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The trypanosomatid parasite Leishmania infantum is the causative agent of

visceral leishmaniasis (VL), which is usually fatal unless treated. VL has an

incidence of 0.5 million cases every year and is an important opportunistic

co-infection in HIV/AIDS. Tyrosine aminotransferase (TAT) has an important

role in the metabolism of trypanosomatids, catalyzing the first step in the

degradation pathway of aromatic amino acids, which are ultimately converted

into their corresponding l-2-oxoacids. Unlike the enzyme in Trypanosoma cruzi

and mammals, L. infantum TAT (LiTAT) is not able to transaminate

ketoglutarate. Here, the structure of LiTAT at 2.35 Å resolution is reported,

and it is confirmed that the presence of two Leishmania-specific residues (Gln55

and Asn58) explains, at least in part, this specific reactivity. The difference

in substrate specificity between leishmanial and mammalian TAT and the

importance of this enzyme in parasite metabolism suggest that it may be a useful

target in the development of new drugs against leishmaniasis.

1. Introduction

The leishmaniases are a group of vector-borne parasitic diseases that

threaten about 350 million people in 88 countries around the world,

mostly in developing countries. Leishmania infantum (family Trypa-

nosomatidae) is the causative agent of zoonotic visceral leishmaniasis

(VL) in the Mediterranean basin, where dogs are the main reservoir.

L. infantum is an important opportunistic human parasite, resulting

in increasing co-infection with HIV (Cruz et al., 2006). A major

outbreak of VL in humans has recently been reported in central

Spain (Arce et al., 2013).

L. infantum has a digenetic biological life cycle, alternating

between a mobile extracellular promastigote in the insect vector

and an immobile intracellular amastigote in the mammalian host

(Handman, 2001). Inside the gut of the sand-fly vector, an environ-

ment rich in proteins and amino acids (Rosenzweig et al., 2008),

promastigotes undergo metacyclogenesis to increase their infectivity,

and differentiate into amastigotes once inside the phagolysosome of

mammalian phagocytes, where the availability of these nutrients is

limited (McConville et al., 2007). Under these conditions, amino-acid

catabolism becomes an important source of energy for the parasite

by cytosolic NADH re-oxidation (Nowicki & Cazzulo, 2008) and

methionine recycling (Berger et al., 2001; Berger et al., 1996).

Aromatic amino-acid catabolism is highly active in trypanosoma-

tids, but degradation to CO2 and water is not complete as in

mammals. This pathway consists of two steps leading to a reduced

l-2-hydroxyacid product whose excretion has been correlated with

virulence (Montemartini et al., 1994). The first step of this pathway is

carried out by a tyrosine aminotransferase (TAT) belonging to the

fold type I aminotransferases within the pyridoxal phosphate (PLP)-

dependent superfamily (Jensen & Gu, 1996). One of the most studied

enzymes belonging to this fold group is the broad substrate-specificity

tyrosine aminotransferase from Trypanosoma cruzi (TcTAT), the

structure of which has recently been resolved (Blankenfeldt et al.,

1999; Montemartini et al., 1993, 1995).

However, the biological function of TAT in trypanosomatids is not

yet clear, although previous studies detected an increase in transcript

abundance of TAT in infective promastigotes of L. infantum (Alcolea

et al., 2009) and in a benznidazole-resistant T. cruzi strain (Rego et al.,
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2008). These data suggest that TAT in trypanosomatids may play an

important role in the infectivity of the parasite and its resistance

against chemotherapy. We have solved the structure of L. infantum

tyrosine aminotransferase (LiTAT) covalently bound to PLP,

providing a structural basis for its enzymatic activity. The difference

in substrate specificity between leishmanial and mammalian TAT and

the importance of this enzyme in parasite metabolism suggest that it

may be a promising target in the development of new drugs against

leishmaniasis.

