

Received 15 April 2025 Accepted 26 May 2025

Edited by V. Jancik, Universidad Nacional Autónoma de México, México

Keywords: crystal structure; trimesic acid; 2-methylimidazolium.

CCDC reference: 2453953

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Crystal structure of tris(2-methyl-1*H*-imidazol-3ium) benzene-1,3,5-tricarboxylate

Weronika Łukaszczyk,^a Allegra Lohse,^b Julia Leibing,^c Sudem Yildizbas,^c Irwana Rizvanovic,^c Simone Techert^{d,e} and Jose de Jesus Velazquez-Garcia^d*

^aFaculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387, Kraków, Poland, ^bGymnasium Altona, Hohenzollernring 57-61, 22763 Hamburg, Germany, ^cBS 06 Berufliche Schule Chemie, Biologie, Pharmazie, Agrarwirtschaft, Ladenbeker Furtweg 151, 21033 Hamburg, Germany, ^dDeutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, and ^eInstitut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany. *Correspondence e-mail: jose.velazquez@desy.de

The structure of the title salt, $3C_4H_7N_2^+ \cdot C_9H_3O_6^{3-}$ (1), is reported. The compound is formed with three 2-methylimidazolium cations and a fully deprotonated trimesic acid. The structure is disordered over two orientations, which were refined using a split model (90.99: 9.01occupancy ratio). Analysis of bond distances and angles reveals the differences and similarities between compound 1 and the previously published 2-methyl-1*H*-imidazol-3-ium 3,5-di-carboxybenzoate structure [Baletska *et al.*, (2023). *Acta Cryst.* E**79**, 1088–1092] and tris(2-methyl-1*H*- imidazol-3-ium) 5-carboxybenzene-1,3-dicarboxylate 3,5-dicarboxybenzoate [Asprilla-Herrera *et al.* (2025). *Acta Cryst.* E**81**, 303–309], as well as the neutral counterparts of the ions [Tothadi *et al.* (2020). *ACS Appl. Mater. Interfaces*, **12**, 15588–15594; Hachuła *et al.* (2010). *J. Chem. Crystallogr.* **40**, 201–206]. The crystal packing analysis reveals the formation of hydrogenbonded two-dimensional networks perpendicular to the [111] vector, where neighbouring planes interact *via* extensive π - π stacking.

1. Chemical context

Benzene-1,3,5-tricarboxylic acid (trimesic acid, H_3btc) is a planar organic molecule with three negatively ionizable carboxylic groups. Among its versatile applications, H_3btc has been used for self-assembled molecular monolayer investigations (MacLeod, 2020; Ha *et al.*, 2010; Korolkov *et al.*, 2012), as well as a surface functionalization agent (Lin *et al.*, 2023; Chen *et al.*, 2014; Iancu *et al.*, 2013). Additionally, it has been used as a building block in the structure of several drug-delivery systems, including dendrimers (Salamończyk, 2021), polymers (Mat Yusuf *et al.*, 2017), or hydrogels (Emani *et al.*, 2023).

The compound 2-methylimidazole (2-mIm) is a heterocyclic aromatic molecule. It has been reported as a surface coating agent (Li *et al.*, 2023), doping agent (Saghaei *et al.*, 2015), intermediate in the synthesis of several drug compounds, as well as co-ligand in complexes of metal ions with anti-inflammatory compounds, presenting interesting bioactive properties (Alisir *et al.*, 2021; Abuhijleh, 2010; Nnabuike *et al.*, 2024).

Both compounds are also widely utilized as organic linkers in the preparation of metal–organic frameworks (MOFs). The 2-mIm acts as an organic linker in the most widely reported zeolitic imidazolate frameworks 8 and 67, ZIF-8 and ZIF-67, (Park *et al.*, 2006; Banerjee *et al.*, 2008), while H₃btc is used in the synthesis of MIL-100 (Férey *et al.*, 2004) and HKUST-1 (Chui *et al.*, 1999), to cite a few. Some btc-based MOFs and ZIFs have been used as gas adsorbents and separators, catalysts, and for drug-delivery purposes (Zhong *et al.*, 2018*a,b*; Zhao *et al.*, 2024; Huang *et al.*, 2011; Song *et al.*, 2024; Abdelhamid, 2021).

In previous studies, we have used 2-mIm and H₃btc to synthesize hexaaquacobalt bis(2-methyl-1*H*-imidazol-3-ium) tetraaquabis(benzene-1,3,5-tricarboxylato- κO)cobalt (Velazquez-Garcia & Techert, 2022), two Co^{II} mixed-ligand MOFs, mDESY-1 and mDESY-2, (Velazquez-Garcia *et al.*, 2025), 2methyl-1*H*-imidazol-3-ium 3,5-dicarboxybenzoate (Baletska *et al.*, 2023), and tris(2-methyl-1*H*-imidazol-3-ium) 5-carboxybenzene-1,3-dicarboxylate 3,5-dicarboxybenzoate (Asprilla-Herrera *et al.*, 2025). Here, we used the same organic compounds to synthesize the title compound.

2. Structural commentary

Compound **1** crystallizes in the $P\overline{1}$ space group. The asymmetric unit comprises one fully deprotonated benzene-1,3,5-tricarboxylate (btc³⁻) anion and three 2-methyl-1*H*-imidazol-3-ium (H2-mIm⁺) cations. The structure is disordered over two orientations, which were refined using a split model. The major fraction, comprising 90.99%, is labelled *a*, while the minor fraction, comprising 9.01%, is labelled *b*. For clarity, the three H2-mIm⁺ cations were labelled as X*a*, Y*a*, and Z*a* for component *a* and correspondingly as X*b*, Y*b*, and Z*b* for component *b*. The *ORTEP* plot illustrating all ions in the major fraction of **1** is shown in Fig. 1.

Figure 1

The molecular structure of the major fraction of 1 with displacement ellipsoids drawn at the 50% probability level.

Table 1

Selected bond lengths (Å), angles (°), and torsion angles (°) of the btc^{3-} ions.

1 <i>a</i>		1 <i>b</i>	
C4-C5	1.392 (2)	C4-C5	1.38 (2)
C5-C6	1.394 (2)	C5-C6	1.38 (2)
C6-C7	1.395 (2)	C6-C7	1.38 (2)
C7-C8	1.391 (2)	C7-C8	1.38 (2)
C8-C9	1.395 (2)	C8-C9	1.39 (2)
C9-C4	1.394 (2)	C9-C4	1.38 (2)
C1-C4	1.513 (2)	C1-C4	1.52 (2)
C2-C6	1.516 (2)	C2-C6	1.52(1)
C3-C8	1.516 (2)	C3-C8	1.52 (2)
C1-O1	1.263 (2)	C1-O1	1.27(1)
C1-O2	1.257 (2)	C1-O2	1.25 (2)
C2-O3	1.267 (2)	C2-O3	1.27 (2)
C2-O4	1.253 (2)	C2-O4	1.24 (1)
C3-O5	1.268 (2)	C3-O5	1.27 (2)
C3-O6	1.252 (2)	C3-O6	1.25(1)
C4-C5-C6	121.0(1)	C4 - C5 - C6	122 (1)
C5-C6-C7	119.0(1)	C5 - C6 - C7	119(1)
C6-C7-C8	121.0(1)	C6 - C7 - C8	121 (1)
C7-C8-C9	119.1 (1)	C7-C8-C9	118 (1)
C8-C9-C4	120.8 (1)	C8-C9-C4	122 (1)
C9-C4-C5	119.1 (1)	C9-C4-C5	118 (1)
O1-C1-O2	124.9 (1)	O1-C1-O2	121 (1)
O3-C2-O4	125.0 (1)	O3-C2-O4	121 (1)
O5-C3-O6	124.6 (1)	O5-C3-O6	121 (1)
C5-C4-C1-O1	179.4 (1)	C5-C4-C1-O1	171 (1)
C5-C4-C1-O2	1.2 (2)	C5-C4-C1-O2	-4(2)
C9-C4-C1-O1	-0.3(2)	C9-C4-C1-O1	-4(2)
C9-C4-C1-O2	-178.4(1)	C9-C4-C1-O2	-180(1)
C5-C6-C2-O3	4.3 (2)	C5-C6-C2-O3	-1(2)
C5 - C6 - C2 - O4	-176.8(1)	C5 - C6 - C2 - O4	-178(1)
C7-C6-C2-O3	-173.2(1)	C7-C6-C2-O3	-180(1)
C7 - C6 - C2 - O4	5.7 (2)	C7-C6-C2-O4	3 (2)
C7-C8-C3-O5	-4.4(2)	C7-C8-C3-O5	2 (2)
C7-C8-C3-O6	174.7 (1)	C7-C8-C3-O6	-174(1)
C9-C8-C3-O5	177.3 (1)	C9-C8-C3-O5	-179(1)
C9-C8-C3-O6	-3.7 (2)	C9-C8-C3-O6	6 (2)

Selected bond lengths, angles, and torsions for the btc³⁻ ions are summarized in Table 1. In 1a, the C-C and C-O bond distances are in the ranges 1.391 (2)–1.516 (2) Å and 1.252 (2)–1.268 (2) Å, respectively. The longest bonds connect carbon atoms of the aromatic ring and carboxylic groups, with lengths ranging from 1.513 (2) to 1.516 (2) Å. In contrast, the C-C bonds within the aromatic ring are shorter, ranging from 1.391 (2) to 1.395 (2) Å. The highest difference between bond distances within a carboxylic group is exhibited by the O5-C3-O6 (0.016 Å) and the O3-C2-O4 (0.014 Å) groups. The shortest bond in the structure is formed by C3 and O6 [1.252 (2) Å]. In 1b, the C–C bond distances within the aromatic ring are consistent and within the range of 1.38 (2) to 1.39 (2) Å. The C–C bonds between the aromatic ring and carboxylic groups equal 1.52 (2) Å. The C-O bond distances within carboxylic groups are consistent, ranging from 1.24 (1) to 1.27 (2) Å. The C–C bond distances range in both 1a and 1b are similar to the corresponding C-C bond distance ranges in the reported structures of deprotonated H₂btc⁻ (Baletska et al., 2023), and H_2btc^- or $Hbtc^{2-}$ (Asprilla-Herrera et al., 2025), for which they are 1.388 (2)-1.511 (2) Å, 1.389 (2)-1.519 (2) Å, and 1.388 (2)–1.510 (2) Å, respectively. The corresponding C-C bond lengths in the structure of neutral H_3 btc molecule vary slightly less than in 1, with the range equal to 1.381 (6)–1.494 (9) Å. In contrast, the bond lengths

Table 2
Root-mean-square-deviation and maximal deviation values calculated fo
molecular overlays of btc^{3-} in 1 and other reported btc structures

	1 <i>a</i>		1 b	
	r.m.s.d	max. d.	r.m.s.d.	max. d.
H ₃ btc (Tothadi et al., 2020)	0.0695	0.1509	0.0643	0.1098
H ₂ btc ⁻ (Baletska et al., 2023)	0.1067	0.2231	0.1383	0.3149
H_2 btc ⁻ (Asprilla-Herrera <i>et al.</i> , 2025)	0.0592	0.1135	0.0776	0.1626
Hbtc ²⁻ (Asprilla-Herrera et al., 2025)	0.1522	0.3301	0.1804	0.3712

for C–O in both 1*a* and 1*b* are significantly more uniform when compared to the range of 1.229 (5)–1.303 (5) Å for the neutral form (Tothadi *et al.*, 2020), 1.224 (2)–1.320 (2) Å for H₂btc⁻ (Baletska *et al.*, 2023), and 1.214 (2)–1.318 (2) Å and 1.214 (2)–1.338 (2) Å for H₂btc⁻ and Hbtc²⁻, respectively (Asprilla-Herrera *et al.*, 2025).

The C-C-C angles in **1** lie within the range 119.0 (2) to 121.0 (1)° for **1***a* and 118 (1)–122 (1)° for **1***b*. These values are consistent with the corresponding angles in H₃btc [119.0 (4)–121.1 (4)°], H₂btc⁻ [118.9 (2)–121.4 (4)° (Baletska *et al.*, 2023) and 118.9 (2)–120.8 (2)° (Asprilla-Herrera *et al.*, 2025)], and Hbtc²⁻ [119.4 (2)–120 (4)°; Asprilla-Herrera *et al.*, 2025]. The O-C-O angles in **1***a* fall in the range 124.6 (1)–125.0 (1)° and are comparable to the corresponding angles in H₃btc [124.4 (4)–125.0 (4)°], singly deprotonated H₂btc⁻ [123.9 (2)–126.1 (2)° (Baletska *et al.*, 2023) and 124.3 (2)–126.8 (2)° (Asprilla-Herrera *et al.*, 2025)], and Hbtc²⁻ [123.2 (2)–125.4 (2)°] forms. In **1***b*, the O-C-O angles are consistent and equal to 121 (1)°.

Further comparison of btc^{3-} ions in **1** and the previously reported structures was conducted by analysing the torsion angles and performing molecular overlays. The torsion angles deviation from 0 or 180° are similar for both 1a and 1b $[0.3 (2)-6.8 (1)^{\circ}$ and $(1)-9 (1)^{\circ}$, respectively]. These values are significantly lower compared to the H₂btc⁻ structure published by Baletska et al. $[4.2 (2)-16.6 (2)^{\circ}]$ and doubly deprotonated Hbtc²⁻ structure published by Asprilla-Herrera et al. $[12.6 (2)-17.1 (2)^{\circ}]$. Interestingly, in both 1a and 1b, the torsion angles resemble more the corresponding angles in fully protonated H₃btc $[0 (4)-4.2 (4)^{\circ}]$ and singly deprotonated H_2 btc⁻ reported by Asprilla-Herrera *et al.* [0.6 (2)–7.0 (2)°]. This is further corroborated by molecular overlays of the btc^{3–} ions with other reported structures of btc (Fig. 2) and their respective root-mean-squared deviation (r.m.s.d.) and maximal deviation (max. d.) values (Table 2) generated with the Mercury software (Macrae et al., 2020). The r.m.s.d and max. d. values calculated for molecular overlays of btc^{3-} of 1aand 1b with H₃btc and H₂btc⁻ (Asprilla-Herrera *et al.*, 2025) are notably lower (with the largest r.m.s.d. equal to 0.0776 Å and max. d. equal to 0.1626 Å for btc^- of 1b overlayed with H₂btc⁻ reported by Asprilla-Herrera *et al.*) compared to the overlays with the other reported btc structures (with the lowest r.m.s.d. equal to 0.1067 Å and max. d. equal to 0.2231 Å for 1b overlayed with H_2btc^- reported by Baletska et al.). Note that hydrogen atoms were excluded from the calculation.

Table 3. presents selected bond lengths, angles, and torsions for the H2-mIm⁺ cations. The corresponding C-C and C-N

Figure 2

Molecular overlay of btc^{3-} anions from 1*a* (light blue) and 1*b* (orange) with (*a*) neutral H₃btc molecule (dark blue; Tothadi *et al.*, 2020), (*b*) H₂btc⁻ anion (purple; Baletska *et al.*, 2023), (*c*) H₂btc⁻ anion (dark green; Asprilla-Herrera *et al.*, 2025), and (*d*) Hbtc²⁻ (red; Asprilla-Herrera *et al.*, 2025).

bond distances are rather uniform across the individual cations. The C-C bond distances fall in the range of 1.349 (2)–1.480 (2) Å for 1*a* and 1.34 (2)–1.48 (2) Å for 1*b*. The C-N bond distances vary from 1.323 (2) to 1.382 (3) Å for 1a and from 1.31 (2) to 1.40 (3) Å for 1b. The distances of both aromatic C-C bonds and C-C bonds between the ring and the methyl group of H2-mIm⁺ cations of **1** are more similar to those observed in the structures of H2-mIm⁺ cations reported by Baletska et al. [1.345 (3) and 1.481 (3) Å, respectively] and Asprilla-Herrera et al. [ion a: 1.348 (2) and 1.483 (3) Å, respectively] than the neutral 2-mIm structure published by Hachuła et al., 2010 [1.367 (1) Å and 1.488 (1) Å, respectively]. Only a slight asymmetry of endocyclic N-C bonds was observed for the Xa and Za H2-mIm⁺ cations in the structure of 1, suggesting a greater double-bond character of the N1-C11 and N5-C19 bonds than the N2-C11 and N6–C19 bonds, accordingly. In 1a, the difference in distance is comparable (from 0.004 to 0.008 Å) to that of the structure from Baletska et al. (0.008 Å), and for 1b (from 0.02–0.03 Å), it is similar to that of the structure of the neutral 2-mIm molecule (0.022 Å).

Similar to other H2-mIm⁺ structures, protonation introduces more symmetry regarding the bond angles within the aromatic ring. The largest deviation from the ideal pentagon interior angle of 108° is 1.7° in fraction **1***a* (X*a* ion) and 4° in fraction **1***b* (X*b* ion). In comparison, the corresponding deviation in the structure of the neutral 2-mIm form is 3.4°. The methyl groups in cations of **1** show the maximal deviation from coplanarity with the aromatic ring in the Z*a* (1.9°) and X*b* (3°) ions. Compared to other reported structures, these values are the closest to those reported by Asprilla-Herrera *et al.* in one of the ions in the structure (for which the maximal deviation reported was 2.3°). In the other 2-mIm⁺ and 2-mIm structures, the corresponding maximal deviation from planarity was no higher than 0.9°.

The values of root-mean-squared deviation (r. m. s. d.) and maximal deviation (max. d.) values calculated by *Mercury* software for the molecular overlays of H2-mIm⁺ cations of **1** with the neutral H2-mIm molecule and the other H2-mIm⁺ cations are presented in Table 4. The molecular overlays

Table 3

Selected bond lengths (Å), angles (°), and torsion angles (°C) of the H2-mIm⁺ ions.

Xa		Ya		Za	
C10-C11	1.480 (2)	C14-C15	1.476 (2)	C18-C19	1.473 (2)
C12-C13	1.349 (2)	C16-C17	1.352 (2)	C20-C21	1.349 (2)
N1-C11	1.323 (2)	N3-C15	1.329 (2)	N5-C19	1.324 (2)
N1-C13	1.376 (2)	N3-C16	1.375 (2)	N5-C21	1.378 (2)
N2-C11	1.331 (2)	N4-C15	1.333 (3)	N6-C19	1.336 (3)
N2-C12	1.381 (3)	N4-C17	1.380 (3)	N6-C20	1.382 (3)
C10-C11-N1	125.1 (1)	C14-C15-N3	125.3 (1)	C18-C19-N5	125.3 (1)
C11-N1-C13	108.5 (1)	C15-N3-C16	108.7 (1)	C19-N5-C21	108.6 (1)
N1-C13-C12	107.8 (1)	N3-C16-C17	107.5 (1)	N5-C21-C20	107.6 (2)
C13-C12-N2	106.3 (2)	C16-C17-N4	106.5 (2)	C21-C20-N6	106.6 (2)
C12-N2-C11	108.9 (2)	C17-N4-C15	109.0 (2)	C20-N6-C19	108.7 (2)
N2-C11-N1	108.6 (2)	N4-C15-N3	108.3 (2)	N6-C19-N5	108.5 (2)
N2-C11-C10	126.3 (2)	N4-C15-C14	126.4 (2)	N6-C19-C18	126.1 (2)
C13-N1-C11-C10	179.5 (2)	C16-N3-C15-C14	-178.4(2)	C21-N5-C19-C18	178.3 (2)
C12-N2-C11-C10	-179.2 (2)	C17-N4-C15-C14	178.5 (2)	C20-N6-C19-C18	-178.1 (2)
Xb		Yb		Zb	
C10-C11	1.48 (2)	C14-C15	1.47 (2)	C18-C19	1.47 (2)
C12-C13	1.34 (2)	C16-C17	1.35 (2)	C20-C21	1.34 (2)
N1-C11	1.31 (2)	N3-C15	1.32 (2)	N5-C19	1.32 (1)
N1-C13	1.36 (2)	N3-C16	1.36 (2)	N5-C21	1.37 (2)
N2-C11	1.34 (2)	N4-C15	1.34 (4)	N6-C19	1.34 (3)
N2-C12	1.39 (3)	N4-C17	1.39 (2)	N6-C20	1.40 (3)
C10-C11-N1	126 (1)	C14-C15-N3	126 (1)	C18-C19-N5	127 (1)
C11-N1-C13	108 (1)	C15-N3-C16	108 (1)	C19-N5-C21	108 (1)
N1-C13-C12	110(1)	N3-C16-C17	109 (1)	N5-C21-C20	109 (1)
C13-C12-N2	104 (2)	C16-C17-N4	105 (2)	C21-C20-N6	105 (1)
C12-N2-C11	109 (2)	C17-N4-C15	109 (2)	C20-N6-C19	109 (2)
N2-C11-N1	109 (2)	N4-C15-N3	108 (2)	N6-C19-N5	108 (1)
N2-C11-C10	125 (2)	N4-C15-C14	125 (2)	N6-C19-C18	124 (2)
C13-N1-C11-C10	-177 (2)	C16-N3-C15-C14	178 (1)	C21-N5-C19-C18	179 (1)
C12-N2-C11-C10	178 (2)	C17-N4-C15-C14	-179(2)	C20-N6-C19-C18	-178(2)

Figure 3

Molecular overlay plot of H2-mIm⁺ cations of 1a (light green) and 1b (yellow) with (a) neutral 2-mIm molecule (dark green; Hachuła *et al.*, 2010), (b) H2-mIm⁺ cation (magenta; Baletska *et al.*, 2023) and H2-mIm⁺ cations adapted from Asprilla-Herrera *et al.* (blue; *c*, *d*, *e* – cations *A*, *B*, and *C*, respectively).

are depicted in Fig. 3. The values suggest a higher resemblance of H2-mIm⁺ cations of 1 to other reported protonated forms, with the lowest value of r.m.s.d. and max. d. recorded for the overlay of X*a* with the B ion from the structure reported by Asprilla-Herrera *et al.* (0.0050 and 0.0076 Å, respectively).

