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The results of both a line-broadening study on a ceria sample and a size–strain

round robin on diffraction line-broadening methods, which was sponsored by

the Commission on Powder Diffraction of the International Union of

Crystallography, are presented. The sample was prepared by heating hydrated

ceria at 923 K for 45 h. Another ceria sample was prepared to correct for the

effects of instrumental broadening by annealing commercially obtained ceria at

1573 K for 3 h and slowly cooling it in the furnace. The diffraction

measurements were carried out with two laboratory and two synchrotron

X-ray sources, two constant-wavelength neutron and a time-of-flight (TOF)

neutron source. Diffraction measurements were analyzed by three methods: the

model assuming a lognormal size distribution of spherical crystallites, Warren–

Averbach analysis and Rietveld refinement. The last two methods detected a

relatively small strain in the sample, as opposed to the first method. Assuming a

strain-free sample, the results from all three methods agree well. The average

real crystallite size, on the assumption of a spherical crystallite shape, is

191 (5) Å. The scatter of results given by different instruments is relatively

small, although significantly larger than the estimated standard uncertainties.

The Rietveld refinement results for this ceria sample indicate that the diffraction

peaks can be successfully approximated with a pseudo-Voigt function. In a

common approximation used in Rietveld refinement programs, this implies that

the size-broadened profile cannot be approximated by a Lorentzian but by a full

Voigt or pseudo-Voigt function. In the second part of this paper, the results of

the round robin on the size–strain line-broadening analysis methods are

presented, which was conducted through the participation of 18 groups from 12

countries. Participants have reported results obtained by analyzing data that

were collected on the two ceria samples at seven instruments. The analysis of

results received in terms of coherently diffracting, both volume-weighted and

area-weighted apparent domain size are reported. Although there is a

reasonable agreement, the reported results on the volume-weighted domain

size show significantly higher scatter than those on the area-weighted domain

size. This is most likely due to a significant number of results reporting a high

value of strain. Most of those results were obtained by Rietveld refinement in

which the Gaussian size parameter was not refined, thus erroneously assigning

size-related broadening to other effects. A comparison of results with the

average of the three-way comparative analysis from the first part shows a good

agreement.



1. Introduction

The broadening of diffraction lines occurs for two principal

reasons: instrumental effects and physical origins [for the most

current review articles on this subject, consult the recent

monographs edited by Snyder et al. (1999) and Mittemeijer &

Scardi (2004)]. The latter can be roughly divided into

diffraction-order-independent (size) and diffraction-order-

dependent (strain) broadening in reciprocal space. Because

many common crystalline defects cause line broadening to

behave in a similar way, it is often difficult to discern the type

of defect dominating in a particular sample. Therefore, it

would be desirable to have standard samples with different

types of defects to help to characterize unequivocally the

particular sample under the investigation.

Another point for consideration is the analysis of line

broadening for the purpose of extracting information about

crystallite size and structure imperfections. Quantification of

line-broadening effects is not trivial and there are different

and sometimes conflicting methods. Roughly, they can be

divided into two types: phenomenological ‘top–bottom’

approaches, such as integral-breadth methods (summarized by

Klug & Alexander, 1974; see also Langford, 1992) and Fourier

methods (Bertaut, 1949; Warren & Averbach, 1952). Both

approaches estimate physical quantities (coherently

diffracting domain size and lattice distortion/strain averaged

over a particular distance in the direction of the diffraction

vector) from diffraction line broadening. Only after the

analysis, is an attempt made to connect the thus-obtained

parameters with actual (i) defects and strains in the sample,

based on the behavior of certain parameters and a rather loose

association with underlying physical effects (see, for instance,

Warren, 1959), or (ii) crystallite size and shape in strain-free

samples (see, for example, Louër et al., 1983). Conversely,

there are physically based ‘bottom–top’ approaches that

attempt to model the influence of simplified dislocation

configurations (Krivoglaz, 1996; Ungár, 1999) or similar

defects (van Berkum, 1994), or crystallite size distributions

(Langford et al., 2000) on diffraction lines. Conditionally, we

can call these two approaches a posteriori and a priori,

respectively, according to when the correspondence of domain

size and strain parameters with the underlying microstructure

is made. Lately, there have been significant efforts (Ungár et

al., 2001, and references therein) to bridge these sometimes

diverging approaches. Even among the a posteriori approa-

ches, there are a variety of methods that yield conflicting

results for identically defined physical quantities. Simplified

integral-breadth methods that assume either a Gaussian or

Lorentzian function for a size- and/or strain-broadened profile

were shown to yield systematically different results (Balzar &

Popović, 1996). Nowadays, it is widely accepted that a ‘double-

Voigt’ approach, that is, a Voigt-function approximation for

both size-broadened and strain-broadened profiles (Langford,

1980, 1992; Balzar, 1992) is a better model than the simplified

integral-breadth methods. This model also agrees with the

Warren–Averbach (1952) analysis on the assumption of a

Gaussian distribution of strains (Balzar & Ledbetter, 1993;

Balzar, 1999). However, it fails in cases when observed profiles

cannot be approximated by a Voigt function or when an

assumed size-broadened Voigt profile yields negative column-

length size distribution [the significance of the latter in

different contexts, consequences, and possible corrections

were discussed by Young et al. (1967), Warren (1969), Balzar

& Ledbetter (1993), and Popa & Balzar (2002)]. Despite the

attempts to assess systematic differences between results

obtained by different line-broadening methods, generally any

comparison is difficult because of the different definition of

parameters and procedures. Hence, a rational way to assess

the reliability of results yielded by different methods is an

empiric approach, such as by means of a round robin.

To perform successfully such a broad effort as the round

robin, we decided upon a sample with a simple crystal struc-

ture with well defined physical and chemical properties;

therefore, a specimen was selected with a relatively narrow

crystallite size distribution of predominantly spherical shape,

on average, thus yielding line broadening that is independent

of crystallographic direction (isotropic). To reduce the

propagation of errors associated with the instability of the

deconvolution operation, the conditions for sample prepara-

tion were monitored to produce an optimal diffraction line

broadening. Furthermore, because the separation of size and

strain effects is a separate and complicated problem, the intent

was to obtain a negligible or small amount of strain in the

sample. Line-broadening analysis strongly depends on the

correction for instrumental effects and the details of peak

shape, particularly line profile tails. For that reason,

measurements were collected with different radiations and

with different resolutions and experimental setups. To our

knowledge, this is the first attempt to collect the measure-

ments on the same sample with such a different array of

instruments.

This paper has two parts. The aim of the first part is to give

an account of the specimen preparation and to characterize

the measurements undertaken at different instruments. This is

required in order to ensure the self-consistency of measure-

ments before round-robin data are made available to the

round-robin participants. The participants then can use

different methods to analyze the measurements. Here, we give

the results of analyses by three methods: Bayesian deconvo-

lution followed by the Warren–Averbach (1952) analysis of

line broadening, as a least-biased phenomenological

approach, an assumed physical model of lognormal size

distribution of spherical crystallites, and Rietveld (1969)

refinement, in order to assess potential correlations with other

parameters and subsequent possible systematic errors in size–

strain parameters. The application of Rietveld refinement is

especially important, as this route is becoming increasingly

used for the determination not only of structural but also

microstructural information about the sample, but often

without a clear understanding of the connection between

refined profile parameters and the physical parameters of

interest. For this reason, we discuss it in more detail in x3.3. By

using three different line-broadening analysis methods on all

the measurements in a consistent manner, we can better assess
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the accuracy of the size–strain results, as well as both the

advantages and drawbacks of different analysis routes. The

aim of the second part (x5) is to present the results of the

round robin where the participants used different methods of

line-broadening analysis to evaluate size and strain. We begin

with the details about the round robin and go over basic

definitions of the quantities (x5.1), and compare and discuss

the results (x5.2).

