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KAMO and BLEND provide particularly effective tools to automatically

manage the merging of large numbers of data sets from serial crystallography.

The requirement for manual intervention in the process can be reduced by

extending BLEND to support additional clustering options such as the use of

more accurate cell distance metrics and the use of reflection-intensity correlation

coefficients to infer ‘distances’ among sets of reflections. This increases the

sensitivity to differences in unit-cell parameters and allows clustering to

assemble nearly complete data sets on the basis of intensity or amplitude

differences. If the data sets are already sufficiently complete to permit it, one

applies KAMO once and clusters the data using intensities only. When starting

from incomplete data sets, one applies KAMO twice, first using unit-cell

parameters. In this step, either the simple cell vector distance of the original

BLEND or the more sensitive NCDist is used. This step tends to find clusters of

sufficient size such that, when merged, each cluster is sufficiently complete to

allow reflection intensities or amplitudes to be compared. One then uses KAMO

again using the correlation between reflections with a common hkl to merge

clusters in a way that is sensitive to structural differences that may not have

perturbed the unit-cell parameters sufficiently to make meaningful clusters.

Many groups have developed effective clustering algorithms that use a

measurable physical parameter from each diffraction still or wedge to cluster

the data into categories which then can be merged, one hopes, to yield the

electron density from a single protein form. Since these physical parameters are

often largely independent of one another, it should be possible to greatly

improve the efficacy of data-clustering software by using a multi-stage

partitioning strategy. Here, one possible approach to multi-stage data clustering

is demonstrated. The strategy is to use unit-cell clustering until the merged data

are sufficiently complete and then to use intensity-based clustering. Using this

strategy, it is demonstrated that it is possible to accurately cluster data sets from

crystals that have subtle differences.

1. Introduction

KAMO (Yamashita, 2017; Yamashita et al., 2017, 2018;

Hasegawa et al., 2017) and BLEND (Foadi et al., 2013) provide

particularly effective tools to automatically manage the

merging of large numbers of data sets from serial crystallo-

graphy. The requirement for manual intervention in the

process can be reduced by extending BLEND to support

additional clustering options, thereby increasing the sensitivity

to differences in unit-cell parameters and allowing clustering

to assemble nearly complete data sets on the basis of intensity

or amplitude differences. KAMO provides the necessary

process-flow management infrastructure. This process flow is
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shown in Fig. 1. If the data sets are already sufficiently

complete to permit it, one applies KAMO once and clusters

the data using intensities only. When starting from incomplete

data sets, one applies KAMO twice, first using unit-cell para-

meters. In this step, either the simple cell vector distance of the

original BLEND or the more sensitive NCDist is used to find

clusters to merge to achieve sufficient completeness to allow

intensities or amplitudes to be compared. One then uses

KAMO again using the correlation between the reflections

with common hkl indices (Assmann et al., 2016) to merge

clusters in a way that is sensitive to structural differences that

may not have perturbed the unit-cell parameters sufficiently to

make meaningful clusters.

X-ray free-electron lasers (XFELs) have pioneered effec-

tive crystallographic data collection from large numbers of

crystals (Colella & Luccio, 1984; Neutze et al., 2000). Serial

crystallography, an essential technique at XFEL light sources,

has become an important technique at synchrotrons (Gior-

dano et al., 2012; Liu et al., 2013; Rossmann, 2014; Standfuss &

Spence, 2017), especially at newer high-intensity synchrotron

beamlines (Pearson & Mehrabi, 2020). The data may be

organized either as XFEL-like still images or as thousands of

wedges of data produced from very large numbers of crystals.

The stills and wedges then need to be carefully organized into

reasonably homogeneous clusters of data that can be merged

for processing. This will become one of the common tools to

assemble complete data from many partial wedges in mole-

cular replacement, SAD and ligand studies and to sort classes

of crystals for studies of dynamics, binding, interactions etc.