3. Supramolecular features

The primary intermolecular interactions contributing to the crystal packing include hydrogen bonds and π - π stacking. The hydrogen bonds form 2D network planes perpendicular to the [111] vector (Fig. 4), while the π - π stacking between the aromatic rings hold the planes together (Fig. 5). Table 5 displays the details of the π - π interactions between the planes, while Table 6 summarizes the geometrical details of the hydrogen-bond network. Note that half of the hydrogen bonds are charge-assisted and therefore, display an ionic character, confirmed by significantly shorter distances between acceptor and donor atoms (Mayer *et al.*, 1992).

To gain a deeper understanding of the intermolecular interaction patterns within 1, a graph-set analysis (Etter *et al.*, 1990; Bernstein *et al.*, 1995) was performed. The analysis reveals that 1 contains only six discrete D(2) motifs at the first-level graph set. The second-level graph set features three $C_2^2(12)$ and twelve D_2^2 (Table 7) motifs. No other types of patterns were identified during the graph-set analysis.

Root-mean-square-deviation and maximal deviation values calculated for molecular overlays of H2-mIm⁺ ions in 1 and other reported 2-mIm structures.

	Xa		Ya		Za	
	r.m.s.d.	max. d.	r.m.s.d.	max. d.	r.m.s.d.	max. d.
2-mIm (Hachuła et al., 2010)	0.0269	0.0430	0.0268	0.0430	0.0268	0.0385
H2-mIm ⁺ (Baletska et al., 2023)	0.0102	0.0125	0.0093	0.0123	0.0141	0.0202
H2-mIm ⁺ ion A (Asprilla-Herrera et al., 2025)	0.0123	0.0167	0.0094	0.0143	0.0111	0.0169
H2-mIm ⁺ ion B (Asprilla-Herrera et al., 2025)	0.0050	0.0076	0.0064	0.0097	0.0075	0.0108
H2-mIm ⁺ ion C (Asprilla-Herrera <i>et al.</i> , 2025)	0.0075	0.0104	0.0091	0.0120	0.0103	0.0157
	Xb		Yb		Zb	
2-mIm (Hachuła et al., 2010)	0.0265	0.0409	0.0298	0.0451	0.0419	0.0612
H2-mIm ⁺ (Baletska et al., 2023)	0.0216	0.0352	0.0233	0.0390	0.0368	0.0468
H2-mIm ⁺ ion A (Asprilla-Herrera et al., 2025)	0.0214	0.0351	0.0255	0.0462	0.0331	0.0437
H2-mIm ⁺ ion B (Asprilla-Herrera et al., 2025)	0.0178	0.0317	0.0203	0.0372	0.0309	0.0431
H2-mIm ⁺ ion C (Asprilla-Herrera <i>et al.</i> , 2025)	0.0237	0.0404	0.0227	0.0342	0.0359	0.0470

Table 5

Geometrical details of π - π interactions (Å) in **1**.

Ion	H2-mIm ⁻	Centroid-to-centroid distance	Perpendicular distance	Offset
$btc^{3-}(1a)$	Xa	3.6855 (10)	3.3	1.629
$btc^{3-}(1a)$	Za	3.8392 (12)	3.4	1.771
Xa	Ya	3.4548 (12)	3.2	1.294
Ya	Za	3.5466 (13)	3.3	1.482
$btc^{3-}(1b)$	Xb	3.769 (11)	3.4	1.881
$btc^{3-}(1b)$	Zb	3.694 (10)	3.2	1.87
Xb	Yb	3.416 (13)	3.4	0.195
Yb	Zb	3.544 (13)	3.5	0.347

4. Hirshfeld surface analysis

Intermolecular interactions in both fractions of **1** were further quantified using Hirshfeld surface analysis with *Crystal-Explorer* 17.5 (Turner *et al.* 2017). The three-dimensional

Figure 4

View along the [111] vector showing a network of hydrogen bonds between btc^{3–} and H2-mIm⁺ ions in the *a* fraction. The first-level graphset descriptors are labelled with letters a-f (see Table 6). The colour coding indicates the direction of the $C_2^2(12)$ chains of the second-level graph-set descriptors. $d_{\rm norm}$ surfaces were plotted with a standard resolution and a fixed colour scale ranging from -0.7640 (red) to 1.0884 (blue) a.u. for fraction *a* and from -0.8458 (red) to 1.0400 (blue) for the minor fraction *b*. The pale-red spots in Fig. 6 indicate short contacts and negative $d_{\rm norm}$ values on the surface, corresponding to the interactions previously described.

The two-dimensional fingerprint plots for fractions a and b are illustrated in Fig. 7 and Fig. 8, respectively, with the contributions per interaction per ion summarized in Table 8.

Figure 5

Crystal packing in compound **1** viewed along the [$\overline{111}$] vector illustrating the stacking of the planes *via* π - π interactions (green lines).

research communications

Table 6

Hydrogen-bond geometry (Å, $^{\circ}$).

	Graph-set descriptor	Туре	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1A - H1AA \cdots O1A^{iv}$	D(2)	а	0.883 (9)	1.730 (10)	2.6101 (17)	174.4 (18)
$N2A - H2A \cdots O4A^{v}$	D(2)	b	0.873 (9)	1.828 (10)	2.6888 (18)	168.5 (18)
$N3A - H3A \cdots O5A^{vi}$	D(2)	С	0.881 (9)	1.755 (10)	2.6309 (16)	172.3 (18)
$N4A - H4A \cdots O2A$	D(2)	d	0.877 (9)	1.815 (10)	2.682 (2)	169.8 (18)
$N5A - H5AA \cdots O3A^{i}$	D(2)	е	0.868 (9)	1.749 (10)	2.6131 (17)	173.2 (19)
$N6A - H6A \cdots O6A^{vii}$	D(2)	f	0.873 (9)	1.857 (10)	2.713 (2)	166.7 (18)
$N1B - H1B \cdots O1B^{i}$	D(2)	a	0.88	1.64	2.510 (16)	169.2
$N2B - H2B \cdot \cdot \cdot O4B^{vii}$	D(2)	b	0.88	1.75	2.606 (16)	164.9
$N3B - H3B \cdot \cdot \cdot O5B^{iii}$	D(2)	С	0.88	1.66	2.522 (15)	167.6
$N4B - H4B \cdots O2B^{i}$	D(2)	d	0.88	1.75	2.598 (16)	161.8
$N5B-H5BA\cdots O3B^{iv}$	D(2)	е	0.88	1.65	2.518 (15)	168.4
$N6B - H6B \cdot \cdot \cdot O6B^{v}$	D(2)	f	0.88	1.83	2.648 (19)	153.2
$C10A - H10C \cdots O2A^{iv}$			0.98	2.42	3.390 (2)	170.8
$C12A - H12A \cdots O5A^{v}$			0.95	2.45	3.338 (2)	156
$C14A - H14B \cdots O6A^{vi}$			0.98	2.43	3.3867 (19)	165
$C17A - H17A \cdots O3A$			0.95	2.44	3.3202 (19)	154.5
$C18A - H18A \cdots O1A$			0.98	2.63	3.462 (2)	143.2
$C18A - H18C \cdots O4A^{i}$			0.98	2.45	3.371 (2)	156.5
$C20A - H20A \cdots O1A^{vii}$			0.95	2.38	3.2993 (19)	163.5
$C10B - H10D \cdot \cdot \cdot O2B^{i}$			0.98	2.61	3.51 (2)	151.4
$C10B - H10E \cdots O2B^{ii}$			0.98	2.05	2.85 (3)	136.8
$C12B - H12B \cdots O5B^{vii}$			0.95	2.58	3.475 (15)	157.1
$C17B - H17B \cdots O3B^{i}$			0.95	2.52	3.442 (16)	164.3

Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) 1 + x, y, z; (iii) -x, -y, 2 - z; (iv) 1 - x, 1 - y, 1 - z; (v) 1 - x, -y, 2 - z; (vi) -1 + x, 1 + y, z; (vii) 2 - x, 1 - y, 1 - z.

Table 7Second-level graph sets in 1.

$C_2^2(12)$	> <i>a</i> < <i>b</i>	$D_{2}^{2}(9)$	>b <c< th=""><th>$D_{2}^{2}(9)$</th><th>>c<e< th=""></e<></th></c<>	$D_{2}^{2}(9)$	>c <e< th=""></e<>
$D_{2}^{2}(9)$	>a <c< td=""><td>$D_{2}^{2}(9)$</td><td>><i>b</i><<i>d</i></td><td>$D_{2}^{2}(5)$</td><td>>c<f< td=""></f<></td></c<>	$D_{2}^{2}(9)$	> <i>b</i> < <i>d</i>	$D_{2}^{2}(5)$	>c <f< td=""></f<>
$D^{2}_{2}(5)$	>a <d< td=""><td>$D^{2}_{2}(5)$</td><td>>b<e< td=""><td>$D^{2}_{2}(9)$</td><td>>d<e< td=""></e<></td></e<></td></d<>	$D^{2}_{2}(5)$	>b <e< td=""><td>$D^{2}_{2}(9)$</td><td>>d<e< td=""></e<></td></e<>	$D^{2}_{2}(9)$	>d <e< td=""></e<>
$D_{2}^{2}(9)$	>a <e< td=""><td>$D_{2}^{2}(9)$</td><td>>b<f< td=""><td>$D^{2}_{2}(9)$</td><td>>d<f< td=""></f<></td></f<></td></e<>	$D_{2}^{2}(9)$	>b <f< td=""><td>$D^{2}_{2}(9)$</td><td>>d<f< td=""></f<></td></f<>	$D^{2}_{2}(9)$	>d <f< td=""></f<>
$D_{2}^{2}(9)$	>a <f< td=""><td>$C_2^2(12)$</td><td>>c<d< td=""><td>$C_{2}^{2}(12)$</td><td>>e<f< td=""></f<></td></d<></td></f<>	$C_2^2(12)$	>c <d< td=""><td>$C_{2}^{2}(12)$</td><td>>e<f< td=""></f<></td></d<>	$C_{2}^{2}(12)$	>e <f< td=""></f<>

In both fractions, the greatest contributions for the btc^{3-} ions are $O \cdots H$ (>50%) and $H \cdots H$ (> 15%), while for the three H2-mIm⁺ ions are the $H \cdots H$ (> 50%) and $H \cdots O$ (> 19%).

5. Database survey

No reported structures of the title compound were found in the Cambridge Structural Database (CSD version 5.45, update of November 2023; Groom *et al.*, 2016). The closest to **1** are the previously mentioned structures reported under the refcodes ZUQYOD (Asprilla-Herrera *et al.*, 2025) and LODSUW (Baletska *et al.*, 2023).

Some structures containing H2-mIm⁺ cation were reported under the refcodes BEZGEU (Dhanabal *et al.*, 2013), BOTTEK, BOTTIO, BOTTOU (Meng *et al.*, 2009), BOTTEK01, BOTTIO01, BOTTOU01, VURBUG,

Figure 6

Hirshfeld surface for each ion in both fractions of 1 mapped over d_{norm} .

Table 8	
Intermolecular interaction contribution (9	6) from Hirshfeld surface analysis of 1 .

	btc ³⁻	btc ^{3–}	$H2-mIm^+$	$H2-mIm^+$	$H2-mIm^+$	$H2-mIm^+$	$H2-mIm^+$	H2-mIm ⁺
	1 <i>a</i>	1 b	Xa	Ya	Za	Xb	Yb	Zb
0-0	0	1.3	-	-	-	_	-	-
O-C	2.2	2.8	_	-	-	-	_	-
O-H	56.2	52.8	-	-	-	_	-	-
O-N	0	0.1	-	-	-	_	-	-
C-O	2.7	2.9	0.3	0.2	0.5	0.6	0	0.8
C-C	5.3	6.9	5	2.7	5.2	6.5	4.7	6
C-H	12.2	9.8	3.7	5.1	3	0.4	0.5	0.9
C-N	2	2.4	1.1	2.3	1	2.3	4.2	2
H-N	1.3	1	1	2.3	1.3	0.6	1.1	0.6
H-H	15.2	17.5	50.2	55.4	49.3	54.6	62.9	53.4
H-C	1.4	0.1	7.5	3.6	7.1	3.9	1.1	5.1
H-O	1.4	2.4	24.5	21.8	26.1	24.6	19.2	24.7
N-O	_	_	0	0.1	0	0.1	0	0.1
N-C	_	_	2.8	2.1	2.7	4.3	4.2	3.9
N-H	_	_	3	2.6	2.8	1.8	1.2	2
N-N	_	-	0.9	2	1.1	0.4	1	0.6

VURCAN, VURFAQ (Callear *et al.*, 2010), DAMGIL (Hinokimoto *et al.*, 2021), DOWVUI (Shi *et al.*, 2014), FAMFIL, FAMFOR, FAMFUX (Zhang & Zhang, 2017), FETDAK (Aakeröy *et al.*, 2005), HILSOL (Qu, 2007). However, these structures do not have the bte³⁻ ion.

Among the various reported structures containing fully deprotonated btc^{3-} ion with other organic cations, we highlight those with the following refcodes: HEGFOQ (Zhu *et al.*, 2011), HOPZIX (Ndoye *et al.*, 2013), IJEQIX (Lynch, 2003), LIDHIT, LIDJIV (Skala *et al.*, 2023), MEKKES, MEKKIW, MEKKOC (Plaut *et al.*, 2000), OSADOD (Singh *et al.*, 2016), OTINUB (Gupta *et al.*, 2011), TOZZUD, TUBBAT

(Melendez *et al.*, 1996), VABQOG (Liu *et al.*, 2010), and WONVAX (Hayashi *et al.*, 2008). However, these structures do not contain the H2-mIm⁺ cation.

Some compounds with low resemblance to the title compound were reported under the refcodes CUMQUX (Basu *et al.*, 2009), HICSUJ (Lie *et al.*, 2013), ILELAO (Li & Li, 2016), JOCBAH (Falek *et al.*, 2019), LUBGUM, LUBHAT, LUBHEX, LUBHIB, LUBHOH, LUBHUN, LUBJAV (Singh *et al.*, 2015), SUHRAR (Rajkumar *et al.*, 2020), YOCSIT (Habib & Janiak, 2008), WOGBED (Sosa-Rivadeneyra *et al.*, 2024).

Figure 7

Fingerprint plots of the Hirshfeld surfaces for fraction a of 1, showing the overall plot and three most significant intermolecular contributions.

Figure 8

Fingerprint plots of the Hirshfeld surfaces for fraction b of 1, showing the overall plot and three most significant intermolecular contributions.

6. Synthesis and crystallization

To synthesize the title compound, 120 μ l of a 1.58 *M* ethanolic solution of 2-mIm was diluted with 2 ml of ethanol, followed by the addition of 100 μ l of a 0.12 *M* ethanolic solution of H₃btc. The mixture was gently shaken and left to rest at 313 K. After one week, crystals of **1** were obtained.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 9. The structure is disordered over two orientations and was refined using a split model with restraint on bond lengths (SADI). SIMU and RIGU restraints were then applied across the minor fraction b. Constraints on the atomic displacement parameter (EADP) were also applied to C18B, C10B, C6B, C7B, N5B, and O6B of the minor component, with close by part a atoms. The most disagreeable reflection (1 0 5), with an error/s.u. of more than 10, was omitted using the OMIT instruction in SHELXL (Sheldrick, 2015b). The positions of hydrogen atoms were refined with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C \ or \ N})$ for CH and NH groups and $U_{\rm iso}({\rm H})$ = $1.5U_{eq}(C \text{ or } O)$ for others. Hydrogen atoms attached to nitrogen atoms were refined with DFIX 0.86 0.01 instruction for the major component, while the HFIX command was applied for the minor component.

Acknowledgements

Funding for this research was provided by: HG-recruitment, HG-Innovation ECRAPS, HG-Innovation DSF/DASHH and CMWS (grant to ST). WŁ thanks the DESY-Helmholtz-Summer student fund for financial support.

References

- Aakeröy, C. B., Desper, J. & Levin, B. (2005). CrystEngComm 7, 102–107.
- Abdelhamid, H. N. (2021). Curr. Med. Chem. 28, 7023-7075.
- Abuhijleh, A. L. (2010). J. Mol. Struct. 980, 201-207.
- Alisir, S. H., Ozdemir, N., Burgaz, E., Dege, N. & Canavar, Y. E. (2021). *Fibers Polym* **22**, 2738–2749.
- Asprilla-Herrera, L. M., Techert, S. & Velazquez-Garcia, J. de J. (2025). Acta Cryst. E81, 303–309.
- Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088–1092.
- Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. (2008). *Science* **319**, 939–943.
- Basu, T., Sparkes, H. A. & Mondal, R. (2009). Cryst. Growth Des. 9, 5164–5175.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Callear, S. K., Hursthouse, M. B. & Threlfall, T. L. (2010). CrystEngComm 12, 898–908.
- Chen, Z., Zhang, Q., Huang, L., Li, R., Li, W., Xu, G. & Cheng, H. (2014). J. Phys. Chem. C 118, 21244–21249.
- Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science 283, 1148–1150.

Table	9
-------	---

Experimental details.

Crystal data	
Chemical formula	$3C_4H_7N_2^+ \cdot C_9H_3O_6^{3-}$
M _r	456.46
Crystal system, space group	Triclinic, P1
Temperature (K)	296
a, b, c (Å)	8.8634 (5), 10.3453 (7), 11.6777 (7)
α, β, γ (°)	74.199 (4), 79.749 (4), 87.580 (4)
$V(Å^3)$	1013.85 (11)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.11
Crystal size (mm)	$0.1\times0.08\times0.07$
Data collection	
Diffractometer	Bruker P4
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax	0.661, 0.746
No. of measured, independent and	18775, 4693, 3780
observed $[I > 2\sigma(I)]$ reflections	· · ·
R _{int}	0.033
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.652
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.102, 1.05
No. of reflections	4693
No. of parameters	584
No. of restraints	1806
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.36, -0.23
· · · · · · · · · · · · · · · · · · ·	

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 1.5 (Dolomanov et al., 2009).

- Dhanabal, T., Sethuram, M., Amirthaganesan, G. & Das, S. K. (2013). J. Mol. Struct. 1045, 112–123.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Emani, S., Vangala, A., Buonocore, F., Yarandi, N. & Calabrese, G. (2023). *Pharmaceutics* **15**, 1084.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Falek, W., Benali-Cherif, R., Golea, L., Samai, S., Benali-Cherif, N., Bendeif, E.-E. & Daoud, I. (2019). J. Mol. Struct. 1192, 132–144.
- Férey, G., Serre, C., Mellot–Draznieks, C., Millange, F., Surblé, S., Dutour, J. & Margiolaki, I. (2004). Angew. Chem. Int. Ed. 43, 6296– 6301.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gupta, A. K., Nicholls, J., Debnath, S., Rosbottom, I., Steiner, A. & Boomishankar, R. (2011). *Cryst. Growth Des.* **11**, 555–564.
- Ha, N. T. N., Gopakumar, T. G., Gutzler, R., Lackinger, M., Tang, H. & Hietschold, M. (2010). *J. Phys. Chem. C* **114**, 3531–3536.
- Habib, H. A. & Janiak, C. (2008). Acta Cryst. E64, o1199.
- Hachuła, B., Nowak, M. & Kusz, J. (2010). J. Chem. Crystallogr. 40, 201–206.
- Hayashi, H., Karasawa, S. & Koga, N. (2008). J. Org. Chem. **73**, 8683–8693.
- Hinokimoto, A., Izu, H., Wei, Y.-S., Nakajo, T., Matsuda, R. & Horike, S. (2021). *Cryst. Growth Des.* **21**, 6031–6036.
- Huang, H., Zhang, W., Liu, D., Liu, B., Chen, G. & Zhong, C. (2011). Chem. Eng. Sci. 66, 6297–6305.
- Iancu, V., Braun, K.-F., Schouteden, K. & Van Haesendonck, C. (2013). Langmuir 29, 11593–11599.
- Korolkov, V. V., Allen, S., Roberts, C. J. & Tendler, S. J. B. (2012). J. Phys. Chem. C 116, 11519–11525.

- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Li, M., Xie, Y., Song, D., Huang, H. & Li, Y. (2023). *Talanta* 252, 123853.
- Li, S.-Y. & Li, P. (2016). Z. Kristallogr. New Cryst. Struct. 231, 525– 528.
- Lie, S., Maris, T., Malveau, C., Beaudoin, D., Helzy, F. & Wuest, J. D. (2013). Cryst. Growth Des. 13, 1872–1877.
- Lin, X., Wang, Z., Cao, S., Hu, Y., Liu, S., Chen, X., Chen, H., Zhang, X., Wei, S., Xu, H., Cheng, Z., Hou, Q., Sun, D. & Lu, X. (2023). *Nat. Commun.* 14, 6714.
- Liu, P., Li, Z. & Chen, D. (2010). Acta Cryst. E66, o2900.
- Lynch, D. E. (2003). Acta Cryst. E59, o1076-o1078.
- MacLeod, J. (2020). J. Phys. D Appl. Phys. 53, 043002.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Mat Yusuf, S. N. A., Ng, Y. M., Ayub, A. D., Ngalim, S. H. & Lim, V. (2017). Polymers 9, 311. https://doi.org/10.3390/polym9080311
- Mayer, I., Lukovits, I. & Radnai, T. (1992). Chem. Phys. Lett. 188, 595-598.
- Melendez, R. E., Sharma, C. V. K., Zaworotko, M. J., Bauer, C. & Rogers, R. D. (1996). Angew. Chem. Int. Ed. Engl. 35, 2213–2215.
- Meng, X.-G., Cheng, C.-X. & Yan, G. (2009). Acta Cryst. C65, o217o221.
- Ndoye, D., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). *Main Group Met. Chem.* **36**, 215–219.
- Nnabuike, G. G., Salunke-Gawali, S., Gaikwad, M., Ashtekar, H., Prakash, B., Butcher, R. J. & Obaleye, J. (2024). *Inorg. Chim. Acta* 563, 121908.
- Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2006). *Proc. Natl Acad. Sci. USA* 103, 10186–10191.
- Plaut, D. J., Lund, K. M. & Ward, M. D. (2000). Chem. Commun. pp. 769–770.
- Qu, S. (2007). Acta Cryst. E63, 04071.
- Rajkumar, M., Muthuraja, P., Dhandapani, M. & Chandramohan, A. (2020). Opt. Laser Technol. 124, 105970.

- Saghaei, J., Fallahzadeh, A. & Yousefi, M. H. (2015). Org. Electron. 19, 70–75.
- Salamończyk, G. M. (2021). Molecules 26, 4754.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shi, C., Wei, B. & Zhang, W. (2014). Cryst. Growth Des. 14, 6570–6580.
- Singh, U. P., Tomar, K. & Kashyap, S. (2015). CrystEngComm 17, 1421–1433.
- Singh, U. P., Tomar, K. & Kashyap, S. (2016). Struct. Chem. 27, 1027– 1040.
- Skala, L. P., Stern, C. L., Bancroft, L., Moisanu, C. M., Pelkowski, C., Aguilar-Enriquez, X., Swartz, J. L., Wasielewski, M. R. & Dichtel, W. R. (2023). *Chem* 9, 1208–1220.
- Song, Y., Yu, C., Ma, D. & Liu, K. (2024). Coord. Chem. Rev. 499, 215492.
- Sosa-Rivadeneyra, M. V., Rodríguez, J. C. P., Torres, Y., Bernès, S., Percino, M. J. & Höpfl, H. (2024). J. Mol. Struct. 1308, 138118.
- Tothadi, S., Koner, K., Dey, K., Addicoat, M. & Banerjee, R. (2020). *Appl. Mater. Interfaces* **12**, 15588–15594.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia. https:// hirshfeldsurface. net
- Velazquez-Garcia, J. J., de los Santos Valladares, L., Barnes, C. H. W., König, S., Fröba, M., Baran, V., Knjo, B., Khademhir, F., Ekineken, A., Hain, F., Carstensen, E., Spillner, T., Asprilla Herrera, L., Łukaszczyk, W. & Techert, S. (2025). *Dalton Trans.* 54, 4449–4460.
- Velazquez-Garcia, J. de J. & Techert, S. (2022). Acta Cryst. E78, 814– 817.
- Zhang, X.-R. & Zhang, L. (2017). J. Mol. Struct. 1137, 320-327.
- Zhao, T., Nie, S., Luo, M., Xiao, P., Zou, M. & Chen, Y. (2024). J. Alloys Compd. 974, 172897.
- Zhong, G., Liu, D. & Zhang, J. (2018a). Cryst. Growth Des. 18, 7730–7744.
- Zhong, G., Liu, D. & Zhang, J. (2018b). J. Mater. Chem. A 6, 1887– 1899.
- Zhu, Y., Ma, F., Ma, K., Cao, L. & Zhao, L. (2011). J. Chem. Sci. 123, 687–696.

Acta Cryst. (2025). E81, 573-581 [https://doi.org/10.1107/S2056989025004748]

Crystal structure of tris(2-methyl-1*H*-imidazol-3-ium) benzene-1,3,5-tricarboxylate

Weronika Łukaszczyk, Allegra Lohse, Julia Leibing, Sudem Yildizbas, Irwana Rizvanovic, Simone Techert and Jose de Jesus Velazquez-Garcia

Computing details

Tris(2-methyl-1H-imidazol-3-ium) benzene-1,3,5-tricarboxylate

Crystal data

 $3C_{4}H_{7}N_{2}^{+}C_{9}H_{3}O_{6}^{3-}$ $M_{r} = 456.46$ Triclinic, $P\overline{1}$ a = 8.8634 (5) Å b = 10.3453 (7) Å c = 11.6777 (7) Å a = 74.199 (4)° $\beta = 79.749$ (4)° $\gamma = 87.580$ (4)° V = 1013.85 (11) Å³

Data collection

Bruker P4 diffractometer Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.661, T_{\max} = 0.746$ 18775 measured reflections 4693 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.102$ S = 1.054693 reflections 584 parameters 1806 restraints Primary atom site location: dual Z = 2 F(000) = 480 $D_x = 1.495 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4963 reflections $\theta = 2.7-27.6^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 296 KIrregular, clear light colourless $0.1 \times 0.08 \times 0.07 \text{ mm}$

3780 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 27.6^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -11 \rightarrow 11$ $k = -13 \rightarrow 13$ $l = -15 \rightarrow 15$ Standard reflections: not measured; every not measured reflections intensity decay: not measured

