143 (8)
H20	0.3499 (3)	0.27357 (12)	0.5163 (4)	0.0172 (10)*
C21	0.2655 (4)	0.30588(12)	0.6323 (4)	0.0164(9)
H21	0.2252(4)	0.28517(12)	0.6631 (4)	0.0196 (10)*
C22	0.2202(1) 0.2506(4)	0.34279(12)	0.6754(4)	0.0170 (9)
H22	0.2300(4) 0.1986(4)	0.34754(12)	0.0734(4)	0.0170(9) 0.0204(10)*
C23	0.1200(7) 0.3118(4)	0.37766(12)	0.7337(7) 0.6330(4)	0.0204(10)
U23	0.3110(4) 0.2041(4)	0.37200(12) 0.30784(12)	0.0550(4)	0.0120 (2)
1143	0.3041 (4)	0.37704(12)	0.0052 (4)	0.0220(11)

C24	0.3844 (4)	0.36609 (12)	0.5435 (4)	0.0153 (8)
H24	0.4258 (4)	0.38678 (12)	0.5144 (4)	0.0184 (10)*
C25	0.6540 (3)	0.43208 (12)	0.0840 (4)	0.0149 (8)
C26	0.6448 (4)	0.46947 (13)	0.0354 (5)	0.0263 (11)
H26	0.6707 (4)	0.49048 (13)	0.0908 (5)	0.0315 (13)*
C27	0.5975 (5)	0.47580 (15)	-0.0946(5)	0.0368 (13)
H27	0.5892 (5)	0.50128 (15)	-0.1271(5)	$0.0441(15)^*$
C28	0.5626(5)	0 44535 (16)	-0.1769(5)	0.0358(13)
H28	0.5319(5)	0 44992 (16)	-0.2658(5)	0.0320(15)*
C29	0.5723(4)	0.40866(15)	-0.1301(5)	0.0307(11)
H20	0.5729(4) 0.5479(4)	0.38774(15)	-0.1865(5)	0.0368(14)*
C30	0.5479(4) 0.6174(4)	0.38774(13) 0.40100(13)	-0.0007(4)	0.0308(14)
U20	0.0174(4) 0.6236(4)	0.40199(13) 0.27640(12)	0.0007(4)	0.0234(10)
П30 С21	0.0230(4)	0.37040(13) 0.40728(11)	0.0309(4)	$0.0281(12)^{\circ}$
C31	0.8380(3)	0.40/28(11)	0.2389 (4)	0.0132(8)
C32	0.8967 (4)	0.39233(12)	0.1503(4)	0.0214(9)
H32	0.8470 (4)	0.39190 (12)	0.0683(4)	0.0257 (11)*
033	1.0091 (4)	0.37794 (13)	0.1626 (5)	0.0288 (11)
H33	1.0355 (4)	0.36731 (13)	0.0892 (5)	0.0346 (13)*
C34	1.0817 (4)	0.37921 (13)	0.2816 (5)	0.0297 (12)
H34	1.1586 (4)	0.37001 (13)	0.2893 (5)	0.0356 (14)*
C35	1.0434 (4)	0.39364 (12)	0.3885 (5)	0.0237 (10)
H35	1.0934 (4)	0.39384 (12)	0.4703 (5)	0.0284 (12)*
C36	0.9326 (3)	0.40795 (11)	0.3786 (4)	0.0178 (9)
H36	0.9072 (3)	0.41822 (11)	0.4531 (4)	0.0213 (11)*
C37	0.7186 (3)	0.46461 (11)	0.3478 (4)	0.0136 (8)
C38	0.8032 (4)	0.49187 (12)	0.3373 (4)	0.0208 (9)
H38	0.8537 (4)	0.48804 (12)	0.2766 (4)	0.0249 (11)*
C39	0.8145 (4)	0.52443 (12)	0.4142 (5)	0.0231 (10)
H39	0.8723 (4)	0.54284 (12)	0.4059 (5)	0.0278 (12)*
C40	0.7413 (4)	0.53017 (12)	0.5037 (4)	0.0210 (9)
H40	0.7491 (4)	0.55245 (12)	0.5569 (4)	0.0252 (11)*
C41	0.6573 (4)	0.50349 (12)	0.5150 (4)	0.0209 (9)
H41	0.6073 (4)	0.50740 (12)	0.5762 (4)	0.0251 (11)*
C42	0.6453 (4)	0.47077 (12)	0.4371 (4)	0.0174 (9)
H42	0.5868 (4)	0.45259 (12)	0.4451 (4)	0.0209 (11)*
C43	1.0684 (4)	0.42566 (13)	0.8203(5)	0.0257(10)
C44	1,1783 (5)	0.41741 (15)	0.9107(5)	0.0362(13)
H44a	1 1898 (16)	0 38961 (15)	0.918(3)	$0.0543(19)^*$
H44b	1 2429 (6)	0.4291(9)	0.8769(18)	0.0543(19)*
H44c	1.2129(0) 1.1744(13)	0.4281(9)	0.9967(10)	0.0543(19)*
C45	0.9110(4)	0.4201(9)	0.7770(5)	0.0345(13)
H45a	0.9110(4) 0.9186(4)	0.47228(16)	0.7770(5)	0.0303(13)
1145a 1145b	0.9100(4) 0.8507(4)	0.47220(10) 0.45013(16)	0.0845(5)	0.0437(15)
C46	0.8805 (5)	0.50695 (16)	0.7033 (3)	$0.0437(13)^{\circ}$
	0.0003(3)	0.50095(10)	0.0309(3)	0.0409(14) 0.061(2)*
1140a U46h	0.077(3)	0.5057(5)	0.9234(10) 0.821(2)	$0.001(2)^{\circ}$
11400 11400	0.7373(10)	0.3200(3)	0.021(3)	$0.001(2)^{\circ}$
п40C	0.8055 (10)	0.3133 (0)	0.784(3)	$0.001(2)^{*}$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
I1	0.01500 (14)	0.01557 (14)	0.02268 (15)	0.00231 (11)	0.00105 (10)	0.00267 (11)
Pd1	0.00825 (14)	0.00941 (14)	0.01207 (15)	-0.00010 (11)	-0.00089 (11)	0.00154 (11)
P1	0.0113 (5)	0.0088 (5)	0.0158 (5)	-0.0002 (4)	0.0019 (4)	0.0001 (4)
01	0.0281 (19)	0.047 (2)	0.0155 (17)	0.0058 (16)	0.0005 (14)	-0.0044 (15)
N1	0.020 (2)	0.027 (2)	0.0188 (19)	-0.0003 (16)	-0.0031 (16)	0.0015 (16)
C1	0.0058 (12)	0.0039 (12)	0.0104 (13)	-0.0023 (9)	0.0008 (10)	0.0019 (10)
P2	0.0100 (5)	0.0102 (5)	0.0101 (5)	-0.0001 (4)	-0.0002 (4)	0.0006 (4)
O2	0.034 (2)	0.044 (2)	0.0192 (17)	0.0143 (17)	-0.0108 (15)	0.0028 (15)
N2	0.0151 (18)	0.0134 (18)	0.028 (2)	0.0019 (14)	0.0005 (16)	-0.0032 (15)
C2	0.0058 (12)	0.0039 (12)	0.0104 (13)	-0.0023 (9)	0.0008 (10)	0.0019 (10)
03	0.0234 (18)	0.037 (2)	0.034 (2)	0.0189 (15)	-0.0062 (15)	-0.0023 (16)
C3	0.015 (2)	0.013 (2)	0.020 (2)	-0.0004 (16)	0.0032 (17)	-0.0010 (16)
O4	0.0236 (17)	0.036 (2)	0.0228 (18)	0.0064 (14)	0.0023 (14)	-0.0100 (14)
C4	0.015 (2)	0.015 (2)	0.023 (2)	-0.0002 (16)	-0.0049 (17)	0.0038 (17)
05	0.044 (2)	0.0292 (19)	0.032 (2)	-0.0066 (16)	0.0075 (17)	-0.0121 (16)
C5	0.016 (2)	0.017 (2)	0.015 (2)	-0.0017 (16)	-0.0025 (16)	0.0019 (16)
06	0.034 (2)	0.0272 (18)	0.0275 (18)	0.0076 (15)	-0.0032 (15)	-0.0088 (14)
C6	0.015 (2)	0.014 (2)	0.015 (2)	-0.0017 (16)	-0.0003 (16)	-0.0005 (16)
C7	0.0125 (19)	0.0097 (18)	0.0111 (19)	0.0025 (15)	0.0016 (15)	-0.0004 (15)
C8	0.014 (2)	0.016 (2)	0.015 (2)	-0.0013 (16)	0.0035 (16)	0.0021 (16)
C9	0.022 (2)	0.013 (2)	0.014 (2)	0.0009 (16)	0.0018 (17)	-0.0001 (16)
C10	0.019 (2)	0.014 (2)	0.013 (2)	0.0020 (16)	-0.0024 (16)	-0.0005 (16)
C11	0.012 (2)	0.015 (2)	0.022 (2)	-0.0003 (16)	-0.0014 (17)	-0.0019 (17)
C12	0.0120 (19)	0.014 (2)	0.016 (2)	-0.0011 (15)	0.0025 (16)	-0.0002 (16)
C13	0.0119 (19)	0.0123 (19)	0.0112 (19)	-0.0009 (15)	0.0042 (15)	0.0026 (15)
C14	0.022 (2)	0.021 (2)	0.017 (2)	0.0064 (18)	0.0068 (18)	0.0031 (18)
C15	0.040 (3)	0.019 (2)	0.024 (2)	0.009 (2)	0.010(2)	-0.0001 (19)
C16	0.026 (2)	0.023 (2)	0.034 (3)	0.014 (2)	0.016 (2)	0.015 (2)
C17	0.018 (2)	0.022 (2)	0.026 (2)	0.0010 (18)	0.0012 (19)	0.0122 (19)
C18	0.013 (2)	0.017 (2)	0.019 (2)	-0.0033 (16)	0.0032 (17)	0.0036 (17)
C19	0.0113 (19)	0.014 (2)	0.0123 (19)	0.0003 (15)	-0.0031 (15)	0.0005 (15)
C20	0.016 (2)	0.013 (2)	0.014 (2)	-0.0004 (16)	0.0001 (16)	-0.0002 (16)
C21	0.019 (2)	0.015 (2)	0.015 (2)	-0.0003 (16)	0.0007 (17)	0.0027 (16)
C22	0.017 (2)	0.023 (2)	0.011 (2)	0.0039 (17)	0.0027 (16)	-0.0006 (17)
C23	0.026 (2)	0.015 (2)	0.016 (2)	0.0054 (18)	0.0026 (18)	-0.0033 (17)
C24	0.018 (2)	0.014 (2)	0.013 (2)	-0.0018 (16)	0.0031 (16)	-0.0011 (16)
C25	0.0118 (19)	0.015 (2)	0.019 (2)	-0.0007 (16)	0.0053 (16)	0.0041 (16)
C26	0.036 (3)	0.015 (2)	0.028 (3)	-0.001 (2)	0.004 (2)	0.0069 (19)
C27	0.049 (3)	0.030 (3)	0.031 (3)	0.004 (2)	0.008 (3)	0.017 (2)
C28	0.039 (3)	0.048 (3)	0.018 (2)	0.005 (3)	0.001 (2)	0.013 (2)
C29	0.035 (3)	0.034 (3)	0.020 (2)	0.001 (2)	-0.003 (2)	0.002 (2)
C30	0.027 (2)	0.018 (2)	0.024 (2)	0.0008 (19)	0.0031 (19)	0.0020 (18)
C31	0.0126 (19)	0.0070 (19)	0.026 (2)	-0.0030 (15)	0.0033 (17)	0.0012 (16)
C32	0.021 (2)	0.019 (2)	0.026 (2)	-0.0007 (18)	0.0076 (19)	-0.0015 (18)
C33	0.025 (3)	0.024 (2)	0.042 (3)	0.000 (2)	0.019 (2)	-0.006(2)

