
research papers

874 doi:10.1107/S0021889805026191 J. Appl. Cryst. (2005). 38, 874–887

Journal of

Applied
Crystallography

ISSN 0021-8898

Received 7 March 2005

Accepted 16 August 2005

# 2005 International Union of Crystallography

Printed in Great Britain – all rights reserved

A global multi-technique approach to study low-
resolution solution structures
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Finding the conformation of large macromolecular complexes has become an

important problem in structural biology, which is not always soluble by high-

resolution techniques such as X-ray crystallography and NMR spectroscopy.

Solution biophysical properties can provide direct or indirect structural

information on these large complexes. A general systematic approach to the

construction of a structural model of the macromolecule consistent with all the

experimental solution properties is currently lacking. In this paper, such an

approach is presented, where generalized rigid-body modelling is combined with

a Monte Carlo/simulated-annealing optimization method, to search over a large

range of possible conformations for the structure that best fits solution

experimental properties derived from small-angle scattering, fluorescence

resonance energy transfer and analytical ultracentrifugation.

1. Introduction

Finding the conformation of large multi-protein complexes,

DNA–protein complexes and multi-domain proteins is of

fundamental importance in understanding a large number of

biological problems. High-resolution techniques, such as X-ray

crystallography and nuclear magnetic resonance spectroscopy

(NMR), have produced structures for many of these macro-

molecular complexes. In some cases, however, these techni-

ques fall short. Crystals of large macromolecular complexes

are difficult to obtain, and it may be possible to determine

structures only for segments of the complexes. Crystal packing

effects, especially in large systems, might substantially affect

the architecture of the complex with respect to that in solution

(DePristo et al., 2004). Crystals of a protein in all its relevant

conformations, particularly when one or more states in the

functional pathway exhibit flexibility, are very difficult to

obtain. Similarly, NMR-derived distance information for large

complexes, specifically distances between subunits, is

demanding to generate and consequently scarce. In addition,

flexible or disordered regions may appear to be absent from

the final structure. Such regions may involve receptor binding

motifs, loops involved in the active site or antigenic epitopes,

and might be key to understanding the biological function of

the macromolecule or complex.

Solution techniques, such as fluorescence resonance energy

transfer (FRET) (Stühmeier, Clegg et al., 2000), small-angle

X-ray and neutron scattering (SAXS/SANS) (Feigin &

Svergun, 1987) and analytical ultracentrifugation (AUC)

sedimentation velocity (SV) (Lebowitz et al., 2002) provide

independent direct or indirect structural information on

particulate systems in solution. These techniques are well

established and have been successful in retrieving structural

information on large macromolecular complexes. The struc-

ture of the ribosome was studied using small-angle scattering

(SAS) (Svergun & Nierhaus, 2000), and more recently using

cryo-electron microscopy (c-EM) (Gilbert et al., 2004).

Reconstruction of biologically significant DNA structures,

such as Holliday junctions and DNA bulges, has been achieved

from FRET (Lilley & Clegg, 1993) and SAXS (Nöllmann,

Stark & Byron, 2004) data. Hydrodynamic methods and

computational modelling have been employed to study the

low-resolution conformations of human IgG subclasses by

investigating the relative spatial orientations of their Fab0 and

Fc domains (Carrasco et al., 2001).

Ab initio methods can be used to deduce the low-resolution

conformation of a particle (Stuhrmann, 1970; Chacón et al.,

1998; Svergun, 1999; Svergun et al., 2001; Walther et al., 2000;

Heller et al., 2003) from the SAS profile. Recently, a compu-

tational method was developed to add missing loops and

domains to protein models (Petoukhov et al., 2002). These

restoration methods have been successfully applied to a large

variety of problems (Koch et al., 2003). When an ab initio

reconstruction algorithm is run several times using the same

initial conditions, the outcome is, at best, a family of recon-

structed models with minor/moderate conformational differ-

ences. The reconstructions can be overlapped and averaged,

and the averaged model can be used as a seed for a new

reconstruction (Svergun et al., 2001; Kozin & Svergun, 2001).

In another approach, the family of reconstructed models can

be used to find a consensus model that captures the essential

features of the individual models (Heller et al., 2003). Alter-

natively, SV data have been employed in order to filter out ab

initio reconstructed models that fit the SAXS data but fail to



agree with the experimental sedimentation coefficient (Nöll-

mann, Stark & Byron, 2004) or to gain a greater level of

confidence in the retrieved ab initio models (Scott et al., 2002;

Ackerman et al., 2003; Solovyova et al., 2004). Nonetheless,

when applied to macromolecules with anisometric or hollow

shapes, ab initio reconstruction methods produce a variety of

considerably different reconstructions that fit the SAS data

equally well (false positive reconstructions) (Heller et al.,

2003; Volkov & Svergun, 2003; Rosenzweig et al., 1993).

Provided that the high- or low-resolution structures of the

subunits comprising the quaternary complex are known or can

be modelled, their arrangement can be found by searching for

the quaternary conformations that best fit the SAS experi-

mental data. Variations of this rigid-body modelling approach

have been successfully applied to model SAS data (Aslam et

al., 2003; Feil et al., 2001; Konarev et al., 2001; Vigil et al., 2001).

The use of available structural information has a major

advantage, with respect to ab initio reconstruction methods, in

that the number of false positive reconstructions can be

greatly reduced. NMR residual dipolar coupling data have

been combined with SAXS data to determine the relative

positions of calmodulin (CaM) and trifluoperazine (TFP) in

their complex (Mattinen et al., 2002). The NMR data defined

the relative rotational positioning of the domains within CaM,

whilst the SAXS data defined the molecular envelope of the

system. Docking algorithms were used to generate geome-

trically compatible quaternary structures of purine nucleoside

phosphorylase based on available crystallographic informa-

tion (de Azevedo et al., 2003). The best structural models were

selected by finding the highest correlation between modelled

and experimental SAXS data.

