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A full-pattern ®tting algorithm for energy-dispersive X-ray diffraction is

proposed, especially for high-pressure X-ray diffraction studies. The algorithm

takes into account the errors in measuring the energy and the diffraction angle.

A lognormal function is introduced to represent the background. All the peaks

that are detectable in the diffraction spectra, including ¯uorescence and

diffraction peaks, are considered together. Because all the data points in the

spectra are used, the accuracy of the cell parameters obtained by this method is

very high. This is very helpful in the analysis of the equation of state and the

identi®cation of new phases under high pressure.

1. Introduction

In recent years, the properties of materials under high pres-

sure have attracted many researchers. High pressure provides

another dimension for the phase diagram. Some new materials

may only be synthesized under high pressure. High pressure

combined with high temperature is very important in

geoscience because it is a good way to simulate the condition

of the mantle and even the core of the Earth.

X-ray diffraction is a very important technique for structure

determination. The diamond anvil cell (DAC) is a widely used

technique for obtaining pressures higher than 100 GPa. Since

the sample inside the DAC is very small, energy-dispersive

X-ray diffraction, with the aid of synchrotron radiation,

becomes a useful tool in this research. However, the diffrac-

tion signal is still very weak and the background scattering in

this kind of experiment is quite high. A suitable method of

data processing becomes necessary.

The developments in X-ray diffraction analysis have

followed from neutron diffraction. Many methods, especially

the Rietveld method, which represents a milestone in struc-

ture re®nement, and related software have been published

(Rietveld, 1969; Young, 1995; Langford, 1992; Langford &

Louer, 1996; Pawley, 1981; Le Bail et al., 1988). However, these

improvements mainly focus on the angle-dispersive mode. Still

little software can deal with the data of an energy-dispersive

experiment. Some examples are GSAS (Larson & Von Dreele,

1985), RIETICA (Hunter & Howard, 1998) and XRDA

(Desgreniers & Lagarec, 1998). GSAS is a powerful tool for

Rietveld re®nement, which can also deal with `native' energy-

dispersive data, or angle-dispersive data converted from

energy-dispersive data (Ballirano & Caminiti, 2001). The

special features of energy-dispersive diffraction, such as the

¯uorescence peaks, which always appear (but never occur in

the angle-dispersive mode), and the high background due to

the scattering of the diamond cell, the gasket materials and the

pressure-transmitting medium, as well as the error in the

measured energy are not considered appropriately by soft-

ware such as GSAS and XRDA. In this paper, an algorithm of

full-pattern ®tting for energy-dispersive X-ray diffraction is

proposed.

Compared with other software, such as GSAS, RIETICA

and XRDA, the method we propose here has some new

features. (i) The background is presented as the sum of a

lognormal function and a polynomial. Since the background

due to the scattering of diamond and the gasket material, as

well as the pressure-transmitting medium, is always asym-

metric, it is found that a lognormal function is suitable for

representing it. Only few parameters are used for the back-

ground and a good result is achieved. Less parameters in the

®tting yields a more reliable result. (ii) The ¯uorescence peaks

are considered together with the diffraction peaks, even

though these peaks usually appear on the lower energy side

and one can just simply cut the spectra to avoid the inter-

ference of ¯uorescence. The latter approach is quite reason-

able when the energy range of measurement can reach 70 keV,

or even 100 keV, since most ¯uorescence appears below

20 keV. However, when the energy cannot reach very high, e.g.

40 keV, it is better to consider the ¯uorescence peaks. (iii) The

calibration of energy measured by a solid-state detector with a

multichannel analyser is considered carefully over the entire

energy range, especially the possible non-linearity of the

response of the detector over the range. This effect should be

small but can affect the result markedly.

2. Algorithm

The wavelength of a diffraction peak in energy-dispersive

X-ray diffraction is given by the Bragg condition:

� � 2d sin �; �1�
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where � is the wavelength of diffraction, d is the interplanar

spacing of this diffraction and � the diffraction angle. The

corresponding energy should be

E � 12:398=�; �2�
where the energy E is in keV and the wavelength � is in AÊ .