KAMO includes cluster analysis based both on unit-cell

parameters and on reflection correlation coefficients. The

clustering is based on Ward’s method, in which

Ward’s minimum variance criterion minimizes the total within-

cluster variance. To implement this method, at each step find the

pair of clusters that leads to minimum increase in total within-

cluster variance after merging. This increase is a weighted

squared distance between cluster centers.

(from https://en.wikipedia.org/wiki/Ward%27s_method).

In this paper, we discuss the issues involved in improving

the sensitivity of both approaches to clustering, using as an

example 999 5� wedges from lysozyme in four forms:

(i) NAG [native with N-acetylglucosamine (NAG) soaked

in],

(ii) benzamidine (with benzamidine soaked in),

(iii) benzamidine plus NAG (native with both NAG and

benzamidine soaked in) and

(iv) native (no ligands).

As we will see, although the unit-cell parameters are

changed sufficiently to allow recognition of the NAG soak, it is

difficult to filter the benzamidine soak simply on the basis of

unit-cell parameter changes, suggesting the desirability of

switching from cell-based clustering to intensity-based clus-

tering as early in the process as possible. Hence, cell-based

clustering is more universal, in the sense that we can

successfully apply it very early in the structure-solution

process, but it is less granular, in the sense that it cannot see as
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Figure 1
Process flow in the use of KAMO and BLEND. In the case of the four-
way clustering discussed in Sections 3 and 4, a total of 896 data sets were
input to the first-stage NCDist clustering engine and a total of 107 data
sets were input to the second-stage SFDist clustering engine (first and
second rectangles).



much detail as intensity-based clustering. Cell-based clusters

are less able to discriminate between similar but non-identical

forms.

Two-stage clustering can be regarded as a method to reduce

the data multiplicity needed to achieve a desired level of data

precision. Hence, it is a continuation of previous techniques

(White et al., 2012) that reduced the need for multiplicity

compared with the Monte Carlo method of integration (Kirian

et al., 2010), which makes no assumptions regarding crystal-to-

crystal scaling (and hence relies entirely on statistical aver-

aging to achieve data precision from millions of observations).

An alternative to consider, rather than staging the cell-

based clustering first and then applying intensity-based

clustering, would be to combine the two approaches in a single

stage of higher dimensionality. There are two problems that

will have to be addressed in order to create such a single-stage

combined algorithm.

Firstly, it is not possible to apply intensity-based clustering

at all without first indexing all reflections in a way that

provides a common unambiguous label for each reflection in

each image to correctly identify corresponding reflections with

the same index in each different image. One option to satisfy

this requirement is to index all diffraction images in P1 or

some other low symmetry common to all images. This may

require more images and more reflections than are available

and, worse, because symmetry is being ignored, may bring

together for merging images describing very different mole-

cular conformations.

Secondly, as the number of independent parameters

increases, all clustering methods work increasingly poorly due

to the ‘curse of dimensionality’ (Bellman, 1956). Combining

the very well behaved low-dimensionality cell-based clustering

with the high-dimensionality intensity-based clustering can

obscure the results of cell-based clustering. In most cases,

unless the information to be gained from cell-based clustering

is available a priori, it is more useful to process the cell-based

clustering information first and then to move on to intensity-

based clustering in a second stage based on the cell-based

results.

For cases in which the indexing is too ambiguous to reliably

start the process, the approach used in dials.cosym should be

considered (Gildea & Winter, 2018), which uses the averages

of intensities within images and from multiple images simul-

taneously with spot positions for indexing, dealing with the

issue of the curse of dimensionality by using the averaging to

limit the increase in dimension as much as possible (Brehm &

Diederichs, 2014; Diederichs, 2017). This is not the same as

simultaneously performing full cell-based and full intensity-

based clustering, which is not recommended.