2. Experimental

2.1. Preparation of ceria powders

2.1.1. Round-robin sample. Nanocrystalline CeO2 was

prepared by thermal treatment of hydrated ceria, according to

the method reported in detail elsewhere (Audebrand et al.,

2000). Hydrated ceria was precipitated at room temperature

from the addition of Ce(SO4)2.4H2O (Merck1) to a 1 M

ammonia solution. The obtained precursor consists of ultra-

fine yellow hydrated cerium oxide CeO2.xH2O with spherical

crystallites of about 20 Å diameter, on average. It has been

reported that the thermal treatment of this precursor in the

temperature range 873–1173 K leads to the formation of a

CeO2 sample with average spherical crystallites characterized

by a volume-weighted diameter in the range 263–1756 Å

(Audebrand et al., 2000). In order to obtain a sample that

would not produce too much diffraction line broadening, the

annealing temperature was selected to be 923 K. The hydrated

ceria was heated in a silica crucible at 120 K hÿ1 to 923 K, and

then kept for 45 h at this temperature in order to ensure

complete annealing. From this procedure, 50 g of CeO2 was

obtained (here designated as S1). The microstructural homo-

geneity of the entire powder was checked by collecting X-ray

diffraction data for samples located at the bottom and the top

of the crucible.

2.1.2. Instrumental-standard sample. If we denote the

instrumental, physical and observed profiles by g(x), p(x) and

h(x), respectively, the observed Bragg profile is

hðxÞ ¼
R

pðzÞgðxÿ zÞ dzþ bðxÞ þ nðxÞ; ð1Þ

where b(x) is the background and n(x) the noise [hn(x)i = 0].

In the determination of g, there are several possible ways to

correct for broadening effects due to the various instruments.

Lately, much work has been carried out on modeling different

contributions to diffraction line shape by laboratory instru-

ments (Wilson, 1963; Klug & Alexander, 1974; Cheary &

Coelho, 1992). However, because of the very different

instruments discussed here, we preferred to characterize

instrumental broadening by measuring a suitable sample that

shows a minimal amount of physical line broadening caused by

defects and small crystallite size. The National Institute of

Standards and Technology (NIST) makes available the Stan-

dard Reference Material SRM660a LaB6 for this purpose.

However, this material is not suitable as a standard in this case

for several reasons: (i) LaB6 cannot be used with neutrons

because of boron; (ii) there is a difference in the linear

absorption coefficients by approximately a factor of 2 between

LaB6 and CeO2, which would introduce an additional trans-

parency broadening and, consequently, systematic errors in

the results; (iii) Bragg reflections at different diffracting angles

for the standard and the sample under investigation are a

potential source of systematic errors in line-broadening

analysis, especially for deconvolution methods [see, for

instance, a review by Delhez et al. (1980) for correcting

systematic errors for improper standards]. Thus, we opted for

annealed ceria. Commercially obtained (Nanotech1) ceria was

annealed at different temperatures and times to achieve

minimal line broadening while not inducing too much grain

growth, which would be detrimental to the counting statistics

and shape of the diffraction line profiles. This is a potential

issue in particular with synchrotron measurements. An

optimum behavior was obtained by annealing at 1573 K for

3 h in air. The powder was slowly cooled overnight in the

crucible. This sample is designated here as S2. Fig. 1 shows the

full width at half-maximum (FWHM) for all available Bragg

reflections for the samples S1, S2 and NIST new SRM660a

LaB6, as determined from precise measurements using a high-

resolution Bragg–Brentano diffractometer with monochro-

matic X-rays (Cu K�1 radiation). The instrument character-

istics have been reported previously (Louër & Langford,

1988). The comparison between annealed CeO2 and a NIST

SRM660a LaB6 powder, when used for correction of instru-

mental broadening, did not show significant changes (within a

single standard deviation) in the final parameters of interest,

namely domain size and strain values.

2.2. Measurements

2.2.1. Morphology. We used field-emission scanning elec-

tron microscopy (FESEM) to characterize the ceria powder

(S1). Micrographs have shown the prevailing shape of the

particles to be spherical and the grain size distribution could
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Figure 1
FWHM versus diffraction angle, as obtained from laboratory X-ray
measurements, for three samples: CeO2 with broadened lines (sample
S1), annealed CeO2 used to correct for instrumental effects (sample S2),
and new NIST SRM660a LaB6.1 Commercial names are given for identification purposes only.



be successfully fitted by the lognormal function. However, it

was very difficult to discern individual particles from the

micrographs. A recent study of ceria powder reported a

lognormal size distribution of crystallites (Langford et al.,

2000). Furthermore, Armstrong et al. (2004) have recently

reported TEM measurements on the same ceria sample S1.

Although even the TEM crystallite size distribution was

unreliable for crystallite size smaller than 150 Å because of

particle agglomeration, above this size it agreed well with an

assumed a priori lognormal distribution.

2.2.2. Diffraction measurements. Both samples S1 and S2

were distributed to instrument scientists for the

measurements. Raw data are available online (http://

www.boulder.nist.gov/div853/balzar, http://www.du.edu/

~balzar, and the CCP14 mirror http://www.ccp14.ac.uk/) and

have also been deposited with the IUCr.2 The measurements

were collected with the following instruments.

(i) University of Birmingham: a high-resolution X-ray

laboratory setup.

(ii) University of Maine, Le Mans: a ‘common’ X-ray

laboratory setup.

(iii) European Synchrotron Radiation Facility (ESRF),

BM16 beamline: third-generation synchrotron, capillary

geometry.

(iv) National Synchrotron Light Source (NSLS), Brook-

haven National Laboratory, X3B1 beamline: second-genera-

tion synchrotron, flat-plate geometry.

(v) Institute Laue-Langevin (ILL): D1A diffractometer,

constant-wavelength (CW) neutron source.

(vi) National Institute of Standards and Technology (NIST)

Center for Neutron Research (NCNR): BT1 diffractometer,

CW neutron source.

(vii) ISIS at the Rutherford-Appleton Laboratory: High

Resolution Powder Diffractometer (HRPD) on the S8

beamline, time-of-flight neutron source.

The experimental conditions for all the instruments are

listed in Table 1.

3. Methodology and results

3.1. Lognormal distribution of spherical crystallites

Based on the crystallite size distribution determined by

TEM (Armstrong et al., 2004), we assumed a physical model of

lognormal size distribution of spherical crystallites (LNSDSC)

as a physically sound model to account for line broadening.