Rigid-body refinement was employed to improve models

for the Azospirillum brasilense glutamate synthase holo-

enzyme based on ab initio reconstructions (Petoukhov et al.,

2003), and to characterize the nonameric assembly of an

Archaeal �-l-fucosidase (Rosano et al., 2004). SAXS and

SANS were used by Aslam and co-workers (Aslam & Perkins,

2001; Aslam et al., 2003) to study the solution structure of

Factor H, composed of 20 short consensus repeat domains, for

which there are high-resolution data available. Molecular

dynamics (MD) simulations were employed to predict the

possible conformations of the linkers in solution, and these

were subsequently used to produce models for the whole

particle. A large number of structures were chosen by fitting,

in the Guinier region, the simulated scattering profiles of the

models to the experimental data, and discarding structures

whose predicted sedimentation coefficients were considerably

different from that determined experimentally. This proce-

dure, however, produced conformations for the whole

macromolecule that were strongly restricted by the structures

of the linkers. The computer program MASSHA (Konarev et

al., 2001) implements an algorithm where quaternary struc-

tures can be graphically generated by the user from high-

resolution models and their SAXS intensity profiles calcu-

lated. In the computer program SASMODEL (Vigil et al.,

2001) the conformation of the macromolecular complex is

modelled by a chain of ellipsoids. In this case, the conforma-

tion that best fits the scattering data is found by using a Monte

Carlo-based method that searches for the values of the Euler

angles between the centres of subsequent ellipsoids.

In the method presented in this paper, a rigid-body

approach is used to generate a large number of possible

macromolecular conformations. Several solution properties

are then predicted in silico for each macromolecular confor-

mation and compared to the experimental data sets. A general

systematic method that searches for the parameters producing

the model whose solution properties best fit the available

experimental data sets is described.

As a model system to validate this methodology, a series of

DNA molecules was chosen comprising three double-stranded

DNA (dsDNA) helical fragments (H16, Hn and H17, with n

being either 9 or 14) with a single-stranded loop of five

deoxyadenosines (A5 bulge) between each dsDNA fragment,

namely H16A5H9A5H17 and H16A5H14A5H17 (Fig. 1). DNA

bulges may arise in natural DNA from recombination between

imperfectly homologous DNA sequences or from errors in

DNA replication. They play an important role in frame-shift

mutagenesis (Stassinopoulos et al., 1996) and in specific

interactions with RNA-binding proteins (Weeks & Crothers,

1991). Amongst other techniques, FRET (Gohlke et al., 1994)

and NMR spectroscopy (Dornberger et al., 1999) have

established that a single A5 bulge introduces a defined kink

into the DNA helical axis of about 90 � 15�. FRET was

employed on DNA structures containing two A5 bulges

(H16A5HnA5H17, with 6 < n < 11) (Stühmeier, Hillisch et al.,

2000), similar to those used in this study, and it was shown that

the distance between DNA ends is shortest in the sample with

n = 9, for which the dsDNA fragments H16 and H17 were

proposed to be coplanar. In this paper, the new modelling

method will be validated by restoring, from simulated SAXS,

SV and FRET data sets, the modelled low-resolution struc-

tures of two bulged DNA samples with very distinct confor-

mations.

The paper is organized as follows. x2 describes in some

detail the computational algorithms and approximations

employed. The results section (x4) is devoted to the evaluation

of the algorithm in restoring low-resolution structures from

simulated data sets.

2. Computational methodology

The macromolecule or macromolecular complex is firstly

divided into a number of structural domains. These domains

are then combined by using a small number of parameters,

such as interdomain distances and angles, in order to generate

a large number of macromolecular conformations. The solu-

tion properties, such as SAS profiles, FRET distances and

sedimentation coefficient, are then predicted in silico for each

macromolecular conformation and compared with the

experimental data sets. A function that measures the discre-

pancy between simulated and experimental data sets is

calculated for each set of values of the parameters defining

each macromolecular conformation. A general systematic

method that searches for the parameters producing the model
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whose solution properties best globally fit the available

experimental data sets is used.

2.1. Construction of the generalized rigid-body model

A general method for generating macromolecular confor-

mations from the structures of individual domains, applicable

to a large number of problems, was devised. The conformation

of the macromolecule is generated from the structural data

available, experimentally derived or computationally

modelled atomic or low-resolution structures, for each of the

ND individual domains comprising the macromolecule. The

possible conformations that the macromolecule can take are

constrained by the definition of the movements of each

domain. The allowed movements of each domain have two

components: rotations with respect to its centre of mass (CM),

and translations and rotations of its CM.

The transformation from any given Cartesian coordinate

system to another can be carried out by three successive

rotations in a specific sequence, defined by the Euler angles,

the choice of which is, within limits, arbitrary. The convention

employed here is that used in celestial and applied mechanics,

and molecular and solid-state physics (Goldstein, 1980). The

sequence of rotations begins with a rotation of the initial

coordinate system xyz by an angle ’ counterclockwise about

the z axis. Secondly, a counterclockwise rotation, by an angle

�, about the intermediate x axis is performed. The transfor-

mation ends with a counterclockwise rotation by an angle �
about the z0 axis, resulting in the new system of coordinates

x0y0z0. The three Euler angles ’, � and � represent the three

required generalized coordinates specifying the orientation of

the x0y0z0 system relative to xyz.

The rotations of a domain i around its CM in a system of

coordinates x0iy
0
iz
0
i are defined by using the Euler angles �i, �i

and �i. The movement of the CM of domain i is specified in a

similar manner. A new coordinate system x00i y00i z00i is defined by

the rotations specified by a given set of Euler angles. The CM

is then translated in the direction of y00i a distance ri, and

research papers
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Figure 1
(A) Primary structure of the bulged DNA samples used in this study (blg9 and blg14). (B) Schematic representation of the parameters employed in the
simulations. The helix axes are used as reference lines to define the angles between domains. (C), (D) Surface representations of the blg9 and blg14
structures generated in silico.



arbitrarily rotated in the new coordinate system by using the

spherical angles �i and �i (rotations around x00i and z00i ). The

assignment of the ranges of variation of ’r
i , �

r
i , �

r
i , ri, �i and

�i complete the definition of the allowed movements for

domain i.

This process is repeated for each domain i = 1 . . . ND.