C34	0.015 (2)	0.015 (2)	0.059 (3)	-0.0022 (18)	0.006 (2)	-0.006 (2)
C35	0.014 (2)	0.013 (2)	0.041 (3)	-0.0042 (17)	-0.001 (2)	-0.003 (2)
C36	0.014 (2)	0.012 (2)	0.027 (2)	-0.0035 (16)	0.0013 (17)	-0.0033 (17)
C37	0.0128 (19)	0.0112 (19)	0.017 (2)	0.0021 (15)	0.0020 (16)	0.0015 (16)
C38	0.022 (2)	0.016 (2)	0.026 (2)	-0.0006 (18)	0.0104 (19)	-0.0027 (18)
C39	0.022 (2)	0.015 (2)	0.034 (3)	-0.0074 (18)	0.009 (2)	-0.0036 (19)
C40	0.026 (2)	0.013 (2)	0.024 (2)	0.0003 (18)	0.0015 (19)	-0.0040 (17)
C41	0.016 (2)	0.022 (2)	0.025 (2)	0.0007 (18)	0.0053 (18)	-0.0032 (19)
C42	0.016 (2)	0.015 (2)	0.022 (2)	-0.0016 (16)	0.0048 (17)	-0.0024 (17)
C43	0.035 (3)	0.022 (2)	0.022 (2)	-0.002 (2)	0.009 (2)	-0.0010 (19)
C44	0.047 (3)	0.035 (3)	0.025 (3)	0.016 (3)	0.002 (2)	-0.007(2)
C45	0.030 (3)	0.042 (3)	0.034 (3)	0.006 (2)	-0.005 (2)	-0.007 (2)
C46	0.036 (3)	0.043 (3)	0.039 (3)	0.014 (3)	-0.007 (2)	-0.013 (3)

Geometric parameters (Å, °)

I1—Pd1	2.6715 (4)	C20—H20	0.9500
Pd1—P1	2.3240 (10)	C20—C21	1.385 (6)
Pd1—C1	2.005 (4)	C21—H21	0.9500
Pd1—P2	2.3347 (10)	C21—C22	1.385 (6)
P1—C25	1.816 (4)	C22—H22	0.9500
P1—C31	1.824 (4)	C22—C23	1.382 (6)
P1—C37	1.812 (4)	С23—Н23	0.9500
O1—N1	1.225 (5)	C23—C24	1.389 (6)
N1	1.223 (5)	C24—H24	0.9500
N1—C5	1.471 (5)	C25—C26	1.396 (6)
C1—C2	1.360 (5)	C25—C30	1.392 (6)
C1—C6	1.407 (5)	C26—H26	0.9500
P2—C7	1.825 (4)	C26—C27	1.393 (7)
P2—C13	1.828 (4)	C27—H27	0.9500
P2C19	1.821 (4)	C27—C28	1.383 (8)
N2—O3	1.224 (4)	C28—H28	0.9500
N2—C3	1.477 (5)	C28—C29	1.367 (7)
N2—O4	1.226 (5)	С29—Н29	0.9500
С2—Н2	0.9500	C29—C30	1.383 (6)
C2—C3	1.428 (5)	С30—Н30	0.9500
C3—C4	1.387 (6)	C31—C32	1.394 (6)
C4—H4	0.9500	C31—C36	1.398 (6)
C4—C5	1.379 (6)	C32—H32	0.9500
O5—C43	1.203 (5)	C32—C33	1.400 (6)
C5—C6	1.393 (5)	С33—Н33	0.9500
O6—C43	1.337 (5)	C33—C34	1.382 (7)
O6—C45	1.452 (6)	C34—H34	0.9500
С6—Н6	0.9500	C34—C35	1.369 (7)
C7—C8	1.398 (5)	C35—H35	0.9500
C7—C12	1.380 (5)	C35—C36	1.383 (6)
С8—Н8	0.9500	С36—Н36	0.9500
C8—C9	1.382 (6)	C37—C38	1.394 (6)

С9—Н9	0.9500	C37—C42	1.393 (6)
C9—C10	1.378 (6)	C38—H38	0.9500
C10—H10	0.9500	C38—C39	1.384 (6)
C10—C11	1.385 (6)	С39—Н39	0.9500
C11—H11	0.9500	C39—C40	1.391 (6)
C11—C12	1.387 (6)	C40—H40	0.9500
C12—H12	0.9500	C40—C41	1.377 (6)
C13—C14	1.379 (6)	C41—H41	0.9500
C13—C18	1.399 (5)	C41—C42	1.394 (6)
C14—H14	0.9500	C42—H42	0.9500
C14—C15	1.399 (6)	C43—C44	1.492 (7)
C15—H15	0.9500	C44—H44a	0.9800
C15—C16	1.373 (7)	C44—H44b	0.9800
C16—H16	0.9500	C44—H44c	0.9800
C16—C17	1.380 (7)	C45—H45a	0.9900
С17—Н17	0.9500	C45—H45b	0.9900
C17—C18	1.387 (6)	C45—C46	1.490 (7)
C18—H18	0.9500	C46—H46a	0.9800
C19—C20	1.393 (5)	C46—H46b	0.9800
C19—C24	1.387 (5)	C46—H46c	0.9800
P1—Pd1—I1	90.58 (3)	C22—C21—C20	120.3 (4)
C1—Pd1—I1	172.63 (10)	C22—C21—H21	119.8 (2)
C1—Pd1—P1	89.35 (10)	H22—C22—C21	120.2 (2)
P2—Pd1—I1	91.17 (3)	C23—C22—C21	119.6 (4)
P2—Pd1—P1	171.36 (4)	C23—C22—H22	120.2 (2)
P2—Pd1—C1	90.00 (10)	H23—C23—C22	119.8 (2)
C25—P1—Pd1	109.84 (13)	C24—C23—C22	120.4 (4)
C31—P1—Pd1	115.34 (13)	C24—C23—H23	119.8 (2)
C31—P1—C25	104.95 (19)	C23—C24—C19	120.1 (4)
C37—P1—Pd1	114.31 (14)	H24—C24—C19	120.0 (2)
C37—P1—C25	108.97 (19)	H24—C24—C23	120.0 (2)
C37—P1—C31	102.79 (18)	C26—C25—P1	123.3 (3)
O2—N1—O1	123.4 (4)	C30—C25—P1	118.2 (3)
C5—N1—O1	118.3 (3)	C30—C25—C26	118.5 (4)
C5—N1—O2	118.3 (4)	H26—C26—C25	120.2 (3)
C2—C1—Pd1	121.3 (3)	C27—C26—C25	119.7 (4)
C6—C1—Pd1	119.3 (3)	С27—С26—Н26	120.2 (3)
C6—C1—C2	119.4 (3)	H27—C27—C26	119.7 (3)
C7—P2—Pd1	108.18 (13)	C28—C27—C26	120.6 (5)
C13—P2—Pd1	117.73 (13)	С28—С27—Н27	119.7 (3)
C13—P2—C7	104.36 (17)	H28—C28—C27	120.0 (3)
C19—P2—Pd1	115.16 (13)	C29—C28—C27	119.9 (5)
C19—P2—C7	106.45 (18)	C29—C28—H28	120.0 (3)
C19—P2—C13	103.94 (18)	H29—C29—C28	120.0 (3)
C3—N2—O3	118.1 (4)	C30—C29—C28	120.0 (5)
O4—N2—O3	123.4 (4)	С30—С29—Н29	120.0 (3)
O4—N2—C3	118.5 (3)	C29—C30—C25	121.2 (4)