2. Methods

2.1. Protein expression and purification

The full-length LiTAT (LinJ.36.2490; NCBI XP_001469829.1) gene

encoding a protein of 448 amino acids (UniProt A4IDL0) was PCR-

amplified from L. infantum (MHOM/ES/98/10445) genomic DNA

using oligonucleotides containing BamHI and HindIII restriction

sites (LiTAT_Fw, 50-ACGGGATCCACGATTGATACGCAGGCC-

30, and LiTAT_Rv, 50-ACGAAGCTTCTACTTCTTGTGGCGCTC-

GC-30). A truncated version of the gene (LiTAT_truncated) lacking

the first 114 nucleotides of the annotated sequence was also amplified

using oligonucleotides containing the same restriction sites

(LiTAT_truncated_Fw, 50-ACGGGATCCACGAGTTTTCGCCGT-

ATCGC-30, and LiTAT_Rv). LiTAT and LiTAT_truncated were

cloned into the pRSET-A vector (Invitrogen) and recombinant

proteins were expressed in Escherichia coli BL21 (DE3) pLysS. Cells

were grown in 3 l LB medium at 310 K until the OD600 reached 0.5.

Isopropyl �-d-1-thiogalactopyranoside (IPTG) was then added to a

final concentration of 1 mM and induction continued for 2 h at 298 K,

after which the harvested cells were frozen at 193 K. The frozen cell

pellet was thawed and resuspended by vortexing in 200 ml lysis buffer

[20 mM Tris–HCl pH 7.9, 500 mM NaCl, 4 mM PLP, 50 mM imidazole,

0.05 mg ml�1 lysozyme and protease-inhibitor cocktail (Roche, Basel,

Switzerland; used following the manufacturer’s instructions)]. The

cell suspensions were lysed by sonication for 15 min and clarified by

centrifugation on a Sorvall SS-34 at 27 000g. The clarified solutions

were syringe-filtered through a 0.45 mm filter. The proteins were

purified at room temperature by immobilized metal-affinity chro-

matography on a HisTrap FF 5 ml column (GE Healthcare) equili-

brated with binding buffer (20 mM Tris–HCl pH 7.9, 500 mM NaCl,

4 mM PLP, 50 mM imidazole). The proteins were eluted with eight

column volumes of elution buffer (20 mM Tris–HCl pH 7.9, 500 mM

NaCl, 4 mM pyridoxal phosphate, 500 mM imidazole). Size-exclusion

chromatography was performed at room temperature using a HiLoad

26/60 Superdex 75 prep-grade column (GE Healthcare, Piscataway,

New Jersey, USA) equilibrated in SEC buffer [20 mM HEPES pH

7.0, 300 mM NaCl, 5%(v/v) glycerol, 1 mM tris(2-carboxyethyl)-

phosphine hydrochloride]. Both proteins eluted as single peaks which

correspond to the dimeric form in solution based on the estimated

molecular weight. The calibration curve obtained using the Low

Molecular Weight Kit (GE Healthcare) allowed determination of the

molecular weights of both proteins once the gel base distribution

coefficient value (Kav) has been calculated from the measured elution

volume (Supplementary Fig. S11). Pooled fractions were concen-

trated at 277 K using an Amicon Ultra-15 30 kDa molecular-weight

cutoff concentrator (Millipore, Billerica, Massachussets, USA) to

64.6 mg ml�1 for LiTAT and 51.6 mg ml�1 for LiTAT_truncated. The

purity of both proteins was assessed to be >95% by SDS–PAGE.

2.2. Crystallization and structure solution

Purified LiTAT and LiTAT_truncated proteins were used for

crystallization screening at 21.0 and 21.3 mg ml�1, respectively, using

four sparse-matrix screens: JCSG+, MCSG1 (Emerald Bio),

Morpheus and PACT (Molecular Dimensions). Hexagonal crystals

were obtained under several conditions, but few diffracted well.

Crystals of LiTAT_truncated from Morpheus screen condition B11

(10% PEG 4000, 20% glycerol, 30 mM NaF, 30 mM NaBr, 30 mM

NaI, 100 mM Bicine/Tris–HCl pH 8.5) were vitrified by plunging them

into liquid nitrogen. X-ray diffraction data were collected on LS-CAT

beamline 21-ID-F at the Advanced Photon Source, Argonne National

Laboratory at a temperature of 100 K using a Rayonix MX-225

detector.

