

Received 30 April 2025 Accepted 31 May 2025

Edited by M. Weil, Vienna University of Technology, Austria

‡ Additional correspondence author, e-mail: sselvanayagam@gmail.com.

Keywords: crystal structure; acetate derivatives; superposition; C—H···O intra and intermolecular hydrogen bonds; conformational differences.

CCDC references: 2400579; 2400580

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures and Hirshfeld surface analyses of diphenylmethyl 2-(3,5-dimethoxyphenyl)acetate and diphenylmethyl 2-(3,4,5-trimethoxyphenyl)acetate

Manivel Kavitha,^a Chandiran Jayakodi,^a Ganesan Meenambigai,^a Sekar Janarthanan,^a Srinivasan Pazhamalai^a* and Sivashanmugam Selvanayagam^b‡

^aDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, and ^bPG & Research Department of Physics, Government Arts College, Melur 625 106, India. *Correspondence e-mail: sripazhamalai@gmail.com

The title compounds, $C_{23}H_{22}O_4$, (I), and $C_{24}H_{24}O_5$, (II), differ in the presence of a methoxy group instead of a hydrogen atom between two methoxy groups attached to the phenyl ring of the phenyl acetate moiety, which affects not only the symmetry and number of formula units [triclinic, $P\overline{1}$, Z = 2 for (I); monoclinic, $P2_1/n$, Z = 4 for (II)], but also the molecular conformations. An overlay of the two molecular structures reveals a large root-mean-square-deviation of 2.4 Å. Intra and intermolecular C-H···O hydrogen bonds are responsible for the consolidation of the molecular conformations and the crystal packing of both structures. Their intermolecular interactions were quantified and analysed using Hirshfeld surface analysis, revealing that H···H interactions contribute most to the crystal packing.

1. Chemical context

Esters are fundamental synthons or synthetic targets, as they are widely found in bioactive natural compounds and thus are important in both pharmaceutical and industrial applications. Esterifications are typically carried out under mild conditions, making them suitable for the synthesis of sensitive and labile compounds (Chiodi & Ishihara, 2024).

R1 - H in (I) and OCH_3 in (II)

In the present work, the synthesis, structural and Hirshfeld surface analysis of the esters diphenylmethyl 2-(3,5-dimeth-oxyphenyl)acetate, (I), and diphenylmethyl-2-(3,4,5-trimeth-oxyphenyl)acetate, (II), are reported.

2. Structural commentary

The molecular structures of (I) and (II) are illustrated in Figs. 1 and 2. Although the two molecules differ only in the presence of a methoxy group instead of a hydrogen atom in between two methoxy groups, they adopt different conformations, as an overlay plot of the two molecules shows (Fig. 3);

Published under a CC BY 4.0 licence

2.691 (3)

2.740(3)

3.427 (3)

 $D - H \cdots A$

107

102

175

Figure 1

The molecular structure of compound (I) with displacement ellipsoids drawn at the 30% probability level. The intramolecular $C-H\cdots O$ interaction is shown as a dashed line.

Figure 2

The molecular structure of compound (II) with displacement ellipsoids drawn at the 30% probability level. Intramolecular C-H···O interactions are shown as dashed lines.

the root-mean-square-deviation is 2.4 Å. The dimethoxy phenyl ring in (I) is planar with a maximum deviation of -0.005 (3) Å for atom C1 and its attached atoms of the methoxy groups (O3, C22; O4, C23) deviate by 0.015 (2), 0.228 (4), -0.020 (2) and 0.005 (4) Å, respectively, from this plane. The acetate moiety (C7/C8/O1/C9/O2) in (I) is nearly

Figure 3

Superposition of molecules (I) (violet) and (II) (yellow), except for the methoxy group [O5–C24 in (II)]. The overlay plot was produced with *Qmol* (Gans & Shalloway, 2001).

Tabl	e 1
------	-----

C9−H9···O2

C21-H21···O1

C19−H19···O4ⁱ

Hydrogen-bond geometry (Å, $^{\circ}$) for (I).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C9−H9···O2	0.98	2.30	2.667 (3)	101
$C9-H9\cdots O2^{i}$	0.98	2.50	3.444 (3)	162

Symmetry code: (i) -x, -y + 2, -z + 1.

Table 2	accompative (Å o) for (II)		
Hydrogen-bond	geometry (A,) for (11).		
$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	

0.98

0.93

0.93

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

planar with a maximum deviation of -0.110 (2) Å for atom O2 from the best plane. This moiety forms a dihedral angle of 83.7 (1)° with respect to the dimethoxy phenyl ring. The two phenyl rings (C10–C15; C16–C21) of the diphenylmethyl moiety in (I) are oriented at a dihedral angle of 71.1 (2)°.

2.24

2.39

2.50

The trimethoxy phenyl ring in (II) is planar with a maximum deviation of 0.007 (2) Å for atom C1 and its attached methoxy atoms (O3, C22; O4, C23; O5 C24) deviate by 0.015 (2), 0.038 (3), 0.031 (2), -0.067 (3), 0.076 (2) and -1.165 (5) Å, respectively, from this plane. The acetate moiety (C7/C8/O1/C9/O2) in (II) is planar with a maximum deviation of 0.005 (2) Å for atom C9. This moiety forms a dihedral angle of 71.4 (1)° with respect to the trimethoxy phenyl ring. The two phenyl rings (C10–C15; C16–C21) in (II) are oriented at a dihedral angle of 65.6 (2)°.

Weak intramolecular $C-H\cdots O$ hydrogen bonds between the methine H atom of the diphenylmethyl entity consolidate the molecular conformation in both cases (Figs. 1, 2; Tables 1, 2).

3. Supramolecular features

In the crystal of (I), molecules associate pairwise *via* $C9-H9\cdots O2^{i}$ hydrogen bonds (Table 1) into inversion dimers with an R_{2}^{2} (10) graph-set motif (Etter *et al.*, 1990), as shown in

The formation of a centrosymmetric dimer in the crystal structure of (I) through C-H···O hydrogen bonds (dashed lines). [Symmetry code: (*b*) -x, -y + 2, -z + 1]

research communications

The crystal packing of (II) viewed approximately down the *b* axis. $C-H\cdots O$ intermolecular hydrogen bonds are shown as dashed lines; for clarity H atoms not involved in these hydrogen bonds have been omitted.