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0501P)^2 + 0.3475P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.36 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.23 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
O1A	0.63437 (13)	0.63491 (11)	0.46926 (9)	0.0164 (2)	0.9099 (9)
O2A	0.43997 (12)	0.69982 (11)	0.59090 (10)	0.0191 (3)	0.9099 (9)
O3A	0.29536 (12)	0.41347 (12)	1.00672 (10)	0.0186 (3)	0.9099 (9)
O4A	0.44291 (12)	0.24354 (10)	1.08539 (9)	0.0176 (2)	0.9099 (9)
O5A	0.88019 (13)	0.11476 (11)	0.80957 (10)	0.0217 (3)	0.9099 (9)
O6A	0.92786 (12)	0.22264 (11)	0.61337 (9)	0.0190 (2)	0.9099 (9)
C1A	0.54608 (16)	0.62073 (15)	0.56953 (14)	0.0130 (3)	0.9099 (9)
C2A	0.41160 (18)	0.33842 (14)	1.00035 (14)	0.0127 (3)	0.9099 (9)
C3A	0.85593 (17)	0.20775 (15)	0.71862 (13)	0.0137 (3)	0.9099 (9)
C4A	0.57684 (18)	0.50083 (14)	0.67027 (14)	0.0118 (3)	0.9099 (9)
C5A	0.48727 (17)	0.47639 (15)	0.78478 (14)	0.0119 (3)	0.9099 (9)
H5A	0.405067	0.535044	0.799311	0.014*	0.9099 (9)
C6A	0.51636 (17)	0.36719 (16)	0.87845 (13)	0.0114 (3)	0.9099 (9)
C7A	0.63867 (18)	0.28287 (15)	0.85651 (14)	0.0115 (3)	0.9099 (9)
H7A	0.661151	0.209755	0.920485	0.014*	0.9099 (9)
C8A	0.72825 (16)	0.30428 (15)	0.74229 (14)	0.0117 (3)	0.9099 (9)
C9A	0.69628 (17)	0.41354 (15)	0.64951 (13)	0.0120 (3)	0.9099 (9)
H9A	0.756694	0.428611	0.571195	0.014*	0.9099 (9)
N1A	0.36212 (15)	0.17449 (12)	0.73067 (12)	0.0148 (3)	0.9099 (9)
H1A	0.367 (2)	0.2355 (15)	0.6605 (11)	0.022*	0.9099 (9)
N2A	0.4159 (3)	-0.0048(2)	0.86170 (16)	0.0140 (4)	0.9099 (9)
H2A	0.4619 (19)	-0.0805 (12)	0.8884 (16)	0.021*	0.9099 (9)
C10A	0.5638 (2)	0.03092 (17)	0.65126 (16)	0.0202 (4)	0.9099 (9)
H10A	0.534175	-0.053945	0.639115	0.030*	0.9099 (9)
H10B	0.664662	0.021176	0.675921	0.030*	0.9099 (9)
H10C	0.568484	0.102221	0.575648	0.030*	0.9099 (9)
C11A	0.44916 (16)	0.06610 (14)	0.74657 (13)	0.0135 (3)	0.9099 (9)
C12A	0.30468 (17)	0.06181 (15)	0.92221 (14)	0.0162 (3)	0.9099 (9)
H12A	0.260489	0.034459	1.005449	0.019*	0.9099 (9)
C13A	0.27126 (19)	0.17348 (17)	0.83954 (15)	0.0167 (3)	0.9099 (9)
H13A	0.198107	0.239584	0.853903	0.020*	0.9099 (9)
N3A	0.06717 (14)	0.90954 (13)	0.81578 (12)	0.0147 (3)	0.9099 (9)
H3A	0.0060 (18)	0.9796 (14)	0.8066 (17)	0.022*	0.9099 (9)
N4A	0.2353 (4)	0.7711 (3)	0.7613 (2)	0.0136 (4)	0.9099 (9)
H4A	0.3034 (17)	0.7388 (18)	0.7122 (14)	0.020*	0.9099 (9)
C14A	0.1663 (2)	0.96187 (19)	0.59451 (15)	0.0167 (4)	0.9099 (9)
H14A	0.268061	1.003764	0.565408	0.025*	0.9099 (9)
H14B	0.087809	1.031841	0.589348	0.025*	0.9099 (9)
H14C	0.149788	0.903210	0.544569	0.025*	0.9099 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C15A0.15618 (17)0.88171 (15)0.72134 (13)0.0130 (3)C16A0.09140 (19)0.81487 (18)0.1902 (16)0.0165 (4)H16A0.0431110.8114250.9992370.20*C17A0.19652 (17)0.72754 (15)0.88554 (13)0.0151 (3)H17A0.2359480.6512620.9373150.018*N5A0.90654 (15)0.58146 (13)0.80199 (12)0.0159 (3)H5AA0.8356 (17)0.5879 (19)0.8618 (13)0.024*N6A1.0223 (4)0.6183 (3)0.61691 (17)0.0158 (5)H6A1.047 (2)0.6590 (17)0.5401 (9)0.024*C18A0.8036 (2)0.77104 (17)0.65572 (15)0.0173 (4)H18B0.8547500.857060.6486190.026*H18C0.7108000.7600670.7174050.026*H18C0.7108000.7600670.7174050.026*H18C0.90804 (17)0.65821 (15)0.69068 (14)0.0140 (3)C20A1.09638 (13)0.5121 (15)0.69068 (14)0.0140 (3)H21A1.0234 (2)0.484520.6552690.022*C1B0.3361 (14)0.3467 (11)1.0512 (9)0.021 (2)O2B0.2768 (12)0.5341 (10)0.9276 (9)0.019 (2)O3B0.5623 (13)0.6743 (11)0.5010 (11)0.019 (2)O4B0.7474 (12)0.5493 (10)0.4393 (8)0.0185 (19)O4B0.7474 (12)0.5493 (10)0.4393 (8)0.0185 (17) <tr< th=""><th></th><th></th><th></th><th></th><th></th><th></th></tr<>						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15A	0.15618 (17)	0.88171 (15)	0.72134 (13)	0.0130 (3)	0.9099 (9)
H16A 0.043111 0.811425 0.999237 0.020^{*} C17A $0.19652 (17)$ $0.72754 (15)$ $0.88554 (13)$ $0.0151 (3)$ H17A 0.235948 0.651262 0.937315 0.018^{*} N5A $0.90654 (15)$ $0.5819 (13)$ $0.8019 (12)$ $0.0159 (3)$ H5AA $0.8356 (17)$ $0.5879 (19)$ $0.8618 (13)$ 0.024^{*} N6A $1.0223 (4)$ $0.6183 (3)$ $0.61691 (17)$ $0.0128 (5)$ H6A $1.047 (2)$ $0.6590 (17)$ $0.5401 (9)$ 0.024^{*} C18A $0.8036 (2)$ $0.77104 (17)$ $0.65572 (15)$ $0.0173 (4)$ H18B 0.854750 0.855706 0.648619 0.026^{*} H18C 0.710800 0.760067 0.717405 0.026^{*} C19A $0.90804 (17)$ $0.65821 (15)$ $0.69068 (14)$ $0.0183 (3)$ C20A $1.99638 (18)$ $0.51212 (15)$ $0.6942 (14)$ $0.0183 (3)$ H20A 1.181907 0.464382 0.655269 0.022^{*} C11A $1.0234 (2)$ $0.48953 (18)$ $0.79978 (15)$ $0.0186 (4)$ H21A 1.048088 0.422387 0.867299 0.022^{*} O1B $0.3761 (14)$ $0.3467 (11)$ $0.0152 (9)$ $0.019 (2)$ O2B $0.2768 (12)$ $0.5341 (10)$ $0.9276 (9)$ $0.019 (2)$ O3B $0.5623 (13)$ $0.6743 (11)$ $0.510 (11)$ $0.0122 (2)$ O4B $0.7760 (13)$ $0.691 (10)$ $0.4393 (8)$ $0.0185 (19)$ O5B $0.9052 (12)$ <	C16A	0.09140 (19)	0.81487 (18)	0.91902 (16)	0.0165 (4)	0.9099 (9)
C17A $0.19652(17)$ $0.72754(15)$ $0.88554(13)$ $0.0151(3)$ H17A 0.235948 0.651262 0.937315 $0.018*$ N5A $0.90654(15)$ $0.58146(13)$ $0.80199(12)$ $0.0159(3)$ H5AA $0.8356(17)$ $0.5879(19)$ $0.8618(13)$ $0.024*$ N6A $1.0223(4)$ $0.6183(3)$ $0.61691(17)$ $0.0138(5)$ H6A $1.047(2)$ $0.6590(17)$ $0.5401(9)$ $0.024*$ C18A $0.8036(2)$ $0.77104(17)$ $0.65572(15)$ $0.0173(4)$ H18B 0.854750 0.855706 0.648619 $0.026*$ C19A 0.790800 0.706067 0.717405 $0.022*$ C19A $0.90804(17)$ $0.65821(15)$ $0.69068(14)$ $0.0140(3)$ C20A $1.09638(18)$ $0.51212(15)$ $0.68442(14)$ $0.0183(3)$ H20A 1.181907 0.464382 0.655269 $0.022*$ C21A $1.0234(2)$ $0.48953(18)$ $0.79978(15)$ $0.0186(4)$ H21A 1.048088 0.422387 0.867299 $0.022*$ C31A $1.0234(2)$ $0.5341(10)$ $0.9276(9)$ $0.012(2)$ O2B $0.2768(12)$ $0.5341(10)$ $0.9276(9)$ $0.012(2)$ O2B $0.7760(13)$ $0.66743(11)$ $0.5010(11)$ $0.0192(12)$ O3B $0.5623(13)$ $0.66743(11)$ $0.519(17)$ O5B $0.7760(13)$ $0.691(10)$ $0.9168(8)$ $0.0217(3)$ C1B $0.360(15)$ $0.7376(12)$ $0.7515(10)$ $0.0155(17)$ C3B	H16A	0.043111	0.811425	0.999237	0.020*	0.9099 (9)
H17A 0.235948 0.651262 0.937315 0.018^* N5A $0.0054 (15)$ $0.58146 (13)$ $0.80199 (12)$ $0.0159 (3)$ H5AA $0.8356 (17)$ $0.5879 (19)$ $0.8618 (13)$ 0.024^* N6A $1.0223 (4)$ $0.6183 (3)$ $0.6169 (17)$ $0.0158 (5)$ H6A $1.047 (2)$ $0.6590 (17)$ $0.5401 (9)$ 0.024^* C18A $0.8036 (2)$ $0.77104 (17)$ $0.65572 (15)$ $0.0173 (4)$ H18B 0.854750 0.855706 0.648619 0.026^* H18C 0.710800 0.760067 0.717405 0.026^* C19A $0.90804 (17)$ $0.65821 (15)$ $0.66442 (14)$ $0.0140 (3)$ C20A $1.09638 (18)$ $0.51212 (15)$ $0.68442 (14)$ $0.0183 (3)$ H21A $1.0234 (2)$ $0.48953 (18)$ $0.79978 (15)$ $0.0186 (4)$ H21A 1.048088 0.422387 0.867299 0.022^* O1B $0.3361 (14)$ $0.3467 (11)$ $1.0512 (9)$ $0.021 (2)$ O2B $0.7768 (12)$ $0.534 (10)$ $0.9276 (9)$ $0.019 (2)$ O4B $0.7474 (12)$ $0.5493 (10)$ $0.4393 (8)$ $0.0185 (19)$ O5B $0.9052 (12)$ $0.1340 (12)$ $0.7314 (10)$ $0.022 (2)$ O6B $0.7760 (13)$ $0.5726 (12)$ $0.5215 (9)$ $0.0155 (17)$ C2B $0.6491 (15)$ $0.5726 (12)$ $0.5215 (9)$ $0.0155 (17)$ C3B $0.8013 (15)$ $0.5726 (12)$ $0.5215 (9)$ $0.0155 (15)$ C4B $0.6991 (17$	C17A	0.19652 (17)	0.72754 (15)	0.88554 (13)	0.0151 (3)	0.9099 (9)
N5A 0.90654 (15) 0.58146 (13) 0.80199 (12) 0.0159 (3) H5AA 0.8356 (17) 0.5879 (19) 0.8618 (13) 0.024* N6A 1.0223 (4) 0.6183 (3) 0.61691 (17) 0.0158 (5) H6A 1.047 (2) 0.6590 (17) 0.5401 (9) 0.024* C18A 0.8036 (2) 0.77144 (17) 0.65572 (15) 0.0173 (4) H18B 0.854750 0.855706 0.648619 0.026* H18B 0.854750 0.855206 0.648619 0.026* C19A 0.90804 (17) 0.65821 (15) 0.60968 (14) 0.0140 (3) C20A 1.09638 (18) 0.5121 (15) 0.66908 (14) 0.0143 (3) H20A 1.181907 0.464382 0.652569 0.022* C21A 1.0234 (2) 0.48953 (18) 0.79978 (15) 0.0186 (4) H21A 1.048088 0.422387 0.867299 0.022* O1B 0.3361 (14) 0.3467 (11) 1.0512 (9) 0.015 (12) O21B 0.2768 (12) 0.5	H17A	0.235948	0.651262	0.937315	0.018*	0.9099 (9)
H5AA $0.8356(17)$ $0.5879(19)$ $0.8618(13)$ $0.024*$ N6A $1.0223(4)$ $0.6183(3)$ $0.61691(17)$ $0.0188(5)$ H6A $1.047(2)$ $0.6590(17)$ $0.5401(9)$ $0.024*$ C18A $0.8036(2)$ $0.77104(17)$ $0.65572(15)$ $0.0173(4)$ H18B 0.854750 0.855706 0.648619 $0.026*$ H18B 0.775661 0.772415 0.577879 $0.026*$ C19A $0.90804(17)$ $0.65821(15)$ $0.69068(14)$ $0.0140(3)$ C20A $1.09638(18)$ $0.51212(15)$ $0.68442(14)$ $0.0183(3)$ H20A 1.181907 0.464382 0.655269 $0.022*$ C21A $1.0234(2)$ $0.48953(18)$ $0.79978(15)$ $0.0186(4)$ H21A 1.048088 0.422387 0.867299 $0.022*$ O1B $0.3361(14)$ $0.3467(11)$ $1.0512(9)$ $0.019(2)$ O2B $0.2768(12)$ $0.5341(10)$ $0.976(9)$ $0.019(2)$ O3B $0.5623(13)$ $0.6743(11)$ $0.510(11)$ $0.019(2)$ O4B $0.7760(13)$ $0.6091(10)$ $0.7168(8)$ $0.0217(3)$ C1B $0.3620(15)$ $0.4349(12)$ $0.9506(10)$ $0.0154(17)$ C2B $0.6491(15)$ $0.5726(12)$ $0.5215(9)$ $0.0155(17)$ C3B $0.6191(17)$ $0.4788(13)$ $0.6461(9)$ $0.0130(15)$ H5B 0.450408 0.574762 0.715534 $0.016*$ C4B $0.6991(17)$ $0.2759(13)$ $0.6788(11)$ $0.0130(15)$ <	N5A	0.90654 (15)	0.58146 (13)	0.80199 (12)	0.0159 (3)	0.9099 (9)
N6A1.0223 (4)0.6183 (3)0.61691 (17)0.0158 (5)H6A1.047 (2)0.6590 (17)0.5401 (9)0.024*C18A0.8036 (2)0.77104 (17)0.65572 (15)0.0173 (4)H18A0.7756610.7724150.5778790.026*H18B0.8547500.8557060.6486190.026*C19A0.90804 (17)0.65821 (15)0.66842 (14)0.0140 (3)C20A1.09638 (18)0.51212 (15)0.68442 (14)0.0183 (3)H20A1.1819070.4643820.6552690.022*C21A1.0234 (2)0.48953 (18)0.79978 (15)0.0186 (4)H21A1.0480880.4223870.8672990.022*O1B0.3361 (14)0.3467 (11)1.0512 (9)0.021 (2)O2B0.2768 (12)0.5341 (10)0.9276 (9)0.019 (2)O3B0.5623 (13)0.6743 (11)0.5101 (11)0.019 (2)O4B0.7760 (13)0.6691 (10)0.9168 (8)0.0217 (3)C1B0.620 (15)0.4349 (12)0.7314 (10)0.022 (2)O6B0.7760 (13)0.0691 (10)0.9168 (8)0.0217 (3)C1B0.620 (15)0.4349 (12)0.7314 (10)0.0130 (15)C3B0.8013 (15)0.1528 (11)0.8159 (9)0.0155 (17)C3B0.8013 (15)0.1528 (11)0.8159 (9)0.0155 (15)C4B0.4914 (16)0.4160 (15)0.8519 (11)0.0139 (15)C5B0.5144 (17)0.3616 (13)0.6478 (11)0.0120 (3	H5AA	0.8356 (17)	0.5879 (19)	0.8618 (13)	0.024*	0.9099 (9)
H6A1.047 (2)0.6590 (17)0.5401 (9)0.024*C18A0.8036 (2)0.77104 (17)0.65572 (15)0.0173 (4)H18A0.7756610.7724150.5778790.026*H18B0.8547500.8557060.6486190.026*C19A0.90804 (17)0.65821 (15)0.69068 (14)0.0140 (3)C20A1.09638 (18)0.51212 (15)0.68442 (14)0.0183 (3)P20A1.1819070.4643820.6552690.022*C21A1.0234 (2)0.48953 (18)0.79978 (15)0.0186 (4)H21A1.0480880.4223870.8672990.022*O1B0.3361 (14)0.3467 (11)1.0512 (9)0.021 (2)O2B0.2768 (12)0.5341 (10)0.9276 (9)0.019 (2)O3B0.5623 (13)0.6743 (11)0.5101 (11)0.019 (2)O4B0.7474 (12)0.5493 (10)0.4393 (8)0.0185 (19)O5B0.9052 (12)0.1340 (12)0.7314 (10)0.022 (2)O6B0.7760 (13)0.6691 (10)0.9168 (8)0.0217 (3)C1B0.3620 (15)0.4349 (12)0.9506 (10)0.0154 (17)C2B0.6491 (15)0.5726 (12)0.5215 (9)0.0155 (15)C4B0.6781 (17)0.4788 (13)0.6461 (9)0.0118 (3)C5B0.5124 (17)0.4787 (15)0.7351 (10)0.0130 (15)C5B0.5144 (17)0.4788 (13)0.6461 (9)0.0118 (3)C6B0.6278 (17)0.3057 (15)0.8771 (12)0.0140	N6A	1.0223 (4)	0.6183 (3)	0.61691 (17)	0.0158 (5)	0.9099 (9)
C18A0.8035 (2)0.77104 (17)0.65572 (15)0.0173 (4)H18A0.7756610.7724150.55778790.026*H18B0.8547500.8557060.6486190.026*C19A0.90804 (17)0.65821 (15)0.69068 (14)0.0140 (3)C20A1.09638 (18)0.51212 (15)0.68442 (14)0.0183 (3)H20A1.1819070.4643820.6552690.022*C11A1.0234 (2)0.48953 (18)0.79978 (15)0.0186 (4)H21A1.0480880.4223870.8672990.021 (2)O2B0.2768 (12)0.5341 (10)0.9276 (9)0.019 (2)O3B0.5623 (13)0.6743 (11)1.0512 (9)0.021 (2)O4B0.7474 (12)0.5493 (10)0.4393 (8)0.0185 (19)O5B0.9052 (12)0.1340 (12)0.7314 (10)0.022 (2)O6B0.7760 (13)0.0691 (10)0.9168 (8)0.0217 (3)C1B0.3520 (15)0.4528 (11)0.8159 (9)0.0155 (17)C2B0.6491 (15)0.5726 (12)0.5215 (9)0.0155 (15)C4B0.914 (16)0.4160 (15)0.8519 (11)0.0139 (15)C5B0.5124 (17)0.3616 (13)0.6418 (1)0.0120 (3)C7B0.7185 (17)0.3616 (13)0.6748 (11)0.0120 (3)C7B0.7185 (17)0.3616 (13)0.7625 (10)0.014*C8B0.6991 (17)0.2759 (13)0.7898 (11)0.0143 (14)C9B0.8555 (17)0.3677 (15)0.8771 (12) <td< td=""><td>H6A</td><td>1.047 (2)</td><td>0.6590(17)</td><td>0.5401 (9)</td><td>0.024*</td><td>0.9099 (9)</td></td<>	H6A	1.047 (2)	0.6590(17)	0.5401 (9)	0.024*	0.9099 (9)
ClainClain (1)Clain (1)Clain (1)Clain (1)H18A0.756610.7724150.5778790.026*H18C0.7108000.7600670.7174050.026*C19A0.90804 (17)0.65821 (15)0.69068 (14)0.0140 (3)C20A1.09638 (18)0.51212 (15)0.68442 (14)0.0183 (3)H20A1.1819070.4643820.6552690.022*C21A1.0234 (2)0.48953 (18)0.79978 (15)0.0186 (4)H21A1.0480880.4223870.8672990.022*O1B0.3361 (14)0.3467 (11)1.0512 (9)0.021 (2)O2B0.2768 (12)0.5341 (10)0.9276 (9)0.019 (2)O3B0.5623 (13)0.6743 (11)0.5010 (11)0.019 (2)O3B0.5623 (12)0.1340 (12)0.7314 (10)0.022 (2)O6B0.766 (13)0.0691 (10)0.9168 (8)0.0217 (3)C1B0.3620 (15)0.4349 (12)0.9506 (10)0.0155 (17)C2B0.6491 (15)0.5726 (12)0.5215 (9)0.0155 (15)C4B0.9914 (16)0.4160 (15)0.8519 (11)0.0139 (15)C5B0.5144 (17)0.4987 (15)0.7351 (10)0.0130 (15)C5B0.5144 (17)0.4987 (15)0.7351 (10)0.016*C6B0.6278 (17)0.4738 (13)0.6461 (9)0.0118 (3)C7B0.7185 (17)0.3616 (13)0.6748 (11)0.0120 (3)H7B0.7958950.3430540.6139520.014*	C18A	0.8036(2)	0.77104(17)	0.65572(15)	0.0173(4)	0,9099 (9)
Initial0.815100.87100.026*H18B0.8547500.8557060.6486190.026*C19A0.90804 (17)0.65821 (15)0.69068 (14)0.0140 (3)C20A1.09638 (18)0.51212 (15)0.68442 (14)0.0183 (3)H20A1.1819070.4643820.6552690.022*C21A1.0234 (2)0.4643820.6552690.022*C21A1.0234 (2)0.4643820.6552690.022*C1B0.3361 (14)0.3467 (11)1.0512 (9)0.019 (2)O3B0.5623 (13)0.6743 (11)0.5010 (11)0.019 (2)O3B0.5623 (13)0.6743 (11)0.5010 (11)0.019 (2)O4B0.7474 (12)0.5493 (10)0.4393 (8)0.0185 (19)O5B0.9052 (12)0.1340 (12)0.7314 (10)0.022 (2)O6B0.760 (13)0.0691 (10)0.9168 (8)0.0217 (3)C1B0.3620 (15)0.4349 (12)0.9506 (10)0.0155 (17)C3B0.8013 (15)0.1528 (11)0.8159 (9)0.0155 (17)C3B0.5144 (17)0.4987 (15)0.8519 (11)0.0130 (15)C5B0.5144 (17)0.4987 (15)0.7351 (10)0.0100 (15)C7B0.7185 (17)0.3616 (13)0.6748 (11)0.0120 (3)H7B0.7958950.3430540.6139520.014*C6B0.6278 (17)0.3057 (15)0.8771 (12)0.0140 (15)H9B0.5719410.2481180.9569820.017*H1B0.798429 <td>H18A</td> <td>0.775661</td> <td>0.772415</td> <td>0 577879</td> <td>0.026*</td> <td>0.9099 (9)</td>	H18A	0.775661	0.772415	0 577879	0.026*	0.9099 (9)
11100.02160.02160.0226*C19A0.90804 (17)0.65821 (15)0.69068 (14)0.0140 (3)C20A1.09638 (18)0.51212 (15)0.68442 (14)0.0183 (3)H20A1.1819070.4643820.6552690.022*C21A1.0234 (2)0.48953 (18)0.79978 (15)0.0186 (4)H21A1.0480880.4223870.8672990.022*O1B0.3361 (14)0.3467 (11)1.0512 (9)0.021 (2)O2B0.2768 (12)0.5341 (10)0.9276 (9)0.019 (2)O3B0.5623 (13)0.6743 (11)0.5010 (11)0.019 (2)O4B0.7474 (12)0.5493 (10)0.4393 (8)0.0185 (19)O5B0.9052 (12)0.1340 (12)0.7314 (10)0.022 (2)O6B0.7760 (13)0.0691 (10)0.9168 (8)0.0217 (3)C1B0.3620 (15)0.4349 (12)0.9506 (10)0.0155 (17)C3B0.8013 (15)0.1528 (11)0.8159 (9)0.0155 (15)C4B0.4914 (16)0.4160 (15)0.8519 (11)0.0130 (15)C5B0.5144 (17)0.497620.715340.016*C6B0.6278 (17)0.4738 (13)0.6461 (9)0.0118 (3)C7B0.7185 (17)0.3616 (13)0.6748 (11)0.0120 (3)H7B0.7958950.340540.6139520.014*C8B0.6991 (17)0.2759 (13)0.7898 (11)0.0143 (14)C9B0.5719410.2481180.9569820.017*H1B0.79429	H18B	0.854750	0.855706	0.648619	0.026*	0.9099 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H18C	0.710800	0.760067	0.717405	0.026*	0.9099 (9)
C13.1 $0.5054(17)$ $0.5054(17)$ $0.5036(17)$ $0.5046(17)$ C20A $1.09638(18)$ $0.51212(15)$ $0.68442(14)$ $0.0183(3)$ H20A 1.181907 0.464382 0.655269 $0.022*$ C21A $1.0234(2)$ $0.48953(18)$ $0.79978(15)$ $0.0186(4)$ H21A 1.048088 0.422387 0.867299 $0.022*$ O1B $0.3361(14)$ $0.3467(11)$ $1.0512(9)$ $0.021(2)$ O2B $0.2768(12)$ $0.5341(10)$ $0.9276(9)$ $0.019(2)$ O3B $0.5623(13)$ $0.6743(11)$ $0.5010(11)$ $0.019(2)$ O4B $0.7474(12)$ $0.5493(10)$ $0.4393(8)$ $0.0185(19)$ O5B $0.9052(12)$ $0.1340(12)$ $0.7314(10)$ $0.022(2)$ O6B $0.7760(13)$ $0.0691(10)$ $0.9168(8)$ $0.0217(3)$ C1B $0.3620(15)$ $0.4349(12)$ $0.5506(10)$ $0.0154(17)$ C2B $0.6491(15)$ $0.5726(12)$ $0.5215(9)$ $0.0155(15)$ C4B $0.4914(16)$ $0.4160(15)$ $0.8519(11)$ $0.0130(15)$ C5B $0.5144(17)$ $0.4987(15)$ $0.7351(10)$ $0.0130(15)$ C5B $0.5144(17)$ 0.4762 0.715534 $0.016*$ C6B $0.6278(17)$ 0.47762 0.715534 $0.016*$ C6B $0.6278(17)$ $0.3057(15)$ $0.7898(11)$ $0.0143(14)$ C9B $0.5855(17)$ 0.33054 0.613952 $0.014*$ C8B $0.6991(17)$ $0.2759(13)$ $0.7898(11)$ $0.0143(14)$ <	C19A	0.90804(17)	0.65821(15)	0.69068 (14)	0.020 0.0140 (3)	0.9099 (9)
C2D11D3050 (19)D31212 (12)D3042 (14)D3024 (14)H20A1.1819070.4643820.6552690.022*C21A1.0234 (2)0.48953 (18)0.79978 (15)0.0186 (4)H21A1.0480880.4223870.8672990.022*O1B0.3361 (14)0.3467 (11)1.0512 (9)0.021 (2)O2B0.2768 (12)0.5341 (10)0.9276 (9)0.019 (2)O3B0.5623 (13)0.6743 (11)0.5010 (11)0.019 (2)O4B0.7474 (12)0.5493 (10)0.4393 (8)0.0185 (19)O5B0.9052 (12)0.1340 (12)0.7314 (10)0.022 (2)O6B0.7760 (13)0.0691 (10)0.9168 (8)0.0217 (3)C1B0.3620 (15)0.4349 (12)0.9506 (10)0.0155 (17)C2B0.6491 (15)0.5726 (12)0.5215 (9)0.0155 (17)C3B0.8013 (15)0.1528 (11)0.8159 (9)0.0155 (15)C4B0.4914 (16)0.4160 (15)0.8519 (11)0.0130 (15)C5B0.5144 (17)0.4987 (15)0.7351 (10)0.0136 (15)C7B0.7185 (17)0.3616 (13)0.6748 (11)0.0120 (3)C7B0.7185 (17)0.3616 (13)0.6788 (11)0.0143 (14)C9B0.5855 (17)0.3057 (15)0.8771 (12)0.0144 (15)H9B0.5719410.2481180.9569820.017*N1B0.8512 (14)0.6428 (12)0.7625 (10)0.0186 (4)H10D0.9736690.4624810.9164740.	C204	1.09638(18)	0.03021(15) 0.51212(15)	0.69000(14) 0.68442(14)	0.0140(3)	0.9099 (9)
H2011101010.0040020.002000.022C21A1.0234 (2)0.48953 (18)0.79978 (15)0.0186 (4)H21A1.0480880.4223870.8672990.022*O1B0.3361 (14)0.3467 (11)1.0512 (9)0.021 (2)O2B0.2768 (12)0.5341 (10)0.9276 (9)0.019 (2)O3B0.5623 (13)0.6743 (11)0.5010 (11)0.019 (2)O4B0.7474 (12)0.5493 (10)0.4393 (8)0.0185 (19)O5B0.9052 (12)0.1340 (12)0.7314 (10)0.022 (2)O6B0.7760 (13)0.0691 (10)0.9168 (8)0.0217 (3)C1B0.3620 (15)0.4349 (12)0.9506 (10)0.0154 (17)C2B0.6491 (15)0.5726 (12)0.5215 (9)0.0155 (15)C4B0.4914 (16)0.4160 (15)0.8519 (11)0.0139 (15)C5B0.5144 (17)0.4987 (15)0.7351 (10)0.0130 (15)C5B0.5144 (17)0.4987 (15)0.7351 (10)0.0118 (3)C7B0.7185 (17)0.3616 (13)0.6748 (11)0.0120 (3)H7B0.7958950.3430540.6139520.014*C8B0.6991 (17)0.2759 (13)0.7898 (11)0.0143 (14)C9B0.5519410.2481180.9569820.017*N1B0.8512 (14)0.6448 (12)0.7625 (10)0.0162 (15)H1B0.994290.6431470.8328660.019*N2B1.022 (4)0.596 (3)0.6250 (14)0.0151 (19)	H20A	1 181907	0.31212(13)	0.655269	0.022*	0.9099(9)
C21A1.02-9 (2)0.03953 (18)0.7978 (19)0.0108 (9)H21A1.0480880.4223870.8672990.022 *O1B0.3361 (14)0.3467 (11)1.0512 (9)0.021 (2)O2B0.2768 (12)0.5341 (10)0.9276 (9)0.019 (2)O3B0.5623 (13)0.6743 (11)0.5010 (11)0.019 (2)O4B0.7474 (12)0.5493 (10)0.4393 (8)0.0185 (19)O5B0.9052 (12)0.1340 (12)0.7314 (10)0.022 (2)O6B0.7760 (13)0.0691 (10)0.9168 (8)0.0217 (3)C1B0.3620 (15)0.4349 (12)0.9506 (10)0.0155 (17)C3B0.8013 (15)0.1528 (11)0.8159 (9)0.0155 (15)C4B0.4914 (16)0.4160 (15)0.8519 (11)0.0130 (15)C5B0.5144 (17)0.4987 (15)0.7351 (10)0.0130 (15)L5B0.4504080.5747620.7155340.016*C6B0.6278 (17)0.3616 (13)0.6748 (11)0.0120 (3)H7B0.7958950.3430540.6139520.014*C8B0.6991 (17)0.2759 (13)0.7828 (11)0.0143 (14)C9B0.5855 (17)0.3057 (15)0.8771 (12)0.0140 (15)H9B0.5719410.2481180.9569820.017*N1B0.8512 (14)0.6424810.9164740.028*H10D0.9736690.4624810.9164740.028*H10D0.9736690.4624810.9164740.028*H10D0	C21A	1.181907 1.0234(2)	0.404532	0.033209 0.70078 (15)	0.022	0.9099(9)
n_{21A} 1.043036 0.422367 0.0507299 0.021^{2} OIB $0.3361(14)$ $0.3467(11)$ $1.0512(9)$ $0.021(2)$ O2B $0.2768(12)$ $0.5341(10)$ $0.9276(9)$ $0.019(2)$ O3B $0.5623(13)$ $0.6743(11)$ $0.5010(11)$ $0.019(2)$ O4B $0.7474(12)$ $0.5493(10)$ $0.4393(8)$ $0.0185(19)$ O5B $0.9052(12)$ $0.1340(12)$ $0.7314(10)$ $0.022(2)$ O6B $0.7760(13)$ $0.0691(10)$ $0.9168(8)$ $0.0217(3)$ C1B $0.3620(15)$ $0.4349(12)$ $0.9506(10)$ $0.0155(17)$ C2B $0.6491(15)$ $0.5726(12)$ $0.5215(9)$ $0.0155(17)$ C3B $0.8013(15)$ $0.1528(11)$ $0.8159(9)$ $0.0155(15)$ C4B $0.4914(16)$ $0.4160(15)$ $0.8519(11)$ $0.0139(15)$ C5B $0.5144(17)$ $0.4987(15)$ $0.7351(10)$ $0.0130(15)$ H5B 0.450408 0.574762 0.715534 $0.016*$ C6B $0.6278(17)$ $0.3616(13)$ $0.6748(11)$ $0.0120(3)$ H7B 0.795895 0.343054 0.613952 $0.014*$ C8B $0.6991(17)$ $0.2759(13)$ $0.7898(11)$ $0.0143(14)$ C9B 0.571941 0.248118 0.956982 $0.017*$ N1B $0.8512(14)$ 0.643147 0.832866 $0.019*$ N2B $1.022(4)$ $0.596(3)$ $0.6250(14)$ $0.0162(15)$ H1B 0.793669 0.462481 0.91674 $0.28*$ <td< td=""><td></td><td>1.0234 (2)</td><td>0.40955 (10)</td><td>0.79978(13)</td><td>0.0180 (4)</td><td>0.9099(9)</td></td<>		1.0234 (2)	0.40955 (10)	0.79978(13)	0.0180 (4)	0.9099(9)
OTB $0.3301(14)$ $0.3407(11)$ $1.0312(9)$ $0.021(2)$ O2B $0.2768(12)$ $0.5341(10)$ $0.9276(9)$ $0.019(2)$ O3B $0.5623(13)$ $0.6743(11)$ $0.5010(11)$ $0.019(2)$ O4B $0.7474(12)$ $0.5493(10)$ $0.4393(8)$ $0.0185(19)$ O5B $0.9052(12)$ $0.1340(12)$ $0.7314(10)$ $0.022(2)$ O6B $0.7760(13)$ $0.0691(10)$ $0.9168(8)$ $0.0217(3)$ C1B $0.3620(15)$ $0.4349(12)$ $0.9506(10)$ $0.0154(17)$ C2B $0.6491(15)$ $0.5726(12)$ $0.5215(9)$ $0.0155(17)$ C3B $0.8013(15)$ $0.1528(11)$ $0.8159(9)$ $0.0155(15)$ C4B $0.4914(16)$ $0.4160(15)$ $0.8519(11)$ $0.0139(15)$ C5B $0.5144(17)$ $0.4987(15)$ $0.7351(10)$ $0.0139(15)$ C5B $0.5144(17)$ $0.4987(15)$ $0.7351(10)$ $0.0130(15)$ H5B 0.450408 0.574762 0.715534 $0.016*$ C6B $0.6278(17)$ $0.3616(13)$ $0.6748(11)$ $0.0120(3)$ H7B 0.795895 0.343054 0.613952 $0.014*$ C8B $0.6991(17)$ $0.2759(13)$ $0.7898(11)$ $0.0143(14)$ C9B $0.5855(17)$ $0.3057(15)$ $0.8771(12)$ $0.0140(15)$ H9B 0.571941 0.248118 0.956982 $0.017*$ N1B $0.8512(14)$ 0.643147 0.832866 $0.019*$ N2B $1.022(4)$ $0.596(3)$ $0.6250(14)$ $0.0186(4)$ <	П21А 01Р	1.040000 0.2261 (14)	0.422367 0.2467(11)	0.807299	0.022°	0.9099(9)
0258 $0.2768 (12)$ $0.3541 (10)$ $0.9276 (9)$ $0.019 (2)$ $03B$ $0.5623 (13)$ $0.6743 (11)$ $0.5010 (11)$ $0.019 (2)$ $04B$ $0.7474 (12)$ $0.5493 (10)$ $0.4393 (8)$ $0.0185 (19)$ 058 $0.9052 (12)$ $0.1340 (12)$ $0.7314 (10)$ $0.022 (2)$ $06B$ $0.7760 (13)$ $0.0691 (10)$ $0.9168 (8)$ $0.0115 (17)$ $C2B$ $0.6491 (15)$ $0.5726 (12)$ $0.5215 (9)$ $0.0155 (17)$ $C3B$ $0.8013 (15)$ $0.1528 (11)$ $0.8159 (9)$ $0.0155 (15)$ $C4B$ $0.4914 (16)$ $0.4400 (15)$ $0.8519 (11)$ $0.0139 (15)$ $C5B$ $0.5144 (17)$ $0.4987 (15)$ $0.7351 (10)$ $0.0130 (15)$ $H5B$ 0.450408 0.574762 0.715534 $0.016*$ $C6B$ $0.6278 (17)$ $0.3616 (13)$ $0.6748 (11)$ $0.0120 (3)$ $H7B$ 0.795895 0.343054 0.613952 $0.014*$ $C8B$ $0.6991 (17)$ $0.2759 (13)$ $0.7898 (11)$ $0.0143 (14)$ $C9B$ $0.5855 (17)$ $0.3057 (15)$ $0.8771 (12)$ $0.0140 (15)$ $H9B$ 0.571941 0.248118 0.956982 $0.017*$ $N1B$ $0.8512 (14)$ 0.643147 0.8322866 $0.019*$ $N2B$ $1.027 (3)$ $0.459 (2)$ $0.8362 (16)$ $0.0188 (4)$ $H10D$ 0.973669 0.462481 0.916474 $0.028*$ $H10E$ 1.136675 0.473684 0.829447 $0.28*$ $H10E$	OID	0.3301(14) 0.2768(12)	0.3407(11) 0.5241(10)	1.0312(9)	0.021(2)	0.0901(9)
O3B $0.5025(13)$ $0.6743(11)$ $0.3010(11)$ $0.019(2)$ O4B $0.7474(12)$ $0.5493(10)$ $0.4393(8)$ $0.0185(19)$ O5B $0.9052(12)$ $0.1340(12)$ $0.7314(10)$ $0.022(2)$ O6B $0.7760(13)$ $0.0691(10)$ $0.9168(8)$ $0.0217(3)$ C1B $0.3620(15)$ $0.4349(12)$ $0.9506(10)$ $0.0154(17)$ C2B $0.6491(15)$ $0.5726(12)$ $0.5215(9)$ $0.0155(17)$ C3B $0.8013(15)$ $0.1528(11)$ $0.8159(9)$ $0.0155(15)$ C4B $0.4914(16)$ $0.4160(15)$ $0.8519(11)$ $0.0139(15)$ C5B $0.5144(17)$ $0.4987(15)$ $0.7351(10)$ $0.0130(15)$ H5B 0.450408 0.574762 0.715534 $0.016*$ C6B $0.6278(17)$ $0.3616(13)$ $0.6748(11)$ $0.0120(3)$ H7B 0.795895 0.343054 0.613952 $0.014*$ C8B $0.6991(17)$ $0.2759(13)$ $0.7898(11)$ $0.0143(14)$ C9B $0.5812(14)$ $0.6448(12)$ $0.7625(10)$ $0.0162(15)$ H1B 0.794429 0.643147 0.822666 $0.019*$ N2B $1.022(4)$ $0.596(3)$ $0.6250(14)$ $0.0186(4)$ H10D 0.973669 0.462481 0.916474 $0.028*$ H10E 1.136675 0.473684 0.829447 $0.028*$ H10F 1.009621 0.370858 0.824488 $0.028*$ H10F $1.00960(16)$ $0.5645(13)$ $0.7422(11)$ $0.0168(18)$ <td< td=""><td>020</td><td>0.2708(12) 0.5(22(12))</td><td>0.3341(10) 0.742(11)</td><td>0.9270(9)</td><td>0.019(2)</td><td>0.0901 (9)</td></td<>	020	0.2708(12) 0.5(22(12))	0.3341(10) 0.742(11)	0.9270(9)	0.019(2)	0.0901 (9)
O4B $0.7474(12)$ $0.5495(10)$ $0.4395(8)$ $0.0185(19)$ $O5B$ $0.9052(12)$ $0.1340(12)$ $0.7314(10)$ $0.022(2)$ $O6B$ $0.7760(13)$ $0.0691(10)$ $0.9168(8)$ $0.0217(3)$ $C1B$ $0.3620(15)$ $0.4349(12)$ $0.9506(10)$ $0.0155(17)$ $C2B$ $0.6491(15)$ $0.5726(12)$ $0.5215(9)$ $0.0155(17)$ $C3B$ $0.8013(15)$ $0.1528(11)$ $0.8159(9)$ $0.0155(15)$ $C4B$ $0.4914(16)$ $0.4160(15)$ $0.8519(11)$ $0.0139(15)$ $C5B$ $0.5144(17)$ $0.4987(15)$ $0.7351(10)$ $0.0130(15)$ $H5B$ 0.450408 0.574762 0.715534 $0.016*$ $C6B$ $0.6278(17)$ $0.4738(13)$ $0.6461(9)$ $0.0118(3)$ $C7B$ $0.7185(17)$ $0.3616(13)$ $0.6748(11)$ $0.0120(3)$ $H7B$ 0.795895 0.343054 0.613952 $0.014*$ $C8B$ $0.6991(17)$ $0.2759(13)$ $0.7898(11)$ $0.0143(14)$ $C9B$ $0.5855(17)$ $0.3057(15)$ $0.8771(12)$ $0.0140(15)$ $H9B$ 0.571941 0.248118 0.956982 $0.017*$ $N1B$ $0.8512(14)$ 0.643147 0.832866 $0.019*$ $N2B$ $1.022(4)$ $0.596(3)$ $0.6250(14)$ $0.0186(4)$ $H10D$ 0.973669 0.462481 0.916474 $0.028*$ $H10E$ 1.136675 0.473684 0.829447 $0.028*$ $H10E$ 1.136675 0.473684 0.829447 <td></td> <td>0.3025(13)</td> <td>0.0743(11) 0.5402(10)</td> <td>0.3010(11)</td> <td>0.019(2)</td> <td>0.0901 (9)</td>		0.3025(13)	0.0743(11) 0.5402(10)	0.3010(11)	0.019(2)	0.0901 (9)
OSB $0.9052(12)$ $0.1340(12)$ $0.7314(10)$ $0.022(2)$ OGB $0.7760(13)$ $0.0691(10)$ $0.9168(8)$ $0.0217(3)$ C1B $0.3620(15)$ $0.4349(12)$ $0.9506(10)$ $0.0154(17)$ C2B $0.6491(15)$ $0.5726(12)$ $0.5215(9)$ $0.0155(17)$ C3B $0.8013(15)$ $0.1528(11)$ $0.8159(9)$ $0.0155(15)$ C4B $0.4914(16)$ $0.4160(15)$ $0.8519(11)$ $0.0139(15)$ C5B $0.5144(17)$ $0.4987(15)$ $0.7351(10)$ $0.0130(15)$ HSB 0.450408 0.574762 0.715534 $0.016*$ C6B $0.6278(17)$ $0.4738(13)$ $0.6461(9)$ $0.0118(3)$ C7B $0.7185(17)$ $0.3616(13)$ $0.6748(11)$ $0.0120(3)$ H7B 0.795895 0.343054 0.613952 $0.014*$ C8B $0.6991(17)$ $0.2759(13)$ $0.7898(11)$ $0.0143(14)$ C9B $0.5855(17)$ $0.3057(15)$ $0.8771(12)$ $0.0140(15)$ H9B 0.571941 0.248118 0.956982 $0.017*$ N1B $0.8512(14)$ 0.643147 0.832866 $0.019*$ N2B $1.022(4)$ $0.596(3)$ $0.6250(14)$ $0.0186(4)$ H10D 0.973669 0.462481 0.916474 $0.028*$ H10E 1.136675 0.473684 0.829447 $0.028*$ H10F 1.009621 0.370858 0.824488 $0.028*$ C11B $0.9366(16)$ $0.724(13)$ $0.5652(10)$ $0.0168(18)$ H12B <td>O4B</td> <td>0.7474(12)</td> <td>0.5493 (10)</td> <td>0.4393 (8)</td> <td>0.0185 (19)</td> <td>0.0901 (9)</td>	O4B	0.7474(12)	0.5493 (10)	0.4393 (8)	0.0185 (19)	0.0901 (9)
O6B $0.7/60 (13)$ $0.0691 (10)$ $0.9168 (8)$ $0.0217 (3)$ $C1B$ $0.3620 (15)$ $0.4349 (12)$ $0.9506 (10)$ $0.0154 (17)$ $C2B$ $0.6491 (15)$ $0.5726 (12)$ $0.5215 (9)$ $0.0155 (17)$ $C3B$ $0.8013 (15)$ $0.1528 (11)$ $0.8159 (9)$ $0.0155 (15)$ $C4B$ $0.4914 (16)$ $0.4160 (15)$ $0.8519 (11)$ $0.0139 (15)$ $C5B$ $0.5144 (17)$ $0.4987 (15)$ $0.7351 (10)$ $0.0130 (15)$ $H5B$ 0.450408 0.574762 0.715534 $0.016*$ $C6B$ $0.6278 (17)$ $0.4738 (13)$ $0.6461 (9)$ $0.0118 (3)$ $C7B$ $0.7185 (17)$ $0.3616 (13)$ $0.6478 (11)$ $0.0120 (3)$ $H7B$ 0.795895 0.343054 0.613952 $0.014*$ $C8B$ $0.6991 (17)$ $0.2759 (13)$ $0.7898 (11)$ $0.0143 (14)$ $C9B$ $0.5855 (17)$ $0.3057 (15)$ $0.8771 (12)$ $0.0140 (15)$ $H9B$ 0.571941 0.248118 0.956982 $0.017*$ $N1B$ $0.8512 (14)$ 0.643147 0.832866 $0.019*$ $N2B$ $1.022 (4)$ $0.596 (3)$ $0.6250 (14)$ $0.0151 (19)$ $H2B$ 1.099861 0.555833 0.590398 $0.018*$ $C10B$ $1.027 (3)$ $0.459 (2)$ $0.8362 (16)$ $0.0186 (4)$ $H10D$ 0.973669 0.462481 0.916474 $0.028*$ $H10E$ 1.136675 0.473684 0.829447 $0.028*$ $H10E$ 1.03675 <td>058</td> <td>0.9052 (12)</td> <td>0.1340 (12)</td> <td>0./314 (10)</td> <td>0.022 (2)</td> <td>0.0901 (9)</td>	058	0.9052 (12)	0.1340 (12)	0./314 (10)	0.022 (2)	0.0901 (9)
C1B $0.3620 (15)$ $0.4349 (12)$ $0.9506 (10)$ $0.0154 (17)$ C2B $0.6491 (15)$ $0.5726 (12)$ $0.5215 (9)$ $0.0155 (17)$ C3B $0.8013 (15)$ $0.1528 (11)$ $0.8159 (9)$ $0.0155 (15)$ C4B $0.4914 (16)$ $0.4160 (15)$ $0.8519 (11)$ $0.0139 (15)$ C5B $0.5144 (17)$ $0.4987 (15)$ $0.7351 (10)$ $0.0130 (15)$ H5B 0.450408 0.574762 0.715534 $0.016*$ C6B $0.6278 (17)$ $0.4738 (13)$ $0.6461 (9)$ $0.0118 (3)$ C7B $0.7185 (17)$ $0.3616 (13)$ $0.6748 (11)$ $0.0120 (3)$ H7B 0.795895 0.343054 0.613952 $0.014*$ C8B $0.6991 (17)$ $0.2759 (13)$ $0.7898 (11)$ $0.0143 (14)$ C9B $0.5855 (17)$ $0.3057 (15)$ $0.8771 (12)$ $0.0140 (15)$ H9B 0.571941 0.248118 0.956982 $0.017*$ N1B $0.8512 (14)$ 0.643147 0.832866 $0.019*$ N2B $1.022 (4)$ $0.596 (3)$ $0.6250 (14)$ $0.0186 (4)$ H10D 0.973669 0.462481 0.916474 $0.028*$ H10E 1.136675 0.473684 0.829447 $0.028*$ H10F 1.009621 0.370858 0.824488 $0.028*$ C11B $0.9660 (16)$ $0.5645 (13)$ $0.7432 (11)$ $0.0168 (18)$ H12E $0.9386 (16)$ 0.744914 0.481027 $0.020*$ C13B $0.9386 (16)$ 0.744914 0.481027	O6B	0.7760 (13)	0.0691 (10)	0.9168 (8)	0.0217(3)	0.0901 (9)
C2B $0.6491 (15)$ $0.5726 (12)$ $0.5215 (9)$ $0.0155 (17)$ C3B $0.8013 (15)$ $0.1528 (11)$ $0.8159 (9)$ $0.0155 (15)$ C4B $0.4914 (16)$ $0.4160 (15)$ $0.8519 (11)$ $0.0139 (15)$ C5B $0.5144 (17)$ $0.4987 (15)$ $0.7351 (10)$ $0.0130 (15)$ H5B 0.450408 0.574762 0.715534 $0.016*$ C6B $0.6278 (17)$ $0.4738 (13)$ $0.6461 (9)$ $0.0118 (3)$ C7B $0.7185 (17)$ $0.3616 (13)$ $0.6748 (11)$ $0.0120 (3)$ H7B 0.795895 0.343054 0.613952 $0.014*$ C8B $0.6991 (17)$ $0.2759 (13)$ $0.7898 (11)$ $0.0143 (14)$ C9B $0.5855 (17)$ $0.3057 (15)$ $0.8771 (12)$ $0.0140 (15)$ H9B 0.571941 0.248118 0.956982 $0.017*$ N1B $0.8512 (14)$ $0.6448 (12)$ $0.7625 (10)$ $0.0162 (15)$ H1B 0.794429 0.643147 0.832866 $0.019*$ N2B $1.022 (4)$ $0.596 (3)$ $0.6250 (14)$ $0.018*$ C10B $1.027 (3)$ $0.459 (2)$ $0.8362 (16)$ $0.0186 (4)$ H10D 0.973669 0.462481 0.916474 $0.028*$ H10F 1.009621 0.370858 0.824488 $0.028*$ C11B $0.9660 (16)$ $0.5645 (13)$ $0.7432 (11)$ $0.0172 (16)$ C12B $0.9386 (16)$ $0.7024 (13)$ $0.5652 (10)$ $0.0168 (18)$ H12B 0.951250 0.744914 0.48	CIB	0.3620 (15)	0.4349 (12)	0.9506 (10)	0.0154 (17)	0.0901 (9)
C3B $0.8013 (15)$ $0.1528 (11)$ $0.8159 (9)$ $0.0155 (15)$ C4B $0.4914 (16)$ $0.4160 (15)$ $0.8519 (11)$ $0.0139 (15)$ C5B $0.5144 (17)$ $0.4987 (15)$ $0.7351 (10)$ $0.0130 (15)$ H5B 0.450408 0.574762 0.715534 $0.016*$ C6B $0.6278 (17)$ $0.4738 (13)$ $0.6461 (9)$ $0.0118 (3)$ C7B $0.7185 (17)$ $0.3616 (13)$ $0.6748 (11)$ $0.0120 (3)$ H7B 0.795895 0.343054 0.613952 $0.014*$ C8B $0.6991 (17)$ $0.2759 (13)$ $0.7898 (11)$ $0.0143 (14)$ C9B $0.5855 (17)$ $0.3057 (15)$ $0.8771 (12)$ $0.0140 (15)$ H9B 0.571941 0.248118 0.956982 $0.017*$ N1B $0.8512 (14)$ 0.643147 0.832866 $0.019*$ N2B $1.022 (4)$ $0.596 (3)$ $0.6250 (14)$ $0.0151 (19)$ H2B 1.099861 0.555833 0.590398 $0.018*$ C10B $1.027 (3)$ $0.459 (2)$ $0.8362 (16)$ $0.0186 (4)$ H10D 0.973669 0.462481 0.916474 $0.028*$ H10F 1.009621 0.370858 0.824488 $0.028*$ C11B $0.9660 (16)$ $0.5645 (13)$ $0.7432 (11)$ $0.0172 (16)$ C12B $0.9386 (16)$ $0.7024 (13)$ $0.5652 (10)$ $0.0168 (18)$ H12B 0.951250 0.744914 0.481027 $0.020*$	C2B	0.6491 (15)	0.5726 (12)	0.5215 (9)	0.0155 (17)	0.0901 (9)
C4B $0.4914(16)$ $0.4160(15)$ $0.8519(11)$ $0.0139(15)$ C5B $0.5144(17)$ $0.4987(15)$ $0.7351(10)$ $0.0130(15)$ H5B 0.450408 0.574762 0.715534 $0.016*$ C6B $0.6278(17)$ $0.4738(13)$ $0.6461(9)$ $0.0118(3)$ C7B $0.7185(17)$ $0.3616(13)$ $0.6748(11)$ $0.0120(3)$ H7B 0.795895 0.343054 0.613952 $0.014*$ C8B $0.6991(17)$ $0.2759(13)$ $0.7898(11)$ $0.0143(14)$ C9B $0.5855(17)$ $0.3057(15)$ $0.8771(12)$ $0.0140(15)$ H9B 0.571941 0.248118 0.956982 $0.017*$ N1B $0.8512(14)$ $0.6448(12)$ $0.7625(10)$ $0.0162(15)$ H1B 0.794429 0.643147 0.832866 $0.019*$ N2B $1.022(4)$ $0.596(3)$ $0.6250(14)$ $0.0151(19)$ H2B 1.099861 0.555833 0.590398 $0.018*$ C10B $1.027(3)$ $0.459(2)$ $0.8362(16)$ $0.0186(4)$ H10F 1.009621 0.370858 0.824488 $0.028*$ H10F 1.009621 0.370858 0.824488 $0.028*$ C11B $0.9560(16)$ 0.744914 0.481027 $0.020*$ C13B $0.8361(19)$ $0.7308(16)$ $0.6552(10)$ $0.0168(18)$	C3B	0.8013 (15)	0.1528 (11)	0.8159 (9)	0.0155 (15)	0.0901 (9)
C5B $0.5144(17)$ $0.4987(15)$ $0.7351(10)$ $0.0130(15)$ H5B 0.450408 0.574762 0.715534 $0.016*$ C6B $0.6278(17)$ $0.4738(13)$ $0.6461(9)$ $0.0118(3)$ C7B $0.7185(17)$ $0.3616(13)$ $0.6748(11)$ $0.0120(3)$ H7B 0.795895 0.343054 0.613952 $0.014*$ C8B $0.6991(17)$ $0.2759(13)$ $0.7898(11)$ $0.0143(14)$ C9B $0.5855(17)$ $0.3057(15)$ $0.8771(12)$ $0.0140(15)$ H9B 0.571941 0.248118 0.956982 $0.017*$ N1B $0.8512(14)$ $0.6448(12)$ $0.7625(10)$ $0.0162(15)$ H1B 0.794429 0.643147 0.832866 $0.019*$ N2B $1.022(4)$ $0.596(3)$ $0.6250(14)$ $0.0151(19)$ H2B 1.099861 0.555833 0.590398 $0.018*$ C10B $1.027(3)$ $0.459(2)$ $0.8362(16)$ $0.0186(4)$ H10D 0.973669 0.462481 0.916474 $0.028*$ H10F 1.009621 0.370858 0.824488 $0.028*$ C11B $0.9660(16)$ $0.5645(13)$ $0.7432(11)$ $0.0172(16)$ C12B $0.9386(16)$ $0.724(13)$ $0.5652(10)$ $0.0168(18)$ H12B 0.951250 0.744914 0.481027 $0.020*$	C4B	0.4914 (16)	0.4160 (15)	0.8519 (11)	0.0139 (15)	0.0901 (9)
H5B 0.450408 0.574762 0.715534 $0.016*$ C6B $0.6278 (17)$ $0.4738 (13)$ $0.6461 (9)$ $0.0118 (3)$ C7B $0.7185 (17)$ $0.3616 (13)$ $0.6748 (11)$ $0.0120 (3)$ H7B 0.795895 0.343054 0.613952 $0.014*$ C8B $0.6991 (17)$ $0.2759 (13)$ $0.7898 (11)$ $0.0143 (14)$ C9B $0.5855 (17)$ $0.3057 (15)$ $0.8771 (12)$ $0.0140 (15)$ H9B 0.571941 0.248118 0.956982 $0.017*$ N1B $0.8512 (14)$ $0.6448 (12)$ $0.7625 (10)$ $0.0162 (15)$ H1B 0.794429 0.643147 0.832866 $0.019*$ N2B $1.022 (4)$ $0.596 (3)$ $0.6250 (14)$ $0.0151 (19)$ H2B 1.099861 0.555833 0.590398 $0.018*$ C10B $1.027 (3)$ $0.459 (2)$ $0.8362 (16)$ $0.0186 (4)$ H10D 0.973669 0.462481 0.916474 $0.028*$ H10F 1.009621 0.370858 0.824488 $0.028*$ C11B $0.9660 (16)$ $0.5645 (13)$ $0.7432 (11)$ $0.0172 (16)$ C12B $0.9386 (16)$ $0.7024 (13)$ $0.5552 (10)$ $0.0168 (18)$ H12B 0.951250 0.744914 0.481027 $0.020*$	C5B	0.5144 (17)	0.4987 (15)	0.7351 (10)	0.0130 (15)	0.0901 (9)
C6B $0.6278 (17)$ $0.4738 (13)$ $0.6461 (9)$ $0.0118 (3)$ C7B $0.7185 (17)$ $0.3616 (13)$ $0.6748 (11)$ $0.0120 (3)$ H7B 0.795895 0.343054 0.613952 $0.014*$ C8B $0.6991 (17)$ $0.2759 (13)$ $0.7898 (11)$ $0.0143 (14)$ C9B $0.5855 (17)$ $0.3057 (15)$ $0.8771 (12)$ $0.0140 (15)$ H9B 0.571941 0.248118 0.956982 $0.017*$ N1B $0.8512 (14)$ $0.6448 (12)$ $0.7625 (10)$ $0.0162 (15)$ H1B 0.794429 0.643147 0.832866 $0.019*$ N2B $1.022 (4)$ $0.596 (3)$ $0.6250 (14)$ $0.0151 (19)$ H2B 1.099861 0.555833 0.590398 $0.018*$ C10B $1.027 (3)$ $0.459 (2)$ $0.8362 (16)$ $0.0186 (4)$ H10D 0.973669 0.462481 0.916474 $0.028*$ H10F 1.009621 0.370858 0.824488 $0.028*$ C11B $0.9660 (16)$ $0.5645 (13)$ $0.7432 (11)$ $0.0172 (16)$ C12B $0.9386 (16)$ $0.7024 (13)$ $0.5652 (10)$ $0.0168 (18)$ H12B 0.951250 0.744914 0.481027 $0.020*$	H5B	0.450408	0.574762	0.715534	0.016*	0.0901 (9)
C7B $0.7185(17)$ $0.3616(13)$ $0.6748(11)$ $0.0120(3)$ H7B 0.795895 0.343054 0.613952 $0.014*$ C8B $0.6991(17)$ $0.2759(13)$ $0.7898(11)$ $0.0143(14)$ C9B $0.5855(17)$ $0.3057(15)$ $0.8771(12)$ $0.0140(15)$ H9B 0.571941 0.248118 0.956982 $0.017*$ N1B $0.8512(14)$ $0.6448(12)$ $0.7625(10)$ $0.0162(15)$ H1B 0.794429 0.643147 0.832866 $0.019*$ N2B $1.022(4)$ $0.596(3)$ $0.6250(14)$ $0.0151(19)$ H2B 1.099861 0.555833 0.590398 $0.018*$ C10B $1.027(3)$ $0.459(2)$ $0.8362(16)$ $0.0186(4)$ H10D 0.973669 0.462481 0.916474 $0.028*$ H10F 1.009621 0.370858 0.824488 $0.028*$ C11B $0.9660(16)$ $0.5645(13)$ $0.7432(11)$ $0.0172(16)$ C12B $0.9386(16)$ $0.7024(13)$ $0.5652(10)$ $0.0168(18)$ H12B 0.951250 0.744914 0.481027 $0.020*$	C6B	0.6278 (17)	0.4738 (13)	0.6461 (9)	0.0118 (3)	0.0901 (9)
H7B0.7958950.3430540.6139520.014*C8B0.6991 (17)0.2759 (13)0.7898 (11)0.0143 (14)C9B0.5855 (17)0.3057 (15)0.8771 (12)0.0140 (15)H9B0.5719410.2481180.9569820.017*N1B0.8512 (14)0.6448 (12)0.7625 (10)0.0162 (15)H1B0.7944290.6431470.8328660.019*N2B1.022 (4)0.596 (3)0.6250 (14)0.0151 (19)H2B1.0998610.5558330.5903980.018*C10B1.027 (3)0.459 (2)0.8362 (16)0.0186 (4)H10D0.9736690.4624810.9164740.028*H10E1.1366750.4736840.8294470.028*H10F1.0096210.3708580.8244880.028*C11B0.9660 (16)0.5645 (13)0.7432 (11)0.0172 (16)C12B0.9386 (16)0.7024 (13)0.5652 (10)0.0168 (18)H12B0.9512500.7449140.4810270.020*C13B0.8361 (19)0.7308 (16)0.6542 (11)0.0144 (18)	C7B	0.7185 (17)	0.3616 (13)	0.6748 (11)	0.0120 (3)	0.0901 (9)
C8B0.6991 (17)0.2759 (13)0.7898 (11)0.0143 (14)C9B0.5855 (17)0.3057 (15)0.8771 (12)0.0140 (15)H9B0.5719410.2481180.9569820.017*N1B0.8512 (14)0.6448 (12)0.7625 (10)0.0162 (15)H1B0.7944290.6431470.8328660.019*N2B1.022 (4)0.596 (3)0.6250 (14)0.0151 (19)H2B1.0998610.5558330.5903980.018*C10B1.027 (3)0.459 (2)0.8362 (16)0.0186 (4)H10D0.9736690.4624810.9164740.028*H10E1.1366750.4736840.8294470.028*C11B0.9660 (16)0.5645 (13)0.7432 (11)0.0172 (16)C12B0.9386 (16)0.7024 (13)0.5652 (10)0.0168 (18)H12B0.9512500.7449140.4810270.020*C13B0.8361 (19)0.7308 (16)0.6542 (11)0.0144 (18)	H7B	0.795895	0.343054	0.613952	0.014*	0.0901 (9)
C9B0.5855 (17)0.3057 (15)0.8771 (12)0.0140 (15)H9B0.5719410.2481180.9569820.017*N1B0.8512 (14)0.6448 (12)0.7625 (10)0.0162 (15)H1B0.7944290.6431470.8328660.019*N2B1.022 (4)0.596 (3)0.6250 (14)0.0151 (19)H2B1.0998610.5558330.5903980.018*C10B1.027 (3)0.459 (2)0.8362 (16)0.0186 (4)H10D0.9736690.4624810.9164740.028*H10E1.1366750.4736840.8294470.028*H10F1.0096210.3708580.8244880.028*C11B0.9660 (16)0.5645 (13)0.7432 (11)0.0172 (16)C12B0.9386 (16)0.7024 (13)0.5652 (10)0.0168 (18)H12B0.9512500.7449140.4810270.020*C13B0.8361 (19)0.7308 (16)0.6542 (11)0.0144 (18)	C8B	0.6991 (17)	0.2759 (13)	0.7898 (11)	0.0143 (14)	0.0901 (9)
H9B0.5719410.2481180.9569820.017*N1B0.8512 (14)0.6448 (12)0.7625 (10)0.0162 (15)H1B0.7944290.6431470.8328660.019*N2B1.022 (4)0.596 (3)0.6250 (14)0.0151 (19)H2B1.0998610.5558330.5903980.018*C10B1.027 (3)0.459 (2)0.8362 (16)0.0186 (4)H10D0.9736690.4624810.9164740.028*H10E1.1366750.4736840.8294470.028*H10F1.0096210.3708580.8244880.028*C11B0.9660 (16)0.5645 (13)0.7432 (11)0.0172 (16)C12B0.9386 (16)0.7024 (13)0.5652 (10)0.0168 (18)H12B0.9512500.7449140.4810270.020*C13B0.8361 (19)0.7308 (16)0.6542 (11)0.0144 (18)	C9B	0.5855 (17)	0.3057 (15)	0.8771 (12)	0.0140 (15)	0.0901 (9)
N1B0.8512 (14)0.6448 (12)0.7625 (10)0.0162 (15)H1B0.7944290.6431470.8328660.019*N2B1.022 (4)0.596 (3)0.6250 (14)0.0151 (19)H2B1.0998610.5558330.5903980.018*C10B1.027 (3)0.459 (2)0.8362 (16)0.0186 (4)H10D0.9736690.4624810.9164740.028*H10E1.1366750.4736840.8294470.028*H10F1.0096210.3708580.8244880.028*C11B0.9660 (16)0.5645 (13)0.7432 (11)0.0172 (16)C12B0.9386 (16)0.7024 (13)0.5652 (10)0.0168 (18)H12B0.9512500.7449140.4810270.020*C13B0.8361 (19)0.7308 (16)0.6542 (11)0.0144 (18)	H9B	0.571941	0.248118	0.956982	0.017*	0.0901 (9)
H1B0.7944290.6431470.8328660.019*N2B1.022 (4)0.596 (3)0.6250 (14)0.0151 (19)H2B1.0998610.5558330.5903980.018*C10B1.027 (3)0.459 (2)0.8362 (16)0.0186 (4)H10D0.9736690.4624810.9164740.028*H10E1.1366750.4736840.8294470.028*H10F1.0096210.3708580.8244880.028*C11B0.9660 (16)0.5645 (13)0.7432 (11)0.0172 (16)C12B0.9386 (16)0.7024 (13)0.5652 (10)0.0168 (18)H12B0.9512500.7449140.4810270.020*C13B0.8361 (19)0.7308 (16)0.6542 (11)0.0144 (18)	N1B	0.8512 (14)	0.6448 (12)	0.7625 (10)	0.0162 (15)	0.0901 (9)
N2B1.022 (4)0.596 (3)0.6250 (14)0.0151 (19)H2B1.0998610.5558330.5903980.018*C10B1.027 (3)0.459 (2)0.8362 (16)0.0186 (4)H10D0.9736690.4624810.9164740.028*H10E1.1366750.4736840.8294470.028*H10F1.0096210.3708580.8244880.028*C11B0.9660 (16)0.5645 (13)0.7432 (11)0.0172 (16)C12B0.9386 (16)0.7024 (13)0.5652 (10)0.0168 (18)H12B0.9512500.7449140.4810270.020*C13B0.8361 (19)0.7308 (16)0.6542 (11)0.0144 (18)	H1B	0.794429	0.643147	0.832866	0.019*	0.0901 (9)
H2B1.0998610.5558330.5903980.018*C10B1.027 (3)0.459 (2)0.8362 (16)0.0186 (4)H10D0.9736690.4624810.9164740.028*H10E1.1366750.4736840.8294470.028*H10F1.0096210.3708580.8244880.028*C11B0.9660 (16)0.5645 (13)0.7432 (11)0.0172 (16)C12B0.9386 (16)0.7024 (13)0.5652 (10)0.0168 (18)H12B0.9512500.7449140.4810270.020*C13B0.8361 (19)0.7308 (16)0.6542 (11)0.0144 (18)	N2B	1.022 (4)	0.596 (3)	0.6250 (14)	0.0151 (19)	0.0901 (9)
C10B1.027 (3)0.459 (2)0.8362 (16)0.0186 (4)H10D0.9736690.4624810.9164740.028*H10E1.1366750.4736840.8294470.028*H10F1.0096210.3708580.8244880.028*C11B0.9660 (16)0.5645 (13)0.7432 (11)0.0172 (16)C12B0.9386 (16)0.7024 (13)0.5652 (10)0.0168 (18)H12B0.9512500.7449140.4810270.020*C13B0.8361 (19)0.7308 (16)0.6542 (11)0.0144 (18)	H2B	1.099861	0.555833	0.590398	0.018*	0.0901 (9)
H10D0.9736690.4624810.9164740.028*H10E1.1366750.4736840.8294470.028*H10F1.0096210.3708580.8244880.028*C11B0.9660 (16)0.5645 (13)0.7432 (11)0.0172 (16)C12B0.9386 (16)0.7024 (13)0.5652 (10)0.0168 (18)H12B0.9512500.7449140.4810270.020*C13B0.8361 (19)0.7308 (16)0.6542 (11)0.0144 (18)	C10B	1.027 (3)	0.459 (2)	0.8362 (16)	0.0186 (4)	0.0901 (9)
H10E1.1366750.4736840.8294470.028*H10F1.0096210.3708580.8244880.028*C11B0.9660 (16)0.5645 (13)0.7432 (11)0.0172 (16)C12B0.9386 (16)0.7024 (13)0.5652 (10)0.0168 (18)H12B0.9512500.7449140.4810270.020*C13B0.8361 (19)0.7308 (16)0.6542 (11)0.0144 (18)	H10D	0.973669	0.462481	0.916474	0.028*	0.0901 (9)
H10F1.0096210.3708580.8244880.028*C11B0.9660 (16)0.5645 (13)0.7432 (11)0.0172 (16)C12B0.9386 (16)0.7024 (13)0.5652 (10)0.0168 (18)H12B0.9512500.7449140.4810270.020*C13B0.8361 (19)0.7308 (16)0.6542 (11)0.0144 (18)	H10E	1.136675	0.473684	0.829447	0.028*	0.0901 (9)
C11B0.9660 (16)0.5645 (13)0.7432 (11)0.0172 (16)C12B0.9386 (16)0.7024 (13)0.5652 (10)0.0168 (18)H12B0.9512500.7449140.4810270.020*C13B0.8361 (19)0.7308 (16)0.6542 (11)0.0144 (18)	H10F	1.009621	0.370858	0.824488	0.028*	0.0901 (9)
C12B0.9386 (16)0.7024 (13)0.5652 (10)0.0168 (18)H12B0.9512500.7449140.4810270.020*C13B0.8361 (19)0.7308 (16)0.6542 (11)0.0144 (18)	C11B	0.9660 (16)	0.5645 (13)	0.7432 (11)	0.0172 (16)	0.0901 (9)
H12B0.9512500.7449140.4810270.020*C13B0.8361 (19)0.7308 (16)0.6542 (11)0.0144 (18)	C12B	0.9386 (16)	0.7024 (13)	0.5652 (10)	0.0168 (18)	0.0901 (9)
C13B 0.8361 (19) 0.7308 (16) 0.6542 (11) 0.0144 (18)	H12B	0.951250	0.744914	0.481027	0.020*	0.0901 (9)
0.0501(17) $0.7500(10)$ $0.0542(11)$ $0.0141(10)$	C13B	0.8361 (19)	0.7308 (16)	0.6542 (11)	0.0144 (18)	0.0901 (9)