This model has recently been discussed and used successfully

in a number of publications (Krill & Birringer, 1998; Langford

et al., 2000; Scardi & Leoni, 2001; Popa & Balzar, 2002). The

lognormal size distribution function can be represented as

(Popa & Balzar, 2002):

f ðRÞ ¼ Rÿ1
½2� lnð1þ cÞ�ÿ1=2

� expfÿ ln2
½R �RRÿ1

ð1þ cÞ
1=2
�=½2 lnð1þ cÞ�g: ð2Þ

Here, �RR is the average radius of the particles and the dimen-

sionless ratio c is defined as
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Table 1
Data collection conditions at different instruments.

Instrument
Wave-
length (Å) Geometry Optics Detector

Data collection parameters in 2� (�
is the diffraction angle)

High-resolution laboratory X-ray
(Birmingham)

Cu K�1 Flat-plate Bragg–
Brentano

Incident beam: Ge (111) flat
monochromator, 1.4� equatorial
and 1.8� axial divergence;
diffracted beam: 2� Soller slits,
0.05� receiving slit

Scintillation Three ranges: (i) 20.0–64.5�, 0.01�

step, 20 s stepÿ1; (ii) 64.5–102.5�,
0.02� step, 70 s stepÿ1; (iii)
102.5–150.0�, 0.02� step,
80 s stepÿ1

Commercial laboratory X-ray
(Le Mans)

Cu K�1,2

doublet
Flat-plate Bragg–

Brentano
Incident beam: 2� Soller slits, vari-

able slits (the intensity corrected
for the factor 1/sin� was used for
the analysis); diffracted beam:
graphite monochromator,
0.1 mm receiving slit

Proportional 20–150�, 0.01� step, 46 s stepÿ1

(sample S2), and 60 s stepÿ1

(sample S1)

Third-generation synchrotron
(ESRF BM16)

0.39982 Capillary Debye–
Scherrer

Incident beam: double-crystal Si
(111) flat monochromator;
diffracted beam: nine Ge (333)
flat analyzer crystals covering
16� in 2�

Nine scintillation 3–29.2�, 0.0004� step, 1.2 s stepÿ1

(sample S2), and 0.004� step,
12 s stepÿ1 (sample S1)

Second-generation synchrotron
(NSLS X3B1)

0.6998 Flat-plate parallel
beam

Incident beam: double (111) Si
monochromator; diffracted
beam: Ge (111) flat analyzer
crystal

Scintillation 12–60�, 0.002� step (sample S2),
and 2–79.22�, 0.01� step (sample
S1)

CW neutron (ILL D1A) 1.91 Container Debye–
Scherrer

Incident beam: focusing Ge (111)
monochromator

25 detectors, 6�

apart
0.05� step

CW neutron (NCNR BT-1) 1.5905 Container Debye–
Scherrer

Incident beam: Si (531) mono-
chromator at take-off angle of
120� with 7 arcmin collimation

32 detectors in 5�

intervals
3–168�, 0.05� step

TOF neutron (ISIS HRPD) Container Debye–
Scherrer

160–176�

2 Supplementary data are available from the IUCr electronic archives
(Reference: KS0213). Services for accessing these data are described at the
back of the journal.



c ¼ �2
R= �RR2; ð3Þ

where �2
R is the distribution dispersion.

To extract size-broadened profiles from diffraction patterns,

a correction for instrumental broadening has to be performed

first. For more details, see the recent reviews by Čerňanský

(1999) and Reefman (1999). A Fourier deconvolution method

(Stokes, 1948) is an often-used unbiased approach that yields

pure physically broadened line profile. The Stokes deconvo-

lution method is, however, prone to serious systematic errors

in cases when the background level is difficult to determine

due to overlapping of neighboring reflections or weak physical

broadening (Delhez et al., 1980). We instead used a Bayesian

deconvolution following the Richardson algorithm3

(Richardson, 1972; Kennett et al., 1978). In the Richardson

algorithm, the physical profile p from equation (1) is obtained

by iterating the following formula:

p
ðnþ1Þ
i ¼ p

ðnÞ
i

P
k

�
gkih

0
k

.P
j

gkjp
ðnÞ
j

�
: ð4Þ

In equation (4), n is the iteration number and h0k is the

measured profile after the background subtraction. The

interval in which the deconvolution is performed can contain

either a single peak or a cluster of overlapping peaks. For the

former, the corresponding peak from the diffraction pattern of

the annealed sample is taken as the resolution function g(x),

after background subtraction, normalization to unit area, and

reversal around the peak position is performed [note that if

p(z) equals a delta function then g(x) = h(ÿx)]. For the latter,

one has to use an a priori analytical description of the reso-

lution function and fit all the peaks of the annealed sample in

this interval. To avoid this complicated step, which can intro-

duce bias in the parameters �RR and c, we excluded overlapping

peaks (such as 111 and 200) from the procedure and included

only the peaks with negligibly small overlap: 220, 400, 422, 333/

511, 440 and 620. The last two peaks were not available for the

ILL measurements and 333/511 is of a low intensity for

neutrons; thus, three peaks were used in the analysis of the

ILL data and five for the NIST data. The linear background

was determined by means of the least-squares refinement

separately for each peak and subtracted prior to the decon-

volution. To avoid the noise amplification during deconvolu-

tion, the iterative process must converge after a small number

of steps. To fulfill this condition, the starting profile must be as

close as possible to the anticipated solution. Because for most

of the measurements the instrumental profile, given by the

sample S2, was significantly narrower than the profile from the

sample S1, we used p
ð0Þ
i = h0i as a starting guess. Thus, the

number of iterations was between 5, for synchrotron

measurements, and 10 to 12 for NIST and ILL measurements

(see also the discussion in x4). Besides the small amplification

of the noise, the off-diagonal elements of the correlation

matrix of p
ðnÞ
i are expected to be small. The profile obtained by

deconvolution can then be fitted with the physical profile

through the least-squares refinement assuming independent

points and Poisson statistics. For the dispersions of points in

the least squares, we used the following approximation:

�2½p
ðnÞ
i � ’ p

ðnÞ
i + bi. Note that this equation is exact for n = 0.

The profile obtained from deconvolution, p
ðnÞ
i , with the

dispersions, �2½p
ðnÞ
i �, was fitted by the convolution of the size

profile [equations (15a), (21), (22) of Popa & Balzar, 2002]

with the strain profile, in the corresponding variables for

constant wavelength or time of flight data. Although the ceria

powder S1 is expected to show small (or negligible) strain

broadening (Audebrand et al., 2000), we allowed for this strain

correction by a single Gaussian function. The peak position

and area, the size distribution parameters �RR and c, and the

Gaussian strain parameter were refined in the least-squares

refinement for every profile. The strain parameter was fixed to

zero in the final refinement cycles, as we did not see any

improvement in the fit. Table 2 gives results that were aver-

aged over all reflections for a particular instrument. From the

distribution parameters �RR and c, average apparent domain

sizes follow, for comparison with other methods (Popa &

Balzar, 2002):

DV ¼ 3 �RRð1þ cÞ3=2 ð5aÞ

and

DA ¼ 4 �RRð1þ cÞ2=3: ð5bÞ

These expressions connect the apparent domain sizes DA and

DV with the real dimensions (radius or diameter) of the

crystallites. For a monodisperse system of spheres of diameter

D, c = 0 and the following holds:

D ¼ ð4=3ÞDV ¼ ð3=2ÞDA: ð6Þ

3.2. Warren–Averbach analysis

In the absence of other microstructural information, which

would be a basis for a physically sound broadening model, it is

preferred that a model-unbiased approach be used. The

Warren–Averbach (1952) (W-A) approach is frequently used

for this purpose. It has to be applied carefully to avoid

potentially serious systematic errors (see, for instance, Young

et al., 1967; Delhez et al., 1980). The method requires the
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Table 2
Results of the fit to Bayesian-deconvoluted profiles by a model assuming
a lognormal size distribution of spherical crystallites.