Fig. 4. In the crystal of (II), molecules associate into a C(13) chain by C19-H19···O4ⁱ hydrogen bonds running in antiparallel manner along [101] (Table 2; Fig. 5).

4. Hirshfeld surface analysis

To further characterize the intermolecular interactions in the title compound, a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009) was carried out with *CrystalExplorer* (Spackman *et al.*, 2021). The HS mapped over d_{norm} for (I) and (II) are illustrated in Figs. 6 and 7, respectively, with a colour scheme to indicate contacts shorter (red areas), equal to (white areas), or longer than (blue areas) the sum of the van der Waals radii (Ashfaq *et al.*, 2021).

Figure 6 A view of the Hirshfeld surface mapped over d_{norm} for (I).

Figure 7 A view of the Hirshfeld surface mapped over d_{norm} for (II).

The associated two-dimensional fingerprint plots (McKinnon *et al.*, 2007) provide quantitative information about the non-covalent interactions in the crystal packing in terms of the percentage contribution of the interatomic contacts (Spackman & McKinnon, 2002). The overall two-dimensional fingerprint plot for compound (I) is shown in Fig. 8*a*. $H \cdots H$ and $H \cdots C/C \cdots H$ contacts are the main contributors to the crystal packing, followed by $H \cdots O/O \cdots H$,

Figure 8

Two-dimensional fingerprint plots for (I), showing (*a*) all interactions, and delineated into (*b*) $H \cdots H$, (*c*) $H \cdots C/C \cdots H$, (*d*) $H \cdots O/O \cdots H$, (*e*) $C \cdots C$ and (*f*) $O \cdots C/C \cdots O$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.

 Table 3

 Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$C_{23}H_{22}O_4$	$C_{24}H_{24}O_5$
$M_{\rm r}$	362.40	392.43
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/n$
Temperature (K)	300	300
a, b, c (Å)	8.5327 (12), 11.0216 (15), 11.4369 (16)	17.2290 (14), 5.5037 (5), 22.1140 (18)
α, β, γ (°)	111.817 (4), 96.977 (4), 99.925 (4)	90, 92.256 (2), 90
$V(\dot{A}^3)$	963.1 (2)	2095.3 (3)
Z	2	4
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.09	0.09
Crystal size (mm)	$0.19 \times 0.18 \times 0.17$	$0.28 \times 0.09 \times 0.07$
Data collection		
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.674, 0.746	0.694, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	24070, 4782, 2717	39211, 5016, 2516
R _{int}	0.047	0.074
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.668	0.660
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.065, 0.202, 1.04	0.057, 0.176, 1.00
No. of reflections	4782	5016
No. of parameters	245	263
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.68, -0.45	0.25, -0.18

Computer programs: APEX3 and SAINT (Bruker, 2017), SHELXT (Sheldrick, 2015a), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2020) and SHELXL (Sheldrick, 2015b).

Figure 9

Two-dimensional fingerprint plots for compound (II), showing (a) all interactions, and delineated into (b) $H \cdots H$, (c) $H \cdots C/C \cdots H$, (d) $H \cdots O/O \cdots H$, (e) $O \cdots C/C \cdots O$ and (f) $C \cdots C$ interactions.

C···C and O···C/C···O contacts for compound (I), as shown in Fig. 8*b*–*f*. In compound (II), the overall two-dimensional fingerprint is shown in Fig. 9*a*. Again, H···H and H···C/C···H contacts are the main contributors to the crystal packing, followed by H···O/O···H, O···C/C···O and C···C contacts (Fig. 9*b*–*f*). The HS analysis confirms the importance of Hatom contacts in establishing the packing (Hathwar *et al.*, 2015).

5. Synthesis and crystallization

For the synthesis of (I), a mixture containing 3,5-dimethoxyphenylacetic acid (0.1 mmol), benzhydrol (0.1 mmol), N,N'dicyclohexylcarbodiimide (0.4 g), and 4-dimethylaminopyridine (0.8 g) was placed into a 250 ml round-bottom flask. To this, 100 ml of dichloromethane were added, and the reaction mixture was refluxed on a water bath at 321 K for 9– 11 h. After completion of the reaction, as monitored by thinlayer chromatography (TLC), the precipitate formed was filtered off, and the solvent was evaporated to dryness. The crude product was then purified by column chromatography using a solvent system of ethyl acetate and petroleum ether in a 1:4 (v:v) ratio. The separated product was dried *in vacuo*, giving colourless crystals with 85% yield.

For the synthesis of (II), a mixture containing 3,4,5-dimethoxyphenylacetic acid (0.1 mmol), benzhydrol (0.1 mmol), N,N'-dicyclohexylcarbodiimide (0.4 g), and 4-dimethylaminopyridine (0.8 g) was placed into a 250 ml round-bottom flask. To this, 100 ml of dichloromethane was added, and the reac-

research communications

tion mixture was refluxed on a water bath at 321 K for 9–11 h. Upon completion of the reaction, as monitored by thin-layer chromatography (TLC), the precipitate formed was filtered off, and the solvent was evaporated to dryness. The crude product was then purified by column chromatography using a solvent system of ethyl acetate and petroleum ether in a 1:4 (v: v) ratio. The resulting compound was obtained as colourless crystals with a 90% yield.

For (I) and (II), the solid products were recrystallized from methanol to obtain crystals suitable for X-ray analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. In both (I) and (II), H atoms were placed in idealized positions and allowed to ride on their parent atoms: C-H = 0.93-0.98 Å, with $U_{iso}(H) = 1.5U_{eq}(C-methyl)$ and $1.2U_{eq}(C)$ for other H atoms.

References

Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega 6, 31211–31225.

- Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.
- Chiodi, D. & Ishihara, Y. (2024). Eur. J. Med. Chem. 273, 116364.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gans, J. D. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). *IUCrJ*, **2**, 563–574.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). *J. Appl. Cryst.* **48**, 3–10.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19-32.
- Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm 4, 378–392.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.