Therefore, this set of 6 � (ND � 1) parameters

r � ð�1; �1; �1; . . .Þ defines a particular configuration of the

macromolecule, for which a point in configurational space can

be assigned.

2.2. Computation of SAXS/SANS intensities

SAXS intensities were calculated from the atomic coordi-

nate files of the structural model of a particular configuration

by using the computer program CRYSOL (Svergun et al.,

1995), which evaluates the solution scattering [I(s)] of the

given structure taking into account the scattering of the

particle in vacuo, and additionally, the scattering from the

excluded volume and the hydration layer around the particle.

CRYSOL also fits the experimental scattering [Ie(si)] curve to

the simulated one [I(s)] using the average displaced solvent

volume and the contrast of the hydration layer as variable

parameters. The function �X provides a measure of the

discrepancy between simulated and experimental scattering

curves, and is defined as

�2
X ¼

1

Np

XNp

i¼1

IeðsiÞ � cIðsiÞ

�ðsiÞ

� �2

; ð1Þ

where Np is the number of experimental points in the scat-

tering curve, �ðsiÞ are the experimental errors and c is a scale

factor (Svergun et al., 1995). SANS intensities can be calcu-

lated in a similar manner, by employing the computer program

CRYSON (Svergun et al., 1998). In this case, a function �N

measuring the discrepancy between simulated and experi-

mental neutron scattering curves can be defined as for �X.

2.3. Computation of FRET distances

In a FRET experiment, the positions of donor and acceptor

molecules are usually not unique. At least one dye (or

sometimes both) shows a distribution of positions with respect

to its attachment point. Molecular dynamics (MD) simulations

can be employed to find these distributions (Stühmeier, Clegg

et al., 2000), and to estimate from them an average dye posi-

tion, referred to as the singular position. The experimentally

determined FRET efficiency is employed to calculate the

apparent singular distance between donor and acceptor,

which, when combined with the MD simulations, can be used

to estimate the distance between the attachment points of

both dye molecules (referred to as d). For each given config-

uration of the macromolecule, d is calculated and compared

with the experimental value. FRET distances correspond to a

particular case of distance constraints, which could actually be

derived from other sources, such as SAS or biochemical

methods. Hereafter, we will refer throughout this paper to

FRET distances, assuming that distance constraints from other

methods could be employed similarly.

2.4. Computation of the sedimentation coefficient

The sedimentation coefficient of the macromolecule was

calculated by using the computer program HYDRO (Garcı́a

de la Torre et al., 1994). Firstly, a low-resolution bead model of

the structure of each domain comprising the macromolecule

was produced by using a modified version of the AtoB algo-

rithm (Byron, 1997), implemented in the computer program

newAtoB (available from the correspondence author upon

request). The AtoB program (Byron, 1997) can be used to grid

the structure of a macromolecule into a cubic lattice, thus

producing a so-called bead model. newAtoB was specifically

developed to reduce the resolution of atomic-resolution

models when performing hydrodynamic calculations. In this

implementation, a cubic lattice of grid spacing dx was gener-

ated, and the centre of mass (CM) of the structure was placed

at the origin of coordinates. The coordinates of each atom t (rt)

were used to determine which voxel (i, j, k) in the lattice it

occupied. The resolution of the model was reduced by placing

a single bead for each occupied voxel (i, j, k). The coordinates

of the bead were calculated from the CM of the atoms that it

replaced. Similarly, each bead radius was estimated so that its

volume was identical to the total volume of the atoms in the

voxel. In order to take into account hydration effects, the

coordinates and radii of the beads can be modified using two

approaches. One approach is to expand the structure by using

the rule r = A � rt, where A is the outward translation matrix, a

matrix with real eigenvalues �i > 1, and to modify the radii of

the beads in order to eliminate bead overlaps and voids in an

asynchronous manner. In the case of isotropic expansions, A

reduces to A = �I, where I is the identity matrix and � is the

outward translation coefficient (� > 1). In the case of elon-

gated shapes, such as rods or cylinders, the hydration can be

modelled by a matrix A with nonequal eigenvalues repre-

senting an anisotropic expansion. An alternative approach is

used by the program SOMO (Rai et al., 2005), which is

particularly well suited for the hydration of asymmetric

biomacromolecules. The Trans algorithm within SOMO

reduces the resolution of an atomic model by placing beads

only at centres of main and side chains, and takes into account

the hydration by differentially expanding the surface bead

radii by an amount that depends on the bead charge. In the

present study, all the molecules were isotropically expanded

using the first approach.

The output of newAtoB is in both BEAMS (Spotorno et al.,

1997) and HYDRO (Garcı́a de la Torre et al., 1994) formats. In

this study, only HYDRO was employed to calculate the

hydrodynamic parameters of reduced models. The value of �
was estimated as follows: (i) the sedimentation coefficient of

the original domain structure was calculated by using the

computer program HYDROPRO (Garcı́a de la Torre et al.,

2000), which can be used to model macromolecular hydration;

(ii) the computer program HYDRO was then used to calculate

the sedimentation coefficient of the bead model produced

with newAtoB; (iii) the value of � was then modified and the

process from (ii) restarted, until the sedimentation coefficient

calculated from the bead model equalled that of the original
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atomic-resolution structure as calculated with HYDROPRO.

Only values of � that produced typical values for hydration

(0.3–0.4 g water per g macromolecule) were accepted

(Tanford, 1961; Garcı́a de la Torre, 2001). When available,

experimental sedimentation coefficients can be used instead of

those obtained from HYDROPRO.

2.5. Estimation of steric clashes

Configurations causing steric clashes between the

comprising domains were discarded. Domain volumes were

calculated either from bead models or atomic-resolution

structures by the routine PDB2volume, based on an algorithm

similar to that used to estimate the Gaussian electron density

in a cubic lattice and then estimate the macromolecular

volume by adding the volumes of the occupied voxels (Lee &

Richards, 1971; Gerstein, 1992). The maximum total volume

(Vmax) of the macromolecule was estimated as the sum of the

volumes of each domain. The volume of a particular config-

uration (V) was calculated using the same algorithm, and was

accepted if V � �Vmax, where � is the overlap threshold

coefficient, usually set at a value of 0.95.