The first moment of the distribution �RR, the ratio of the distribution dispersion
to the square of the first moment c = �2

R= �RR2, and the corresponding area-
weighted DA and volume-weighted DV domain sizes.

�RR (Å) c DA (Å) DV (Å)

Birmingham 89.0 (10) 0.187 (5) 167 (3) 223 (5)
Le Mans 90.9 (3) 0.188 (2) 171 (1) 229 (2)
ESRF 90.0 (10) 0.192 (6) 171 (4) 229 (6)
NSLS 93.3 (7) 0.177 (3) 172 (2) 228 (4)
ILL 93.0 (20) 0.173 (7) 171 (6) 225 (9)
NIST 93.0 (40) 0.184 (15) 174 (12) 232 (19)
ISIS 91.0 (10) 0.191 (4) 172 (3) 231 (5)

3 In a recent review of the deconvolution methods, Čerňanský (1999) gives
supplementary arguments that the Richardson algorithm indeed belongs to
the class of Bayesian deconvolution methods.



Fourier transform of a physically broadened profile; we used

profiles obtained by Bayesian deconvolution. In this way, a

direct comparison of results obtained by the W-A analysis and

the model of lognormal size distribution of spherical crystal-

lites is possible.

The physically broadened profiles obtained by Bayesian

deconvolution in real space were Fourier transformed. We

used the Warren–Averbach (1952) approximation to separate

the effects of size and strain broadening and carried out the

line-broadening analysis in a customary way [see Warren

(1969) for a full description of the method] to obtain root-

mean-square strain (RMSS) averaged over a distance in real

space, perpendicular to diffracting planes, and an apparent

area-weighted domain size DA (Bertaut, 1949). For a

comparison with the volume-weighted domain size that

follows from Rietveld refinement, we also evaluated the

apparent volume-weighted domain size as a sum:

DV ¼ a3

P1
L¼ÿ1

ASðLÞ; a3 ¼ �=4j sin �end ÿ sin �cenj; ð7Þ

where the length a3 depends on the span of the profiles (�cen

and �end denote the positions of the profile centroid and the

point where the intensity reaches a background level). In

practice, the sum is evaluated up to a Fourier number after

which Fourier coefficients begin to oscillate after reaching

near zero; for our data this value was about 400 � 50 Å.

The Warren–Averbach (1952) separation method indicated

very small if nonexistent anisotropy. Therefore, we applied the

line-broadening analysis to all diffraction lines, thus averaging

the results over the same reflections as in the LNSDSC

method. After the separation, the size coefficients are plotted

as a function of averaging distance L. A small ‘hook’ effect in

ASðLÞjL!0 (Warren, 1969) was regularly observed for all the

data. This effect is normally attributed to an incorrectly (too

high) estimated background (Delhez et al., 1980) or to small-

angle tilt boundaries, as proposed by Wilkens (1979). The

former is difficult to avoid because the tails of the size-broa-

dened profile fall off with the inverse square distance from the

peak, as already shown by Wilson (1962, 1963). Thus, all the

profiles in a diffraction pattern overlap even for samples with

cubic symmetry, and the true background is difficult to reach

without making an assumption on the functional form of peak

profiles. The latter is highly unlikely in our sample because the

presence of dislocations would introduce line-broadening

anisotropy, whereas our results show line broadening to be

isotropic. The ‘hook’ effect increases the value of DA if the

derivative is taken at L = 0. We corrected for this effect by

fitting the linear part of the curve, in the region 40–90 Å, and

determined the root of the parallel straight line passing

through unity on the y axis. Both the area-weighted and the

volume-weighted apparent domain sizes are reported in Table

3. The values of root-mean-square strain (RMSS) at DV/2 are

also given in Table 3. Although the RMSS varies significantly

among different data sets, its magnitude is relatively small,

compared with the size effect. It can be argued that such a

small strain can be neglected; in this way, a potentially

significant systematic error because of the Warren–Averbach

(1952) size–strain separation is avoided. We also quote

domain sizes with zero strain in Table 3. Volume-weighted

domain size was calculated analogously to equation (7), but

with the average sum of the real Fourier coefficients instead of

size coefficients. Area-weighted domain size was determined

from the slope to the real Fourier coefficients, averaged over

all reflections, in the same way as for the DA. It is evident that

even such a relatively small strain has a large influence on

both, but especially on the area-weighted domain size.

3.3. Rietveld refinement

Rietveld refinement is becoming progressively more

popular for nonstructural applications, such as texture (Von

Dreele, 1997; Matthies et al., 1997) and residual-stress (Ferrari

& Lutterotti, 1994; Daymond et al., 1997; Balzar et al., 1998;

Popa & Balzar, 2001) determination. It is common practice to

estimate domain size and strain values from the refined profile

width parameters. A comprehensive study on line-broadening

analysis and Rietveld refinement has been presented by

Delhez et al. (1993). Even for purely structural use, it is

necessary to account for integrated peak intensity in a correct

way to obtain reliable structural information. An accurate

modeling of line width is a necessary prerequisite for all these

cases. However, there is a need to clarify the procedures to

estimate domain size and strain from refined profile width

parameters. The original Rietveld program (Rietveld, 1969)

was designed for low-resolution neutron diffraction

measurements that yield a simple Gaussian line shape.

Consequently, line-width models had to be improved to

accommodate high-resolution neutron instruments and espe-

cially X-ray laboratory and synchrotron data with intrinsically

more complex line shapes. We used the Rietveld refinement

program contained in the GSAS suite (Larson & Von Dreele,

2001) for all the refinements. However, the discussion here

applies to other programs as well because the profile shapes

used in major Rietveld programs are relatively uniform.

The line profile model for the CW data, which is introduced

in all major Rietveld-refinement programs, is a generalization

of the Thompson et al. (1987) approach. It implicitly assumes

that the observed and constituent line profiles are Voigt

functions (Balzar & Ledbetter, 1995). Because a convolution
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Table 3
Results of the Warren–Averbach analysis.

Area-weighted DA and volume-weighted DV domain sizes, and root-mean-
square strain (RMSS) at DV/2. The standard uncertainties are estimated as
about 5%.