The diffraction data were reduced with the XDS suite (Kabsch,

2010) to 2.35 Å resolution (Table 1). Molecular replacement was

performed with Phaser (McCoy et al., 2007) using the structure of

TcTAT (PDB entry 1bw0; Blankenfeldt et al., 1999) as the search

model. Molecular-replacement phases were improved including

twofold NCS averaging with Parrot (Cowtan, 2010). An initial model

was then built using Buccaneer (Cowtan, 2006). The model was then

improved using iterative cycles of manual model building in Coot

(Emsley et al., 2010) and refinement with phenix.refine (Adams et al.,

2010). The resolution cutoff was I/�(I) > 2 for the highest shell.

Structure factors and coordinates have been deposited in the PDB

as entry 4ix8.

2.3. Determination of the activity of LiTAT_truncated

The activity of LiTAT_truncated was assayed by the method of

Diamondstone (1966) without the addition of diethylthiocarbamate.

One unit of enzyme activity is defined as the amount of LiTAT
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Table 1
Data-collection statistics.

Values in parentheses are for the highest of 20 resolution shells.

Diffraction data
Space group P3221
Unit-cell parameters (Å) a = b = 98.96, c = 199.26
Resolution (Å) 50–2.35 (2.41–2.35)
Mean I/�(I) 13.8 (2.6)
Rmerge† 0.069 (0.563)
Rmean 0.079 (0.635)
CC1/2 99.8 (81.9)
Completeness (%) 99.8 (99.9)
Multiplicity 4.6 (4.7)
No. of unique reflections 47821 (3479)
Wilson B factor (Å2) 40.4

Refinement
No. of protein atoms 5859
No. of waters 274
No. of other atoms 50
Rwork‡ 0.173 (0.261)
Rfree§ 0.206 (0.325)
R.m.s.d., bonds (Å) 0.012
R.m.s.d., angles (�) 1.35
Ramachandran, favoured 745 [97.9%]
Ramachandran, outliers None
Average B factor (Å2)

Overall 55.8
Protein 56.3
Solvent 43.5

MolProbity clashscore} 1.31 [100th percentile]
MolProbity score} 0.88 [100th percentile]
PDB entry 4ix8

† Rmerge =
P

hkl

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ. ‡ Rwork =P

hkl

�
�jFobsj � jFcalcj

�
�=
P

hkl jFobsj. § The free R factor was calculated with an equivalent
equation to Rwork using 5% of the reflections that were omitted from the
refinement. } Chen et al. (2010).

1 Supporting information has been deposited in the IUCr electronic archive
(Reference: HV5256).



that catalyzes the formation of 1 mmol p-hydroxyphenylpyruvate

(measured as p-hydroxybenzaldehyde). The final enzymatic activity

values are the means of four determinations.

3. Results and discussion

3.1. Comparison of LiTAT with other closely related

aminotransferases

The primary sequence of the TAT protein is highly conserved

among all Leishmania spp., while orthologues annotated in other

trypanosomatids, such as T. cruzi, T. rangeli and Crithidia acantho-

cephali, show <50% sequence identity to the Leishmania sequence.

L. infantum contains only a single copy of the TAT gene

(LinJ.36.2490), while in T. cruzi there are around 70 copies of the

TcTAT gene (Bontempi et al., 1993). Interestingly, the TAT gene

appears to be absent from the African trypanosomes (such as

T. brucei), which do not have an intracellular immobile stage where

the availability of nutrients is limited. Sequence alignment (Supple-

mentary Fig. S2) shows a low degree of sequence identity between

LiTAT and mammalian liver TAT (37%) and also between LiTAT

and TcTAT (44%). Interestingly, the N-terminal 38 amino acids of

mammalian liver TATwhich were previously proposed to be involved

in the rapid degradation of the protein (Hargrove et al., 1989) are

present in LiTAT (albeit with little sequence conservation) and are

absent from the T. cruzi enzyme.