2.6. Search for the best configuration

The Monte Carlo simulated-annealing method (MC/SA)

(Kirkpatrick et al., 1983) has been widely used in statistical

physics (Landau & Binder, 2000) to locate a global minimum

in a rugged landscape containing many local minima. The

method can be summarized as follows: (i) a random point r0 in

configurational space (space defined by the parameters) is

chosen, and a quantity E(r0) (energy or scoring function) is

calculated from the values of the parameters; (ii) a random

modification in one random parameter is introduced and the

new energy E(r1) is calculated; (iii) the change is accepted with

a Boltzmann probability factor exp{�[E(r1) � E(r0)]/T},

where T is the ‘temperature’. The temperature T represents

the ‘thermal energy’. T has energy units, which do not corre-

spond to real but rather to arbitrary units. Note that the

change is always accepted if E(r1) < E(r0), but it might still be

accepted even if E1 > E0, depending on the value of the

temperature T; (iv) the process is repeated by restarting from

step (iii) for a large number of steps Nsteps, after which the

temperature of the system is decreased by a factor �, so that

Tnew = �Told (with 0 < � < 1), and the whole process is

restarted from (i). The first configuration at this new

temperature Tnew is taken from the best configuration found at

the previous temperature Told.

The computation is started at an initial temperature T0 and

stopped when the system reaches a predefined minimum

temperature TF, where no further decrease in energy is

registered. It is worth noting that T0, TF and � are related by

the relation �Na = TF/T0, where Na is the total number of

temperature updates in a given computation.

The energy E is a function of all the parameters char-

acteristic of a given configuration and decreases as the fit to

the available experimental solution properties improves. The

functions �X and �N [equation (1)] provide a measure of

discrepancy between simulated and experimental SAXS/

SANS curves. For the sedimentation coefficient so
w;20, an

experimental variable with only one value, the measure of

discrepancy between experimental (sE
w;20) and simulated (sS

w;20)

values can be defined as

�s ¼
sE

w;20 � sS
w;20

�s

����
����; ð2Þ

where �s is the experimental error in sE
w;20. An identical

expression can be used for the definition of the measure of

discrepancy between experimental and simulated FRET d

values. These measures of discrepancy between experimental

and simulated data can be simultaneously combined in a single

expression defining the total energy, as follows:

EðrÞ ¼ 	X�XðrÞ þ 	N�NðrÞ þ 	F�d þ 	SV�s; ð3Þ

where 	X, 	N, 	F, 	SV are user-defined penalties for each

technique (SAXS, SANS, FRET and SV, respectively), the

determination of which is described below. In this way, the

configuration that globally satisfies all the available experi-

mental data sets can be found by minimizing the total energy

E(r) as a function of the parameters r.

At high temperatures, the configurational space is effec-

tively explored in the ranges available to each variable. Even if

they do not produce acceptable fits to the experimental data, a

large number of different configurations for the quaternary

structure are investigated in this regime. At intermediate

temperatures T, the system will still be able to climb energy

barriers smaller than T, but will tend to be localized in regions

of low energy. Only configurations with reasonable fits to the

experimental data are allowed, but the system is still exploring

all the accessible regions of low energy. At the lowest

temperatures, only moves that reduce the energy are accepted,

and so the system can only descend on the energy landscape.

Provided that TF is low enough so that no change in E(r) is

observed, and the annealing is sufficiently slow, the config-

uration with the best fit to the experimental data is found.

Ideally, each different technique should be equally impor-

tant in determining the final configuration. In other words,

each separate term contributing to the total energy in equa-

tion (3) should take, on average, similar numerical values

when the algorithm explores the phase space at the highest

temperature T0. In practical terms, this implies that the 	i can

be determined so that, for all i, 	i �maxðj�ijÞ ’ 1, where

maxðÞ is a function that calculates the maximum value taken

by j�ij at temperature T0. The values of the penalties 	i are

chosen so that, when simultaneously employing several data

sets, the fluctuations in the values of each variable (see below)

have a similar temperature evolution. This thwarted the

domination of a single data set in driving the convergence to a

minimum that satisfied only itself, and not the other data sets.

The information content of a scattering experiment is larger

(10–15 times) than that of a FRET or a SV experiment. This

was not taken into account when normalizing the penalties in

the energy function, as it would have favoured one technique

over the others to the point at which the search in config-

uration space would have not been a global search, but rather
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a search for the configuration that best fitted the scattering

experiment. These normalizations avoided the domination of

one technique over the others in approaching the global

minimum, and thus optimized the global search procedure.

2.7. Parameter and configuration likelihood estimators

For any individual simulation i, the optimum value of any

given parameter rj is determined by its value rj,i(TF) at the

lowest temperature TF. A family of simulations is a set of Nr

simulations performed under the same conditions but with

random starting values for the Np parameters. By generating a

histogram of the final parameters rj obtained in each family of

simulations, it is possible to infer whether the reconstruction

process produces a unique solution or there are different

families of solutions that simultaneously fit all data sets. In the

first case, the average value of each parameter rj was calcu-

lated from the final values of each individual run as

hrF
j i ¼

1

Nr

XNr

i¼1

rj;iðTFÞ: ð4Þ

In addition, for each family of simulations, the uncertainty 
rj

in the value of a parameter rj was calculated as


rj
¼

1

Nr

XNr

i¼1

rj;iðTFÞ � hr
F
j i

� �2

( )
: ð5Þ

A family of simulations produces a set of Nr final configura-

tions rF
k (k = 1 . . . Nr). In order to measure the dispersion of a

group of configurations around a given fixed configuration R,

a function F was defined as

FðrF
Þ ¼

1

Nr Np

XNr

i¼1

XNp

j¼1

rF
i;j � Rj

� �2
; ð6Þ

where Np is the total number of parameters, rF
i;j is the final

value of parameter j in run i, and Rj is the value of parameter j

in configuration R. The lower the F value, the closer the Nr

final configurations are to configuration R. If the data sets

used to run the simulations were generated from a given

configuration R, the success of a family of simulations in

retrieving that configuration can be measured by calculating

its F value.

