Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible.

On the definition and practical use of crystal-based azimuthal angles. Erratum. By D. SCHWARZENBACH, Institut de Cristallographie, University of Lausanne, BSP Dorigny, CH-1015 Lausanne, Switzerland, and H. D. FLACK, Laboratoire de Cristallographie, University of Geneva, 24 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland

(Received 23 October 1991; accepted 28 October 1991)

Abstract

In the paper by Schwarzenbach & Flack [J. Appl. Cryst. (1989), 22, 601-605], the equation describing the transformation properties of the crystal-based azimuthal angle ψ is incorrect. The correct formula is derived.

The argument in the section Unit-cell transformations on p. 603 of the paper is erroneous since $|\mathbf{q}_a \times \mathbf{q}_b| = |\sin \Delta \psi|$ and not $\sin \Delta \psi$. Similarly, equation (10) is wrong since $v_a^T \mathbf{G}_{\alpha} v_a = V_a^{-2} s^{-2} \sin^2 \Delta \psi$, $V_a = \mathbf{a}_a \cdot \mathbf{h}_a$. Moreover, \mathbf{v}_a is proportional to \mathbf{h}_a, $\mathbf{v}_a = c \mathbf{h}_a$. The sign of $\sin \Delta \psi$ is $\text{sign}(|\mathbf{q}_a \times \mathbf{q}_b|) = \text{sign}(c) = \text{sign}(v_a^T \mathbf{h}_a)$. Equation (10) thus becomes

$$A^T \mathbf{v} = (\sin \Delta \psi, 0, \cos \Delta \psi)$$

$$s = \text{sign}(v_a^T \mathbf{h}_a) \{v_a^T \mathbf{G}_{\alpha} v_a\}^{1/2}, 0, (v_a^T \mathbf{G}_{\alpha} \mathbf{v}_a)$$

$$s^{-2} = (v_a^T \mathbf{G}_{\alpha} v_a)^2, (v_a^T \mathbf{G}_{\alpha} v_a)$$

Computer Programs

MRIAAU – a program for autoindexing multiphase polycrystals. By V. B. ZLOKAZOV, Joint Institute for Nuclear Research in Dubna, Laboratory of Computing Techniques and Automation, Head Post Office, PO Box 79, Moscow, USSR

(Received 10 May 1991; accepted 30 July 1991)

Abstract

A method and algorithm are described for solution of the autoindexing problem of multiphase polycrystals. A Fortran program, called MRIAAU, which implements the algorithm, runs on a PC and can solve the problem in some minutes (IBM PC with 80286 and higher).

1. Introduction

Autoindexing is the determination of the lattice parameters and Miller indices of reflections. In a multiphase polycrystalline sample this can be done on the basis of a set (incomplete) of experimentally observed diffraction reflection positions.

The method, described below, is universal, straightforward and uses the analytical technique of approximation, which allows the user to get an acceptable problem solution quickly even in complicated cases [the program run takes on average a few minutes on a PC like the Wang 250/16 (IBM compatible, with an 8 MHz coprocessor)].

Let a diffraction (neutron or X-ray) measurement produce a spectrum where (approximate) positions of intensity maxima give the set $R = \{r_j\}, j = 1, 2, \ldots, m$, of which some are dependent on one another. Each reflection position is formally given by the formula

$$r = f(P, I),$$

where P is vector (1) and I is a vector of three integer numbers from a set of groups of three M_k (Miller indices), $k = 1, 2, \ldots, n$, for any unknown phase.

The problem is: R being given and n fixed, determine P_k and M_k for each k. This problem is difficult even for a monocrystal sample, $n = 1$ particularly for a powder sample, $n > 1$.

A natural algorithm which offers itself here is as follows. Let bounded vector sets P_k and sets of three integer numbers M_{jk} $k = 1, 2, \ldots, n; j = 1, \ldots, m$, be given such that $Q_k \subset \{P_k\}, \{N_{jk}\} \subset \{M_{jk}\}$, where Q_k and $\{N_{jk}\}$ are true parameters of the lattice and Miller indices for the kth phase. For components of vectors P_k the following relations are true:

$$p_{kl} \leq p_k \leq p_{kw}.$$