H13B	0.763155	0.801145	0.643027	0.017*	0.0901 (9)
N3B	0.9101 (15)	0.0588 (12)	1.2644 (10)	0.020 (2)	0.0901 (9)
H3B	0.972182	-0.007821	1.255590	0.024*	0.0901 (9)
N4B	0.780 (5)	0.241 (3)	1.224 (2)	0.020 (3)	0.0901 (9)
H4B	0.741883	0.315890	1.182443	0.024*	0.0901 (9)
C14B	0.967 (2)	0.2003 (19)	1.0515 (11)	0.019 (3)	0.0901 (9)
H14D	0.990040	0.116708	1.028014	0.029*	0.0901 (9)
H14E	1.061878	0.250271	1.041044	0.029*	0.0901 (9)
H14F	0.897947	0.255024	1.000667	0.029*	0.0901 (9)
C15B	0.8916 (17)	0.1686 (14)	1.1790 (10)	0.019 (2)	0.0901 (9)
C16B	0.817 (2)	0.0660 (16)	1.3684 (11)	0.017 (3)	0.0901 (9)
H16B	0.811200	0.001269	1.444487	0.020*	0.0901 (9)
C17B	0.7345 (17)	0.1797 (14)	1.3463 (12)	0.021 (2)	0.0901 (9)
H17B	0.661054	0.210989	1.402322	0.025*	0.0901 (9)
N5B	0.4442 (13)	0.1450 (11)	0.6925 (9)	0.0148 (3)	0.0901 (9)
H5BA	0.437910	0.215239	0.631013	0.018*	0.0901 (9)
N6B	0.410 (3)	0.013 (3)	0.8728 (14)	0.016 (2)	0.0901 (9)
H6B	0.376045	-0.018373	0.950791	0.019*	0.0901 (9)
C18B	0.2189 (18)	0.1957 (19)	0.8343 (17)	0.0167 (3)	0.0901 (9)
H18D	0.236520	0.290934	0.791949	0.025*	0.0901 (9)
H18E	0.204232	0.184000	0.921700	0.025*	0.0901 (9)
H18F	0.127233	0.164192	0.813587	0.025*	0.0901 (9)
C19B	0.3520 (14)	0.1176 (14)	0.7978 (11)	0.0169 (16)	0.0901 (9)
C20B	0.5330 (16)	-0.0392 (13)	0.8061 (11)	0.0171 (18)	0.0901 (9)
H20B	0.590742	-0.117429	0.833557	0.021*	0.0901 (9)
C21B	0.5516 (18)	0.0457 (15)	0.6950 (11)	0.0161 (18)	0.0901 (9)
H21B	0.627299	0.038191	0.628490	0.019*	0.0901 (9)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	0.0192 (6)	0.0154 (6)	0.0093 (5)	0.0061 (5)	0.0031 (4)	0.0011 (5)
O2A	0.0218 (6)	0.0166 (5)	0.0133 (5)	0.0117 (4)	0.0018 (4)	0.0003 (4)
O3A	0.0199 (6)	0.0180 (6)	0.0116 (6)	0.0103 (5)	0.0034 (5)	0.0007 (5)
O4A	0.0213 (5)	0.0157 (5)	0.0098 (5)	0.0077 (4)	0.0022 (4)	0.0025 (4)
O5A	0.0259 (6)	0.0188 (6)	0.0132 (6)	0.0139 (5)	0.0021 (5)	0.0020 (5)
06A	0.0214 (6)	0.0192 (5)	0.0115 (5)	0.0094 (4)	0.0033 (4)	-0.0011 (4)
C1A	0.0153 (7)	0.0112 (7)	0.0107 (8)	0.0028 (6)	-0.0008 (6)	-0.0015 (6)
C2A	0.0148 (7)	0.0111 (7)	0.0110(7)	0.0030 (6)	-0.0009 (6)	-0.0023 (6)
C3A	0.0163 (7)	0.0117 (7)	0.0113 (7)	0.0037 (6)	-0.0015 (6)	-0.0012 (6)
C4A	0.0139 (8)	0.0098 (7)	0.0097 (7)	0.0027 (5)	-0.0005 (6)	-0.0009(5)
C5A	0.0128 (7)	0.0110 (7)	0.0102 (8)	0.0041 (6)	-0.0001 (6)	-0.0020 (6)
C6A	0.0130 (7)	0.0102 (7)	0.0100 (7)	0.0019 (6)	-0.0001 (6)	-0.0024 (6)
C7A	0.0145 (8)	0.0085 (7)	0.0098 (7)	0.0029 (6)	-0.0020 (6)	0.0000 (5)
C8A	0.0119 (7)	0.0109 (7)	0.0111 (8)	0.0029 (6)	-0.0001 (6)	-0.0024 (6)
C9A	0.0140 (7)	0.0113 (7)	0.0081 (7)	0.0030 (6)	0.0006 (5)	-0.0005 (6)
N1A	0.0186 (6)	0.0116 (6)	0.0115 (6)	0.0030 (5)	-0.0014 (5)	0.0002 (5)
N2A	0.0175 (7)	0.0101 (9)	0.0123 (7)	0.0037 (6)	-0.0013 (6)	-0.0008 (6)