In the case of a family of simulations producing different

solutions that fit the data sets but that do not represent the

same shape, the employment of an objective clustering tech-

nique, such as self-organizing neural networks (Kohonen,

1989), in order to sort the solutions into different clusters is

needed. For each family, the approach suggested in equations

(4)–(6) can be used to estimate the accuracy of the parameters

and the F value. This same approach could also be employed

to identify the characteristics of the families of solutions that

often arise from a set of ab initio restorations, and its imple-

mentation is beyond the scope of the present study.

The mean value [hrj;iðTÞi] and standard deviation [
rj;i
ðTÞ]

of the set of values taken by each parameter rj in accepted

configurations during a particular run i were calculated as a

function of temperature. The temperature evolution of the

standard deviation of the parameters was used to analyse the

transition from configurational space exploration to localiza-

tion (see below).

3. Availability and running times

The routines described in this paper were implemented in the

computer program rayuela. All described computer programs

were written in the C programming language and are available

as precompiled binaries for Intel Linux from the correspon-

dence author upon request. A run of the program rayuela on

the presented examples, using simultaneously SV, FRET and

SAXS data sets, with Nr = 1500 and Na = 10, on a 2 GHz Intel

Linux PC, takes approximately 4 h. This running time

increases for larger macromolecules, mainly as a result of the

increased simulation time for calculating the hydrodynamic

and scattering properties. This time can be reduced, however,

by lowering the resolution of the HYDRO model (by

increasing the grid size in newAtoB), and by decreasing the

smax for CRYSOL/CRYSON simulations. Reasonable running

times can be thus assured even for large macromolecular

complexes.

3.1. Construction of in silico models

For the construction of blg9 (see x4 and Fig. 1C), the helical

axis of domain 2 was set parallel to z002, and its centre of mass

(CM) placed at the origin of the x002y002z002 coordinate system

(Fig. 1B). Initially, the helical axis of domain 1 was set parallel

to z001, and its CM placed at the origin of coordinates of x002y002z002.

Domain 1 was then rotated by an angle�90� in the x002 axis, and

its CM translated to (0, 33 Å, �22 Å) in the x002y002z002 coordinate

system. The helical axis of domain 3 was initially set parallel to

z001 , and its CM placed at the origin of coordinates of x002y002z002.

Domain 3 was then rotated by an angle 90� in the x002 axis, and

its CM translated to (0, 35 Å, 25 Å) in the x002y002z002 coordinate

system.

For the construction of blg14 (see x4 and Fig. 1D), domain 2

and the initial positions and orientations of domains 1 and 3

were as for blg9. Domain 1 was placed at its final position by a

rotation by an angle�90� in the x002 axis, and a translation of its

CM to (0, 33 Å, �33 Å) in the x002y002z002 coordinate system.

Domain 3 was placed at its final position by a rotation by an

angle 90� in the x002 axis, and a translation of its CM to (0, 33 Å,

32 Å) in the x002y002z002 coordinate system.

4. Results

4.1. Simulated data sets

The methodology developed in this paper was tested on two

bulged DNA structures, H16A5H9A5H17 (referred to as blg9)

and H16A5H14A5H17 (also referred to as blg14) (Fig. 1A),

where Hx refers to dsDNA with x base-pairs, A5 is a single

stranded loop of five nucleotides, and n is the number of base-

pairs in the central dsDNA fragment between the bulges. The

sequence of blg9 was identical to that used in a previous study
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(Stühmeier, Hillisch et al., 2000). The possible conformations

of the bulges were modelled by combining three dsDNA

fragments of appropriate sizes (16, 9 and 17 bp for blg9, and

16, 14 and 17 bp for blg14) as shown in Fig. 1. These fragments

are hereafter referred to as domains 1, 2 and 3. The Euler

angles � and � for domains 1 and 3 were employed to model all

the possible conformations of the bulges, while domain 2 was

kept fixed aligned with the z001 axis (see Fig. 1B). Additional

variables were not necessary for modelling the possible

conformations of these molecules. The in silico structures of

blg9 and blg14 were generated by using the angles (�1, �1, �3,

�3) = (0�, 0�, 0�, 0�) and (�1, �1, �3, �3) = (0�, 0�, 180�, 0�),

respectively (see x2 and Figs. 1C and 1D). The use of these

parameters was based on the NMR spectroscopy and FRET

data available for DNA fragments containing one (Gohlke et

al., 1994; Dornberger et al., 1999) or two (Stühmeier, Hillisch

et al., 2000) A5 bulges. The SV, SAXS and FRET data were

simulated from the structures of blg9 and blg14 DNA

produced in silico.

Sedimentation coefficients were simulated from the in silico

structures by using the computer program HYDROPRO. The

simulated sedimentation coefficients for the blg9 and blg14

structures were 3.36 and 3.32 S (1 S = 10�13 s) (data sets SV9

and SV14, respectively).

The SAXS intensity profiles were similarly predicted from

the in silico structures of blg9 and blg14 by using the computer

program CRYSOL (data sets SAXS9 and SAXS14, Fig. 2A).

Different levels of white noise (noise whose frequency spec-

trum is constant) were added to the original simulated curve

for blg9 (SAXS9), in order to evaluate the robustness of the

method (data sets SAXS920 and SAXS940, Fig. 2B).

Finally, FRET distances were calculated from in silico

structures of blg9 and blg14 by measuring the distance

between atom 480 in domain 1 and atom 558 in domain 3, both

situated at the ends of the DNA fragments near the axis of the

double helix. The average distances measured were 48 (5) Å

for blg9 (data set FRET9) and 135 (10) Å for blg14 (data set

FRET14). The average distance for blg14 (135 Å) is outside

the present FRET experimental range of accessibility, but

other means, such as SAS (e.g. DMAX) or microscopical

(atomic force or electron microscopy) methods could be used

for its experimental determination. In the case of blg9, the

proposed distance between the ends of domains 1 and 3 agrees

with that reported in a previous study (53.7 Å) (Stühmeier,

Hillisch et al., 2000).