2. Limits of conventional clustering

Since our goal was to expand the capabilities of existing

clustering techniques, we began by applying a conventional

clustering strategy to diffraction data from lysozyme micro-

crystals containing various combinations of known small-

molecule binders. Microcrystals were preferred to avoid the

conflation of structurally anisotropic data that has been

demonstrated in larger crystals; see Thompson et al. (2018).

Lysozyme microcrystals suitable for acoustic harvesting

(Soares et al., 2011) were grown using batch crystallization by

dissolving 120 mg ml�1 lysozyme in 0.2 M sodium acetate pH

4.6 (Hampton Research, catalog No. HR7-110) and combining

it with an equal amount of precipitant (10% ethylene glycol +

12% sodium chloride) (Roessler et al., 2016). The resulting

slurry of 5–10 mm crystals was divided into four aliquots. Three

of the four aliquots were then equilibrated overnight with an

equal volume of 0.5 M solutions of benzamidine, NAG and

benzamidine plus NAG. These two small molecules are known

to bind tetragonal lysozyme crystals (Yin et al., 2014). The

fourth aliquot was diluted with an equal volume of mother

liquor but contained no ligands.

The diffusion rate for benzamidine and NAG within lyso-

zyme crystals is approximately 1 mm s�1 (Cole et al., 2014). To

prevent the cross-contamination of crystals with neighboring

forms, crystals could not be mixed with different forms for

more than 1 s before halting diffusion by plunge cryocooling

in liquid nitrogen. To accomplish this, we deposited 5 ml of

crystal slurry from each aliquot onto a separate agarose

support (Cuttitta et al., 2015). We used acoustic sound pulses

to harvest 2.5 nl of crystal slurry from each of the four lyso-

zyme aliquots and separately positioned them on a micro-

mesh (MiTeGen, catalog No. M3-L18SP-10) so that none of

the droplets was in contact with any other. Crystal-containing

droplets were threaded through small apertures to prevent

cross-contamination (Foley et al., 2016). We then swept the

non-crystal-containing side of the micro-mesh against a

sponge moistened with cryoprotectant (mother liquor + 20%

glycerol) and, in one smooth motion, immediately cryocooled

the micro-mesh in liquid nitrogen. In addition to cryoprotec-

tion, this also mixed the crystals together into one contiguous

field. The same procedure was repeated for a micro-mesh

containing only two lysozyme forms: benzamidine plus NAG

and native. Serial diffraction data were then obtained in 5�

wedges from approximately 100 crystals on each micro-mesh.

The KAMO software package was then used in the default

configuration (in which data are clustered based only on unit-

cell similarity) to partition the diffraction data from micro-

meshes containing the four lysozyme forms into four clusters

and to partition the diffraction data from micro-meshes

containing two lysozyme forms into two clusters. Each cluster

of data was merged and then phased using the known struc-

ture of lysozyme. Subsequently, the atomic model was refined

using REFMAC (Winn et al., 2003) and an omit difference

map was examined using Coot (Emsley et al., 2010) in the

region where the ligands were expected to bind to the protein

surface. The omit difference map was contoured at 1.5� and

displayed using PyMOL (DeLano, 2002). The omit maps

calculated from the four-way clustering data were not

observed to closely match any of the four lysozyme forms

known to have been acoustically harvested onto the micro-

meshes (data not shown). We concluded from this result that

the clustering algorithm was not sufficiently sensitive to

differentiate these four classes of very similar crystals using
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only variations in the observed unit-cell parameters. However,

the omit maps calculated from the two-way clustering data

were a good fit to the expected lysozyme forms (Fig. 2). We

concluded from this result that the two-ligand form was

sufficiently different from the native form that unit-cell-based

clustering could be successful.

To perform the four-way split, we combined the universality

advantage of cell-based clustering (Section 3) with the gran-

ularity advantage of intensity-based clustering (Section 4).

3. Clustering on unit-cell parameters

Stills and wedges of very low completeness are more appro-

priate for unit-cell parameter clustering, rather than reflection

clustering, because pairs of images with very few commensu-

rate reflections may still provide reasonable estimates of unit

cells but may not provide enough data to compute a mean-

ingful distance between sets of reflections.