RMSS = 0

DA (Å) DV (Å) RMSS (10ÿ4) DA (Å) DV (Å)

Birmingham 177 238 4.4 159 228
Le Mans 198 241 6.6 181 226
ESRF 195 213 0† 187 224
NSLS 196 234 4.1 189 229
ILL 188 228 4.5 176 224
NIST 194 251 7.1 167 230
ISIS 165 248 5.0 177 240

† Set to zero; MSS is a small negative number.



of any number of Voigt functions is also a Voigt function, one

can write the following expressions for Gaussian and

Lorentzian observed line widths (CW data):

ÿ2
G ¼ U tan2 � þ V tan � þW þ P= cos2 � ð8aÞ

and

ÿL ¼ X= cos � þ Y tan � þ Z: ð8bÞ

Here, ÿ is the full width at half-maximum (FWHM) of the line

profile, U, V, W, X, Y and Z are refinable parameters and L

and G denote Lorentzian and Gaussian profiles, respectively.

Equation (8a) is based on the Caglioti et al. (1958) paper,

which modeled neutron diffraction line shapes in terms of

collimator and monochromator transmission functions in the

Gaussian approximation. The last term in (8a) was added by

Young & Desai (1989) and describes the Gaussian contribu-

tion to the Scherrer (1918) size broadening:

�S ¼ �=DV cos �; ð9Þ

where � is the wavelength and DV is volume-weighted domain

size. Here, we do not need to correct for the shape of crys-

tallites by using the Scherrer constant K because DV is the

volume-weighted thickness perpendicular to the diffracting

planes (Wilson, 1962). Equation (8b) is the Lorentzian line

width and includes contributions from Lorentzian size

broadening X and Lorentzian strain broadening Y; Z is

customarily set to zero in most Rietveld refinement programs.

The term that varies with tan� stems from the Stokes &

Wilson (1944) definition of the maximum (upper limit) of

strain:

e ¼ �D=4 tan �: ð10Þ

Hence, it is easy to recognize from equations (8) that para-

meters X and P will relate to size broadening and Y and U to

strain broadening. However, some instrumental contributions

have similar dependence on diffracting angle and that

contribution has to be carefully separated to obtain accurate

information about domain size and strain from line broad-

ening.

The following expressions are equivalent to equations (8)

for the TOF data (Larson & Von Dreele, 2001):

ÿ2
G ¼ �

2
1d2 þ �2

2 d4 þ �2
0 ð11aÞ

and

ÿL ¼ 
1dþ 
2d2
þ 
0: ð11bÞ

Here, �2
1 and 
1 model Gaussian and Lorentzian strain

broadening and �2
2 and 
2 model Gaussian and Lorentzian size

broadening. Then, instead of equations (9) and (10), we use

DV ¼ DIFC=�S; e ¼ �D=2DIFC; ð12Þ

where DIFC is the diffractometer constant connecting d

spacing and the neutron time of flight TOF:

TOF ¼ DIFC dþDIFA d2
þ ZERO: ð13Þ

The second-order term DIFA is small and can be neglected

here.

This model is certainly very simplified and not flexible

enough to describe all possible size- and strain-related effects

on diffraction line shapes. Currently, there is ample interest to

include modeling of line widths in Rietveld refinement based

on physical models; however, it is difficult to include models

for all possible physical origins of broadening and even more

importantly, to preclude improper use of such a Rietveld

program by an inexperienced user, as different refinable

parameters may have a similar angle dependence and thus

strongly correlate during the refinement.

3.3.1. Instrumental broadening. Every instrument intro-

duces some amount of broadening that has to be properly

corrected in order to obtain reliable information about the

sample under investigation. However, there are significant

differences for different types of radiation and instrumental

setups. Each instrument is discussed in turn.

Laboratory X-rays. Major contributions are from wave-

length dispersion and slits, respectively (Klug & Alexander,

1974):

�L ¼ 2ð��=�Þ tan �; �G ¼ const: ð14Þ

Therefore, to the first approximation, instrumental broad-

ening can be modeled by refinement of only two parameters, Y

and W (Balzar & Ledbetter, 1995).

However, for a careful study, it is necessary to adjust other

parameters in equations (8), as needed. We used GSAS profile

function #2 (Howard, 1982) because peaks were sufficiently

symmetric for both laboratory data sets.

Synchrotron. Observed profiles are well described by a

Voigt function and its approximations, pseudo-Voigt and

Pearson VII. Because of a high flexibility and frequent

adjustment of optical elements, the profile shape can vary

significantly. In general, all the parameters in equations (8)

were refined for a standard sample. We used GSAS profile

function #3 (Finger et al., 1994), which is superior to function

#2 in the case of high asymmetry, to account properly for

asymmetry at lower angles due to axial divergence of the

beam. The axial divergence effects are here potentially very

important because of a tendency to use shorter wavelengths,

especially at third-generation synchrotrons.

Neutron CW. All three Gaussian terms U, V and W in

equation (8a) have to be refined. Additionally, high-resolution

instruments may need refinement of Lorentzian parameters,

due to the greater significance of the monochromator contri-

bution (that is, intrinsic width with long tails), which is here

approximated by a Lorentzian function. We also used GSAS

profile function #3 (Finger et al., 1994), as the axial divergence

asymmetry is introduced in particular by large samples and tall

detectors.

Neutron time-of-flight (TOF). A thorough description of a

complex profile shape given by TOF neutron measurements is

given in the GSAS manual (Larson & Von Dreele, 2001). We

used GSAS profile function #3 (convolution of back-to-back

exponentials with a pseudo-Voigt function) for high-resolu-

tion instruments, and refined �1, �0, �1, �0 and 
0 for a stan-

dard sample.
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Instrument resolution can potentially play an important

role in line-broadening analysis, which was the main reason to

collect the data with different radiation and instrument

geometries. Fig. 2 plots the instrument resolution, �d/d,

calculated from the FWHM of the instrumental standard

profile (sample S2), as obtained by Rietveld refinement of line

profile parameters. Both synchrotron and ISIS resolution

decreases little with the increase in d spacing. There are some

surprising findings. All the instruments have comparable

resolution at smaller d values (~0.7–0.9 Å), whereas at 3.5 Å,

resolution differs by an order of magnitude. At smaller d

values, ESRF shows the best resolution, but it is second to the

NSLS at larger d values! One has to keep in mind, however,

that the sample S2 likely has a small amount of residual

physical broadening. This will skew the results shown more for

instruments with smaller intrinsic line broadening, namely the

synchrotron and ISIS data.

3.3.2. Physical broadening. To obtain a physical contribu-

tion to the broadening, it is sufficient to refine four parameters

in equations (8) or (11). Before estimating physical broad-

ening of a sample under investigation (sam), these refined

values have to be corrected for instrumental effects, which

were determined by refinement of line profiles of the sample

S2 (stand). We can write

ÿeff ¼ ÿsam ÿ ÿstand; ð15Þ

where ÿ stands for X, P, U and Y for the CW data, and �2
1 , �2

2 ,


1, and 
2 for the TOF data. The effective value (eff) depicts

the pure physically broadened profile parameters.