4.2. Method validation

The structures of both blg9 and blg14 were reconstructed by

using different combinations of the data sets and the

methodology described above. In all simulations, the ranges of

variations of the angular parameters were as follows: 0 < �1 <

180�, 0 < �1 < 360�, 180 < �3 < 360� and 0 < �3 < 360�. Different

combinations of the parameters give rise, however, to effec-

tively the same low-resolution structure [for instance (�1, �1,

�3, �3) = (0�, 0�, 0�, 0�) and (0�, 90�, 0�, 90�)]. For this reason, in

order to compare results from different runs, the four afore-

mentioned parameters were reduced to only three parameters:

 12 = � sinð�1Þ representing the angle between domains 1 and

2,  23 = � sinð�3Þ the angle between domains 2 and 3, and

finally

 13 ¼ a cos½cosð�1Þ cosð�1Þ cosð�3Þ cosð�3Þ

þ cosð�1Þ sinð�1Þ cosð�3Þ sinð�3Þ

þ sinð�1Þ sinð�3Þ	;

which is the angle between domains 1 and 3, in a plane

containing their helical axes (Fig. 1B). Using this convention,

blg9 is defined by the angles ( 9
12,  9

23,  9
13) = (90�, 90�, 0�),

whereas blg14 is defined by the angles ( 14
12,  14

23,  14
13) = (90�,

90�, 180�) (see Figs. 1C and 1D). It is worth noting that two

enantiomorphic conformations would have the same values of

 12,  23 and  13.

Families of simulations using only one of the available data

sets were performed. In addition, other families of simulations

employing both SAXS and SV, SAXS and FRET, or SV,

FRET and SAXS data were made. The settings utilized for the

simulations are shown in Table 1. Comparison of these simu-
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Figure 2
(A) Simulated SAXS data for blg9 (data set SAXS9, crosses, solid line)
and blg14 (data set SAXS14, open circles, dashed line). (B) Simulated
SAXS data for blg9 with 0 (data set SAXS9, solid line), 2000% (data set
SAXS920, filled boxes) and 4000% (data set SAXS940, open circles) added
noise. Solid/dashed vertical lines represent error bars.



lations was used to evaluate the advantages of using this multi-

technique global modelling approach.

In all simulations, the annealing was performed by using at

least ten temperature update cycles (Na = 10). The corre-

sponding temperature update factor � was calculated from T0,

TF and Na as described above (x2). At each temperature,

Nsteps = 1500 configurations were evaluated.

The rejection probability factor was defined as the number

of rejected configurations over the total number of config-

urations evaluated at each temperature. As the annealing

process evolves, and the temperature decreases, the rejection

probability increased from 0, at the highest temperature, to 1

at the lowest (data not shown). This evolution reflects the fact

that, as the temperature decreases, the chance of a config-

uration with high energy being accepted decreases. The

evolution of the values taken by the parameters �1, �1, �3 and

�3 also exhibited this trend.1

The values of the variables, such as �X, d and sw;20, also

evolve with temperature. At high temperatures, the variables

explore a wide range of values, limited only by the allowed

configurations. For instance, at T = 2.0, the sedimentation

coefficient sw;20 varies between 2.9 S and 3.35 S, and thus takes

all accessible values given the ranges of variation of the

different parameters defining a configuration (Fig. 3B). The

fluctuations in the variables, and thus their standard devia-

tions, diminish with decreasing temperatures, and take their

final values once the minimum energy configuration has been

found. This behaviour in the temperature evolution is

observed for all variables (Figs. 3A–3C).

The effectiveness of each individual technique to retrieve

the original parameters giving rise to the two bulged DNA

structures, blg9 and blg14, was first evaluated. The F value

(defined in x2, the R configuration being here the configura-

tion defined by the parameters generating the in silico struc-

tures of blg9 and blg14) provides a measure of the

effectiveness of a family of simulations in retrieving the

original configuration. In all cases, the structure of blg9 was

properly reconstructed (Table 2). Simulations employing only
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Figure 3
Values of (A) �X , (B) sw;20, and (C) d as a function of the annealing
temperature for a single run in the (A) S9-X, (B) S9-H and (C) S9-F
family of simulations. Vertical bars represent the standard deviation of
the values taken by each variable at a fixed annealing temperature,
whereas dashed lines indicate their limits of variation.

Table 1
Settings employed for the different simulation families (see text for a full explanation of the column headings).

Identifier Data set Nr T0 TF 	SV 	F 	X

S9-H SV9 12 2.0 0.004 1 0 0
S9-F FRET9 10 2.0 0.004 0 1 0
S9-X SAXS9 10 2.0 0.004 0 0 1
S9-X-20 SAXS920 10 2.0 0.004 0 0 1
S9-X-40 SAXS40 10 2.0 0.004 0 0 1
S9-HX-0 SV9, SAXS9 10 6.0 0.0001 1 0 6
S9-HXF-0 SV9, SAXS9, FRET9 10 6.0 0.01 1 0.1 10
S9-HXF-20 SV9, SAXS920, FRET9 10 2.0 0.004 1 1 6
S14-H SV14 10 2.0 0.004 1 0 0
S14-F FRET14 10 2.0 0.004 0 1 0
S14-X SAXS14 10 2.0 0.004 0 0 1
S14-HXF SV14, SAXS14, FRET14 10 6.0 0.004 1 0.1 10

1 Supplementary data are available from the IUCr electronic archives
(Reference: HI5568). Services for accessing these data are described at the
back of the journal.



the SV9 data set (S9-H) were sufficient to obtain structures

that resembled, at low-resolution, the structure of blg9

generated in silico (Figs. 4A–4C, dotted lines, and S9-H in

Table 2). This occurred also when only the FRET9 or the

SAXS9 data sets (S9-F, S9-X) were employed separately. In

the case of the FRET9 data set, the final parameters also

agreed with the parameters of blg9, but with a lower F value

and lower uncertainties (Figs. 4A–4C, solid lines, and S9-F in

Table 2). Finally, the final parameters obtained by using the

SAXS9 data set had the lowest F value and uncertainties

(Figs. 4A–4C, dashed lines, and S9-X in Table 2).