Usually in a real spectrum of an energy-dispersive diffraction

experiment, not only the diffraction peaks, but also the

¯uorescence peaks from the sample can be observed. The

energies of the ¯uorescence peaks are ®xed and only depen-

dent on the elements in the sample, while the positions of the

diffraction peaks are connected with the crystalline structure

of the sample and the diffraction angle �. The detector used in

collecting the spectra is a solid-state detector with a multi-

channel analyser. The energy measured by the detector is

usually calibrated by some radiation source and ¯uorescence,

such as 55Fe (5.894, 6.489 keV), Pt (9.4423, 11.0707 keV), Au

(9.713, 11.4423 keV), Mo (17.47934, 19.6083 keV), Ag

(22.1629, 24.9424 keV), etc. Because only few points in the

total energy range are used, the accuracy of the calibration

should not be very high. The value of � is calculated according

to the positions of the diffraction peaks of some standard

samples, such as Au, Pt and Ag, which are also used as the

internal standard for the measurement of pressure. Since the

energy measured is not very accurate, the error in � can be

very high. The result of these errors is that the accuracy of the

obtained structural parameters is quite low.

Naturally, one way to avoid the problem is to consider all

the possible factors together in a full-pattern ®tting. Especially

under ambient pressure, since the energies of the ¯uorescence

peaks and the interplanar spacing of the standard sample are

well known, we can calibrate the energy carefully over the

entire energy range, as well as the diffraction angle �. With the

calibration, the interplanar spacing under pressure can be

obtained very accurately.

The real value of the energy and that measured by the solid-

state detector can be related by the following formula:

Ereal � Eexp � E0 � E1Eexp � E2E 2
exp: �3�

Ereal is the real value of energy, while Eexp is the measured one.

The energy shift (E0), linearity (E1) and the non-linearity (E2)

of the solid-state detector are considered together.

The full spectrum y(Ei) can be expressed by the sum of the

background b(Ei) and the composition of a series of peaks

hj(Ei):

y�Ei� � b�Ei� �
P

j

hj�Ei�; �4�

where Ei is the energy of every point in the spectrum, and j is

the number of peaks (including the ¯uorescence and diffrac-

tion peaks).

The background b(Ei) is represented by the sum of a

polynomial and a lognormal function. In traditional angle-

dispersive powder diffraction, the background is usually

represented by a polynomial (Young, 1995). Some other types

of background functions are used, such as the Chebyschev

polynomial and cosine Fourier series in GSAS (Larson & Von

Dreele, 1985), the 1/x function in TOPAS (Bruker AXS, 2000),

etc. In energy-dispersive diffraction inside a DAC, the pres-

sure-transmitting medium, the diamond and the gasket give

rise to a strong scattering background, which is usually

asymmetric. The lognormal function is suitable for expressing

this kind of background since it is also asymmetric. Three

parameters only are enough to represent the lognormal

function. Fewer parameters used in the ®tting means that the

®tting is more reliable.

The pro®les of all the peaks are considered using as a

pseudo-Voigt (pV) function. The pro®les of the ¯uorescence

peaks from the sample are Lorentzian, while the solid-state

detector would give a Gaussian expansion; the measured

peaks are the convolution of these two functions, a Voigt

function. In order to save calculation time, we chose a pV

function to express these pro®les. Furthermore, the pro®les of

the diffraction peaks can be expressed very well by a pV

function because a pV function is quite good in expressing the

pro®les of diffraction peaks in the angle-dispersive mode

(Langford & Louer, 1996). The conversion from the energy

scale to the angle scale can be treated as linear in a short

range, so a pV function should represent the pro®le of energy-

dispersive diffraction very well.