C10A	0.0218 (8)	0.0188 (8)	0.0145 (8)	0.0073 (6)	0.0036 (7)	-0.0006 (7)
C11A	0.0152 (7)	0.0114 (7)	0.0121 (7)	0.0019 (5)	-0.0016 (6)	-0.0007 (6)
C12A	0.0185 (7)	0.0139 (7)	0.0146 (7)	0.0016 (6)	0.0004 (6)	-0.0034 (6)
C13A	0.0185 (9)	0.0135 (8)	0.0149 (7)	0.0041 (6)	0.0020 (7)	-0.0024 (6)
N3A	0.0150 (6)	0.0129 (6)	0.0149 (7)	0.0057 (5)	-0.0006 (5)	-0.0036 (5)
N4A	0.0144 (10)	0.0119 (9)	0.0128 (9)	0.0046 (8)	0.0003 (7)	-0.0028 (6)
C14A	0.0193 (8)	0.0161 (9)	0.0114 (8)	0.0048 (6)	-0.0003 (7)	-0.0003 (7)
C15A	0.0128 (7)	0.0117 (7)	0.0140 (8)	0.0020 (6)	-0.0019 (6)	-0.0031 (6)
C16A	0.0174 (8)	0.0161 (8)	0.0135 (8)	0.0026 (7)	0.0006 (6)	-0.0024 (7)
C17A	0.0180 (7)	0.0137 (7)	0.0121 (7)	0.0027 (6)	-0.0022 (6)	-0.0014 (6)
N5A	0.0177 (7)	0.0157 (6)	0.0110 (6)	0.0033 (5)	0.0037 (5)	-0.0023 (5)
N6A	0.0184 (7)	0.0145 (13)	0.0105 (7)	0.0027 (8)	0.0032 (6)	-0.0008 (6)
C18A	0.0162 (8)	0.0148 (8)	0.0176 (8)	0.0039 (6)	-0.0001 (6)	-0.0010 (6)
C19A	0.0146 (7)	0.0130 (7)	0.0131 (7)	-0.0002 (6)	0.0009 (6)	-0.0036 (6)
C20A	0.0202 (8)	0.0145 (7)	0.0165 (8)	0.0056 (6)	0.0015 (6)	-0.0019 (6)
C21A	0.0225 (7)	0.0150 (9)	0.0137 (9)	0.0063 (7)	0.0004 (8)	0.0005 (7)
O1B	0.021 (4)	0.017 (4)	0.016 (4)	0.009 (4)	0.006 (4)	0.000 (3)
O2B	0.024 (4)	0.020 (4)	0.009 (4)	0.009 (3)	0.002 (3)	-0.002 (3)
O3B	0.022 (4)	0.019 (4)	0.007 (4)	0.004 (3)	0.003 (4)	0.005 (3)
O4B	0.025 (4)	0.016 (4)	0.007 (3)	0.004 (3)	0.002 (3)	0.004 (3)
O5B	0.027 (4)	0.014 (4)	0.015 (4)	0.010 (3)	0.001 (3)	0.007 (3)
O6B	0.0259 (6)	0.0188 (6)	0.0132 (6)	0.0139 (5)	0.0021 (5)	0.0020 (5)
C1B	0.018 (3)	0.014 (3)	0.012 (3)	0.003 (3)	0.001 (3)	-0.001 (3)
C2B	0.019 (3)	0.014 (3)	0.010 (3)	0.003 (3)	0.001 (2)	0.001 (2)
C3B	0.018 (3)	0.013 (2)	0.012 (2)	0.005 (2)	-0.001 (2)	0.001 (2)
C4B	0.017 (2)	0.012 (2)	0.009 (2)	0.006 (2)	0.001 (2)	0.001 (2)
C5B	0.017 (2)	0.011 (2)	0.008 (2)	0.003 (2)	0.000(2)	0.001 (2)
C6B	0.0139 (8)	0.0098 (7)	0.0097 (7)	0.0027 (5)	-0.0005 (6)	-0.0009 (5)
C7B	0.0140 (7)	0.0113 (7)	0.0081 (7)	0.0030 (6)	0.0006 (5)	-0.0005 (6)
C8B	0.018 (2)	0.012 (2)	0.009 (2)	0.005 (2)	0.001 (2)	0.001 (2)
C9B	0.017 (2)	0.013 (2)	0.009 (2)	0.005 (2)	0.001 (2)	-0.001 (2)
N1B	0.020 (3)	0.015 (3)	0.009 (3)	0.003 (2)	0.001 (2)	0.002 (2)
N2B	0.019 (3)	0.013 (3)	0.010 (3)	0.003 (3)	0.003 (3)	-0.002 (3)
C10B	0.0225 (7)	0.0150 (9)	0.0137 (9)	0.0063 (7)	0.0004 (8)	0.0005 (7)
C11B	0.019 (3)	0.015 (3)	0.012 (3)	0.003 (2)	0.003 (2)	0.001 (2)
C12B	0.020 (3)	0.013 (3)	0.012 (3)	0.005 (3)	0.001 (3)	0.001 (3)
C13B	0.018 (3)	0.012 (3)	0.009 (3)	0.002 (3)	0.002 (3)	0.001 (3)
N3B	0.027 (5)	0.019 (4)	0.013 (4)	0.007 (4)	0.005 (4)	-0.009 (3)
N4B	0.023 (5)	0.015 (4)	0.018 (4)	0.009 (4)	0.002 (4)	-0.003 (4)
C14B	0.025 (6)	0.014 (5)	0.014 (4)	0.008 (5)	0.001 (4)	0.001 (4)
C15B	0.022 (4)	0.016 (4)	0.015 (4)	0.006 (3)	0.002 (3)	-0.006 (3)
C16B	0.021 (5)	0.016 (5)	0.013 (5)	0.008 (4)	0.000 (4)	-0.006 (4)
C17B	0.024 (5)	0.018 (4)	0.015 (4)	0.011 (4)	0.003 (4)	-0.001 (4)
N5B	0.0186 (6)	0.0116 (6)	0.0115 (6)	0.0030 (5)	-0.0014 (5)	0.0002 (5)
N6B	0.020 (3)	0.013 (3)	0.010 (3)	0.003 (3)	-0.001 (3)	0.003 (3)
C18B	0.0185 (9)	0.0135 (8)	0.0149 (7)	0.0041 (6)	0.0020 (7)	-0.0024 (6)
C19B	0.019 (3)	0.013 (3)	0.013 (3)	0.004 (2)	0.000 (2)	0.003 (2)
C20B	0.020 (3)	0.015 (3)	0.012 (3)	0.004 (3)	0.002 (3)	0.002 (3)