H2—C2—C1	120.6 (2)	H30—C30—C25	119.4 (2)
C3—C2—C1	118.8 (3)	H30—C30—C29	119.4 (3)
С3—С2—Н2	120.6 (2)	C32—C31—P1	121.5 (3)
C2—C3—N2	119.0 (4)	C36—C31—P1	118.7 (3)
C4—C3—N2	117.6 (4)	C36—C31—C32	119.4 (4)
C4—C3—C2	123.4 (4)	H32—C32—C31	120.2 (3)
H4—C4—C3	122.3 (2)	C33—C32—C31	119.7 (4)
C5—C4—C3	115.5 (4)	С33—С32—Н32	120.2 (3)
C5—C4—H4	122.3 (2)	H33—C33—C32	120.0 (3)
C4—C5—N1	118.5 (4)	C34—C33—C32	119.9 (4)
C6—C5—N1	118.4 (4)	С34—С33—Н33	120.0 (3)
C6—C5—C4	123.1 (4)	H34—C34—C33	119.8 (3)
C45—O6—C43	117.4 (4)	C35—C34—C33	120.3 (4)
C5—C6—C1	119.8 (4)	С35—С34—Н34	119.8 (3)
H6—C6—C1	120.1 (2)	H35—C35—C34	119.7 (3)
H6—C6—C5	120.1 (2)	C36—C35—C34	120.7 (4)
C8—C7—P2	116.4 (3)	С36—С35—Н35	119.7 (3)
C12—C7—P2	124.1 (3)	C35—C36—C31	120.0 (4)
C12—C7—C8	119.4 (4)	H36—C36—C31	120.0 (2)
H8—C8—C7	119.8 (2)	H36—C36—C35	120.0 (3)
C9—C8—C7	120.4 (4)	C38—C37—P1	121.3 (3)
С9—С8—Н8	119.8 (2)	C42—C37—P1	119.9 (3)
Н9—С9—С8	120.0 (2)	C42—C37—C38	118.7 (4)
C10—C9—C8	119.9 (4)	H38—C38—C37	119.6 (2)
С10—С9—Н9	120.0 (2)	C39—C38—C37	120.8 (4)
H10—C10—C9	120.0 (2)	С39—С38—Н38	119.6 (3)
C11—C10—C9	120.0 (4)	H39—C39—C38	120.0 (3)
C11—C10—H10	120.0 (2)	C40—C39—C38	119.9 (4)
H11—C11—C10	119.8 (2)	С40—С39—Н39	120.0 (2)
C12—C11—C10	120.3 (4)	H40—C40—C39	120.1 (2)
C12—C11—H11	119.8 (2)	C41—C40—C39	119.8 (4)
C11—C12—C7	120.0 (4)	C41—C40—H40	120.1 (3)
H12—C12—C7	120.0 (2)	H41—C41—C40	119.8 (3)
H12—C12—C11	120.0 (2)	C42—C41—C40	120.4 (4)
C14—C13—P2	123.5 (3)	C42—C41—H41	119.8 (3)
C18—C13—P2	117.5 (3)	C41—C42—C37	120.3 (4)
C18—C13—C14	118.8 (4)	H42—C42—C37	119.8 (2)
H14—C14—C13	119.9 (2)	H42—C42—C41	119.8 (3)
C15—C14—C13	120.2 (4)	O6—C43—O5	123.3 (5)
C15—C14—H14	119.9 (3)	C44—C43—O5	125.8 (4)
H15—C15—C14	119.7 (3)	C44—C43—O6	110.8 (4)
C16—C15—C14	120.6 (4)	H44a—C44—C43	109.5
C16—C15—H15	119.7 (3)	H44b—C44—C43	109.5
H16—C16—C15	120.1 (3)	H44b—C44—H44a	109.5
C17—C16—C15	119.7 (4)	H44c—C44—C43	109.5
С17—С16—Н16	120.1 (3)	H44c—C44—H44a	109.5
H17—C17—C16	119.9 (3)	H44c—C44—H44b	109.5
C18—C17—C16	120.1 (4)	H45a—C45—O6	110.5 (3)

C18—C17—H17	119.9 (3)	H45b—C45—O6	110.5 (3)
C17—C18—C13	120.6 (4)	H45b—C45—H45a	108.7
H18—C18—C13	119.7 (2)	C46—C45—O6	106.2 (4)
H18—C18—C17	119.7 (3)	C46—C45—H45a	110.5 (3)
C20—C19—P2	120.8 (3)	C46—C45—H45b	110.5 (3)
C24—C19—P2	119.8 (3)	H46a—C46—C45	109.5
C24—C19—C20	119.4 (4)	H46b—C46—C45	109.5
H20—C20—C19	119.9 (2)	H46b—C46—H46a	109.5
C21—C20—C19	120.1 (4)	H46c—C46—C45	109.5
C21—C20—H20	119.9 (2)	H46c—C46—H46a	109.5
H21—C21—C20	119.8 (2)	H46c—C46—H46b	109.5
Pd1—C1—C2—C3	-179.4 (3)	C7—C8—C9—C10	0.1 (5)
Pd1—C1—C6—C5	177.9 (3)	C7—C12—C11—C10	1.4 (5)
P1—C25—C26—C27	-176.8 (4)	C8—C9—C10—C11	-0.9(5)
P1-C25-C30-C29	177.9 (4)	C9-C10-C11-C12	0.1 (5)
P1—C31—C32—C33	-172.1 (3)	C13—C14—C15—C16	-0.7(5)
P1-C31-C36-C35	172.4 (3)	C13—C18—C17—C16	-0.6(5)
P1-C37-C38-C39	-176.9 (3)	C14—C15—C16—C17	2.3 (6)
P1—C37—C42—C41	176.5 (3)	C15—C16—C17—C18	-1.6 (5)
O1—N1—C5—C4	-174.8 (4)	C19—C20—C21—C22	-1.3 (5)
O1—N1—C5—C6	3.6 (5)	C19—C24—C23—C22	-0.4 (5)
N1—C5—C4—C3	177.7 (4)	C20—C21—C22—C23	-1.8 (5)
N1-C5-C6-C1	-176.2 (3)	C21—C22—C23—C24	2.6 (5)
C1—C2—C3—N2	-177.7 (3)	C25—C26—C27—C28	-1.8 (6)
C1—C2—C3—C4	1.1 (4)	C25—C30—C29—C28	-0.1 (6)
C1—C6—C5—C4	2.1 (5)	C26—C27—C28—C29	1.3 (6)
P2—C7—C8—C9	-176.4 (3)	C27—C28—C29—C30	-0.3 (6)
P2-C7-C12-C11	175.5 (3)	C31—C32—C33—C34	-1.1 (5)
P2-C13-C14-C15	173.3 (4)	C31—C36—C35—C34	0.9 (5)
P2-C13-C18-C17	-173.0 (3)	C32—C33—C34—C35	1.6 (5)
P2-C19-C20-C21	-173.5 (3)	C33—C34—C35—C36	-1.4 (5)
P2-C19-C24-C23	174.3 (3)	C37—C38—C39—C40	0.3 (5)
N2—C3—C4—C5	177.8 (4)	C37—C42—C41—C40	0.5 (5)
C2—C3—C4—C5	-0.9 (5)	C38—C39—C40—C41	-0.3 (5)
C3—C4—C5—C6	-0.6 (5)	C39—C40—C41—C42	-0.1 (5)
O5—C43—O6—C45	3.8 (6)		

(3)

Crystal data

 $[Pd(C_6H_2F_3)I(C_{18}H_{15}P)_2]$ $M_r = 888.99$ Monoclinic, I2/a a = 11.6327 (5) Å b = 12.8059 (5) Å c = 23.4327 (9) Å $\beta = 93.218$ (2)° V = 3485.2 (2) Å³ Z = 4 F(000) = 1756.204 $D_x = 1.694 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9946 reflections $\theta = 2.4-27.2^{\circ}$ $\mu = 1.56 \text{ mm}^{-1}$ T = 100 KIrregular, clear orange $0.28 \times 0.27 \times 0.23 \text{ mm}$ Data collection

Bruker APEXI CCD	3875 independent reflections
diffractometer	3735 reflections with $I \ge 2u(I)$
φ and ω scans	$R_{int} = 0.018$
Absorption correction: multi-scan	$\theta_{max} = 27.2^{\circ}, \ \theta_{min} = 1.7^{\circ}$
(SADABS; Krause <i>et al.</i> , 2015)	$h = -14 \rightarrow 14$
$T_{\min} = 0.705, T_{\max} = 0.746$	$k = -16 \rightarrow 16$
22427 measured reflections	$l = -30 \rightarrow 30$
Refinement	
Refinement on F^2	39 constraints
Least-squares matrix: full	Primary atom site location: dual
$R[F^2 > 2\sigma(F^2)] = 0.021$	H-atom parameters constrained
wR(F ²) = 0.052	$w = 1/[\sigma^2(F_o^2) + (0.0197P)^2 + 13.0801P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
3875 reflections	$(\Delta/\sigma)_{max} = -0.001$
229 parameters	$\Delta\rho_{max} = 2.05 \text{ e } \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.12 \text{ e A}^{-1}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Pd1	0.75	0.236973 (16)	0.0	0.01084 (6)	
I1	0.75	0.446148 (14)	0.0	0.01799 (6)	
P1	0.72633 (4)	0.23781 (4)	-0.09914 (2)	0.01123 (10)	
F1	0.9269 (2)	0.0691 (2)	-0.04020 (11)	0.0232 (5)	0.500000
C1	0.75	0.0737 (3)	0.0	0.0271 (5)	
F2	0.9258 (3)	-0.1397 (2)	-0.03982 (14)	0.0356 (7)	0.500000
C2	0.8377 (2)	0.02354 (18)	-0.01838 (9)	0.0252 (5)	0.500000
F3	0.75	-0.24706 (16)	0.0	0.0420 (6)	
C3	0.8418 (2)	-0.08796 (19)	-0.02042 (10)	0.0261 (5)	0.500000
C4	0.75	-0.1412 (3)	0.0	0.0271 (5)	
C5	0.58866 (17)	0.28796 (15)	-0.12888 (8)	0.0139 (4)	
C6	0.51028 (18)	0.33479 (16)	-0.09401 (9)	0.0172 (4)	
H6	0.53051 (18)	0.34601 (16)	-0.05465 (9)	0.0207 (5)*	
C7	0.40197 (19)	0.36523 (18)	-0.11691 (10)	0.0221 (4)	
H7	0.34844 (19)	0.39684 (18)	-0.09309 (10)	0.0265 (5)*	
C8	0.37264 (19)	0.34931 (17)	-0.17438 (11)	0.0219 (5)	
H8	0.29915 (19)	0.37059 (17)	-0.18991 (11)	0.0263 (5)*	
C9	0.45004 (18)	0.30242 (17)	-0.20941 (9)	0.0194 (4)	
Н9	0.42961 (18)	0.29169 (17)	-0.24880 (9)	0.0233 (5)*	
C10	0.55753 (18)	0.27125 (16)	-0.18665 (9)	0.0164 (4)	
H10	0.61015 (18)	0.23839 (16)	-0.21050 (9)	0.0197 (5)*	
C11	0.73091 (17)	0.11054 (16)	-0.13442 (8)	0.0135 (4)	
C12	0.82437 (18)	0.07795 (17)	-0.16450 (9)	0.0181 (4)	
H12	0.88437 (18)	0.12567 (17)	-0.17173 (9)	0.0217 (5)*	
C13	0.82994 (19)	-0.02488 (19)	-0.18406 (9)	0.0229 (5)	
H13	0.89408 (19)	-0.04698 (19)	-0.20434 (9)	0.0275 (5)*	
C14	0.7428 (2)	-0.09460 (18)	-0.17409 (10)	0.0243 (5)	
H14	0.7476 (2)	-0.16478 (18)	-0.18687 (10)	0.0291 (6)*	