Acta Cryst. (2025). E81, 618-622 [https://doi.org/10.1107/S2056989025004943]

Crystal structures and Hirshfeld surface analyses of diphenylmethyl 2-(3,5-dimethoxyphenyl)acetate and diphenylmethyl 2-(3,4,5-trimethoxyphenyl)acetate

Manivel Kavitha, Chandiran Jayakodi, Ganesan Meenambigai, Sekar Janarthanan, Srinivasan Pazhamalai and Sivashanmugam Selvanayagam

Computing details

Diphenylmethyl 2-(3,5-dimethoxyphenyl)acetate (I)

Crystal data

 $C_{23}H_{22}O_4$ $M_r = 362.40$ Triclinic, $P\overline{1}$ a = 8.5327 (12) Åb = 11.0216 (15) Å*c* = 11.4369 (16) Å $\alpha = 111.817 (4)^{\circ}$ $\beta = 96.977 (4)^{\circ}$ $\gamma = 99.925 \ (4)^{\circ}$ V = 963.1 (2) Å³

Data collection

Bruker APEXII CCD	4782 independent refle
diffractometer	2717 reflections with I
Radiation source: i-mu-s microfocus source	$R_{\rm int} = 0.047$
φ and ω scans	$\theta_{\rm max} = 28.3^\circ, \ \theta_{\rm min} = 2.0^\circ$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Krause et al., 2015)	$k = -14 \rightarrow 14$
$T_{\min} = 0.674, \ T_{\max} = 0.746$	$l = -15 \rightarrow 15$
24070 measured reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.202$ S = 1.044782 reflections 245 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites

Z = 2F(000) = 384 $D_{\rm x} = 1.250 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 6939 reflections $\theta = 2.5 - 24.7^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 300 KBlock. colourless $0.19 \times 0.18 \times 0.17 \text{ mm}$

ctions $> 2\sigma(I)$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0762P)^2 + 0.4138P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.68 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL (Sheldrick, 2015b), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.060 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.06071 (19)	0.86788 (15)	0.68377 (15)	0.0598 (5)	
02	-0.1148 (3)	0.8780 (2)	0.5309 (2)	0.0948 (8)	
03	-0.3040 (3)	0.37482 (19)	0.13567 (18)	0.0835 (6)	
O4	-0.7070 (2)	0.5897 (2)	0.31738 (19)	0.0879 (7)	
C1	-0.2464 (3)	0.5223 (2)	0.3518 (2)	0.0593 (6)	
H1	-0.143764	0.504369	0.357291	0.071*	
C2	-0.3584 (3)	0.4594 (2)	0.2359 (2)	0.0606 (6)	
C3	-0.5109 (3)	0.4842 (2)	0.2268 (2)	0.0630 (7)	
H3	-0.585815	0.442242	0.149246	0.076*	
C4	-0.5514 (3)	0.5729 (2)	0.3353 (2)	0.0616 (6)	
C5	-0.4413 (3)	0.6365 (2)	0.4506 (2)	0.0592 (6)	
Н5	-0.469808	0.695759	0.522359	0.071*	
C6	-0.2869 (3)	0.6112 (2)	0.4585 (2)	0.0536 (6)	
C7	-0.1637 (3)	0.6853 (2)	0.5823 (2)	0.0599 (6)	
H7A	-0.218876	0.699926	0.654003	0.072*	
H7B	-0.088345	0.630395	0.588522	0.072*	
C8	-0.0708 (3)	0.8180 (2)	0.59202 (19)	0.0504 (5)	
C9	0.1649 (3)	0.9959 (2)	0.7017 (2)	0.0504 (5)	
H9	0.143304	1.010726	0.622524	0.060*	
C10	0.3389 (3)	0.9848 (2)	0.72620 (19)	0.0503 (5)	
C11	0.3878 (3)	0.9112 (3)	0.7918 (3)	0.0698 (7)	
H11	0.311265	0.862025	0.818700	0.084*	
C12	0.5495 (4)	0.9096 (3)	0.8181 (3)	0.0836 (9)	
H12	0.581182	0.860409	0.863666	0.100*	
C13	0.6628 (4)	0.9794 (3)	0.7781 (3)	0.0797 (8)	
H13	0.771632	0.978449	0.796676	0.096*	
C14	0.6161 (4)	1.0504 (3)	0.7110 (3)	0.0831 (9)	
H14	0.693159	1.097307	0.682559	0.100*	
C15	0.4544 (3)	1.0536 (3)	0.6845 (3)	0.0683 (7)	
H15	0.423666	1.102371	0.638211	0.082*	
C16	0.1289 (2)	1.1093 (2)	0.8108 (2)	0.0495 (5)	
C17	0.1159 (3)	1.1014 (3)	0.9267 (2)	0.0660 (7)	
H17	0.129286	1.024538	0.938563	0.079*	
C18	0.0833 (4)	1.2066 (3)	1.0257 (3)	0.0804 (8)	
H18	0.072381	1.199310	1.102884	0.096*	
C19	0.0673 (4)	1.3205 (3)	1.0099 (3)	0.0890 (9)	
H19	0.044447	1.391048	1.075939	0.107*	
C20	0.0848 (5)	1.3307 (3)	0.8974 (4)	0.1044 (11)	
H20	0.076628	1.409502	0.887418	0.125*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C21	0.1145 (4)	1.2251 (3)	0.7976 (3)	0.0816 (8)	
H21	0.124898	1.233051	0.720604	0.098*	
C22	-0.4026 (5)	0.3230 (4)	0.0098 (3)	0.1043 (11)	
H22A	-0.350462	0.265698	-0.050669	0.156*	
H22B	-0.506572	0.272258	0.008731	0.156*	
H22C	-0.417052	0.396179	-0.013418	0.156*	
C23	-0.7547 (4)	0.6812 (3)	0.4234 (3)	0.0870 (9)	
H23A	-0.865185	0.683867	0.398647	0.130*	
H23B	-0.745738	0.652439	0.493080	0.130*	
H23C	-0.685371	0.769232	0.450510	0.130*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.0603 (10)	0.0519 (9)	0.0560 (9)	-0.0077 (7)	-0.0144 (7)	0.0265 (7)
O2	0.0892 (14)	0.0892 (14)	0.0945 (14)	-0.0230 (11)	-0.0352 (11)	0.0600 (12)
03	0.0963 (15)	0.0707 (12)	0.0643 (12)	0.0199 (11)	0.0146 (10)	0.0064 (10)
O4	0.0588 (11)	0.0948 (15)	0.0795 (13)	0.0157 (10)	-0.0064 (9)	0.0086 (11)
C1	0.0568 (14)	0.0500 (13)	0.0629 (15)	0.0052 (11)	0.0025 (11)	0.0198 (11)
C2	0.0688 (16)	0.0474 (13)	0.0523 (13)	0.0033 (11)	0.0076 (11)	0.0113 (11)
C3	0.0616 (15)	0.0540 (14)	0.0518 (13)	-0.0018 (11)	-0.0054 (11)	0.0094 (11)
C4	0.0525 (13)	0.0567 (14)	0.0604 (14)	0.0013 (11)	-0.0010 (11)	0.0156 (12)
C5	0.0613 (14)	0.0504 (13)	0.0503 (13)	0.0010 (11)	0.0037 (11)	0.0106 (10)
C6	0.0553 (13)	0.0443 (12)	0.0510 (12)	-0.0028 (10)	-0.0016 (10)	0.0178 (10)
C7	0.0621 (14)	0.0548 (14)	0.0528 (13)	-0.0013 (11)	-0.0053 (11)	0.0222 (11)
C8	0.0526 (12)	0.0509 (12)	0.0396 (11)	0.0018 (10)	-0.0014 (9)	0.0171 (9)
C9	0.0516 (12)	0.0467 (12)	0.0463 (11)	-0.0011 (9)	-0.0035 (9)	0.0211 (10)
C10	0.0530 (12)	0.0456 (12)	0.0405 (11)	0.0050 (10)	0.0025 (9)	0.0092 (9)
C11	0.0599 (15)	0.0807 (18)	0.0779 (17)	0.0186 (13)	0.0100 (13)	0.0422 (15)
C12	0.0680 (18)	0.100 (2)	0.091 (2)	0.0334 (17)	0.0089 (16)	0.0436 (18)
C13	0.0581 (16)	0.087 (2)	0.0780 (19)	0.0231 (15)	0.0132 (14)	0.0135 (16)
C14	0.0626 (17)	0.090 (2)	0.092 (2)	0.0100 (15)	0.0275 (15)	0.0309 (18)
C15	0.0651 (16)	0.0708 (17)	0.0677 (16)	0.0103 (13)	0.0143 (13)	0.0286 (13)
C16	0.0382 (10)	0.0517 (12)	0.0535 (12)	0.0034 (9)	-0.0027 (9)	0.0223 (10)
C17	0.0748 (17)	0.0646 (16)	0.0555 (14)	0.0150 (13)	0.0068 (12)	0.0235 (12)
C18	0.0821 (19)	0.089 (2)	0.0578 (16)	0.0175 (16)	0.0107 (14)	0.0180 (15)
C19	0.082 (2)	0.076 (2)	0.090 (2)	0.0287 (16)	0.0146 (17)	0.0090 (17)
C20	0.140 (3)	0.076 (2)	0.115 (3)	0.052 (2)	0.036 (2)	0.042 (2)
C21	0.106 (2)	0.0687 (18)	0.0843 (19)	0.0332 (16)	0.0236 (17)	0.0395 (16)
C22	0.130 (3)	0.094 (2)	0.0564 (17)	0.018 (2)	0.0113 (18)	0.0010 (16)
C23	0.0724 (18)	0.089 (2)	0.096 (2)	0.0257 (16)	0.0198 (16)	0.0289 (18)