supporting information 0.002 (3) 0.012 (3) 0.011 (3) 0.004 (3) 0.001 (3) Geometric parameters (Å, °) 1.2629 (18) O1B-C1B 1.266 (9)

O1A—C1A	1.2629 (18)	O1B—C1B	1.266 (9)
O2A—C1A	1.2565 (17)	O2B—C1B	1.246 (9)
O3A—C2A	1.2674 (17)	O3B—C2B	1.271 (9)
O4A—C2A	1.2534 (17)	O4B—C2B	1.245 (9)
O5A—C3A	1.2677 (18)	O5B—C3B	1.275 (9)
O6A—C3A	1.2519 (18)	O6B—C3B	1.247 (9)
C1A—C4A	1.513 (2)	C1B—C4B	1.522 (9)
C2A—C6A	1.516 (2)	C2B—C6B	1.518 (9)
C3A—C8A	1.5159 (19)	C3B—C8B	1.524 (8)
C4A—C5A	1.392 (2)	C4B—C5B	1.384 (9)
C4A—C9A	1.3936 (19)	C4B—C9B	1.381 (9)
C5A—H5A	0.9500	C5B—H5B	0.9500
C5A—C6A	1.394 (2)	C5B—C6B	1.382 (9)
C6A—C7A	1.395 (2)	C6B—C7B	1.383 (9)
С7А—Н7А	0.9500	С7В—Н7В	0.9500
C7A—C8A	1.391 (2)	C7B—C8B	1.379 (9)
C8A—C9A	1.395 (2)	C8B—C9B	1.388 (9)
С9А—Н9А	0.9500	С9В—Н9В	0.9500
N1A—H1A	0.883 (9)	N1B—H1B	0.8800
N1A—C11A	1.3234 (18)	N1B—C11B	1.313 (9)
N1A—C13A	1.376 (2)	N1B—C13B	1.360 (9)
N2A—H2A	0.873 (9)	N2B—H2B	0.8800
N2A—C11A	1.331 (2)	N2B—C11B	1.336 (10)
N2A—C12A	1.381 (2)	N2B—C12B	1.397 (10)
C10A—H10A	0.9800	C10B—H10D	0.9800
C10A—H10B	0.9800	C10B—H10E	0.9800
C10A—H10C	0.9800	C10B—H10F	0.9800
C10A—C11A	1.480 (2)	C10B—C11B	1.473 (9)
C12A—H12A	0.9500	C12B—H12B	0.9500
C12A—C13A	1.349 (2)	C12B—C13B	1.341 (9)
C13A—H13A	0.9500	C13B—H13B	0.9500
N3A—H3A	0.881 (9)	N3B—H3B	0.8800
N3A—C15A	1.3287 (19)	N3B—C15B	1.318 (9)
N3A—C16A	1.375 (2)	N3B—C16B	1.360 (9)
N4A—H4A	0.877 (9)	N4B—H4B	0.8800
N4A—C15A	1.333 (2)	N4B—C15B	1.334 (9)
N4A—C17A	1.381 (3)	N4B—C17B	1.394 (10)
C14A—H14A	0.9800	C14B—H14D	0.9800
C14A—H14B	0.9800	C14B—H14E	0.9800
C14A—H14C	0.9800	C14B—H14F	0.9800
C14A—C15A	1.476 (2)	C14B—C15B	1.472 (9)
C16A—H16A	0.9500	C16B—H16B	0.9500
C16A—C17A	1.352 (2)	C16B—C17B	1.347 (10)
C17A—H17A	0.9500	C17B—H17B	0.9500

C21B

0.021 (3)

N5A—H5AA	0.868 (9)	N5B—H5BA	0.8800
N5A—C19A	1.324 (2)	N5B—C19B	1.316 (9)
N5A—C21A	1.378 (2)	N5B—C21B	1.368 (9)
N6A—H6A	0.873 (9)	N6B—H6B	0.8800
N6A—C19A	1.337 (2)	N6B—C19B	1.343 (10)
N6A—C20A	1 383 (2)	N6B—C20B	1 400 (10)
C18A - H18A	0.9800	C18B - H18D	0.9800
C18A H18B	0.9800	C18B H18E	0.9800
	0.9800		0.9800
	1,472 (2)	C_{10} D_{110} C_{10} D_{10} D_{10} C_{10} D_{10}	1 468 (0)
C10A-C19A	1.473(2)		1.408 (9)
C20A—H20A	0.9500	C20B—H20B	0.9500
C20A—C21A	1.349 (2)		1.341 (10)
C21A—H21A	0.9500	C21B—H21B	0.9500
O1A—C1A—C4A	115.95 (13)	O1B—C1B—C4B	120.2 (9)
02A—C1A—01A	124.87 (15)	O2B-C1B-O1B	121.0 (10)
O^2A — C^1A — C^4A	119 16 (14)	O2B— $C1B$ — $C4B$	118.6 (9)
$O_{3A} = C_{2A} = C_{6A}$	115.77 (13)	O_{2B} C_{2B} C_{6B}	110.0(9) 110.0(9)
$O_{A} C_{A} O_{A} O_{A}$	113.77(13) 124.08(15)	O_{4}^{A} C_{2}^{B} O_{3}^{B}	119.9(9)
$O_{A} C_{A} C_{A} C_{A} C_{A}$	124.96(13) 110.24(14)	O4B C2B C6B	120.3(10)
$O_{A} = C_{A} = C_{A}$	119.24(14) 116.00(12)	$O_{4}D = C_{2}D = C_{0}D$	119.2(9)
$O_{A} = C_{A} = C_{A}$	110.00(13)		119.0(8)
06A - C3A - 05A	124.60 (14)	06B-C3B-05B	121.5 (10)
06A—C3A—C8A	119.40 (13)	06B—C3B—C8B	119.4 (9)
C5A—C4A—C1A	120.71 (14)	C5B—C4B—C1B	123.5 (9)
C5A—C4A—C9A	119.10 (13)	C9B—C4B—C1B	118.8 (9)
C9A—C4A—C1A	120.20 (14)	C9B—C4B—C5B	117.7 (9)
C4A—C5A—H5A	119.5	C4B—C5B—H5B	119.1
C4A—C5A—C6A	121.00 (13)	C6B—C5B—C4B	121.8 (9)
С6А—С5А—Н5А	119.5	C6B—C5B—H5B	119.1
C5A—C6A—C2A	119.89 (14)	C5B—C6B—C2B	118.4 (9)
C5A—C6A—C7A	118.99 (14)	C5B—C6B—C7B	118.7 (9)
C7A—C6A—C2A	121.08 (14)	C7B—C6B—C2B	122.9 (9)
С6А—С7А—Н7А	119.5	C6B—C7B—H7B	119.2
C8A—C7A—C6A	120.96 (13)	C8B—C7B—C6B	121.5 (9)
C8A—C7A—H7A	119.5	C8B—C7B—H7B	119.2
C7A - C8A - C3A	120 22 (13)	C7B-C8B-C3B	119.2 (9)
C7A - C8A - C9A	119.10(13)	C7B-C8B-C9B	119.2(9)
C9A - C8A - C3A	120.67 (14)	$C^{0}B$ $C^{0}B$ $C^{3}B$	110.0(9) 122.8(9)
$C_{AA} = C_{AA} = C_{AA} = C_{AA}$	120.07(14) 120.84(13)	C/B $C_{0}B$ $C_{8}B$	122.0(9) 122.3(9)
$C_{4A} = C_{5A} = C_{5A}$	110.6		122.5 ())
$C_{A} = C_{A} = H_{A}$	119.0	$C_{4B} = C_{9B} = H_{9B}$	110.0
$C_{0A} - C_{9A} - \Pi_{9A}$	119.0	$C_{0}D_{-}C_{0}D_{-}D_{0}D_{0}$	116.6
CIIA—NIA—HIA	123.1(12)		120.2
C12A = NIA = U1A	108.43 (13)	$C12D \qquad N1D \qquad U1D$	107.0 (9)
CIIA NIA HIA	128.4 (12)	CID NOR HOD	120.2
CIIA—N2A—H2A	121.3 (13)	CIIB—N2B—H2B	125.5
CIIA—N2A—CI2A	108.88 (14)	C11B—N2B—C12B	109.0 (9)
C12A—N2A—H2A	129.8 (13)	C12B—N2B—H2B	125.5
H10A—C10A—H10B	109.5	H10D—C10B—H10E	109.5