C15	0.64770 (19)	-0.06188 (17)	-0.14527 (10)	0.0212 (4)	
H15	0.58697 (19)	-0.10942 (17)	-0.13905 (10)	0.0255 (5)*	
C16	0.64151 (18)	0.04002 (16)	-0.12563 (9)	0.0169 (4)	
H16	0.57635 (18)	0.06211 (16)	-0.10612 (9)	0.0202 (5)*	
C17	0.84344 (17)	0.31007 (16)	-0.12955 (8)	0.0141 (4)	
C18	0.83228 (18)	0.36272 (16)	-0.18177 (9)	0.0167 (4)	
H18	0.76010 (18)	0.36412 (16)	-0.20284 (9)	0.0201 (5)*	
C19	0.9272 (2)	0.41326 (17)	-0.20295 (9)	0.0208 (4)	
H19	0.9197 (2)	0.44869 (17)	-0.23858 (9)	0.0249 (5)*	
C20	1.0326 (2)	0.41195 (18)	-0.17216 (10)	0.0230 (5)	
H20	1.0967 (2)	0.44704 (18)	-0.18663 (10)	0.0276 (5)*	
C21	1.04467 (19)	0.35962 (19)	-0.12031 (10)	0.0233 (5)	
H21	1.11705 (19)	0.35847 (19)	-0.09942 (10)	0.0279 (5)*	
C22	0.95025 (18)	0.30879 (18)	-0.09903 (9)	0.0186 (4)	
H22	0.95847 (18)	0.27299 (18)	-0.06353 (9)	0.0224 (5)*	
C2A	0.8377 (2)	0.02354 (18)	-0.01838 (9)	0.0252 (5)	0.500000
H2A	0.9012 (2)	0.06228 (18)	-0.03091 (9)	0.0302 (6)*	0.500000
C3A	0.8418 (2)	-0.08796 (19)	-0.02042 (10)	0.0261 (5)	0.500000
H3A	0.9052 (2)	-0.12371 (19)	-0.03523 (10)	0.0314 (6)*	0.500000

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	0.01480 (10)	0.01060 (10)	0.00714 (10)	-0.000000	0.00076 (7)	0.000000
I1	0.02728 (11)	0.01232 (9)	0.01457 (9)	-0.000000	0.00294 (7)	0.000000
P1	0.0126 (2)	0.0130 (2)	0.0082 (2)	0.00102 (18)	0.00100 (17)	-0.00025 (17)
F1	0.0175 (12)	0.0258 (14)	0.0265 (14)	0.0013 (10)	0.0030 (10)	0.0015 (11)
C1	0.0407 (14)	0.0293 (12)	0.0107 (10)	-0.000000	-0.0045 (9)	0.000000
F2	0.0361 (16)	0.0242 (15)	0.0472 (19)	0.0111 (13)	0.0093 (14)	-0.0015 (13)
C2	0.0326 (12)	0.0223 (11)	0.0185 (10)	-0.0098 (9)	-0.0179 (9)	0.0149 (9)
F3	0.0635 (16)	0.0150 (10)	0.0486 (14)	-0.000000	0.0128 (12)	0.000000
C3	0.0353 (13)	0.0199 (11)	0.0232 (11)	0.0072 (10)	0.0013 (10)	-0.0018 (9)
C4	0.0407 (14)	0.0293 (12)	0.0107 (10)	-0.000000	-0.0045 (9)	0.000000
C5	0.0143 (9)	0.0121 (9)	0.0150 (9)	0.0004 (7)	-0.0004 (7)	0.0022 (7)
C6	0.0176 (10)	0.0169 (10)	0.0175 (10)	-0.0013 (8)	0.0035 (8)	-0.0003 (8)
C7	0.0159 (10)	0.0193 (10)	0.0316 (12)	0.0024 (8)	0.0051 (9)	-0.0025 (9)
C8	0.0151 (10)	0.0155 (10)	0.0344 (12)	0.0010 (8)	-0.0043 (9)	0.0027 (9)
C9	0.0201 (10)	0.0176 (10)	0.0198 (10)	-0.0005 (8)	-0.0056 (8)	0.0020 (8)
C10	0.0168 (10)	0.0165 (10)	0.0158 (10)	0.0019 (8)	0.0005 (8)	0.0002 (8)
C11	0.0157 (9)	0.0146 (9)	0.0097 (8)	0.0037 (7)	-0.0031 (7)	-0.0016 (7)
C12	0.0171 (10)	0.0228 (11)	0.0143 (9)	0.0022 (8)	0.0004 (8)	-0.0025 (8)
C13	0.0201 (10)	0.0286 (12)	0.0198 (10)	0.0095 (9)	-0.0010 (8)	-0.0089 (9)
C14	0.0263 (11)	0.0199 (11)	0.0253 (11)	0.0082 (9)	-0.0101 (9)	-0.0099 (9)
C15	0.0203 (10)	0.0174 (10)	0.0251 (11)	0.0003 (8)	-0.0071 (8)	-0.0027 (8)
C16	0.0158 (9)	0.0187 (10)	0.0159 (9)	0.0018 (8)	-0.0011 (7)	-0.0017 (8)
C17	0.0161 (9)	0.0147 (9)	0.0117 (9)	-0.0003 (7)	0.0034 (7)	-0.0021 (7)
C18	0.0206 (10)	0.0160 (9)	0.0138 (9)	0.0001 (8)	0.0022 (8)	-0.0014 (8)
C19	0.0291 (11)	0.0163 (10)	0.0177 (10)	-0.0013 (9)	0.0086 (8)	0.0003 (8)

C20	0.0222 (11)	0.0208 (11)	0.0271 (11)	-0.0047 (9)	0.0122 (9)	-0.0040 (9)
C21	0.0160 (10)	0.0271 (12)	0.0270 (11)	-0.0021 (9)	0.0033 (9)	-0.0050 (9)
C22	0.0174 (10)	0.0228 (11)	0.0158 (10)	-0.0003 (8)	0.0012 (8)	0.0004 (8)
C2A	0.0326 (12)	0.0223 (11)	0.0185 (10)	-0.0098 (9)	-0.0179 (9)	0.0149 (9)
C3A	0.0353 (13)	0.0199 (11)	0.0232 (11)	0.0072 (10)	0.0013 (10)	-0.0018 (9)

Geometric parameters (Å, °)

Pd1—I1	2.6787 (3)	C9—C10	1.390 (3)
Pd1—P1 ⁱ	2.3239 (5)	C10—H10	0.9500
Pd1—P1	2.3239 (5)	C11—C12	1.392 (3)
Pd1—C1	2.091 (4)	C11—C16	1.401 (3)
P1—C5	1.827 (2)	C12—H12	0.9500
P1—C11	1.830 (2)	C12—C13	1.397 (3)
P1—C17	1.825 (2)	С13—Н13	0.9500
F1—C2	1.319 (3)	C13—C14	1.381 (4)
$C1-C2^i$	1.299 (3)	C14—H14	0.9500
C1—C2	1.299 (3)	C14—C15	1.392 (3)
C1—C2A	1.299 (3)	С15—Н15	0.9500
C1—C2A ⁱ	1.299 (3)	C15—C16	1.387 (3)
F2—C3	1.284 (4)	C16—H16	0.9500
C2—C3	1.430 (3)	C17—C18	1.397 (3)
F3—C4	1.356 (4)	C17—C22	1.399 (3)
C3—C4 ⁱ	1.375 (3)	C18—H18	0.9500
C4—C3A ⁱ	1.375 (3)	C18—C19	1.395 (3)
C4—C3A	1.375 (3)	C19—H19	0.9500
C5—C6	1.394 (3)	C19—C20	1.387 (3)
C5—C10	1.398 (3)	C20—H20	0.9500
С6—Н6	0.9500	C20—C21	1.388 (3)
C6—C7	1.397 (3)	C21—H21	0.9500
С7—Н7	0.9500	C21—C22	1.393 (3)
C7—C8	1.386 (3)	С22—Н22	0.9500
С8—Н8	0.9500	C2A—H2A	0.9500
C8—C9	1.389 (3)	C2A—C3A	1.430 (3)
С9—Н9	0.9500	СЗА—НЗА	0.9500
P1—Pd1—I1	89.737 (13)	С9—С8—Н8	119.81 (13)
P1 ⁱ —Pd1—I1	89.737 (13)	Н9—С9—С8	120.12 (13)
$P1^{i}$ — $Pd1$ — $P1$	179.47 (3)	C10—C9—C8	119.8 (2)
C1—Pd1—I1	180.0	С10—С9—Н9	120.12 (13)
C1—Pd1—P1	90.263 (13)	C9—C10—C5	120.41 (19)
$C1$ — $Pd1$ — $P1^i$	90.263 (13)	H10-C10-C5	119.80 (12)
C5—P1—Pd1	115.79 (7)	H10-C10-C9	119.80 (13)
C11—P1—Pd1	116.28 (6)	C12—C11—P1	122.62 (16)
C11—P1—C5	100.83 (9)	C16—C11—P1	117.84 (15)
C17—P1—Pd1	110.10 (7)	C16—C11—C12	119.23 (19)
C17—P1—C5	109.29 (9)	H12—C12—C11	119.99 (12)
C17—P1—C11	103.53 (9)	C13—C12—C11	120.0 (2)
-			