Geometric parameters (Å, °)

01-C8	1.317 (2)	C11—H11	0.9300	
O1—C9	1.460 (3)	C12—C13	1.359 (4)	
O2—C8	1.197 (3)	C12—H12	0.9300	
O3—C2	1.372 (3)	C13—C14	1.357 (4)	

O3—C22	1.427 (4)	С13—Н13	0.9300
O4—C4	1.374 (3)	C14—C15	1.385 (4)
O4—C23	1.416 (3)	C14—H14	0.9300
C1—C6	1.378 (3)	С15—Н15	0.9300
C1—C2	1.390 (3)	C16—C21	1.364 (3)
C1—H1	0.9300	C16—C17	1.376 (3)
C2—C3	1.374 (3)	C17—C18	1.384 (4)
C3—C4	1.391 (3)	С17—Н17	0.9300
С3—Н3	0.9300	C18—C19	1.360 (4)
C4—C5	1.377 (3)	C18—H18	0.9300
C5—C6	1.392 (3)	C19—C20	1.356 (5)
C5—H5	0.9300	С19—Н19	0.9300
C6—C7	1 504 (3)	C_{20} C_{21}	1 381 (4)
C7—C8	1 496 (3)	C20—H20	0.9300
C7 - H7A	0.9700	C21—H21	0.9300
C7H7B	0.9700	C_{22} H22A	0.9500
C_{1}	1,510 (3)	$C_{22} = H_{22}R$	0.9000
C_{2}	1.510(3)	C22—H22C	0.9000
C_{9}	1.311 (3)	C22—H22C	0.9000
	0.9800	C23—H23A	0.9000
	1.375 (3)	C23—H23B	0.9600
	1.378 (3)	C23—H23C	0.9600
C11—C12	1.381 (4)		
C8-01-C9	117 82 (16)	C13 - C12 - C11	120.6 (3)
$C_{2} = 0_{3} = C_{2}^{2}$	117.02(10) 118.2(2)	C13 - C12 - H12	119.7
$C_{2} = 03 = 022$	117.6(2)	$C_{11} - C_{12} - H_{12}$	119.7
$C_{1} = C_{1}$	117.0(2) 120.2(2)	C14 - C13 - C12	119.7 119.6(3)
C6-C1-H1	110.0	C14 - C13 - H13	120.2
$C_2 C_1 H_1$	110.0	C_{12} C_{13} H_{13}	120.2
$C_2 = C_1 = III$	119.9 124.4(2)	$C_{12} = C_{13} = 115$	120.2 120.5(3)
03 - 02 - 03	124.4(2) 115.1(2)	$C_{13} = C_{14} = C_{13}$	120.3 (3)
03-02-01	113.1(2) 120.5(2)	C15 - C14 - 1114	119.0
$C_{3} = C_{2} = C_{1}$	120.3(2)	C13 - C14 - H14	119.0 120.4(2)
$C_2 = C_3 = C_4$	119.0 (2)	C10 - C15 - C14	120.4 (3)
$C_2 = C_3 = H_3$	120.5	C10—C15—H15	119.8
C4—C3—H3	120.5	C14—C15—H15	119.8
04	124.0 (2)	C21—C16—C17	118.3 (2)
04—C4—C3	114.8 (2)	C21—C16—C9	120.0 (2)
C5—C4—C3	121.2 (2)	C17—C16—C9	121.6 (2)
C4—C5—C6	119.3 (2)	C16—C17—C18	120.8 (3)
C4—C5—H5	120.3	С16—С17—Н17	119.6
С6—С5—Н5	120.3	C18—C17—H17	119.6
C1—C6—C5	119.9 (2)	C19—C18—C17	119.9 (3)
C1—C6—C7	120.6 (2)	C19—C18—H18	120.0
C5—C6—C7	119.5 (2)	C17—C18—H18	120.0
C8—C7—C6	112.35 (18)	C20-C19-C18	119.7 (3)
С8—С7—Н7А	109.1	С20—С19—Н19	120.2
С6—С7—Н7А	109.1	С18—С19—Н19	120.2
С8—С7—Н7В	109.1	C19—C20—C21	120.6 (3)