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H10A—C10A—H10C	109.5	H10D—C10B—H10F	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H10B-C10A-H10C	109.5	H10E—C10B—H10F	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11A—C10A—H10A	109.5	C11B—C10B—H10D	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11A—C10A—H10B	109.5	C11B—C10B—H10E	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C11A—C10A—H10C	109.5	C11B—C10B—H10F	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N1A—C11A—N2A	108.61 (14)	N1B—C11B—N2B	109.0 (8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N1A—C11A—C10A	125.15 (14)	N1B-C11B-C10B	126.0 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2A—C11A—C10A	126.24 (14)	N2B—C11B—C10B	125.0 (11)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N2A—C12A—H12A	126.8	N2B—C12B—H12B	128.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13A—C12A—N2A	106.30 (15)	C13B—C12B—N2B	104.0 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13A—C12A—H12A	126.8	C13B—C12B—H12B	128.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1A—C13A—H13A	126.1	N1B—C13B—H13B	124.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12A— $C13A$ — $N1A$	107.75 (14)	C12B— $C13B$ — $N1B$	110.4 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12A - C13A - H13A	126.1	C12B— $C13B$ — $H13B$	124.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15A - N3A - H3A	121.1 (12)	C15B = N3B = H3B	125.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15A - N3A - C16A	108.74(13)	C15B = N3B = C16B	108 3 (9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C16A = N3A = H3A	130.1(12)	C16B $N3B$ $H3B$	125.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{15A} = NAA = HAA$	130.1(12) 121.7(13)	C15B N/B H/B	125.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C15A = N4A = C17A	121.7(13) 108.96(15)	C15B M/B C17B	123.7
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C17A $N4A$ $H4A$	100.90(13) 120.2(13)	C17B NAB HAB	108.0 (9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C1/A $M4A$ $M4A$	129.2 (13)	$U_1 A D = U_1 $	123.7
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H14A - C14A - H14B	109.5	H14D— $C14D$ — $H14E$	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H14A - C14A - H14C	109.5	H14D— $C14B$ — $H14F$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Pi 4 \mathbf{D} - \mathbf{C} 14 \mathbf{A} - \Pi 14 \mathbf{C}$	109.5	$\Pi 4E - C 14D - \Pi 14F$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15A - C14A - H14A	109.5	C15B - C14B - H14D	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C15A—C14A—H14B	109.5	CI5B—CI4B—HI4E	109.5
N3A—C15A—N4A 108.31 (15) N3B—C15B—N4B 108.7 (9) N3A—C15A—C14A 125.30 (14) N3B—C15B—C14B 126.4 (11) N4A—C15A—C14A 126.38 (16) N4B—C15B—C14B 124.5 (11) N3A—C16A—H16A 126.2 N3B—C16B—H16B 125.5 C17A—C16A—H16A 126.2 C17B—C16B—N3B 109.1 (9) C17A—C16A—H16A 126.2 C17B—C16B—H16B 125.5 N4A—C17A—H16A 126.2 C17B—C16B—H16B 125.5 N4A—C17A—H17A 126.8 N4B—C17B—H17B 127.4 C16A—C17A—H17A 126.8 C16B—C17B—N4B 105.1 (9) C16A—C17A—H17A 126.8 C16B—C17B—N4B 105.1 (9) C16A—C17A—H17A 126.8 C16B—C17B—N4B 105.1 (9) C16A—C17A—H17A 126.8 C16B—C17B—H17B 127.4 C19A—N5A—H5AA 122.0 (13) C19B—N5B—H5BA 125.8 C19A—N5A—H5AA 122.0 (13) C19B—N5B—C21B 108.4 (8) C21A—N5A—H5AA 129.1 (13) C21B—N5B—H5BA 125.7 C19A—N6A—H6A 123.4 (13) C19B—N6B—H6B 125.7 C19A—N6A—H6A 127.8	CI5A—CI4A—HI4C	109.5	CI5B—CI4B—HI4F	109.5
N3A—C15A—C14A125.30 (14)N3B—C15B—C14B126.4 (11)N4A—C15A—C14A126.38 (16)N4B—C15B—C14B124.5 (11)N3A—C16A—H16A126.2N3B—C16B—H16B125.5C17A—C16A—H16A126.2C17B—C16B—N3B109.1 (9)C17A—C16A—H16A126.2C17B—C16B—H16B125.5N4A—C17A—H17A126.8N4B—C17B—H17B127.4C16A—C17A—H17A126.8C16B—C17B—N4B105.1 (9)C16A—C17A—H17A126.8C16B—C17B—H17B127.4C16A—C17A—H17A126.8C16B—C17B—H17B127.4C19A—N5A—H5AA122.0 (13)C19B—N5B—H5BA125.8C19A—N5A—C21A108.61 (13)C19B—N5B—C21B108.4 (8)C21A—N5A—H5AA129.1 (13)C21B—N5B—H5BA125.8C19A—N6A—H6A123.4 (13)C19B—N6B—H6B125.7C19A—N6A—H6A127.8 (13)C20B—N6B—H6B125.7H18A—C18A—H18B109.5H18D—C18B—H18E109.5H18B—C18A—H18C109.5H18D—C18B—H18F109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C	N3A—C15A—N4A	108.31 (15)	N3B—C15B—N4B	108.7 (9)
N4A—C15A—C14A126.38 (16)N4B—C15B—C14B124.5 (11)N3A—C16A—H16A126.2N3B—C16B—H16B125.5C17A—C16A—N3A107.51 (15)C17B—C16B—N3B109.1 (9)C17A—C16A—H16A126.2C17B—C16B—H16B125.5N4A—C17A—H17A126.8N4B—C17B—H17B127.4C16A—C17A—N4A106.47 (14)C16B—C17B—N4B105.1 (9)C16A—C17A—H17A126.8C16B—C17B—H17B127.4C19A—N5A—H5AA122.0 (13)C19B—N5B—H5BA125.8C19A—N5A—H5AA129.1 (13)C21B—N5B—H5BA125.7C19A—N6A—H6A123.4 (13)C19B—N6B—H6B125.7C19A—N6A—H6A127.8 (13)C20B—N6B—H6B125.7H18A—C18A—H18B109.5H18D—C18B—H18F109.5H18B—C18A—H18C109.5H18D—C18B—H18F109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18	N3A—C15A—C14A	125.30 (14)	N3B—C15B—C14B	126.4 (11)
N3A—C16A—H16A126.2N3B—C16B—H16B125.5C17A—C16A—N3A107.51 (15)C17B—C16B—N3B109.1 (9)C17A—C16A—H16A126.2C17B—C16B—H16B125.5N4A—C17A—H17A126.8N4B—C17B—H17B127.4C16A—C17A—H17A126.8C16B—C17B—N4B105.1 (9)C16A—C17A—H17A126.8C16B—C17B—H17B127.4C19A—N5A—H5AA122.0 (13)C19B—N5B—H5BA125.8C19A—N5A—H5AA122.0 (13)C19B—N5B—H5BA125.8C19A—N5A—H5AA129.1 (13)C21B—N5B—H5BA125.8C19A—N6A—H6A123.4 (13)C19B—N6B—H6B125.7C19A—N6A—H6A127.8 (13)C20B—N6B—H6B125.7H18A—C18A—H18B109.5H18D—C18B—H18E109.5H18B—C18A—H18C109.5H18D—C18B—H18F109.5H18B—C18A—H18A109.5C19B—C18B—H18F109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18B<	N4A—C15A—C14A	126.38 (16)	N4B—C15B—C14B	124.5 (11)
C17A—C16A—N3A107.51 (15)C17B—C16B—N3B109.1 (9)C17A—C16A—H16A126.2C17B—C16B—H16B125.5N4A—C17A—H17A126.8N4B—C17B—H17B127.4C16A—C17A—N4A106.47 (14)C16B—C17B—N4B105.1 (9)C16A—C17A—H17A126.8C16B—C17B—H17B127.4C19A—N5A—H5AA122.0 (13)C19B—N5B—H5BA125.8C19A—N5A—C21A108.61 (13)C19B—N5B—H5BA125.8C19A—N6A—H6A123.4 (13)C19B—N6B—H6B125.7C19A—N6A—C20A108.66 (15)C19B—N6B—C20B108.6 (9)C20A—N6A—H6A127.8 (13)C20B—N6B—H6B125.7H18A—C18A—H18B109.5H18D—C18B—H18F109.5H18B—C18A—H18C109.5H18D—C18B—H18F109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18F109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C1	N3A—C16A—H16A	126.2	N3B—C16B—H16B	125.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17A—C16A—N3A	107.51 (15)	C17B—C16B—N3B	109.1 (9)
N4A—C17A—H17A126.8N4B—C17B—H17B127.4C16A—C17A—N4A106.47 (14)C16B—C17B—N4B105.1 (9)C16A—C17A—H17A126.8C16B—C17B—H17B127.4C19A—N5A—H5AA122.0 (13)C19B—N5B—H5BA125.8C19A—N5A—C21A108.61 (13)C19B—N5B—C21B108.4 (8)C21A—N5A—H5AA129.1 (13)C21B—N5B—H5BA125.8C19A—N6A—H6A123.4 (13)C19B—N6B—H6B125.7C19A—N6A—H6A127.8 (13)C20B—N6B—H6B125.7C19A—N6A—H6A127.8 (13)C20B—N6B—H6B125.7H18A—C18A—H18B109.5H18D—C18B—H18E109.5H18B—C18A—H18C109.5H18D—C18B—H18F109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18C109.5C19B—C18B—H18E109.5	C17A—C16A—H16A	126.2	C17B—C16B—H16B	125.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4A—C17A—H17A	126.8	N4B—C17B—H17B	127.4
C16A—C17A—H17A126.8C16B—C17B—H17B127.4C19A—N5A—H5AA122.0 (13)C19B—N5B—H5BA125.8C19A—N5A—C21A108.61 (13)C19B—N5B—C21B108.4 (8)C21A—N5A—H5AA129.1 (13)C21B—N5B—H5BA125.8C19A—N6A—H6A123.4 (13)C19B—N6B—H6B125.7C19A—N6A—C20A108.66 (15)C19B—N6B—C20B108.6 (9)C20A—N6A—H6A127.8 (13)C20B—N6B—H6B125.7H18A—C18A—H18B109.5H18D—C18B—H18E109.5H18B—C18A—H18C109.5H18D—C18B—H18F109.5C19A—C18A—H18A109.5C19B—C18B—H18F109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5	C16A—C17A—N4A	106.47 (14)	C16B—C17B—N4B	105.1 (9)
C19A—N5A—H5AA122.0 (13)C19B—N5B—H5BA125.8C19A—N5A—C21A108.61 (13)C19B—N5B—C21B108.4 (8)C21A—N5A—H5AA129.1 (13)C21B—N5B—H5BA125.8C19A—N6A—H6A123.4 (13)C19B—N6B—H6B125.7C19A—N6A—C20A108.66 (15)C19B—N6B—C20B108.6 (9)C20A—N6A—H6A127.8 (13)C20B—N6B—H6B125.7H18A—C18A—H18B109.5H18D—C18B—H18E109.5H18A—C18A—H18C109.5H18D—C18B—H18F109.5H18B—C18A—H18C109.5H18E—C18B—H18F109.5C19A—C18A—H18A109.5C19B—C18B—H18D109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18C109.5C19B—C18B—H18E109.5	C16A—C17A—H17A	126.8	C16B—C17B—H17B	127.4
C19A—N5A—C21A108.61 (13)C19B—N5B—C21B108.4 (8)C21A—N5A—H5AA129.1 (13)C21B—N5B—H5BA125.8C19A—N6A—H6A123.4 (13)C19B—N6B—H6B125.7C19A—N6A—C20A108.66 (15)C19B—N6B—C20B108.6 (9)C20A—N6A—H6A127.8 (13)C20B—N6B—H6B125.7H18A—C18A—H18B109.5H18D—C18B—H18E109.5H18A—C18A—H18C109.5H18D—C18B—H18F109.5H18B—C18A—H18C109.5C19B—C18B—H18F109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18C109.5C19B—C18B—H18E109.5	C19A—N5A—H5AA	122.0 (13)	C19B—N5B—H5BA	125.8
C21A—N5A—H5AA129.1 (13)C21B—N5B—H5BA125.8C19A—N6A—H6A123.4 (13)C19B—N6B—H6B125.7C19A—N6A—C20A108.66 (15)C19B—N6B—C20B108.66 (9)C20A—N6A—H6A127.8 (13)C20B—N6B—H6B125.7H18A—C18A—H18B109.5H18D—C18B—H18E109.5H18A—C18A—H18C109.5H18D—C18B—H18F109.5C19A—C18A—H18C109.5C19B—C18B—H18F109.5C19A—C18A—H18A109.5C19B—C18B—H18D109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18C109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5	C19A—N5A—C21A	108.61 (13)	C19B—N5B—C21B	108.4 (8)
C19A—N6A—H6A123.4 (13)C19B—N6B—H6B125.7C19A—N6A—C20A108.66 (15)C19B—N6B—C20B108.6 (9)C20A—N6A—H6A127.8 (13)C20B—N6B—H6B125.7H18A—C18A—H18B109.5H18D—C18B—H18E109.5H18A—C18A—H18C109.5H18D—C18B—H18F109.5C19A—C18A—H18C109.5H18E—C18B—H18F109.5C19A—C18A—H18A109.5C19B—C18B—H18D109.5C19A—C18A—H18A109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18C109.5C19B—C18B—H18E109.5	C21A—N5A—H5AA	129.1 (13)	C21B—N5B—H5BA	125.8
C19A—N6A—C20A108.66 (15)C19B—N6B—C20B108.6 (9)C20A—N6A—H6A127.8 (13)C20B—N6B—H6B125.7H18A—C18A—H18B109.5H18D—C18B—H18E109.5H18A—C18A—H18C109.5H18D—C18B—H18F109.5H18B—C18A—H18C109.5H18E—C18B—H18F109.5C19A—C18A—H18A109.5C19B—C18B—H18D109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5	C19A—N6A—H6A	123.4 (13)	C19B—N6B—H6B	125.7
C20A—N6A—H6A127.8 (13)C20B—N6B—H6B125.7H18A—C18A—H18B109.5H18D—C18B—H18E109.5H18A—C18A—H18C109.5H18D—C18B—H18F109.5H18B—C18A—H18C109.5H18E—C18B—H18F109.5C19A—C18A—H18A109.5C19B—C18B—H18D109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18C109.5C19B—C18B—H18E109.5	C19A—N6A—C20A	108.66 (15)	C19B—N6B—C20B	108.6 (9)
H18A—C18A—H18B109.5H18D—C18B—H18E109.5H18A—C18A—H18C109.5H18D—C18B—H18F109.5H18B—C18A—H18C109.5H18E—C18B—H18F109.5C19A—C18A—H18A109.5C19B—C18B—H18D109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18C109.5C19B—C18B—H18E109.5	C20A—N6A—H6A	127.8 (13)	C20B—N6B—H6B	125.7
H18A—C18A—H18C109.5H18D—C18B—H18F109.5H18B—C18A—H18C109.5H18E—C18B—H18F109.5C19A—C18A—H18A109.5C19B—C18B—H18D109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18C109.5C19B—C18B—H18F109.5	H18A—C18A—H18B	109.5	H18D—C18B—H18E	109.5
H18B—C18A—H18C109.5H18E—C18B—H18F109.5C19A—C18A—H18A109.5C19B—C18B—H18D109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18C109.5C19B—C18B—H18F109.5	H18A—C18A—H18C	109.5	H18D—C18B—H18F	109.5
C19A—C18A—H18A109.5C19B—C18B—H18D109.5C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18C109.5C19B—C18B—H18F109.5	H18B—C18A—H18C	109.5	H18E—C18B—H18F	109.5
C19A—C18A—H18B109.5C19B—C18B—H18E109.5C19A—C18A—H18C109.5C19B—C18B—H18F109.5	C19A—C18A—H18A	109.5	C19B—C18B—H18D	109.5
C19A—C18A—H18C 109.5 C19B—C18B—H18F 109.5	C19A—C18A—H18B	109.5	C19B—C18B—H18E	109.5
	C19A—C18A—H18C	109.5	C19B—C18B—H18F	109.5
N5A—C19A—N6A 108.55 (14) N5B—C19B—N6B 108.2 (9)	N5A—C19A—N6A	108.55 (14)	N5B—C19B—N6B	108.2 (9)

N5A—C19A—C18A	125.28 (14)	N5B—C19B—C18B	127.0 (11)
N6A—C19A—C18A	126.14 (15)	N6B—C19B—C18B	124.5 (11)
N6A—C20A—H20A	126.7	N6B—C20B—H20B	127.5
C21A-C20A-N6A	106.55 (14)	C21B—C20B—N6B	105.0 (9)
C21A—C20A—H20A	126.7	C21B—C20B—H20B	127.5
N5A—C21A—H21A	126.2	N5B—C21B—H21B	125.4
C20A—C21A—N5A	107.63 (13)	C20B—C21B—N5B	109.2 (9)
C20A—C21A—H21A	126.2	C20B—C21B—H21B	125.4
01A—C1A—C4A—C5A	179.42 (14)	O1B—C1B—C4B—C5B	171.5 (18)
O1A—C1A—C4A—C9A	-0.3 (2)	O1B—C1B—C4B—C9B	-4 (3)
O2A—C1A—C4A—C5A	1.2 (2)	O2B—C1B—C4B—C5B	-4 (3)
O2A—C1A—C4A—C9A	-178.44 (14)	O2B—C1B—C4B—C9B	-179.6 (17)
O3A—C2A—C6A—C5A	4.3 (2)	O3B—C2B—C6B—C5B	-1 (3)
O3A—C2A—C6A—C7A	-173.16 (14)	O3B—C2B—C6B—C7B	-179.7 (16)
O4A—C2A—C6A—C5A	-176.84 (14)	O4B—C2B—C6B—C5B	-177.6 (16)
O4A—C2A—C6A—C7A	5.7 (2)	O4B—C2B—C6B—C7B	4 (3)
O5A—C3A—C8A—C7A	-4.4 (2)	O5B—C3B—C8B—C7B	2 (3)
O5A—C3A—C8A—C9A	177.30 (14)	O5B—C3B—C8B—C9B	-178.6 (18)
O6A—C3A—C8A—C7A	174.65 (14)	O6B—C3B—C8B—C7B	-174.1 (17)
O6A—C3A—C8A—C9A	-3.7 (2)	O6B—C3B—C8B—C9B	5 (3)
C1A—C4A—C5A—C6A	-179.09 (14)	C1B—C4B—C5B—C6B	-176.2 (17)
C1A—C4A—C9A—C8A	178.51 (14)	C1B—C4B—C9B—C8B	175.4 (17)
C2A—C6A—C7A—C8A	175.60 (14)	C2B—C6B—C7B—C8B	178.0 (17)
C3A—C8A—C9A—C4A	178.58 (14)	C3B—C8B—C9B—C4B	-178.6 (17)
C4A—C5A—C6A—C2A	-176.59 (14)	C4B—C5B—C6B—C2B	-177.7 (17)
C4A—C5A—C6A—C7A	0.9 (2)	C4B—C5B—C6B—C7B	1 (3)
C5A—C4A—C9A—C8A	-1.2 (2)	C5B—C4B—C9B—C8B	-1 (3)
C5A—C6A—C7A—C8A	-1.8(2)	C5B—C6B—C7B—C8B	-1(3)
C6A—C7A—C8A—C3A	-177.06 (14)	C6B—C7B—C8B—C3B	179.3 (16)
C6A—C7A—C8A—C9A	1.3 (2)	C6B—C7B—C8B—C9B	0 (3)
C7A—C8A—C9A—C4A	0.2 (2)	C7B—C8B—C9B—C4B	1 (3)
C9A—C4A—C5A—C6A	0.6 (2)	C9B—C4B—C5B—C6B	-1 (3)
N2A—C12A—C13A—N1A	-0.4 (2)	N2B—C12B—C13B—N1B	-2(3)
C11A—N1A—C13A—C12A	-0.12 (19)	C11B—N1B—C13B—C12B	2 (2)
C11A—N2A—C12A—C13A	0.8 (3)	C11B—N2B—C12B—C13B	1 (4)
C12A—N2A—C11A—N1A	-0.8 (3)	C12B—N2B—C11B—N1B	0 (4)
C12A—N2A—C11A—C10A	179.21 (17)	C12B—N2B—C11B—C10B	-179 (2)
C13A—N1A—C11A—N2A	0.6 (2)	C13B—N1B—C11B—N2B	-1 (3)
C13A—N1A—C11A—C10A	-179.45 (16)	C13B—N1B—C11B—C10B	177 (2)
N3A—C16A—C17A—N4A	0.2 (3)	N3B—C16B—C17B—N4B	1 (3)
C15A—N3A—C16A—C17A	-0.52 (19)	C15B—N3B—C16B—C17B	3 (2)
C15A—N4A—C17A—C16A	0.3 (4)	C15B—N4B—C17B—C16B	-3 (5)
C16A—N3A—C15A—N4A	0.7 (3)	C16B—N3B—C15B—N4B	-5 (3)
C16A—N3A—C15A—C14A	-178.42 (16)	C16B—N3B—C15B—C14B	-178.0 (19)
C17A—N4A—C15A—N3A	-0.6 (4)	C17B—N4B—C15B—N3B	5 (5)
C17A—N4A—C15A—C14A	178.51 (19)	C17B—N4B—C15B—C14B	179 (2)
N6A—C20A—C21A—N5A	-0.1 (3)	N6B-C20B-C21B-N5B	0 (3)

C19A—N5A—C21A—C20A	0.1(2) 0.2(3)	C19B—N5B—C21B—C20B C19B—N6B—C20B—C21B	-5(2)
C20A—N6A—C19A—N5A	-0.1 (3)	C20B—N6B—C19B—N5B	-8 (4)
C20A—N6A—C19A—C18A C21A—N5A—C19A—N6A	178.17 (19) 0.0 (3)	C20B—N6B—C19B—C18B C21B—N5B—C19B—N6B	178 (2) 8 (3)
C21A—N5A—C19A—C18A	-178.26 (16)	C21B—N5B—C19B—C18B	-178.8 (18)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1A—H1A····O1A ⁱ	0.88 (1)	1.73 (1)	2.6101 (17)	174 (2)
$N2A$ — $H2A$ ···O4 A^{ii}	0.87 (1)	1.83 (1)	2.6888 (18)	169 (2)
C10 <i>A</i> —H10 <i>C</i> ···O2 <i>A</i> ⁱ	0.98	2.42	3.390 (2)	171
C12 <i>A</i> —H12 <i>A</i> ···O5 <i>A</i> ⁱⁱ	0.95	2.45	3.338 (2)	156
N3A—H3A···O5A ⁱⁱⁱ	0.88 (1)	1.76(1)	2.6309 (16)	172 (2)
N4 <i>A</i> —H4 <i>A</i> ···O2 <i>A</i>	0.88 (1)	1.82(1)	2.682 (2)	170 (2)
C14 <i>A</i> —H14 <i>B</i> ···O6 <i>A</i> ⁱⁱⁱ	0.98	2.43	3.3867 (19)	165
C17A—H17A····O3A	0.95	2.44	3.3202 (19)	155
N5 A —H5 AA ···O3 A^{iv}	0.87 (1)	1.75 (1)	2.6131 (17)	173 (2)
$N6A - H6A - O6A^{v}$	0.87 (1)	1.86(1)	2.713 (2)	167 (2)
C18A—H18A…O1A	0.98	2.63	3.462 (2)	143
C18 <i>A</i> —H18 <i>C</i> ···O4 <i>A</i> ^{iv}	0.98	2.45	3.371 (2)	157
C20 <i>A</i> —H20 <i>A</i> ···O1 <i>A</i> ^v	0.95	2.38	3.2993 (19)	164
N1 B —H1 B ···O1 B^{iv}	0.88	1.64	2.510 (16)	169
N2B—H2B···O4 B^{v}	0.88	1.75	2.606 (16)	165
$C10B$ — $H10D$ ··· $O2B^{iv}$	0.98	2.61	3.51 (2)	151
C10 <i>B</i> —H10 <i>E</i> ····O2 <i>B</i> ^{vi}	0.98	2.05	2.85 (3)	137
C12B—H12B····O5 B^{v}	0.95	2.58	3.475 (15)	157
N3 <i>B</i> —H3 <i>B</i> ···O5 <i>B</i> ^{vii}	0.88	1.66	2.522 (15)	168
N4 B —H4 B ···O2 B^{iv}	0.88	1.75	2.598 (16)	162
C17 <i>B</i> —H17 <i>B</i> ····O3 <i>B</i> ^{iv}	0.95	2.52	3.442 (16)	164
N5 <i>B</i> —H5 <i>BA</i> ···O3 <i>B</i> ⁱ	0.88	1.65	2.518 (15)	168
$N6B$ — $H6B$ ···O $6B^{ii}$	0.88	1.83	2.648 (19)	153

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*+2; (iii) *x*-1, *y*+1, *z*; (iv) -*x*+1, -*y*+1, -*z*+2; (v) -*x*+2, -*y*+1, -*z*+1; (vi) *x*+1, *y*, *z*; (vii) -*x*+2, -*y*, -*z*+2.