C2-C1-Pd1	119.64 (17)	C13—C12—H12	119.99 (13)
$C2^{i}$ — $C1$ — $Pd1$	119.64 (17)	H13—C13—C12	119.80 (13)
$C2^{i}$ — $C1$ — $C2$	120.7 (3)	C14—C13—C12	120.4 (2)
C2A ⁱ —C1—Pd1	119.64 (17)	C14—C13—H13	119.80 (13)
C2A—C1—Pd1	119.64 (17)	H14—C14—C13	120.05 (13)
$C2A-C1-C2^{i}$	120.7 (3)	C15—C14—C13	119.9 (2)
C^2A^i — C^1 — C^2^i	0.0	C15-C14-H14	120.05(13)
$C^2A^i - C^1 - C^2$	120 7 (3)	H15-C15-C14	119.95 (13)
$C^2A - C^1 - C^2$	0.0	C16-C15-C14	120 1 (2)
$C^{2}A^{i}$ C^{1} $C^{2}A$	120.7(3)	C16-C15-H15	119.95 (13)
C1 - C2 - F1	120.7(3) 1240(3)	C_{15} C_{16} C_{11}	120.3(2)
C_{3} C_{2} F_{1}	124.0(3)	H16-C16-C11	120.3(2) 119.84(12)
$C_3 C_2 C_1$	113.0(5) 122.3(2)	H16 C16 C15	119.04(12) 110.84(13)
$C_2 = C_2 = C_1$	122.3(2) 123.7(3)	$\begin{array}{cccc} 110 & 010 & 013 \\ \hline \\ 018 & 017 & 01 \\ \hline \end{array}$	123 52 (16)
$C_2 = C_3 = 12$	123.7(3) 110.3(3)	$C_{10} - C_{17} - P_{1}$	125.52(10) 117.11(15)
C4 - C3 - C2	117.3(3)	$C_{22} = C_{17} = C_{18}$	117.11(13) 110.22(10)
C4 - C3 - C2	117.0(2)	$U_{22} - U_{1} - U_{18}$	119.33(19) 120.02(12)
$C_3 - C_4 - \Gamma_3$	119.09 (10)		120.05(12)
$C_3 - C_4 - F_3$	119.69 (16)	C19 - C18 - C17	119.9 (2)
$C_3 - C_4 - C_3$	120.6 (3)	C19—C18—H18	120.03 (13)
C3A - C4 - F3	119.69 (16)	H19—C19—C18	119.89 (13)
$C3A^{-}C4 - F3$	119.69 (16)	C20—C19—C18	120.2 (2)
$C3A^1 - C4 - C3$	120.6 (3)	С20—С19—Н19	119.89 (13)
$C3A^{i}$ — $C4$ — $C3^{i}$	0.0	H20—C20—C19	119.85 (13)
$C3A - C4 - C3^{i}$	120.6 (3)	C21—C20—C19	120.3 (2)
C3A—C4—C3	0.0	C21—C20—H20	119.85 (13)
$C3A - C4 - C3A^{i}$	120.6 (3)	H21—C21—C20	120.14 (13)
C6—C5—P1	121.06 (15)	C22—C21—C20	119.7 (2)
C10—C5—P1	119.31 (15)	C22—C21—H21	120.14 (13)
C10—C5—C6	119.41 (19)	C21—C22—C17	120.5 (2)
H6—C6—C5	119.98 (12)	H22—C22—C17	119.76 (12)
C7—C6—C5	120.0 (2)	H22—C22—C21	119.76 (13)
С7—С6—Н6	119.98 (13)	H2A—C2A—C1	118.87 (17)
Н7—С7—С6	120.01 (13)	C3A—C2A—C1	122.3 (2)
C8—C7—C6	120.0 (2)	C3A—C2A—H2A	118.87 (15)
С8—С7—Н7	120.01 (13)	$C2A$ — $C3A$ — $C4^{i}$	117.0 (2)
H8—C8—C7	119.81 (13)	H3A—C3A—C4 ⁱ	121.48 (16)
C9—C8—C7	120.4 (2)	НЗА—СЗА—С2А	121.48 (15)
Pd1—C1—C2—F1	-3.43 (14)	$F2-C3-C4^{i}-F3^{i}$	0.8 (3)
$Pd1-C1-C2^{i}-F1^{i}$	-3.43 (14)	$F2-C3-C4^{i}-C3^{i}$	-179.22 (18)
Pd1—C1—C2—C3	-178.84(15)	$F2-C3-C4^{i}-C3A^{i}$	-179.22(18)
$Pd1 - C1 - C2^{i} - C3^{i}$	-178.84(15)	$C2-C3-C4^{i}-F3^{i}$	-178.96(14)
$Pd1 - C1 - C2A^{i} - C3A^{i}$	-178.84(15)	$C2-C3-C4^{i}-C3^{i}$	1.0 (3)
Pd1-C1-C2A-C3A	-178.84(15)	$C2 - C3 - C4^{i} - C3A^{i}$	1.0(3)
P1	-175.03(17)	$F_3 - C_4 - C_3 A^i - C_2 A^i$	-178.96(15)
P1-C5-C10-C9	175 67 (16)	$F_3 - C_4 - C_3 A - C_2 A$	-178.96(15)
P1	171 50 (17)	$C3^{i}$ $C4$ $C3A$ $C2A$	1 04 (15)
P1 C11 C16 C15	-171.00(17)	$C_{2} = C_{2} = C_{2} = C_{2}$	-0.3(2)
	1/1.90 (13)		0.3 (2)

P1-C17-C18-C19	-177.85 (17)	C5—C10—C9—C8	-0.8 (2)
P1-C17-C22-C21	178.16 (16)	C6—C7—C8—C9	0.5 (3)
$F1-C2-C1-C2^{i}$	176.57 (13)	C7—C8—C9—C10	0.0 (3)
$F1$ — $C2$ — $C1$ — $C2A^i$	176.57 (14)	C11—C12—C13—C14	0.4 (2)
F1—C2—C3—F2	2.2 (3)	C11—C16—C15—C14	-0.3 (2)
$F1$ — $C2$ — $C3$ — $C4^{i}$	-178.11 (19)	C12—C13—C14—C15	1.1 (3)
C1—C2—C3—F2	178.0 (3)	C13—C14—C15—C16	-1.2 (3)
$C1^{i}$ — $C2$ — $C3$ — $F2$	178.0 (3)	C17—C18—C19—C20	-0.4 (2)
$C1-C2-C3-C4^{i}$	-2.3 (2)	C17—C22—C21—C20	0.0 (3)
$C1$ — $C2^{i}$ — $C3^{i}$ — $C4$	-2.3 (2)	C18—C19—C20—C21	0.6 (3)
$C1$ — $C2A$ — $C3A$ — $C4^i$	-2.3 (2)	C19—C20—C21—C22	-0.4 (3)
$C1$ — $C2A^{i}$ — $C3A^{i}$ — $C4$	-2.3 (2)		

Z = 2

F(000) = 1253.792 $D_x = 1.888$ Mg m⁻³

Block, clear orange $0.23 \times 0.11 \times 0.10$ mm

 $\theta = 2.4-27.2^{\circ}$ $\mu = 2.76 \text{ mm}^{-1}$ T = 100 K

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 9954 reflections

Symmetry code: (i) -x+3/2, y, -z.

(4)

Crystal data

$[Pd(C_6H_2F_3)I(C_{18}H_{15}P)_2] \cdot 2CH_2Cl_2$
$M_r = 1310.64$
Triclinic, $P\overline{1}$
a = 11.5608 (5) Å
<i>b</i> = 11.6437 (5) Å
c = 18.1311 (8) Å
$\alpha = 76.426 (1)^{\circ}$
$\beta = 77.722 (1)^{\circ}$
$\gamma = 81.344 \ (1)^{\circ}$
$V = 2305.16 (17) \text{ Å}^3$

Data collection

Bruker APEXI CCD	10132 independent reflections
diffractometer	8450 reflections with $I \ge 2u(I)$
φ and ω scans	$R_{\rm int} = 0.030$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.2^{\circ}, \ \theta_{\rm min} = 1.2^{\circ}$
(SADABS; Krause et al., 2015)	$h = -14 \rightarrow 14$
$T_{\min} = 0.674, \ T_{\max} = 0.746$	$k = -14 \rightarrow 14$
28953 measured reflections	$l = -23 \rightarrow 23$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.062$ S = 1.0610132 reflections 542 parameters 2 restraints 70 constraints Primary atom site location: iterative H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.019P)^2 + 4.2389P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = -0.0002$ $\Delta\rho_{\text{max}} = 1.06 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{\text{min}} = -1.03 \text{ e } \text{Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
I1	0.23962 (2)	-0.04364 (2)	0.796612 (13)	0.01617 (6)	
Pd1	0.39999 (2)	0.11224 (2)	0.758753 (14)	0.00837 (6)	