The maximum intensities, widths and mixing parameters of

the pV functions are ®tting parameters. The positions of the

diffraction peaks are decided by the crystalline structure of the

sample and the calibration of energy, as well as the diffraction

angle �. The widths and mixing parameters of all the diffrac-

tion peaks are treated as ®tting parameters in the program

because they are quite dif®cult to ascertain otherwise, owing

to the complicated nature of the mechanism of peak broad-

ening, such as the axial divergences, the size of the grain in the

sample, the density and type of defects, etc. (Langford &

Wilson, 1978; Wilkens, 1969, 1970; Warren, 1969). The process

for diffraction peaks is the Pawley method (Pawley, 1981), i.e.

to re®ne the cell parameters with cell constraints, while other

methods are based on the Rietveld re®nement or the Le Bail

method. For the ¯uorescence peaks, the positions are decided

by the calibration of energy, and their widths and mixing

parameters are also treated as ®tting parameters. All the

maximum intensities of the peaks are proportional to the

intensity of the incident synchrotron radiation at the energies

of the peak positions and dependent on the absorption of

diamond and the gasket. It is convenient to treat them as

®tting parameters as well. A non-linear least-squares ®tting

engine based on the Levenberg±Marqardt algorithm (Garbow

et al., 1996) is used.

The program (HPXRD) is freely available for academic use.

3. Experiment

The experiments were carried out at the high-pressure station

of BSRF (Beijing Synchrotron Radiation Facility), beamline

3W1A. The beamline provides a white beam with energy 5±

40 keV. A diamond anvil cell with a culet of 0.5 mm diameter

is used for creating the high pressure. Samples are held in a



gasket with a 0.2 mm hole. A solid-state Ge detector with

multichannel analyser is used to collect the diffraction spectra.

ZnO samples were used in the work reported in this paper.

Pt powder was mixed with the sample in order to calibrate the

pressure because the equation of state of Pt is well known.

4. Results and discussion

The usual routine for processing the data is to ®t the pattern

under ambient pressure ®rst, in order to obtain the correct

values of 2� and energy calibration. This is very important for

the next step because a very small error of these values would

affect the total analysis markedly. Because the cell parameters

of Pt are known very precisely, this step can be completed with

quite high accuracy. Table 1 lists the values we obtained from

the ZnO+Pt sample under ambient pressure. The errors of all

values are quite small.
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Table 1
The values of the parameters for energy calibration and 2�.

E0 (keV) E1 E2 2� (�)

Value ÿ0.0864 0.01392 ÿ0.000488 17.83638
Error 0.0015 0.00018 0.000005 0.00069

Figure 1
The difference in energy between the measured and the real energy. The
maximum error is 230 eV.

Table 2
The values of the cell parameters and volumes under pressure.

P
(GPa)

aPt

(AÊ )
aB4

(AÊ )
cB4

(AÊ )
VB4

(AÊ 3)
aB1

(AÊ )
VB1

(AÊ 3)

0 3.923 3.2473 (2) 5.2036 (4) 95.039
6.1 3.89489 (8) 3.2134 (2) 5.1382 (6) 91.895
8.3 3.88558 (8) 3.2002 (7) 5.129 (2) 90.978 4.2190 (2) 75.098

11.6 3.87251 (9) 4.2074 (1) 74.482
18.3 3.8477 (1) 4.17133 (20) 72.581
29.5 3.81154 (10) 4.1177 (2) 69.818
37.5 3.7887 (1) 4.08247 (20) 68.041

Figure 2
The ®tting result of ZnO+Pt under ambient pressure. The ®tting result is
reported (line) together with the experimental data (dots) and the
residual (line). The residual is very small; it shows that both the modelling
of peaks by the pV function and the background are correct.

Figure 3
The background of the spectrum in Fig. 2, clearly showing the asymmetry
of the background.