The combination of two techniques not only reduced the

uncertainties of the final parameters but also decreased the F

values (Figs. 4D–4F, dashed and dotted lines, and S9-HX in

Table 2). This trend was even more pronounced when three

data sets, SV9, SAXS9 and FRET9, were employed in the

reconstruction process (S9-HXF in Table 2, and Figs. 4D–4F,

solid lines, and Fig. 6A). With combination of techniques, the

configuration with minimum energy was found in a smaller

number of annealing cycles (data not shown). The user-

defined penalties (Table 1) were chosen in order to optimize

the search process by avoiding the domination of any single

technique in the process leading to finding the global

minimum in parameter space.

The robustness of the reconstruction method in retrieving

the original parameters was evaluated by applying different

levels of noise to the simulated scattering data. As expected,

not only the difference between retrieved and original para-

meters (resulting in higher F values) but also the parameter

uncertainties augmented with increasing noise levels and the

inclusion of more data sets improved the reconstruction

process (see Table 3). Even with large noise levels, the

reconstruction process was successful in retrieving the in silico

structures of blg9 and blg14 (see superpositions of in silico and

reconstructed structures in Figs. 6B and 6C). This demon-

strates the robustness of the method with respect to the

introduction of high levels of noise in the data sets.

Several families of simulations were performed by using

different combinations of the blg14 simulated and data sets.

The reconstructions performed using only the FRET14 data

set could not retrieve the original parameters (S14-F, Table 4,

Fig. 5, dashed lines). A similar failure was observed when the

SV14 data set was used alone (S14-H, Table 4, Fig. 5, dotted

lines). These failures are reflected in large F values. Without

any other constraint, there were far too many conformations

for blg14 having an end-to-end distance of 135 Å, or a sedi-

mentation coefficient of 3.32 S, resulting in different runs

producing very different final values for the parameters. This

represented a typical case where the energy space defined by

the data sets is degenerate (contains several minima), resulting

in many conformations that fit the data sets equally well.

On the contrary, when using only the SAXS14 data set, the

retrieved parameters converged towards the original ones.

This is reflected by a dramatic reduction in the F value (S14-X,

Table 4, Fig. 5). When simultaneously using the SAXS14,

FRET14 and SV14 data sets, there was only a marginal

improvement in the F value and in the parameter uncertainties
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Table 2
Final parameter statistics for S9 runs using the blg9 structure.

Identifier  F
12 (�)  F

23 (�)  F
13 (�) F

In silico 90 90 0
S9-H 91.4 (18) 88.8 (18) 7.0 (7) 5.8
S9-F 90.2 (3) 89.7 (45) 4.3 (32) 2.7
S9-X 90.2 (14) 89.7 (23) 2.5 (19) 1.85
S9-HX 90.1 (1) 89.8 (15) 1.4 (8) 0.93
S9-HXF 90.09 (9) 89.8 (15) 0.89 (5) 0.63

Table 3
Final parameter statistics for simulations of blg9 with different noise
levels.

Identifier  F
12 (�)  F

23 (�)  F
13 (�) F

In silico 90 90 0
S9-X 90.2 (14) 89.7 (23) 2.5 (19) 1.85
S9-X-20 90.9 (8) 89.4 (6) 5.5 (39) 3.76
S9-X-40 91.2 (13) 89.1 (15) 7.9 (42) 5.3
S9-HXF-20 90.3 (2) 89.9 (14) 2.6 (16) 1.74

Figure 4
Final values of the parameters in different runs of simulations for blg9.
(A)–(C) Angles  12,  23 and 13 for S9-H (dotted line, crosses), S9-F
(solid line, filled boxes) and S9-X (dashed line, open circles). (D)–(F)
Angles  12,  23 and  13 for S9-HX-0 (dotted line, crosses), S9-HXF-0
(solid line, filled boxes). Note that the y-axis ranges in (D)–(F) are smaller
than those in (A)–(C).



(S14-HXF, Table 4, Fig. 5). This, again, confirmed the existence

of many conformations of blg14 that equally fit the FRET14

and SV14 data sets. Apart from a systematic deviation in the

final value of  13 with respect to that in the in silico structure,

the reconstruction process of blg14 was successful (Fig. 6D).

5. Discussion

In this paper, a general methodology that can be used to

reconstruct the low-resolution solution structure of a macro-

molecular complex from several sources of experimental data

has been presented. The macromolecule is first divided into

domains for which structural data are available. The domains

are combined by using a small number of parameters to

produce a hypothetical conformation of the macromolecule.

The algorithm reconstructs the low-resolution shape of the

macromolecule by finding the relative positioning of each

domain so that a number of solution properties (SAXS/SANS

profiles, SV and FRET data) are simultaneously satisfied. The

assembly of the structure of the macromolecule in terms of its

domains has been implemented in a generalized manner, so

that the methodology can be applied to a large variety of

problems. The MC/SA algorithm employed to search for the

best conformation is easily scalable to problems with large

numbers of domains. The procedure was validated against two

bulged DNA samples with very different overall conforma-

tions. The conformations of blg9 and blg14 were generated in

silico from previous data (Gohlke et al., 1994; Dornberger et

al., 1999; Stühmeier, Hillisch et al., 2000) by using two sets of

values for the parameters (see x3). SAXS, SV and FRET data

were simulated from these in silico structures. The method-

ology was tested by using different combinations of the SAXS,

FRET and SV data sets to restore the original in silico struc-

tures of the macromolecules.

The use of data sets simulated from in silico structures

allowed a direct quantification of the effectiveness of the

reconstruction process. The reconstructed models were

directly compared with the in silico structures, and any

discrepancy was unambiguously attributed to the reconstruc-

tion process rather than to other causes that ultimately lead to

differences between experimental and simulated data sets,

such as differences between solution and crystallography

structures, systematic errors in the experimental data sets, or

problems in the prediction of experimental properties.