Cl1	0.01465 (12)	0.81829 (14)	0.58804 (10)	0.0617 (4)	
P1	0.25283 (8)	0.26815 (8)	0.77555 (5)	0.01070 (17)	
F1	0.50264 (18)	0.22392 (18)	0.58875 (11)	0.0185 (4)	
C1	0.5197 (3)	0.2311 (3)	0.71437 (19)	0.0106 (7)	
I2	0.73642 (2)	0.43117 (2)	0.798995 (15)	0.02142 (6)	
Cl2	0.20648 (11)	0.97093 (10)	0.54543 (7)	0.0409 (3)	
P2	0.55621 (8)	-0.03829(7)	0.75689 (5)	0.00942 (17)	
F2	0.76543 (18)	0.47459 (18)	0.61696 (12)	0.0205 (5)	
C2	0.5527 (3)	0.2700 (3)	0.63565 (19)	0.0123 (7)	
I3	0.68119 (2)	0.40425 (2)	0.481715 (14)	0.02607 (7)	
F3	0.54666 (18)	0.24532 (18)	0.83631 (11)	0.0170 (4)	
C3	0.6339 (3)	0.3512 (3)	0.60091 (19)	0.0138 (7)	
Cl4A	-0.0440 (4)	0.6948 (4)	0.7824 (4)	0.0638 (14)	0.631 (13)
C4	0.6853 (3)	0.3955 (3)	0.6492 (2)	0.0139 (7)	
C5	0.6578 (3)	0.3611 (3)	0.7285 (2)	0.0130 (7)	
C6	0.5755 (3)	0.2792 (3)	0.75843 (18)	0.0110 (7)	
C7	0.7032 (3)	0.0088 (3)	0.74620 (19)	0.0121 (7)	
C8	0.7531(3)	0.0083(3)	0.8098 (2)	0.0194 (8)	
H8	0.7123 (3)	-0.0217(3)	0.8604(2)	0.0233 (10)*	
C9	0.8621 (4)	0.0516 (4)	0.7993 (2)	0.0300 (10)	
H9	0.8964 (4)	0.0503 (4)	0.8428 (2)	0.0361 (12)*	
C10	0.9203 (3)	0.0962 (4)	0.7265 (2)	0.0283 (9)	
H10	0.9946 (3)	0.1263 (4)	0.7199 (2)	0.0340 (11)*	
C11	0.8735 (3)	0.0983(3)	0.6630(2)	0.0227 (8)	
H11	0.9149 (3)	0.1297(3)	0.6128 (2)	$0.0272(10)^*$	
C12	0.7645 (3)	0.0541(3)	0.6724 (2)	0.0162 (7)	
H12	0.7318 (3)	0.0549 (3)	0.6284 (2)	0.0194 (9)*	
C13	0.5396 (3)	-0.1438(3)	0.84997 (19)	0.0137 (7)	
C14	0.4838 (3)	-0.0990(3)	0.9152 (2)	0.0213 (8)	
H14	0.4542 (3)	-0.0174(3)	0.9098 (2)	0.0255 (10)*	
C15	0.4714 (4)	-0.1726 (4)	0.9874 (2)	0.0284 (9)	
H15	0.4339 (4)	-0.1412 (4)	1.0314 (2)	0.0341 (11)*	
C16	0.5131 (4)	-0.2918(4)	0.9961 (2)	0.0310 (10)	
H16	0.5049 (4)	-0.3424(4)	1.0459 (2)	0.0372 (12)*	
C17	0.5667 (5)	-0.3361(4)	0.9316 (2)	0.0376 (12)	
H17	0.5948 (5)	-0.4181(4)	0.9371(2)	0.0451 (14)*	
C18	0.5802 (4)	-0.2629(3)	0.8586(2)	0.0247 (9)	
H18	0.6175 (4)	-0.2948(3)	0.8147(2)	0.0296 (11)*	
C19	0.5783 (3)	-0.1195(3)	0.68008(18)	0.0122 (7)	
C20	0.6813 (3)	-0.1969(3)	0.66570 (19)	0.0142(7)	
H20	0.7392(3)	-0.2099(3)	0 69779 (19)	0.0170(9)*	
C21	0.6996(3)	-0.2548(3)	0.6051(2)	0.0173(8)	
H21	0.7687(3)	-0.3090(3)	0.5966(2)	0.0207 (9)*	
C22	0.6172(3)	-0.2338(3)	0.5567(2)	0.0184 (8)	
H22	0.6301(3)	-0.2737(3)	0.5152 (2)	0.0221 (9)*	
C23	0.5160 (3)	-0.1550(3)	0.5687(2)	0.0168 (8)	
H23	0.4604(3)	-0.1399(3)	0.5350(2)	0.0202 (9)*	
C24	0.4964(3)	-0.0981(3)	0.63045(19)	0.0137(7)	
027	(J)	0.0701 (3)	0.0000000	0.0137 (7)	

H24	0.4269 (3)	-0.0443 (3)	0.63891 (19)	0.0165 (8)*	
C25	0.1474 (3)	0.2264 (3)	0.86487 (19)	0.0151 (7)	
C26	0.0249 (3)	0.2414 (3)	0.8695 (2)	0.0221 (8)	
H26	-0.0084(3)	0.2767 (3)	0.8248 (2)	0.0265 (10)*	
C27	-0.0490 (4)	0.2045 (4)	0.9401 (2)	0.0325 (10)	
H27	-0.1329 (4)	0.2148 (4)	0.9432 (2)	0.0390 (12)*	
C28	-0.0023 (4)	0.1533 (4)	1.0051 (2)	0.0390 (11)	
H28	-0.0534 (4)	0.1277 (4)	1.0529 (2)	0.0467 (14)*	
C29	0.1199 (4)	0.1393 (5)	1.0006 (2)	0.0401 (12)	
H29	0.1527 (4)	0.1048 (5)	1.0456 (2)	0.0481 (14)*	
C30	0.1942 (4)	0.1749 (4)	0.9313 (2)	0.0283 (9)	
H30	0.2780 (4)	0.1644 (4)	0.9287 (2)	0.0340 (11)*	
C31	0.1702 (3)	0.3145 (3)	0.69683 (19)	0.0131 (7)	
C32	0.0913 (3)	0.4180 (3)	0.6909 (2)	0.0171 (8)	
H32	0.0820 (3)	0.4666 (3)	0.7276 (2)	0.0205 (9)*	
C33	0.0262 (3)	0.4504 (3)	0.6318 (2)	0.0197 (8)	
H33	-0.0269 (3)	0.5213 (3)	0.6278 (2)	0.0236 (10)*	
C34	0.0389 (3)	0.3787 (3)	0.5786 (2)	0.0212 (8)	
H34	-0.0076 (3)	0.3992 (3)	0.5392 (2)	0.0254 (10)*	
C35	0.1194 (3)	0.2776 (3)	0.5830 (2)	0.0168 (8)	
H35	0.1296 (3)	0.2301 (3)	0.5455 (2)	0.0202 (9)*	
C36	0.1853 (3)	0.2451 (3)	0.64186 (19)	0.0141 (7)	
H36	0.2405 (3)	0.1757 (3)	0.64457 (19)	0.0169 (9)*	
C37	0.2962 (3)	0.4087 (3)	0.7839 (2)	0.0151 (7)	
C38	0.2716 (4)	0.4474 (4)	0.8533 (3)	0.0317 (10)	
H38	0.2304 (4)	0.4007 (4)	0.8987 (3)	0.0381 (12)*	
C39	0.3080 (5)	0.5555 (4)	0.8552 (3)	0.0492 (14)	
H39	0.2930 (5)	0.5815 (4)	0.9025 (3)	0.0591 (16)*	
C40	0.3655 (4)	0.6247 (4)	0.7891 (3)	0.0398 (12)	
H40	0.3880 (4)	0.6991 (4)	0.7908 (3)	0.0477 (14)*	
C41	0.3898 (3)	0.5870 (3)	0.7221 (3)	0.0256 (9)	
H41	0.4308 (3)	0.6346 (3)	0.6770 (3)	0.0307 (11)*	
C42	0.3557 (3)	0.4791 (3)	0.7181 (2)	0.0205 (8)	
H42	0.3731 (3)	0.4537 (3)	0.6704 (2)	0.0246 (10)*	
C43	0.1318 (4)	0.8661 (4)	0.6189 (3)	0.0387 (11)	
H43a	0.0988 (4)	0.9016 (4)	0.6645 (3)	0.0465 (13)*	
H43b	0.1890 (4)	0.7967 (4)	0.6343 (3)	0.0465 (13)*	
C44A	-0.0609 (15)	0.6592 (12)	0.8844 (7)	0.102 (6)	0.631 (13)
H44a	0.0120 (15)	0.6736 (12)	0.8997 (7)	0.122 (7)*	0.631 (13)
H44b	-0.1285 (15)	0.7109 (12)	0.9070 (7)	0.122 (7)*	0.631 (13)
Cl3A	-0.0864 (6)	0.5108 (4)	0.9195 (3)	0.0742 (17)	0.631 (13)
Cl3B	-0.1518 (10)	0.5447 (9)	0.9410 (3)	0.075 (3)	0.369 (13)
C44B	-0.0159 (17)	0.5878 (18)	0.8910 (11)	0.059 (5)	0.369 (13)
H44c	0.0218 (17)	0.6221 (18)	0.9239 (11)	0.071 (6)*	0.369 (13)
H44d	0.0370 (17)	0.5178 (18)	0.8774 (11)	0.071 (6)*	0.369 (13)
Cl4B	-0.0338 (13)	0.6933 (13)	0.8068 (9)	0.126 (5)	0.369 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01382 (11)	0.01547 (12)	0.01843 (12)	-0.00637 (9)	0.00093 (9)	-0.00247 (9)
Pd1	0.00817 (12)	0.00891 (12)	0.00759 (12)	-0.00203(9)	-0.00059 (9)	-0.00098 (9)
C11	0.0393 (7)	0.0703 (10)	0.0906 (11)	-0.0080 (7)	-0.0169 (7)	-0.0409 (9)
P1	0.0100 (4)	0.0108 (4)	0.0106 (4)	-0.0008(3)	-0.0007 (3)	-0.0020(3)
F1	0.0241 (11)	0.0255 (11)	0.0092 (10)	-0.0116 (9)	-0.0039 (8)	-0.0038 (9)
C1	0.0092 (16)	0.0102 (16)	0.0113 (16)	0.0003 (13)	-0.0019 (13)	-0.0008 (13)
I2	0.01897 (13)	0.02511 (13)	0.02632 (14)	-0.00558 (10)	-0.00724 (10)	-0.01266 (11)
Cl2	0.0398 (7)	0.0379 (6)	0.0457 (7)	0.0025 (5)	-0.0111 (5)	-0.0115 (5)
P2	0.0102 (4)	0.0100 (4)	0.0081 (4)	-0.0017 (3)	-0.0017 (3)	-0.0017 (3)
F2	0.0162 (11)	0.0169 (11)	0.0272 (12)	-0.0108 (9)	0.0011 (9)	-0.0011 (9)
C2	0.0125 (17)	0.0154 (17)	0.0112 (17)	-0.0021 (14)	-0.0042 (13)	-0.0046 (14)
I3	0.03102 (15)	0.02993 (15)	0.01275 (12)	-0.00971 (12)	0.00400 (10)	0.00125 (10)
F3	0.0216 (11)	0.0233 (11)	0.0072 (10)	-0.0054 (9)	-0.0037 (8)	-0.0024 (8)
C3	0.0151 (18)	0.0148 (17)	0.0087 (16)	-0.0029 (14)	0.0008 (13)	0.0014 (14)
Cl4A	0.0508 (19)	0.0495 (19)	0.100 (4)	-0.0058 (13)	-0.0155 (19)	-0.032 (2)
C4	0.0099 (17)	0.0106 (17)	0.0187 (18)	-0.0035 (13)	0.0005 (14)	0.0006 (14)
C5	0.0125 (17)	0.0112 (16)	0.0173 (18)	-0.0009 (13)	-0.0031 (14)	-0.0070 (14)
C6	0.0127 (17)	0.0114 (16)	0.0078 (16)	0.0016 (13)	-0.0022 (13)	-0.0015 (13)
C7	0.0097 (16)	0.0105 (16)	0.0163 (17)	0.0003 (13)	-0.0042 (13)	-0.0025 (14)
C8	0.022 (2)	0.0188 (19)	0.0174 (19)	-0.0092 (16)	-0.0094 (15)	0.0056 (15)
C9	0.028 (2)	0.037 (2)	0.028 (2)	-0.0146 (19)	-0.0171 (18)	0.0039 (19)
C10	0.014 (2)	0.032 (2)	0.039 (2)	-0.0072 (17)	-0.0096 (18)	-0.0002 (19)
C11	0.0165 (19)	0.021 (2)	0.026 (2)	-0.0060 (16)	0.0039 (16)	-0.0015 (17)
C12	0.0179 (19)	0.0169 (18)	0.0148 (18)	-0.0027 (15)	-0.0041 (14)	-0.0039 (14)
C13	0.0157 (18)	0.0155 (17)	0.0118 (17)	-0.0038 (14)	-0.0045 (14)	-0.0035 (14)
C14	0.030 (2)	0.0192 (19)	0.0122 (18)	0.0031 (17)	-0.0036 (16)	-0.0028 (15)
C15	0.045 (3)	0.028 (2)	0.0106 (19)	0.0050 (19)	-0.0049 (17)	-0.0056 (16)
C16	0.059 (3)	0.021 (2)	0.0093 (19)	-0.008(2)	-0.0032 (19)	0.0037 (16)
C17	0.078 (4)	0.0120 (19)	0.018 (2)	0.000 (2)	-0.005 (2)	-0.0003 (16)
C18	0.044 (3)	0.0155 (19)	0.0116 (18)	0.0013 (18)	-0.0008 (17)	-0.0042 (15)
C19	0.0153 (17)	0.0122 (17)	0.0076 (16)	-0.0065 (14)	0.0022 (13)	0.0001 (13)
C20	0.0163 (18)	0.0121 (17)	0.0131 (17)	-0.0001 (14)	-0.0027 (14)	-0.0016 (14)
C21	0.0181 (19)	0.0129 (17)	0.0182 (19)	0.0005 (15)	0.0002 (15)	-0.0030 (15)
C22	0.024 (2)	0.0210 (19)	0.0126 (18)	-0.0084 (16)	-0.0002 (15)	-0.0070 (15)
C23	0.0173 (19)	0.0218 (19)	0.0137 (18)	-0.0048 (15)	-0.0039 (14)	-0.0056 (15)
C24	0.0130 (17)	0.0151 (17)	0.0130 (17)	-0.0033 (14)	-0.0015 (13)	-0.0026 (14)
C25	0.0173 (18)	0.0138 (17)	0.0117 (17)	-0.0020 (14)	0.0027 (14)	-0.0021 (14)
C26	0.018 (2)	0.029 (2)	0.0168 (19)	-0.0036 (16)	0.0003 (15)	-0.0032 (16)
C27	0.020 (2)	0.046 (3)	0.028 (2)	-0.010 (2)	0.0079 (17)	-0.007 (2)
C28	0.045 (3)	0.048 (3)	0.016 (2)	-0.014 (2)	0.0110 (19)	-0.001 (2)
C29	0.039 (3)	0.059 (3)	0.014 (2)	-0.001 (2)	-0.0023 (19)	0.005 (2)
C30	0.024 (2)	0.038 (2)	0.015 (2)	0.0021 (19)	0.0004 (16)	0.0026 (17)
C31	0.0090 (16)	0.0174 (18)	0.0106 (17)	-0.0035 (14)	-0.0019 (13)	0.0030 (14)
C32	0.0145 (18)	0.0172 (18)	0.0181 (19)	-0.0027 (15)	0.0000 (14)	-0.0027 (15)
C33	0.0122 (18)	0.0182 (19)	0.024 (2)	0.0009 (15)	-0.0034 (15)	0.0023 (16)