As the parameters in equations (8) and (11) are the FWHM,

they should be converted to integral breadths of size-broa-

dened and strain-broadened profiles before calculating asso-

ciated domain size and strain values. Conversion factors are

(Langford, 1978)

�L=ÿL ¼ �=2 and �G=ÿG ¼ ð1=2Þð�=ln 2Þ1=2; ð16Þ

where ÿL and ÿG are calculated from the effective parameters

determined using equation (15). However, GSAS internally

reduces the Gaussian FWHM by the factor ð8 ln 2Þ1=2 (Larson

& Von Dreele, 2001); thus the second equation in the case of

GSAS should be taken as

�G=ÿG ¼ ð2�Þ
1=2: ð17Þ

Then, the Lorentzian and Gaussian integral breadths are

combined for both the size and the strain parts according to

the relation (Langford, 1978)

�i ¼ ð�GÞi expðÿk2
Þ=½1ÿ erfðkÞ�; k ¼ �L=�

1=2�G; ð18Þ

where i stands for S or D. Only now can �S and �D be related

to the corresponding values of DV and e, according to equa-

tions (9) and (10) or (12).

The conversion equations (16) are equivalent to the alter-

native numerical expressions connecting the integral breadth

� and FWHM ÿ of a pseudo-Voigt profile, as customarily used

in Rietveld refinement programs (Thompson et al., 1987).

We give the results for both DV and e in Table 4, where we

designate the volume-weighted domain size, as obtained from

Rietveld refinement, as DR.

3.3.3. Refinement procedure. In the ceria crystal structure,

all atoms are in special positions (Fm�33m, a ’ 5.41 Å).

Therefore, the only structural parameters refined were the

lattice parameter and the temperature factors. The global

parameters included the scale factor, the 2� zero correction,

and background parameters (four terms of the Q2n/n! series

for the ISIS measurements and three terms of the cosine

Fourier series for all other measurements except ESRF, where

five coefficients had to be refined) for all the data sets. For the

flat-plate geometries (both laboratory X-rays and NSLS

measurements), sample transparency and shift corrections

were refined. Additionally, the refinement of the surface-

roughness correction (Suortti, 1972) lessened or completely

corrected a problem of negative temperature factors for this

geometry. A Debye–Scherrer absorption correction (function

#0 in GSAS) was refined only for ISIS and ESRF measure-

ments, as it is significant only for energy-dependent (TOF)

data or the X-ray Debye–Scherrer geometry. A preferred-

orientation-correction refinement was attempted, but did not

yield significant improvement for any of the patterns.
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Table 4
Results of the Rietveld refinement.

Volume-weighted domain size DR and strain e. The ratio of the Gaussian �G to
Lorentzian �L integral breadth of the size profile is also shown.

Comments DR (Å) �G/�L e (10ÿ4)
DR (Å)
for e = 0†

Birmingham Both strain terms! 0 227 (3) 0.85 (2) 0 227 (3)
Le Mans Gauss strain term! 0 235 (2) 1.01 (1) 2.2 (1) 224 (1)
ESRF 223 (1) 0.704 (7) 1.5 (1) 219 (1)
NSLS Gauss strain term! 0 236 (2) 0.84 (1) 2.3 (1) 224 (1)
ILL Gauss strain term! 0 221 (3) 0.83 (2) 0.1 (3) 220 (2)
NIST Lorentz strain term! 0 231 (6) 0.74 (4) 4.5 (8) 216 (4)
ISIS Lorentz strain term! 0 232 (1) 0.831 (8) 5.5 (2) 224 (1)

† Strain-related parameters set to the values of the instrumental standard sample during
the refinement.

Figure 2
Resolution function �d/d as a function of interplanar spacing d for all
instruments, as calculated from the FWHM obtained by Rietveld
refinement, for the sample S2.



We initially refined diffraction patterns of the standard

sample. Profile parameters were refined according to the

procedure described in the preceding paragraph. For the

broadened pattern, all the parameters were then fixed to these

values, except for X, P, U and Y for the CW data and �2
1 , �2

2 , 
1,

and 
2 for the TOF data. For all data sets, except ESRF, either

the Gaussian or Lorentzian effective (corrected for the

instrumental broadening) strain term refined to zero. If a

strain-related parameter for the sample S1 refined to a smaller

value than for the standard sample (S2), the parameter was

fixed to the value obtained for the standard sample in the

subsequent cycles. The final refined diffraction patterns for all

instruments are available via the IUCr electronic archives.4

For all the data sets, both Lorentzian and Gaussian size

parameters refined to a non-zero value. Strain-related para-

meters were evidently less significant, although they varied in

magnitude among different instruments (see Table 4). To

compare the results with the values obtained by the LNSDSC

method, we also give the value of volume-weighted domain

size with the strain-related parameters set to the values

determined for the standard sample, that is, the broadening

due to the size effect only.

4. Discussion of line-broadening results

The intrinsic (instrumental) line width is potentially an

important parameter in line-broadening analysis. It is advan-

tageous that the physical broadening, which contains sought

information, be more pronounced than the instrumental

broadening, which requires the undesirable correction of

observed profiles for the instrumental effect. Therefore,

analogously to the signal-to-noise ratio, one can presume that

a larger dimensionless ratio of integral breadths of the

physical and instrumental profiles �p/�g should increase the

precision of line-broadening analysis. For this reason in

particular, we tried to include measurements at different

resolutions. In Fig. 3, we show the 220 diffraction lines for both

samples S1 and S2. It is evident that the ratio �p/�g changes by

an order of magnitude among the instruments. However, the

results indicate that the resolution does not appear to be a

decisive factor in obtaining accurate values for the domain size

and strain. Of course, as physical broadening becomes smaller,

an instrument with a narrow intrinsic broadening is expected

to be more advantageous for line-broadening studies.

The comparison of results in Tables 2–4 indicates that the

uncertainty due to different analysis methods is much more

significant than the influence of a particular instrument. The

small scatter of results among different instruments is espe-

cially evident for a model with an assumed lognormal size

distribution of spherical crystallites, which is most likely due to

a relatively simple physical model with few refined para-

meters. As a comparison, in a Rietveld refinement there is a

possibility that other parameters with similar angle depen-

dence compensate for the size or strain parameter during the

refinement; in particular, specimen transparency or absorp-

tion, depending on the geometry and radiation, introduce line

broadening and would therefore be expected to influence line-

broadening parameters. In the refinements conducted, the

correlation matrix did not indicate a strong correlation of the

size and strain-related profile parameters with other para-

meters. The second potential cause of discrepancy is the

background level, as different models were used for Bayesian

deconvolution and Rietveld refinement. A ‘hook’ effect that

was observed in the W-A analysis, might indicate that the

background was determined as too high; this would produce

the effect of underestimating broadening in the W-A analysis.

It is not clear how much the background level affects the

profile parameters in Rietveld analysis. This is unlikely to be a

significant problem in this case because of relatively few Bragg

peaks in the pattern.

The most important element influencing uncertainty of the

results appears to be the strain; the scatter in domain sizes

between different instruments is significantly diminished by

setting strain to zero in Tables 3 and 4. The value of strain

seems to depend greatly on the method of analysis used. For

instance, from Tables 3 and 4. we see that on the same set of

data one method can yield zero strain while another yields a

large value. The uncertainty is expected to become larger at

small strain; however, these differences do not appear to be

systematic. Louër et al. (2002) recently demonstrated by

Rietveld refinement on simulated data (noise was introduced

according to a Poisson distribution) for a strain-free sample

that a fictitious strain can be obtained if both size and strain-

related parameters are allowed to vary. We must also note

here that the definitions of strain in the Rietveld and W-A

methods are different. An approach to make the two defini-

tions compatible was discussed previously (Balzar &

Ledbetter, 1995).