The default BLEND approach to clustering on unit-cell

parameters is to use (a, b, c, �, �, �) as a six-value vector,

perform a principal component analysis (PCA), drop the

components without significant variance and use the Euclid-

ean distance calculated from the remaining components. This

approach does not deal as effectively with the discontinuities

produced by experimental error and ambiguities in reduction

(for example between type I and type II cells and near cubic

unit cells) as does the Andrews–Bernstein Niggli-cone

distance (NCDist) algorithm (Andrews & Bernstein, 2014).

NCDist allows slightly larger clusters of truly similar data sets

to be formed, working in G6 space, which uses Niggli reduction

in a six-dimensional space consisting of the metric tensor with

the last three components doubled: [a2, b2, c2, 2bc cos(�),

2ac cos(�), 2ab cos(�)].

In our test case of 999 data sets of lysozyme with NAG and

benzamidine soaks, 998 clusters were found with a complete-

ness ranging from 40% to 100%. The top levels of the two

dendrograms are shown in Figs. 3 and 4. The clusters are

labeled by linear cell variation (LCV), which measures the

maximum linear increase or decrease of the diagonals on the

three independent cell faces (Foadi et al., 2013). Values below

1% generally indicate a good degree of isomorphism among

different crystals. Structural differences start to be noticeable

with an LCV greater than 1.5%. A value in ångströms asso-

ciated with the LCV is provided by the absolute linear cell

variation (aLCV). Note the smaller Ward distances, i.e. tighter

clusters, for the equivalent clusters in the latter NCDist-based

dendrogram compared with the former.

The dendrograms are qualitatively similar, but for these test

data the discrimination of the clustering changes. Using the

original BLEND algorithm, the largest clusters that are 100%

native, 100% NAG, 100% benzamidine and 100% benz-

amidine plus NAG contain four, 15, five and ten data sets,

respectively. Using NCDist clustering, the largest clusters that

are 100% native, 100% NAG, 100% benzamidine and 100%

benzamidine plus NAG contain nine, 15, eight and seven data

sets, respectively. This provides a better base for switching
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Figure 2
Electron-density maps calculated after two-way clustering of diffraction data obtained from micro-meshes that contained a mixture of doubly bound
crystals (benzamidine plus NAG) (a) and native crystals (no ligands) (b). The omit difference maps are contoured at 1.5� in the region expected to
contain benzamidine (top) and NAG (bottom). The histogram cluster in (c) represents the unit-cell dimensions of the cluster of crystal data sets that
yielded the omit difference map shown in (a). Similarly, the histogram cluster on the right in (c) represents the unit-cell dimensions of the cluster of
crystal data shown in (b). Clearly the clustering algorithm was able to accurately partition the data for this simple two-way split. See Section S1.



over from cell clustering to reflection clustering; half of the

100% pure clusters are larger using NCDist.

4. Clustering on reflections

In a regime of high completeness, say 90%, different data sets

can have enough reflections with common hkl indices to

generate a satisfactory similarity or distance for clustering.

If the data have been scaled, an R value can be used as a

distance, but for unscaled data the preferred approach is to

use a Pearson correlation coefficient (CC) as a measure of

similarity, i.e. with a larger value of the coefficient for sets of

reflections that are similar and a smaller value of the coeffi-

cient for sets of reflections that are dissimilar. The Pearson

correlation coefficient is essentially the cosine of the angle

between vectors of data. The lack of common scaling is dealt

with by subtracting the mean (�) of each vector from each

component and dividing by the norm (||.||) of each to obtain

two unit length vectors. Recall that the dot product (�) of two

vectors is equal to the product of the norms of the two vectors

times the cosine of the angle between them.