C34	0.0178 (19)	0.028 (2)	0.0144 (18)	-0.0074 (16)	-0.0062 (15)	0.0085 (16)
C35	0.0138 (18)	0.024 (2)	0.0122 (17)	-0.0068 (15)	0.0002 (14)	-0.0033 (15)
C36	0.0133 (17)	0.0165 (18)	0.0097 (16)	-0.0039 (14)	0.0009 (13)	0.0015 (14)
C37	0.0135 (17)	0.0095 (16)	0.0232 (19)	0.0020 (14)	-0.0070 (15)	-0.0038 (14)
C38	0.045 (3)	0.025 (2)	0.028 (2)	-0.008 (2)	-0.003 (2)	-0.0118 (18)
C39	0.073 (4)	0.038 (3)	0.048 (3)	-0.009 (3)	-0.017 (3)	-0.025 (3)
C40	0.046 (3)	0.017 (2)	0.063 (3)	-0.009 (2)	-0.018 (3)	-0.012 (2)
C41	0.0158 (19)	0.0082 (17)	0.048 (3)	-0.0021 (15)	-0.0053 (18)	0.0041 (17)
C42	0.0180 (19)	0.0129 (18)	0.027 (2)	0.0014 (15)	-0.0041 (16)	0.0003 (16)
C43	0.035 (3)	0.040 (3)	0.046 (3)	-0.001 (2)	-0.011 (2)	-0.016 (2)
C44A	0.147 (15)	0.091 (11)	0.107 (12)	0.007 (10)	-0.064 (10)	-0.071 (10)
Cl3A	0.080 (4)	0.091 (2)	0.065 (3)	0.006 (2)	-0.039 (3)	-0.0290 (18)
Cl3B	0.067 (5)	0.104 (5)	0.064 (3)	-0.013 (4)	-0.004 (3)	-0.042 (3)
C44B	0.062 (12)	0.044 (11)	0.087 (13)	-0.003 (9)	-0.023 (10)	-0.041 (10)
Cl4B	0.171 (10)	0.130 (8)	0.088 (8)	-0.062 (7)	-0.020 (6)	-0.018 (5)

Geometric parameters (Å, °)

I1—Pd1	2.6626 (3)	C21—H21	0.9500
Pd1—P1	2.3221 (9)	C21—C22	1.387 (5)
Pd1—C1	2.014 (3)	C22—H22	0.9500
Pd1—P2	2.3203 (9)	C22—C23	1.385 (5)
Cl1—C43	1.775 (5)	C23—H23	0.9500
P1—C25	1.820 (3)	C23—C24	1.393 (5)
P1-C31	1.818 (3)	C24—H24	0.9500
P1—C37	1.830 (3)	C25—C26	1.387 (5)
F1—C2	1.365 (4)	C25—C30	1.395 (5)
C1—C2	1.380 (5)	C26—H26	0.9500
C1—C6	1.381 (4)	C26—C27	1.393 (5)
I2—C5	2.080 (3)	C27—H27	0.9500
Cl2—C43	1.753 (5)	C27—C28	1.372 (6)
P2—C7	1.821 (3)	C28—H28	0.9500
P2—C13	1.831 (3)	C28—C29	1.385 (6)
P2—C19	1.815 (3)	C29—H29	0.9500
F2—C4	1.349 (4)	C29—C30	1.375 (6)
С2—С3	1.382 (5)	C30—H30	0.9500
I3—C3	2.079 (3)	C31—C32	1.395 (5)
F3—C6	1.356 (4)	C31—C36	1.392 (5)
C3—C4	1.383 (5)	С32—Н32	0.9500
Cl4A—C44A	1.772 (12)	C32—C33	1.387 (5)
C4—C5	1.380 (5)	С33—Н33	0.9500
C5—C6	1.386 (5)	C33—C34	1.389 (5)
C7—C8	1.393 (5)	C34—H34	0.9500
C7—C12	1.396 (5)	C34—C35	1.384 (5)
С8—Н8	0.9500	С35—Н35	0.9500
С8—С9	1.387 (5)	C35—C36	1.390 (5)
С9—Н9	0.9500	С36—Н36	0.9500
C9—C10	1.368 (6)	C37—C38	1.392 (5)

C10—H10	0.9500	C37—C42	1.390 (5)
C10—C11	1.366 (6)	C38—H38	0.9500
C11—H11	0.9500	C38—C39	1.396 (6)
C11—C12	1.395 (5)	С39—Н39	0.9500
C12—H12	0.9500	C39—C40	1.377 (7)
C13—C14	1.397 (5)	C40—H40	0.9500
C13—C18	1.380 (5)	C40—C41	1.347 (6)
C14—H14	0.9500	C41—H41	0.9500
C14—C15	1.377 (5)	C41—C42	1.394 (5)
C15—H15	0.9500	C42—H42	0.9500
C15—C16	1.382 (6)	C43—H43a	0.9900
C16—H16	0.9500	C43—H43b	0.9900
C16—C17	1.378 (6)	C44A—H44a	0.9900
С17—Н17	0.9500	C44A—H44b	0.9900
C17—C18	1.387 (5)	C44A—Cl3A	1.742 (12)
C18—H18	0.9500	Cl3B—C44B	1.72 (2)
C19—C20	1.398 (5)	C44B—H44c	0.9900
C19—C24	1.398 (5)	C44B—H44d	0.9900
С20—Н20	0.9500	C44B—C14B	1.75 (2)
C20—C21	1.382 (5)		
P1—Pd1—I1	91.66 (2)	H22—C22—C21	119.8 (2)
C1—Pd1—I1	171.82 (9)	C23—C22—C21	120.4 (3)
C1—Pd1—P1	89.09 (9)	C23—C22—H22	119.8 (2)
P2—Pd1—I1	91.72 (2)	H23—C23—C22	120.2 (2)
P2—Pd1—P1	171.80 (3)	C24—C23—C22	119.7 (3)
P2—Pd1—C1	88.63 (9)	C24—C23—H23	120.2 (2)
C25—P1—Pd1	110.31 (12)	C23—C24—C19	120.4 (3)
C31—P1—Pd1	113.10 (12)	H24—C24—C19	119.8 (2)
C31—P1—C25	108.12 (16)	H24—C24—C23	119.8 (2)
C37—P1—Pd1	118.72 (11)	C26—C25—P1	123.6 (3)
C37—P1—C25	103.15 (16)	C30—C25—P1	117.2 (3)
C37—P1—C31	102.49 (16)	C30—C25—C26	119.2 (3)
C2—C1—Pd1	121.3 (2)	H26—C26—C25	120.2 (2)
C6—C1—Pd1	124.0 (2)	C27—C26—C25	119.6 (4)
C6—C1—C2	114.8 (3)	C27—C26—H26	120.2 (2)
C7—P2—Pd1	115.27 (11)	H27—C27—C26	119.6 (2)
C13—P2—Pd1	109.67 (12)	C28—C27—C26	120.9 (4)
C13—P2—C7	103.29 (15)	С28—С27—Н27	119.6 (3)
C19—P2—Pd1	116.61 (12)	H28—C28—C27	120.3 (3)
C19—P2—C7	101.96 (15)	C29—C28—C27	119.5 (4)
C19—P2—C13	109.01 (15)	C29—C28—H28	120.3 (2)
C1—C2—F1	117.7 (3)	H29—C29—C28	119.8 (2)
C3—C2—F1	117.7 (3)	C30—C29—C28	120.4 (4)
C3—C2—C1	124.6 (3)	С30—С29—Н29	119.8 (3)
I3—C3—C2	122.6 (2)	C29—C30—C25	120.4 (4)
C4—C3—C2	117.0 (3)	H30—C30—C25	119.8 (2)
C4—C3—I3	120.4 (2)	H30—C30—C29	119.8 (3)