If an average spherical shape and lognormal distribution of

crystallites are accepted as plausible, the average crystallite

diameter is estimated as 191 (5) Å from all the methods when

the strain effect is neglected. Although the crystallite size

distribution for the S1 sample is moderately wide [see Popa &

Balzar (2002) for discussion and a more detailed character-

ization], it greatly influences the average diameter (the first

distribution moment). As a comparison, in a monodisperse

system of spheres with the same apparent volume-weighted

domain size, the sphere diameter would be 305 (5) Å, which is

an increase of 60%.

It is important to emphasize that, although the ceria sample

shows predominately size broadening, the physically broa-

dened profile is not a Lorentzian, as it is very often assumed,

but has a significant Gaussian component. Table 4 gives the

ratio of the Gaussian to the Lorentzian integral breadth of the

size profile, which is in the range 0.704–1.01. Therefore, a Voigt

or pseudo-Voigt function is a preferred approximation for a

size-broadened profile. It was recently reported (Popa &

Balzar, 2002) that broad size distributions (another ceria

sample) can produce the so-called ‘super-Lorentzian’ line

profiles; that is, tails fall off more slowly than for a Lorentzian
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4 Supplementary data are available from the IUCr electronic archives
(Reference: KS0213). Services for accessing these data are described at the
back of the journal.



function. Such a line profile can be successfully modeled by a

lognormal size distribution of spherical crystallites; however,

the profiles cannot be modeled by a Voigt function or its

approximations and Rietveld refinement using the profile

functions discussed here fails.

5. Round robin

5.1. Round-robin preparation and returned results

Here we discuss the round robin. The measurements of the

two ceria samples obtained at seven instruments were

converted into three formats by using program POWDER2

(Dragoe, 2001): two-column angle-intensity pairs, GSAS

(Larson & Von Dreele, 2001) raw data file, and DBWS-Full-

Prof (Rodriguez-Carvajal, 1990) raw data file. Data and

recommendations for analysis were made available to the

round-robin participants for download. 18 reports with results

were received.5 An initial screening of results was undertaken

to eliminate those with clearly erroneous values of both

domain size and strain. After the assessment, the results from

16 participants were included in the final analysis, which could

be categorized according to the approach used as follows.

(i) Rietveld (1969) refinement: six reports.

(ii) Warren–Averbach (1952) method: three reports.

(iii) Integral-breadth methods: four reports. Participants

used different methods: (a) both size-broadened and strain-

broadened profiles approximated by a Lorentzian function
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Figure 3
220 diffraction lines of S1 and S2 samples, normalized to the same maximum peak height, for all the instruments.

5 The list of all the received results and used techniques have been deposited
with the IUCr (Reference: KS0213). Services for accessing these data are
described at the back of the journal.



(Lorentz–Lorentz, LL) (Klug & Alexander, 1974); (b) size-

broadened profile approximated by the Lorentzian function

and strain-broadened profile by the Gaussian function

(Lorentz–Gauss, LG) (Klug & Alexander, 1974); (c) both size-

broadened and strain-broadened profiles approximated by a

Voigt function following the Langford (1980) approach (VV1)

and the Balzar (1992) approach (VV2).

(iv) ‘Fundamental parameter’ approach (Cheary & Coelho,

1992): three reports.

(v) Single-line approach (Hall & Somashekar, 1991): one

report.

(vi) Special: two reports. Although these methods were

previously described in the literature, these particular results

were obtained by using unpublished methods. They could be

characterized as: monodisperse system of spherical crystallites

and lognormal distribution of spherical crystallites.

The participants used from one to three different approa-

ches on a different number of data sets. All considered round-

robin results yielded positive domain size. Most of the results

gave very small positive or negative, or zero values of strain.

The absence of substantial strain was expected for this mate-

rial and is in accord with already published results (Audebrand

et al., 2000). However, some participants reported strains

significantly larger than zero; maximum strain reported was

0.04 (4%), with the average value of 0.004 (9), considering

only the results that reported values of strain larger than zero.

These results were not routinely disqualified unless domain

sizes were clearly incorrect.

Instrumental broadening was taken into account in

different ways, depending on the chosen analytical route. In all

cases, except the ‘fundamental parameter’ (FP) approach

(Cheary & Coelho, 1992), instrumental broadening was

corrected for by using the provided measurements of annealed

ceria sample S2. The FP approach was applied only to the Le

Mans measurements and instrumental parameters were esti-

mated for the particular diffractometer from the provided

details.

5.2. Discussion of round-robin results

To be able to compare the results, an attempt was made to

scale all the reported parameters into groups of results that

are identically defined. As is customary in this field, we

considered two groups of size–strain quantities: apparent

volume-weighted domain size (DV) and the upper limit of

strain (e), which result from integral-breadth and similar

methods of line-broadening analysis (Klug & Alexander,

1974), and apparent area-weighted domain size (DA) and

root-mean-square strain (RMSS), which follow from Fourier

and related techniques (Warren, 1969). Both measures of

domain size represent weighted averages of the average

dimension along the diffraction vector and can be related to

the true crystallite size if both shape and size distribution are

known. Because not all the data sets were analyzed by the

participants, the averages and standard uncertainties reported

here were calculated from a minimum of three to a maximum

of 43 results reported by the participants.

The values for DV and DA are reported in Figs. 4 and 5.

Despite standard uncertainties being relatively large for the

former, all the methods gave results that agree reasonably

well. This is expected for samples without substantial strain

broadening, whereas there are systematic differences given by

different methods for samples with comparable size-broad-

ening and strain-broadening effects (see, for instance, Balzar

& Popović, 1996). However, an indication that the results

should be more carefully assessed is given in Fig. 6, where the

average domain sizes, both volume- and area-weighted, are

plotted for different instruments. The first impression is that

DA values show much less scatter and with a significantly

smaller standard uncertainty, similar to results in Fig. 5. An

inspection of the DV values shows that the results are clus-

tered in two regions: below 250 Å with the mean (226 � 9) Å
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Figure 4
Average apparent volume-weighted domain size for different methods.
The mean is an average over all the results, LL is the Lorentz–Lorentz
integral-breadth method (Klug & Alexander, 1974), LG is the Lorentz
(size)–Gauss (strain) integral-breadth method (Klug & Alexander, 1974),
VV1 is the double-Voigt method following Langford (1980), VV2 is the
double-Voigt method following Balzar (1992), and FP is the ‘fundamental
parameter’ approach (Cheary & Coelho, 1992).

Figure 5
Average apparent area-weighted domain size for different methods. The
mean is an average over all the results, WA is the Warren–Averbach
(1952) method, VV2 is the double-Voigt method following Balzar (1992),
and ‘Special’ includes various results obtained by the Fourier Rietveld
method (Le Bail, 1999) and the single-line Fourier method (Hall &
Somashekar, 1991).



and above 250 Å with a much larger scatter, (390 � 100) Å.

Participants that obtained results in the latter group did not

analyze either NSLS or ESRF synchrotron data, which

explains their smaller standard uncertainty in Fig. 6 (the

means are significantly different only at better than 1%

significance level).