Figure 4
A selection of spectra of ZnO under different pressures. A phase
transition occurs at about 8 GPa.
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The cell parameters for ZnO obtained under ambient

pressure are a = b = 3.2473 (2) AÊ , c = 5.2036 (4) AÊ , which are

very close to the values reported elsewhere (Gerward &

Olsen, 1995). The difference in energy between the measured

and real energy is very small, as shown in Fig. 1. The maximum

error of energy is about 230 eV. This value seems small but

affects the calculation of the cell parameters considerably. This

is because when the difference in energy of two diffraction

peaks is several keV's, as is usually the case, e.g. 5 keV, the

error in the cell parameters would be of the order of 0.23/5 =

4.6% if we do not correct the error in energy carefully. The

error can be larger when more peaks are detected because the

distance between the peaks becomes small. The error in the

interplanar spacing can affect the indexing of an unknown

phase markedly; in turn, indexing is of upmost importance in

determining an unknown crystal structure.

In the processing of the spectra under pressure, the values

of the energy calibration and 2� are ®xed and we can ®t the

cell parameters. Some values of the cell parameters under

different pressures are listed in Table 2. The errors are very

small. Since all the possible factors affecting the peak positions

have been taken into account and all the data points in the

spectra are used, the accuracy of the interplanar spacing, as

well as of the cell parameters, is very high. This is the merit of

full-pattern ®tting.

Some ®tting results are presented in Fig. 2. The residuals are

quite small. This indicates that the pV functions we use here to

represent the peak pro®les are correct. The background is

shown in Fig. 3, which clearly shows asymmetry.

It is reported that ZnO undergoes a phase transition under

pressure at about 10 GPa. The structure changes from hexa-

gonal (B4 wurtzite) to cubic (B1 rocksalt) (Gerward & Olsen,

1995; Karzel et al., 1996). Fig. 4 shows several spectra under

different pressures. The pressures are calculated with respect

to the cell parameters of Pt according to the equation of state,

which is displayed in Fig. 5. The equation of state of ZnO is

shown in Fig. 6. For the B4 and B1 phases, the bulk modulus

and its pressure derivatives can be obtained from these data

according to the Murnaghan equation. For the B4 phase,

because there are not enough data points, the pressure deri-

vative of the bulk modulus is ®xed to the calculated value of

3.6 (Karzel et al., 1996). The bulk modulus is 171 GPa. For the

B1 phase, the bulk modulus obtained is 208 GPa and the

pressure derivative is 4.3. It is very clear that a phase transition

occurs at a pressure of about 8 GPa.

The cell parameter of cubic ZnO at the phase transition is

about 4.2190 AÊ . The cell volume collapses by about 18%. This

value is in very good agreement with that reported elsewhere

(Gerward & Olsen, 1995). The pressure of the transition, as

well as the bulk modulus and its pressure derivatives, are close

to the literature values (Gerward & Olsen, 1995). We suggest

that the errors are related to the problem of measuring the

pressure. Since the position of the sample can change during

compression, the value of 2� could change slightly. This is an

unavoidable problem of this kind of method for measuring

pressure. A method that is independent of the 2� value would

be much better, such as measuring the ¯uorescence peak shift

of ruby.

5. Conclusion

A full-pattern ®tting algorithm that takes into account the

positions of all the ¯uorescence and diffraction peaks is

presented. The errors in the measurement of the energy by a

solid-state detector with a multichannel analyser and in the 2�
value are considered. All peaks are represented by a pV

function. The strong and asymmetric background is modelled

by a lognormal function and polynomial. Since all the data

points of the spectra are considered, the accuracy of the

analysis is improved. If some unknown phases are present, this

method can give better interplanar spacings. This is very

important for the indexing of the diffraction peaks of the

unknown phase, which in turn is most important in structure

Figure 5
The equation of state of Pt.

Figure 6
The equation of state of ZnO. The ®tting result of the Murnaghan
equation (line) and the experimental data (dots) are plotted together.



analysis. This method was applied to ZnO and the results for

the cell parameters are in very good agreement with the

literature values. The pressure at which the phase transition

occurs is 8 GPa, close to the value reported by others. The

reasons for the errors in pressure at the phase transition, as

well as in the bulk modulus and its pressure derivatives, lie in

the method of pressure measurement employed in our

experiments.
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