C3—C4—F2	118 3 (3)	C32—C31—P1	121 1 (3)
C_{5} C_{4} F_{2}	119.4 (3)	C36—C31—P1	121.1(3) 119.5(3)
$C_{5}-C_{4}-C_{3}$	122.2 (3)	$C_{36} - C_{31} - C_{32}$	119.5(3)
C4-C5-12	120.9(2)	$H_{32} - C_{32} - C_{31}$	119.8 (2)
C6-C5-I2	122(1)(2)	$C_{33} - C_{32} - C_{31}$	1204(3)
C6-C5-C4	116.9(3)	C_{33} C_{32} H_{32}	120.1(3) 119.8(2)
F_{3} C_{6} C_{1}	117.8(3)	H_{33} $-C_{33}$ $-C_{32}$	119.0(2) 1201(2)
C_{5}	1245(3)	C_{34} C_{33} C_{32}	120.1(2) 119.8(3)
C_{5} C_{6} F_{3}	124.5(3) 1177(3)	C34—C33—H33	1201(2)
$C_{8} = C_{7} = P_{2}$	121.9(3)	H_{34} C_{34} C_{33}	120.1(2) 120.0(2)
$C_{12} = C_{7} = 12$	121.9(3) 1101(3)	$C_{35} = C_{34} = C_{33}$	120.0(2) 120.1(3)
C12 - C7 - C8	119.1(3) 118.9(3)	C35-C34-H34	120.1(3) 120.0(2)
$H_{12} = C_{12} = C_{12} = C_{12}$	110.9(3) 110.9(2)	$H_{35} = C_{35} = C_{34}$	120.0(2)
$\begin{array}{c} 113 - 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \\ \end{array} \\ \\ \\ \end{array} \\ \hline \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\$	119.9(2) 120.2(3)	$C_{36} C_{35} C_{34}$	119.8(2) 120.3(3)
$C_{2} = C_{3} = C_{1}$	120.2(3)	$C_{30} = C_{33} = C_{34}$	120.3(3)
	119.9(2) 120.0(2)	$C_{30} = C_{33} = H_{33}$	119.0(2)
$H_{9} = C_{9} = C_{8}$	120.0(2)	$C_{33} = C_{30} = C_{31}$	119.9(3)
C10 - C9 - C8	120.0(4)	$H_{30} = C_{30} = C_{31}$	120.1(2)
C10 - C9 - H9	120.0(2)	$H_{30} = C_{30} = C_{33}$	120.1(2)
H10 - C10 - C9	119.4 (2)	$C_{38} - C_{37} - P_{1}$	122.6 (3)
C11 - C10 - C9	121.2 (4)	C42 - C3 / - P1	118.2 (3)
CII—CI0—HI0	119.4 (2)	(42-(3)) - (38)	119.2 (3)
	120.2 (2)	$H_{38} - C_{38} - C_{37}$	120.4 (2)
	119.6 (4)	$C_{39} = C_{38} = C_{37}$	119.3 (4)
С12—С11—Н11	120.2 (2)	С39—С38—Н38	120.4 (3)
C11—C12—C7	120.2 (3)	H39—C39—C38	119.7 (3)
H12—C12—C7	119.9 (2)	C40—C39—C38	120.7 (4)
H12—C12—C11	119.9 (2)	С40—С39—Н39	119.7 (3)
C14—C13—P2	117.2 (3)	H40—C40—C39	120.0 (3)
C18—C13—P2	123.6 (3)	C41—C40—C39	120.0 (4)
C18—C13—C14	119.1 (3)	C41—C40—H40	120.0 (2)
H14—C14—C13	119.8 (2)	H41—C41—C40	119.5 (2)
C15—C14—C13	120.4 (3)	C42—C41—C40	121.0 (4)
C15—C14—H14	119.8 (2)	C42—C41—H41	119.5 (2)
H15—C15—C14	119.7 (2)	C41—C42—C37	119.8 (4)
C16—C15—C14	120.5 (4)	H42—C42—C37	120.1 (2)
C16—C15—H15	119.7 (2)	H42—C42—C41	120.1 (2)
H16—C16—C15	120.5 (2)	Cl2—C43—Cl1	111.3 (3)
C17—C16—C15	119.1 (4)	H43a—C43—C11	109.37 (16)
C17—C16—H16	120.5 (2)	H43a—C43—C12	109.37 (16)
H17—C17—C16	119.5 (2)	H43b—C43—C11	109.37 (16)
C18—C17—C16	121.0 (4)	H43b—C43—Cl2	109.37 (16)
C18—C17—H17	119.5 (2)	H43b—C43—H43a	108.0
C17—C18—C13	119.9 (3)	H44a—C44A—Cl4A	109.6 (5)
H18—C18—C13	120.0 (2)	H44b—C44A—Cl4A	109.6 (6)
H18—C18—C17	120.0 (2)	H44b—C44A—H44a	108.1
C20—C19—P2	120.9 (3)	Cl3A—C44A—Cl4A	110.2 (6)
C24—C19—P2	120.0 (3)	Cl3A—C44A—H44a	109.6 (6)
C24—C19—C20	118.9 (3)	Cl3A—C44A—H44b	109.6 (7)
			× /

H20—C20—C19	119.8 (2)	H44c—C44B—C13B	109.6 (6)
C21—C20—C19	120.5 (3)	H44d—C44B—C13B	109.6 (8)
С21—С20—Н20	119.8 (2)	H44d—C44B—H44c	108.1340 (1)
H21—C21—C20	119.9 (2)	Cl4B—C44B—Cl3B	110.2 (12)
C22—C21—C20	120.1 (3)	Cl4B—C44B—H44c	109.6 (8)
C22—C21—H21	119.9 (2)	Cl4B—C44B—H44d	109.6 (8)
Pd1—C1—C2—F1	-0.8 (3)	C2—C3—C4—C5	0.0 (4)
Pd1—C1—C2—C3	179.9 (3)	I3—C3—C4—C5	-178.9 (3)
Pd1—C1—C6—F3	-1.0 (3)	F3—C6—C5—C4	-179.4 (3)
Pd1-C1-C6-C5	-179.9 (3)	C3—C4—C5—C6	0.1 (4)
P1-C25-C26-C27	178.6 (3)	C7—C8—C9—C10	0.8 (4)
P1-C25-C30-C29	-178.8 (3)	C7—C12—C11—C10	0.5 (4)
P1-C31-C32-C33	-178.1 (3)	C8—C9—C10—C11	-0.5 (5)
P1-C31-C36-C35	177.8 (3)	C9—C10—C11—C12	-0.1 (5)
P1-C37-C38-C39	179.7 (4)	C13—C14—C15—C16	-0.6 (5)
P1-C37-C42-C41	179.8 (3)	C13—C18—C17—C16	-0.1 (5)
F1—C2—C1—C6	178.6 (3)	C14—C15—C16—C17	-0.3 (5)
F1—C2—C3—I3	0.0 (3)	C15—C16—C17—C18	0.6 (5)
F1—C2—C3—C4	-179.0 (3)	C19—C20—C21—C22	1.8 (4)
C1—C2—C3—I3	179.2 (3)	C19—C24—C23—C22	0.3 (4)
C1—C2—C3—C4	0.3 (4)	C20—C21—C22—C23	-0.1 (4)
C1—C6—C5—I2	179.1 (3)	C21—C22—C23—C24	-1.0 (4)
C1—C6—C5—C4	-0.5 (4)	C25—C26—C27—C28	-0.1 (5)
I2—C5—C4—F2	0.8 (3)	C25—C30—C29—C28	0.4 (5)
I2—C5—C4—C3	-179.5 (3)	C26—C27—C28—C29	0.6 (5)
I2—C5—C6—F3	0.2 (3)	C27—C28—C29—C30	-0.8 (6)
P2-C7-C8-C9	-176.1 (3)	C31—C32—C33—C34	0.6 (4)
P2—C7—C12—C11	175.6 (3)	C31—C36—C35—C34	0.1 (4)
P2-C13-C14-C15	-178.1 (3)	C32—C33—C34—C35	-2.3 (4)
P2-C13-C18-C17	178.3 (4)	C33—C34—C35—C36	1.9 (4)
P2-C19-C20-C21	-177.4(3)	C37—C38—C39—C40	1.4 (5)
P2-C19-C24-C23	176.4 (3)	C37—C42—C41—C40	-0.3 (4)
F2—C4—C3—C2	179.7 (3)	C38—C39—C40—C41	-1.7 (6)
F2—C4—C3—I3	0.7 (3)	C39—C40—C41—C42	1.2 (6)
F2—C4—C5—C6	-179.6 (3)		