С6—С7—Н7В	109.1	C19—C20—H20	119.7
H7A—C7—H7B	107.9	C21—C20—H20	119.7
O2—C8—O1	122.9 (2)	C16—C21—C20	120.7 (3)
O2—C8—C7	124.7 (2)	C16—C21—H21	119.7
O1—C8—C7	112.15 (18)	C20—C21—H21	119.7
O1—C9—C16	109.94 (18)	O3—C22—H22A	109.5
O1—C9—C10	107.36 (16)	O3—C22—H22B	109.5
C16—C9—C10	112.50 (17)	H22A—C22—H22B	109.5
O1—C9—H9	109.0	O3—C22—H22C	109.5
С16—С9—Н9	109.0	H22A—C22—H22C	109.5
С10—С9—Н9	109.0	H22B—C22—H22C	109.5
C11—C10—C15	118.3 (2)	O4—C23—H23A	109.5
C11—C10—C9	122.4 (2)	O4—C23—H23B	109.5
C15—C10—C9	119.2 (2)	H23A—C23—H23B	109.5
C10-C11-C12	120.5 (3)	O4—C23—H23C	109.5
C10-C11-H11	119.7	H23A—C23—H23C	109.5
C12—C11—H11	119.7	H23B—C23—H23C	109.5
C22—O3—C2—C3	8.9 (4)	O1-C9-C10-C11	-33.9 (3)
C22—O3—C2—C1	-170.5 (2)	C16—C9—C10—C11	87.2 (3)
C6—C1—C2—O3	178.9 (2)	O1—C9—C10—C15	147.8 (2)
C6-C1-C2-C3	-0.6 (4)	C16—C9—C10—C15	-91.1 (2)
O3—C2—C3—C4	-179.6 (2)	C15-C10-C11-C12	1.8 (4)
C1—C2—C3—C4	-0.1 (4)	C9—C10—C11—C12	-176.5 (2)
C23—O4—C4—C5	1.8 (4)	C10-C11-C12-C13	-0.9 (5)
C23—O4—C4—C3	-178.6 (2)	C11—C12—C13—C14	-0.4 (5)
C2—C3—C4—O4	-179.1 (2)	C12—C13—C14—C15	0.8 (5)
C2—C3—C4—C5	0.5 (4)	C11-C10-C15-C14	-1.4 (4)
O4—C4—C5—C6	179.4 (2)	C9—C10—C15—C14	176.9 (2)
C3—C4—C5—C6	-0.2 (4)	C13-C14-C15-C10	0.1 (4)
C2-C1-C6-C5	0.9 (3)	O1—C9—C16—C21	-135.5 (2)
C2-C1-C6-C7	-176.7 (2)	C10-C9-C16-C21	104.9 (3)
C4—C5—C6—C1	-0.5 (3)	O1—C9—C16—C17	47.0 (3)
C4—C5—C6—C7	177.1 (2)	C10—C9—C16—C17	-72.6 (3)
C1—C6—C7—C8	91.1 (3)	C21—C16—C17—C18	2.3 (4)
C5—C6—C7—C8	-86.6 (3)	C9—C16—C17—C18	179.8 (2)
C9—O1—C8—O2	-6.4 (3)	C16—C17—C18—C19	-1.5 (4)
C9—O1—C8—C7	178.60 (19)	C17—C18—C19—C20	-0.6 (5)
C6—C7—C8—O2	20.2 (4)	C18—C19—C20—C21	1.7 (6)
C6—C7—C8—O1	-164.9 (2)	C17—C16—C21—C20	-1.2 (4)
C8—O1—C9—C16	98.7 (2)	C9—C16—C21—C20	-178.7 (3)
C8—O1—C9—C10	-138.7 (2)	C19—C20—C21—C16	-0.8 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
С9—Н9…О2	0.98	2.30	2.667 (3)	101

C9—H9…O2 ⁱ	0.98	2.50	3.444 (3)	162	
-----------------------	------	------	-----------	-----	--

F(000) = 832

 $\theta = 2.4 - 21.2^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Block, colourless $0.28 \times 0.09 \times 0.07$ mm

T = 300 K

 $D_{\rm x} = 1.244 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5708 reflections

Symmetry code: (i) -x, -y+2, -z+1.