data set1 ¼ ðF1;hkl1
;F1;hkl2

; . . .Þ;

data set2 ¼ ðF2;hkl1
;F2;hkl2

; . . .Þ;

vec1 ¼ ðF1;hkl1
� �1;F1;hkl2

� �1; . . .Þ;

vec2 ¼ ðF2;hkl1
� �2; F2;hkl2

� �2; . . .Þ;

CCðdata set1; data set2Þ ¼
vec1 � vec2

jjvec1jj jjvec2jj

In order to extend the range of applicability of CC, we convert

it to a distance,

SFdistðdata set1; data set2Þ ¼
vec1

jjvec1jj
�

vec2

jjvec2jj

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
;

which is related to CC by

SFdistðdata set1; data set2Þ
2
¼ 2� 2CC:

This choice of SFDist allows the distance to be adjusted to

account for the greater uncertainty in cases where a pair of

data sets has few common reflections, less than 90%, for

example, by adding a penalty to the distance for each

unmatched reflection.

5. Impact of choices in clustering

Unambiguous benzamidine-only, NAG-only and benzamidine

plus NAG clusters are shown in the omit difference maps of

the NAG site in clusters 28, 43 and 62 in Figs. 5, 6 and 7,

respectively. Omit difference maps of the benzamidine site in

clusters 28, 43 and 62 are shown in Figs. 8, 9 and 10, respec-

tively. These are the results of two-stage KAMO clustering of

the test data using NCDist unit-cell parameter-based clus-

tering to reach 10% completeness and then SFDist reflection-

based clustering of the resulting 107 non-overlapping clusters.

For an example of this approach when using a higher level of

completeness before the cutover from unit-cell parameter-

based clustering to intensity-based clustering, see Nguyen et

al. (2022).

The impact of using clustering on reflections for larger

clusters can be seen by looking at how well represented
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Figure 4
This dendrogram presents the top levels of BLEND clustering using the
more sensitive Andrews–Bernstein Niggli-cone distance (NCDist)
algorithm. The numbers are the LCV and the aLCV, with the aLCV in
parentheses. Clustering is guided by the progressive merging of separate
clusters into larger clusters using a measure of cluster proximity known as
the Ward distance. This is equal to the increase of the distance variance
(between each element of a cluster and its centroid) resulting from the
merging of two separate clusters (Ward, 1963). Note that the Ward
distances are smaller than those for the equivalent clusters in Fig. 3.

Figure 3
This dendrogram presents the top levels of BLEND clustering using the
original less-sensitive BLEND unit-cell parameter distance function. The
numbers are the LCV and the aLCV, with the aLCV in parentheses.



reasonably pure clusters are. In Figs. 11 and 12 we represent

the purity of native, NAG, benzamidine and benzamidine plus

NAG species using NCDist and SFDist.

The extreme variations in the SFDist results suggest two

important lessons.

(i) It is best to use reflection-based clustering starting from

data sets that are small enough to still be likely to be pure

species, i.e. to use cell-based clustering only just far enough to

reach a sufficient completeness that intensity-based clustering

can be handled.

(ii) It is not necessarily desirable to continue clustering to

the largest of the ‘best’ possible clusters. Smaller clusters of

sufficient quality for processing are more likely to be pure

species.

6. Discussion

Because microcrystals are expected to react quickly and

uniformly to changes in their environment, serial crystallo-

graphy is a desirable tool for examining the plasticity with
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Figure 5
Omit difference map of the NAG site in cluster 28 of a two-stage
clustering with KAMO using unit-cell parameters and NCDist to reach
10% completeness and then CC clustering with SFDist.

Figure 8
Omit difference map of the benzamidine site in cluster 28 of a two-stage
clustering with KAMO using unit-cell parameters and NCDist to reach
10% completeness and then CC clustering with SFDist.

Figure 9
Omit difference map of the benzamidine site in cluster 43 of a two-stage
clustering with KAMO using unit-cell parameters and NCDist to reach
10% completeness and then CC clustering with SFDist.