3.2. Crystal structure of LiTAT

The N-terminal domain was too disordered to be modelled in full-

length LiTAT, but its deletion in LiTAT_truncated did not affect the

overall structure of the protein. Indeed, the best resolution (2.35 Å)

was achieved for the LiTAT_truncated PLP-bound structure. The

final model has a crystallographic R value of 17.3% and an Rfree value

of 20.3% (Table 1). The asymmetric unit of the crystal in space group

P3221 is formed by two identical polypeptide chains (A and B),

forming a homodimer that is also present in solution (see Supple-

mentary Fig. S1). For chain A residues Ser40–Lys448 could be built,

while for chain B only residues Ser40–Ile439 could be built. However,

several loop regions (Asp62–Asn63 in chain A and Asp62–Ser72,

Glu363–Gly367, Lys382–Ser393 and Glu404–Glu405 in chain B) were

too disordered to be modelled.

The five closest structural homologues of LiTAT were identified

using the DaliLite v.3 server (Holm & Rosenström, 2010): TcTAT

(PDB entry 1bw0; Z-score 59.2, 44% identity; Blankenfeldt et al.,

1999), TAT from Homo sapiens (PDB entry 3dyd; Z-score 54.4, 37%

identity; Structural Genomics Consortium, unpublished work),

alanine aminotransferase from Pyrococcus furiosus (PDB entry 1xi9;

Z-score 53.1, 28% identity; Southeast Collaboratory for Structural

Genomics, unpublished work), TAT from Mus musculus (PDB entry

3pdx; Z-score 52.8, 38% identity; Mehere et al., 2010) and �-amino-

transferase from P. horikoshii (PDB entry 1gd9; Z-score 48.4, 22%

identity; Ura et al., 2001). These alignments show the low percentage

similarity between LiTAT and the other closely related orthologues.

The structure of each LiTAT subunit shows the typical fold type I

of the aminotransferases (McPhalen et al., 1992), with each monomer

having two domains (Fig. 1). The larger of these domains (Asp91–

Arg339) forms an internal core of seven sheets with �2 antiparallel to

the rest. The core of the �-sheets is enclosed by �-helices. The smaller

discontinuous domain comprises residues from the N-terminus

(Lys65–Pro90) and C-terminus (Thr340–Lys448) which are involved

in substrate recognition. As in TcTAT, the N-terminal residues

(Ser40–Ser47) of LiTAT_truncated are involved in interaction

between subunits (Blankenfeldt et al., 1999).

LiTAT contains 13 cysteine residues per subunit; however, there

are no disulfide bonds. Thus, it appears that the disulfide bond-

mediated inactivation observed for mammalian TATs (Mehere et al.,

2010) is not used in LiTAT.

3.3. Substrate recognition

Reversible transamination reactions are a bi-bi ping-pong

mechanism (Kirsch et al., 1984), and tyrosine aminotransferases

catalyze the transamination of an amino group from the donor to
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Figure 1
Dimeric crystal structure of LiTAT solved at 2.35 Å resolution. �-Sheets and
�-helices are shown as ice-blue and red ribbons for subunit A and as cyan and
yellow ribbons for subunit B, respectively. The PLP molecule bound to Lys286 in
each subunit is highlighted as a sphere model with C atoms in green.

Figure 2
Transamination in two steps between tyrosine as the amino donor and pyruvate as the amino acceptor catalyzed by LiTAT. The end products of the reaction are alanine and
p-hydroxyphenylpyruvate (HPP); the latter is reduced to p-hydroxyphenyllactate by a dehydrogenase in trypanosomatids.



the covalently bound PLP to form pyridoxamine phosphate (PMP;

Fig. 2). The second step of the reaction transfers the amino group to

the carbonyl moiety of an amino acceptor, regenerating the pros-

thetic group. In both subunits of LiTAT, PLP is covalently bound to

Lys286 in a cavity located at the interface between the subunits,

although these cavities are not adjacent in the dimer (Fig. 3).