Diphenylmethyl 2-(3,4,5-trimethoxyphenyl)acetate (II)

Crystal data

 $C_{24}H_{24}O_5$ $M_r = 392.43$ Monoclinic, $P2_1/n$ a = 17.2290 (14) Å b = 5.5037 (5) Å c = 22.1140 (18) Å $\beta = 92.256$ (2)° V = 2095.3 (3) Å³ Z = 4

Data collection

Bruker APEXII CCD	5016 independent reflections
diffractometer	2516 reflections with $I > 2\sigma(I)$
Radiation source: i-mu-s microfocus source	$R_{ m int}=0.074$
φ and ω scans	$\theta_{\rm max} = 28.0^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -22 \rightarrow 21$
(SADABS; Krause et al., 2015)	$k = -7 \rightarrow 7$
$T_{\min} = 0.694, \ T_{\max} = 0.746$	$l = -22 \rightarrow 29$
39211 measured reflections	
Refinement	

Refinement on F^2 H-atom parameters constrained Least-squares matrix: full $w = 1/[\sigma^2(F_0^2) + (0.0684P)^2 + 0.6429P]$ $R[F^2 > 2\sigma(F^2)] = 0.057$ where $P = (F_0^2 + 2F_c^2)/3$ $wR(F^2) = 0.176$ $(\Delta/\sigma)_{\rm max} < 0.001$ S = 1.00 $\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$ 5016 reflections Extinction correction: SHELXL (Sheldrick, 263 parameters 2015b), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ 0 restraints Hydrogen site location: inferred from Extinction coefficient: 0.0182 (19) neighbouring sites

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.61673 (10)	0.1274 (3)	0.05557 (6)	0.0636 (5)	
02	0.58110 (11)	-0.1961 (3)	0.00128 (7)	0.0774 (5)	
03	0.85376 (10)	0.5998 (4)	-0.03155 (8)	0.0798 (6)	
04	0.82226 (11)	-0.0249 (4)	-0.17236 (8)	0.0859 (6)	
05	0.90848 (10)	0.3195 (4)	-0.11910 (8)	0.0862 (6)	
C1	0.72746 (12)	0.4012 (4)	-0.04036 (9)	0.0546 (6)	

H1	0.706890	0.501478	-0.011177	0.066*
C2	0.80384 (13)	0.4295 (5)	-0.05603 (10)	0.0565 (6)
C3	0.83399 (13)	0.2815 (5)	-0.10043 (10)	0.0610(7)
C4	0.78760 (14)	0.1072 (5)	-0.12858 (10)	0.0613 (6)
C5	0.71122 (13)	0.0768 (4)	-0.11256 (9)	0.0575 (6)
Н5	0.680153	-0.040984	-0.131508	0.069*
C6	0.68155 (12)	0.2237 (4)	-0.06806 (9)	0.0507 (6)
C7	0.59898 (12)	0.1867 (5)	-0.04865 (9)	0.0554 (6)
H7A	0.577106	0.341746	-0.037250	0.066*
H7B	0.567537	0.122130	-0.082264	0.066*
C8	0.59723 (12)	0.0140 (5)	0.00406 (9)	0.0494 (5)
C9	0.61902 (14)	-0.0116 (4)	0.11119 (9)	0.0580 (6)
H9	0.603757	-0.179139	0.101590	0.070*
C10	0.70113 (14)	-0.0137 (4)	0.13712 (9)	0.0573 (6)
C11	0.75246 (16)	0.1724 (5)	0.12627 (12)	0.0738 (7)
H11	0.736653	0.302650	0.101974	0.089*
C12	0.82733 (18)	0.1664 (6)	0.15134 (14)	0.0893 (9)
H12	0.861775	0.291515	0.143454	0.107*
C13	0.85089 (19)	-0.0237 (7)	0.18780 (14)	0.0899 (10)
H13	0.901014	-0.026577	0.205006	0.108*
C14	0.8005 (2)	-0.2082 (7)	0.19871 (13)	0.0912 (10)
H14	0.816513	-0.336963	0.223414	0.109*
C15	0.72640 (18)	-0.2053 (5)	0.17351 (12)	0.0768 (8)
H15	0.692821	-0.333234	0.180921	0.092*
C16	0.56005 (13)	0.0950 (4)	0.15319 (9)	0.0559 (6)
C17	0.54475 (15)	-0.0247 (5)	0.20629 (11)	0.0732 (7)
H17	0.571537	-0.166755	0.216249	0.088*
C18	0.49038 (16)	0.0633 (6)	0.24472 (12)	0.0839 (9)
H18	0.480967	-0.019706	0.280326	0.101*
C19	0.45026 (16)	0.2707 (6)	0.23110 (13)	0.0812 (8)
H19	0.413734	0.330233	0.257196	0.097*
C20	0.46445 (17)	0.3897 (6)	0.17866 (14)	0.0851 (8)
H20	0.436827	0.530448	0.168889	0.102*
C21	0.51904 (16)	0.3054 (5)	0.13979 (12)	0.0711 (7)
H21	0.528292	0.390302	0.104434	0.085*
C22	0.82561 (16)	0.7587 (5)	0.01338 (12)	0.0789 (8)
H22A	0.866226	0.868081	0.026580	0.118*
H22B	0.782408	0.850000	-0.003331	0.118*
H22C	0.809195	0.665036	0.047205	0.118*
C23	0.78071 (19)	-0.2196 (5)	-0.19993 (13)	0.0898 (9)
H23A	0.812069	-0.295090	-0.229561	0.135*
H23B	0.768119	-0.336789	-0.169695	0.135*
H23C	0.733721	-0.159175	-0.219272	0.135*
C24	0.96593 (19)	0.1834 (11)	-0.08755 (19)	0.179 (2)
H24A	1.015823	0.219968	-0.103154	0.268*
H24B	0.966039	0.224012	-0.045331	0.268*
H24C	0.955212	0.013311	-0.092616	0.268*
-		-		