The reason why results for DV are clustered in two separate

groups can be understood in terms of the strain, as some

participants reported strain significantly larger than zero.

Therefore, part of the line broadening was attributed to the

strain effects, which gave larger domain size and systematically

shifted the averages in Fig. 4 toward the larger domain sizes.

Participants using the double-Voigt approaches (VV1 and

VV2 in Fig. 4) did not detect strain, which explains the lower

values for domain size. Another possible reason for discre-

pancy is an oversimplified analytical model for the size-broa-

dened profile; that is, a single Lorentzian function. This is

inherent to Lorentz–Lorentz (LL) and Lorentz–Gauss (LG)

integral-breadth methods (Klug & Alexander, 1974).

However, for strain-free samples, if the observed profile is

fitted with a Voigt (or related) function and the subsequent

analysis is performed according to one of the simplified inte-

gral-breadth methods, the difference between simplified and

double-Voigt methods is minimal.

In Rietveld refinement, the situation is different because it

is up to a user to refine particular parameters. For instance,

most of the participants that obtained a measurable strain

effect did not refine the Gaussian size term, proportional to

1/cos2� [see equation (8a)]. Because there was a significant

Gaussian component to physically broadened line profiles, it

was probably erroneously absorbed into the Gaussian strain

term (proportional to tan2�). This fact suggests caution when

performing Rietveld refinements; although strain and size

Gaussian terms have different angle dependences, the differ-

ence could be compensated by refinement of some other

parameters that strongly correlate with profile parameters, in

particular if the diffraction pattern was collected over a

limited angular range. A recommended procedure to extract

size and strain values by Rietveld refinement is extensively

discussed in x3.3. Another factor that should be considered

when refining size- and strain-related parameters is noise in

the data, which could result in the fictitious strain, as described

by Louër et al. (2002).

Participants that used Fourier methods that yield the DA

reported no significant strain values, which explains the

uniformity of the DA results. However, because some Fourier

methods used a simple Lorentzian model for a size-broadened

profile, it is interesting to note that these results did not give

overestimated values of domain size. This is possible to

understand in the framework of Voigt-function modeling in

the Fourier approach; the DA depends only on a Lorentzian

part of the size-broadened profile (Balzar & Ledbetter, 1993).

6. Summary and conclusions

In summary, we have described the preparation of a ceria

round-robin sample and line-broadening results obtained by

three methods on seven sets of measurements collected with

both laboratory and synchrotron X-rays, and from constant-

wavelength and time-of-flight neutron sources. Furthermore,

we have given an account of the results of the size–strain

round robin on line-broadening analysis methods (sponsored

by the Commission on Powder Diffraction of the International

Union of Crystallography). The ceria round-robin sample has

a relatively small strain; if strain is constrained to zero, all

three methods agree well. The main problem in the line-

broadening analysis seems to be the size–strain separation, for

which different methods yield significantly different results.

The scatter of strain values appears more significant in the

Rietveld analysis, which may indicate possible correlation with

other refinable parameters. All three methods have obvious

limitations and advantages. While a model based on an

accurate physical description of the sample is always preferred

and in this case has shown good results, it has to apply to at

least a majority of grains in a polycrystalline aggregate.

Warren–Averbach (1952) analysis is the least-biased

phenomenological approach, but cannot be applied in cases of

significant peak overlap or large strains that do not follow a

Gaussian distribution, which is difficult to know a priori.

Therefore, Rietveld refinement or a similar full-powder-

pattern method may be the only alternative approach for an

arbitrary sample. However, most Rietveld programs model

line profiles in terms of the simple multiple Voigt functions,

which worked well for the present sample, but should be

generalized to include non-Voigtian line profiles, such as

‘super-Lorentzians’ or possible other shapes.

The size–strain round robin was organized to assess the

accuracy of the determination of size and strain values, as

derived by different methods, using measurements collected at

seven different instruments. The results of diffraction line-

broadening analysis were received from 18 participants and 16

were included in this report. The average apparent domain

sizes, calculated from all the reported values, are as follows:

DV ¼ ð320� 110Þ Å; DA ¼ ð168� 21Þ Å: ð19Þ

An inspection of the Rietveld refinement results has shown

that a significant number of participants did not refine the
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Figure 6
Average apparent volume-weighted and area-weighted domain size for
different instruments. The mean is an average over all the results.



Gaussian domain-size term, which has likely attributed some

of the size-related broadening to other effects. This has, in

effect, increased the average volume-weighted domain size in

equation (19). If only the results obtained without significant

strain broadening are considered, the average values are as

follows:

DV ¼ ð226� 9Þ Å; DA ¼ ð168� 21Þ Å: ð20Þ

In the first part of this paper, domain sizes were calculated

using three approaches: an assumed lognormal size distribu-

tion of spherical crystallites (Popa & Balzar, 2002), the

Warren–Averbach (1952) method, and Rietveld (1969)

refinement. An average of all the results (where the values of

the domain sizes obtained with strain different from zero for

the last two approaches are considered) gives the following

values:

DV ¼ ð231� 5Þ Å; DA ¼ ð179� 5Þ Å ð20Þ

Thus, both the volume-weighted and area-weighted apparent

domain sizes agree within a single standard uncertainty.

Additionally, based on the analysis of the round-robin

results, several observations can be made, as follows.

(i) All the methods used for line-broadening analysis gave

results that fall within a single (largest) standard uncertainty.

This is not likely to be expected in general, but is probably a

consequence of the absence of strain in the round-robin

sample.

(ii) When using Rietveld refinement to obtain size and

strain values, both Lorentzian and Gaussian contributions to

the size-broadening term should be refined. If only the

Lorentzian term is refined, Gaussian size broadening can be

misrepresented as strain broadening or some other correlating

effect, which systematically alters the results for domain size.

For instance, the results show that this change can be quite

large: from 226 Å to 390 Å, which is an increase of 73%!

(iii) The area-weighted domain size, as obtained from

Fourier methods, is less sensitive to this effect because the

resulting domain size does not depend on the Gaussian part in

the Voigtian approximation for the size-broadened profile.
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Cryst. 34, 298–310.

Von Dreele, R. B. (1997). J. Appl. Cryst. 30, 517–525.
Warren, B. E. (1959). Progress in Metal Physics, Vol. 8, edited by B.

Chalmers, & R. King, pp. 147–202. New York: Pergamon Press.
Warren, B. E. (1969). X-ray Diffraction, pp. 251–314. New York:

Addison-Wesley.
Warren, B. E. & Averbach, B. L. (1952). J. Appl. Phys. 23, 497.
Wilkens, M. (1979). J. Appl. Cryst. 12, 119.
Wilson, A. J. C. (1962). X-ray Optics, 2nd ed., p. 40. London:

Methuen.
Wilson, A. J. C. (1963). Mathematical Theory of X-ray Powder

Diffractometry. Eindhoven: Philips.
Young, R. A. & Desai, P. (1989). Arch. Nauk Mater. 10, 71–

90.
Young, R. A., Gerdes, R. J. & Wilson, A. J. C. (1967). Acta Cryst. 22,

155–162.

research papers

924 D. Balzar et al. � Size–strain line-broadening analysis J. Appl. Cryst. (2004). 37, 911–924