However, residues from both subunits participate in the stabilization

of PMP and their disposition is similar between LiTAT and TcTAT,

although Thr184 and Tyr345 in TcTAT are replaced by Ile221 and

Phe378 in LiTAT. Since the hydroxyl group of Tyr345 is oriented

towards the internal aldimine, replacement by Phe378 in LiTAT may

affect the reactivity of PLP with the amino donor and/or acceptor.

Unlike TcTAT (and mammalian TATs), LiTAT is not able to

transaminate �-ketoglutarate using tyrosine as the amino donor (0.32

� 0.17 U per milligram of purified protein), although it can transa-

minate pyruvate with high efficiency (82.3 � 0.79 U per milligram

of purified protein), consistent with the published activity of the

L. major orthologue (Marciano et al., 2009).

Site-directed mutagenesis studies using rat TAT and TcTAT

showed that the ability to transaminate dicarboxylic substrates was

likely to be owing to the presence of residues Asn54 and Arg57

(Asn17 and Arg20 in TcTAT) helping to orient the amino acceptors

towards the active centre (Sobrado et al., 2003). These residues, which

are conserved in most orthologues of tyrosine aminotransferases, are

not present in LiTAT, where they are replaced by Gln55 and Asn58.

While the side chain of Asn58 was not well resolved in our model, the

side chain of Gln55 is less oriented towards the substrate-binding

pocket than Asn17 in TcTAT (Fig. 4). Thus, we postulate that the

difference in the specificity of Leishmania TATs is related to these

amino-acid substitutions by altering the hydrogen-bonding inter-

action with the oxoacid substrates.

4. Conclusion

We have obtained a 2.35 Å resolution structure of tyrosine amino-

transferase from L. infantum, which correlates well with those of

other tyrosine aminotransferases. However, unlike other amino-

transferases, Leishmania TAT is not able to transaminate dicarboxylic

substrates and its preferred substrate is pyruvate. This can be

explained by the substitution of the critical residues Asn54 and Arg57

found in other TAT orthologues by Gln55 and Asn58 in LiTAT. This

difference in substrate activity, as well as the relevance of the enzyme

to the life cycle of the parasite, highlight the importance of this

enzyme as a potential candidate for the development of inhibitors in

the near future.
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305–308.
Gouet, P., Robert, X. & Courcelle, E. (2003). Nucleic Acids Res. 31, 3320–

3323.
Handman, E. (2001). Clin. Microbiol. Rev. 14, 229–243.
Hargrove, J. L., Scoble, H. A., Mathews, W. R., Baumstark, B. R. & Biemann,

K. (1989). J. Biol. Chem. 264, 45–53.

Holm, L. & Rosenström, P. (2010). Nucleic Acids Res. 38, W545–W549.
Jensen, R. A. & Gu, W. (1996). J. Bacteriol. 178, 2161–2171.
Kabsch, W. (2010). Acta Cryst. D66, 125–132.
Kirsch, J. F., Eichele, G., Ford, G. C., Vincent, M. G., Jansonius, J. N., Gehring,

H. & Christen, P. (1984). J. Mol. Biol. 174, 497–525.
Marciano, D., Maugeri, D. A., Cazzulo, J. J. & Nowicki, C. (2009). Mol.

Biochem. Parasitol. 166, 172–182.
McConville, M. J., de Souza, D., Saunders, E., Likic, V. A. & Naderer, T.

(2007). Trends Parasitol. 23, 368–375.
McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni,

L. C. & Read, R. J. (2007). J. Appl. Cryst. 40, 658–674.
McPhalen, C. A., Vincent, M. G., Picot, D., Jansonius, J. N., Lesk, A. M. &

Chothia, C. (1992). J. Mol. Biol. 227, 197–213.
Mehere, P., Han, Q., Lemkul, J. A., Vavricka, C. J., Robinson, H., Bevan, D. R.

& Li, J. (2010). Protein Cell, 1, 1023–1032.
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J. A., Cazzulo, J. J. & Nowicki, C. (1995). FEMS Microbiol. Lett. 133, 17–20.
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