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0941 (12)	0.0551 (10)	0.0410 (8)	-0.0129 (9)	-0.0040 (8)	0.0041 (7)
O2	0.1106 (14)	0.0619 (12)	0.0595 (10)	-0.0110 (11)	-0.0007 (9)	-0.0093 (9)
O3	0.0633 (11)	0.0989 (14)	0.0781 (12)	-0.0191 (10)	0.0144 (9)	-0.0194 (11)
O4	0.0838 (12)	0.1052 (15)	0.0708 (11)	-0.0005 (11)	0.0304 (9)	-0.0254 (11)
05	0.0574 (10)	0.1270 (17)	0.0761 (12)	-0.0066 (11)	0.0265 (9)	-0.0072 (11)
C1	0.0535 (13)	0.0660 (15)	0.0450 (12)	0.0037 (12)	0.0079 (10)	0.0004 (11)
C2	0.0489 (13)	0.0717 (16)	0.0492 (12)	-0.0056 (12)	0.0053 (10)	0.0017 (12)
C3	0.0485 (13)	0.0861 (18)	0.0494 (13)	0.0002 (13)	0.0144 (10)	0.0036 (13)
C4	0.0641 (15)	0.0761 (17)	0.0447 (12)	0.0082 (13)	0.0145 (11)	-0.0032 (12)
C5	0.0586 (14)	0.0704 (16)	0.0439 (12)	-0.0009 (12)	0.0068 (10)	-0.0011 (11)
C6	0.0466 (12)	0.0655 (15)	0.0402 (11)	0.0031 (11)	0.0045 (9)	0.0066 (11)
C7	0.0457 (12)	0.0795 (16)	0.0409 (11)	0.0010 (11)	0.0004 (9)	0.0031 (11)
C8	0.0405 (11)	0.0641 (16)	0.0441 (12)	0.0016 (11)	0.0061 (9)	-0.0060 (12)
C9	0.0848 (17)	0.0471 (13)	0.0419 (12)	-0.0093 (12)	0.0001 (11)	0.0049 (10)
C10	0.0752 (16)	0.0541 (14)	0.0428 (12)	0.0080 (13)	0.0068 (11)	-0.0048 (11)
C11	0.0811 (19)	0.0673 (18)	0.0720 (17)	0.0013 (15)	-0.0073 (14)	0.0010 (14)
C12	0.078 (2)	0.093 (2)	0.096 (2)	0.0014 (17)	-0.0086 (17)	-0.0139 (19)
C13	0.079 (2)	0.113 (3)	0.0759 (19)	0.034 (2)	-0.0136 (16)	-0.029 (2)
C14	0.101 (2)	0.101 (3)	0.0714 (18)	0.041 (2)	-0.0015 (17)	0.0027 (18)
C15	0.095 (2)	0.0737 (19)	0.0624 (15)	0.0222 (16)	0.0108 (15)	0.0083 (14)
C16	0.0619 (14)	0.0592 (15)	0.0461 (12)	-0.0111 (12)	-0.0039 (10)	0.0006 (11)
C17	0.0686 (16)	0.0880 (19)	0.0632 (15)	-0.0053 (15)	0.0052 (13)	0.0181 (15)
C18	0.0687 (17)	0.119 (3)	0.0645 (17)	-0.0058 (18)	0.0144 (14)	0.0183 (17)
C19	0.0638 (17)	0.107 (2)	0.0728 (18)	-0.0014 (17)	0.0071 (14)	-0.0101 (18)
C20	0.085 (2)	0.089 (2)	0.082 (2)	0.0120 (17)	0.0052 (16)	-0.0068 (17)
C21	0.0866 (18)	0.0663 (17)	0.0603 (15)	-0.0007 (15)	0.0017 (14)	0.0045 (13)
C22	0.0846 (18)	0.085 (2)	0.0675 (16)	-0.0140 (16)	0.0031 (14)	-0.0134 (15)
C23	0.121 (2)	0.080 (2)	0.0706 (17)	0.0092 (19)	0.0276 (17)	-0.0136 (16)
C24	0.060 (2)	0.334 (7)	0.144 (4)	0.053 (3)	0.020 (2)	0.058 (4)

Geometric parameters (Å, °)

01-C8	1.330 (3)	C12—C13	1.372 (4)
01—С9	1.448 (2)	C12—H12	0.9300
O2—C8	1.191 (3)	C13—C14	1.363 (4)
O3—C2	1.369 (3)	C13—H13	0.9300
O3—C22	1.423 (3)	C14—C15	1.373 (4)
O4—C4	1.367 (3)	C14—H14	0.9300
O4—C23	1.414 (3)	C15—H15	0.9300
O5—C3	1.379 (3)	C16—C21	1.382 (3)
O5—C24	1.405 (4)	C16—C17	1.381 (3)
C1—C2	1.383 (3)	C17—C18	1.377 (4)
C1—C6	1.384 (3)	C17—H17	0.9300
C1—H1	0.9300	C18—C19	1.362 (4)
C2—C3	1.392 (3)	C18—H18	0.9300