Figure 10
Omit difference map of the benzamidine site in cluster 62 of a two-stage
clustering with KAMO using unit-cell parameters and NCDist to reach
10% completeness and then CC clustering with SFDist.

Figure 7
Omit difference map of the NAG site in cluster 62 of a two-stage
clustering with KAMO using unit-cell parameters and NCDist to reach
10% completeness and then CC clustering with SFDist.

Figure 6
Omit difference map of the NAG site in cluster 43 of a two-stage
clustering with KAMO using unit-cell parameters and NCDist to reach
10% completeness and then CC clustering with SFDist.



which protein crystals respond to external perturbations. In

some cases the external perturbation can be physical, such as

conformational changes induced by light (Young et al., 2016).

In other cases proteins are perturbed by chemical means

(Fromme, 2015). Often it is not possible to to draw a sharp

boundary between diffraction images from different protein

forms without the assistance of some type of clustering soft-

ware. In response to this, many groups have developed

effective clustering algorithms that use a measurable para-

meter from each diffraction still or wedge to cluster the data

into categories which can then be merged to hopefully yield

the electron density from a single protein isoform. Examples

of measurable parameters that have been used for this

purpose include unit-cell dimensions (Foadi et al., 2013; Zeldin

et al., 2015) and diffraction intensities (Assmann et al., 2016;

Diederichs, 2017). What is striking about many of these

physical parameters is that they are largely independent of

one another.

Consequently, it should be possible to greatly improve the

efficacy of data-clustering software by combining quasi-

independent information in a multi-stage partitioning strategy

(as presented here). An alternative that one might consider in

some cases would be to combine the same data in a single

higher-dimensional (more independent parameters) stage.

However, all clustering methods work increasingly poorly as

the number of independent parameters increases due to the

‘curse of dimensionality’ (Bellman, 1956). Combining very

well behaved low-dimensionality cell-based clustering with

high-dimensionality intensity-based clustering gives up the

advantage of the reliability of cell-based clustering. In most

cases, unless all the information to be gained from cell-based

clustering is available a priori, it is probably best to take

advantage of that information first and then move on to

intensity-based clustering in a second stage, as we have done

here.

We have demonstrated one possible approach to multi-

stage data clustering. Our strategy was to use unit-cell-based

clustering until the merged data were of sufficient complete-

ness to then use intensity-based clustering. We have demon-

strated that using this strategy we were able to accurately

cluster data sets from crystals that had subtle differences.

Certainly if one is dealing with a case in which the ‘correct’

symmetry and indexing of all reflections are known for all

images, it makes sense to perform only intensity-based clus-

tering, but in the general case performing cell-based clustering

first makes sense.

7. Availability of data

The HKL structure-factor files and BLEND clustering data

files used for the final intensity-based clustering are available

from Zenodo (https://doi.org/10.5281/zenodo.6558532). The

data sets were collected on the Highly Automated Macro-

molecular Crystallography (AMX) beamline 17-ID-1 at

National Synchrotron Light Source II (NSLS-II) (Fuchs et al.,

2016). The coordinates have been deposited in the Protein

Data Bank (Bernstein et al., 1977; Berman et al., 2000) as PDB

entries 8dct (lysozyme from cluster 0003, double apo), 8dcu

(lysozyme from cluster 0028, benzamidine ligand), 8dcv

(lysozyme from cluster 0043, NAG ligand) and 8dcw (lyso-

zyme from cluster 0062, NAG and benzamidine ligands).

8. Related literature

The following references are cited in the supporting infor-

mation for this article: Kleywegt & Jones (1997) and Soares &

Caspar (2017).
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Figure 12
Color charts of the 35 largest data-set clusters for the SFDist clustering.
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From top to bottom the color blocks are the native soak, the benzamidine
plus NAG soak, the benzamidine soak and the NAG soak. If one color
reaches nearly from the bottom to the top at a given position then that
cluster is a nearly pure species.
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