C3—C4	1.381 (3)	C19—C20	1.362 (4)
C4—C5	1.386 (3)	С19—Н19	0.9300
C5—C6	1.387 (3)	C20—C21	1.380 (4)
С5—Н5	0.9300	C20—H20	0.9300
C6—C7	1.516 (3)	C21—H21	0.9300
C7—C8	1.505 (3)	С22—Н22А	0.9600
C7—H7A	0.9700	C22—H22B	0.9600
С7—Н7В	0.9700	C22—H22C	0.9600
C9—C10	1.506 (3)	С23—Н23А	0.9600
C9—C16	1.521 (3)	С23—Н23В	0.9600
С9—Н9	0.9800	С23—Н23С	0.9600
C10—C11	1.381 (4)	C24—H24A	0.9600
C10—C15	1.386 (3)	C24—H24B	0.9600
C11—C12	1.384 (4)	C24—H24C	0.9600
C11—H11	0.9300		0.0000
	0.9200		
C8—O1—C9	118.49 (18)	C14—C13—C12	119.7 (3)
C2—O3—C22	118.07 (19)	C14—C13—H13	120.1
C4—O4—C23	118.7 (2)	C12—C13—H13	120.1
C3—O5—C24	114.6 (2)	C13—C14—C15	120.5 (3)
C2—C1—C6	120.1 (2)	C13—C14—H14	119.7
C2—C1—H1	119.9	C15—C14—H14	119.7
C6—C1—H1	119.9	C14—C15—C10	120.7 (3)
03—C2—C1	124.6 (2)	C14—C15—H15	119.7
03-C2-C3	115.68 (19)	C10—C15—H15	119.7
C1—C2—C3	119.7 (2)	C21—C16—C17	118.0 (2)
C4—C3—O5	119.9 (2)	C21—C16—C9	122.7(2)
C4—C3—C2	119.9 (2)	C17—C16—C9	119.3 (2)
05-C3-C2	120.0 (2)	C18—C17—C16	120.9 (3)
O4—C4—C3	115.3 (2)	С18—С17—Н17	119.5
O4—C4—C5	124.2 (2)	С16—С17—Н17	119.5
C3—C4—C5	120.5 (2)	C19—C18—C17	120.6 (3)
C4—C5—C6	119.4 (2)	C19—C18—H18	119.7
C4—C5—H5	120.3	C17—C18—H18	119.7
С6—С5—Н5	120.3	C20—C19—C18	119.0 (3)
C1—C6—C5	120.3 (2)	С20—С19—Н19	120.5
C1—C6—C7	119.7 (2)	C18—C19—H19	120.5
C5—C6—C7	119.9 (2)	C19—C20—C21	121.2 (3)
C8—C7—C6	110.59 (17)	С19—С20—Н20	119.4
С8—С7—Н7А	109.5	C21—C20—H20	119.4
С6—С7—Н7А	109.5	C20—C21—C16	120.2 (3)
С8—С7—Н7В	109.5	C20—C21—H21	119.9
С6—С7—Н7В	109.5	C16—C21—H21	119.9
H7A—C7—H7B	108.1	O3—C22—H22A	109.5
O2—C8—O1	123.4 (2)	O3—C22—H22B	109.5
O2—C8—C7	125.8 (2)	H22A—C22—H22B	109.5
O1—C8—C7	110.8 (2)	O3—C22—H22C	109.5
O1—C9—C10	108.75 (18)	H22A—C22—H22C	109.5

O1—C9—C16 108.58 (19) H22B—C22—H22C 14	09.5
C10—C9—C16 114.24 (17) O4—C23—H23A 14	09.5
O1—C9—H9 108.4 O4—C23—H23B 10	09.5
C10—C9—H9 108.4 H23A—C23—H23B 10	09.5
C16—C9—H9 108.4 O4—C23—H23C 10	09.5
C11—C10—C15 118.5 (2) H23A—C23—H23C 1(09.5
C11—C10—C9 121.8 (2) H23B—C23—H23C 10	09.5
$C_{15}-C_{10}-C_{9}$ $119.7(2)$ $O_{5}-C_{24}-H_{24A}$ 10	09.5
C10-C11-C12 $120.4(3)$ $05-C24-H24B$ 10	09.5
C10-C11-H11 119.8 H24A-C24-H24B 10	09.5
C12-C11-H11 119.8 $O5-C24-H24C$ 10	09.5
C13_C12_C11 120 2 (3) H24A_C24_H24C 1(09.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09.5
C11_C12_H12 1199	09.5
C22—O3—C2—C1 0.3 (3) C6—C7—C8—O1 7	9.9 (2)
C22—O3—C2—C3 179.0 (2) C8—O1—C9—C10 1	16.5 (2)
C6-C1-C2-O3 179.7 (2) C8-O1-C9-C16 -	-118.7 (2)
C6-C1-C2-C3 1.0 (3) 01-C9-C10-C11 2'	7.6 (3)
C24—O5—C3—C4 -92.2 (4) C16—C9—C10—C11 -	-93.8 (3)
C24—O5—C3—C2 92.1 (4) O1—C9—C10—C15 -	-153.1 (2)
O3-C2-C3-C4 -178.8 (2) C16-C9-C10-C15 83	5.5 (3)
C1—C2—C3—C4 0.0 (4) C15—C10—C11—C12 0.	.0 (4)
03-C2-C3-O5 -3.1 (3) C9-C10-C11-C12 1	79.3 (2)
C1—C2—C3—O5 175.7 (2) C10—C11—C12—C13 —	-0.7 (4)
C23—O4—C4—C3 175.0 (2) C11—C12—C13—C14 0.	.8 (4)
C23-O4-C4-C5 -5.7 (4) C12-C13-C14-C15 0.	.0 (5)
O5-C3-C4-O4 2.9 (3) C13-C14-C15-C10 -	-0.8 (4)
C2-C3-C4-O4 178.7 (2) C11-C10-C15-C14 0.	.8 (4)
O5-C3-C4-C5 -176.3 (2) C9-C10-C15-C14 -	-178.5 (2)
C2-C3-C4-C5 -0.6 (4) O1-C9-C16-C21 -	-6.0 (3)
O4—C4—C5—C6 –179.0 (2) C10—C9—C16—C21 1	15.6 (2)
C3-C4-C5-C6 0.2 (3) 01-C9-C16-C17 1	72.25 (19)
C2-C1-C6-C5 -1.4 (3) C10-C9-C16-C17 -	-66.2 (3)
C2-C1-C6-C7 177.4 (2) C21-C16-C17-C18 -	-0.1 (4)
C4—C5—C6—C1 0.8 (3) C9—C16—C17—C18 -	-178.4 (2)
C4—C5—C6—C7 –178.0 (2) C16—C17—C18—C19 0.	.1 (4)
C1—C6—C7—C8 –87.0 (3) C17—C18—C19—C20 0.	.3 (4)
C5-C6-C7-C8 91.8 (2) C18-C19-C20-C21 -	0.7 (4)
C9—O1—C8—O2 0.4 (3) C19—C20—C21—C16 0.	.7 (4)
C9-01-C8-C7 $-17934(18)$ $C17-C16-C21-C20$ $-$	-0.3 (4)
(1), (1), (1), (1), (1), (1), (1), (1),	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
С9—Н9…О2	0.98	2.24	2.691 (3)	107

			supporting informat		
С21—Н21…О1	0.93	2.39	2.740 (3)	102	
C19—H19…O4 ⁱ	0.93	2.50	3.427 (3)	175	

Symmetry code: (i) x-1/2, -y+1/2, z+1/2.