In the majority of cases, each individual data set, when used

separately, was able to restore the original parameters. The

combination of more than one data set was shown to produce

better restorations, in that the final restored parameters were

more similar to those used for the in silico simulation of the

original structures of the bulges (lower F values). The uncer-

tainties in the values of the parameters in the final recon-

structions were shown to diminish as more data sets were used

for the restoration process. The introduction of noise in the

original data sets produced similar restored parameters, but

with higher F values and uncertainties. All in all, the method

was able to restore the original in silico structures even
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Table 4
Final parameter statistics for simulations using blg14.

Identifier  F
12 (�)  F

23 (�)  F
13 (�) F

In silico 90 90 180
S14-H 70 (40) 96 (6) 81 (7) 66
S14-F 123 (29) 56 (23) 85 (9) 65
S14-X 91.7 (6) 88.8 (7) 158.9 (13) 12.4
S14-HXF 91.6 (7) 88.5 (13) 159.7 (27) 11

Figure 5
Final results for simulations of blg14. (A)–(C) Angles  12,  23 and  13 for
S14-F (dashed line, open circles), S14-H (dotted line, open boxes), S14-X
(solid line, filled boxes), and S14-HXF (dashed line, crosses).



when a considerable amount of noise was introduced into the

data sets.

In most, but not all cases, the use of multiple data sets

considerably improved the restored parameters. The ability

simultaneously to fit multiple data sets generally resulted in a

reduction of the parameter uncertainties and a decrease in the

F values (improved restored parameters). The implemented

methodology provides a single integrated framework for

finding solution conformations that would potentially fit any

individual data set. The user-defined penalties in the energy

function were chosen in order to thwart the domination of any

single technique over the search process. This improved the

result as it avoided energy minima that satisfied only one

technique, and thus allowed the simulated annealing search

procedure to find the minimum that simultaneously fitted all

the given data sets. In cases where the available data sets,

when fitted individually, predict several possible models for

the conformation of the macromolecule, the global modelling

approach implemented in this algorithm allows one to find the

model(s) that simultaneously satisfies all the data sets. A single

model that fits, at the same time, a range of data sets is more

likely to represent the real conformation of the macro-

molecule in solution. In some circumstances, the values for the

parameters predicted by different data sets might be contra-

dictory. In such cases, it is very important to be able to fit the

data sets individually and to manually compare the results

provided by each data set.

In this study, a reduced number of parameters was

employed to describe the possible conformations of the two

test cases. However, the algorithm presented was designed so

that it can be applied, without substantial changes, to larger

macromolecular complexes where more variables are neces-

sary in order to describe their possible conformations. In such

cases, the computing time in the simulation of hydrodynamic

parameters can be reduced by lowering the resolution of the

HYDRO model, by increasing the grid size in newAtoB.

Similarly, the scattering curve of a large macromolecule will

decay more abruptly (increased Rg) than that of a smaller one,

the important structural information needed to reconstruct its

shape being shifted to smaller s values. In this case, the settings

in CRYSOL can be modified by using a shorter smax. The

computation of distance constraints would not be affected by

the size of the macromolecule under study. These proposed

changes would reduce the computation time per iteration and

thus allow for a reconstruction to be carried out in a reason-

able time, at the expense of the resolution of the final restored

model. This reduction in resolution with macromolecular size

also occurs with ab initio shape reconstruction methods.

The approach proposed in this manuscript has been

successfully applied to the reconstruction of a protein–DNA

complex and a protein macromolecular complex. The low-

resolution structure of the complex formed by four Tn3

resolvase subunits and two DNA fragments was previously

deduced from experimental small-angle neutron and X-ray

scattering data (Nöllmann, He et al., 2004). The same low-

resolution structure was reconstructed using the algorithm

proposed in this manuscript on the available SAXS/SANS

experimental data set. Recently, the algorithm has also been

used successfully to reconstruct the low-resolution confor-

mation of proteins that are part of the human pyruvate

dehydrogenase complex, dihydrolipoamide dehydrogenase

(E3) and E3 binding protein (Smolle, Prior, Brown, Cooper,

Byron & Lindsay, manuscript in preparation).

5.1. Comparison with other reconstruction algorithms

Other rigid-body modelling approaches have previously

been implemented for reconstructing single SAXS data sets.

MASSHA (Konarev et al., 2001) allows for the manual

construction of the low-resolution conformation of a macro-

molecular complex from the high-resolution atomic structures

or low-resolution models comprising it. This user-constructed

model can be automatically refined to improve the fit to the

experimental scattering data by allowing small domain

movements. This algorithm is thus optimal to refine a user-

generated model in terms of its fit to the scattering data, but
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Figure 6
Final reconstructions of blg9 and blg14. Each panel contains the atomic-
resolution in silico model of blg9 (panels A–C) or blg14 (panel D) as blue
sticks and a reconstruction with the final average parameters from
simulations (A) S9-HFX, (B) S9-HXF-20, (C) S9-X-40 and (D) S14-HXF
(in red).



not to perform long-range conformational searches as is the

objective of the program presented in this paper.

The computer program SASMODEL (Vigil et al., 2001)

models the macromolecular complex as a chain of ellipsoids,

and is thus ideal for long-range exploration of the conforma-

tional space. This simplification, however, does not make use

of all the structural data often available on the individual

domains comprising the macromolecule, thereby producing a

model of lower resolution. Both algorithms search for the

macromolecular conformation that best fits a single SAXS

data set. The algorithm shown here directly uses high-reso-

lution structures to model the conformation of the macro-

molecule and presents the possibility of using multiple data

sets, which improves the search process and increases the

likelihood of the final reconstruction.

SAXS ab initio restoration methods are uniquely suited to

producing low-resolution reconstructions of macromolecules

of unknown structure. For simple shapes, different ab initio

restorations usually differ only in minor details. In these cases,

the reconstructed models can be superimposed and averaged

in order to find the consensus reconstruction (Heller et al.,

2003; Kozin & Svergun, 2001). In some cases, however, the

restoration process produces different reconstructions that fit

the SAS data equally well (Heller et al., 2003; Rosenzweig et

al., 1993; Volkov & Svergun, 2003; Walther et al., 2000). Some

of these models would in fact be false positives. It was recently

shown that ab initio reconstruction methods are able to

reconstruct shapes with small anisometries and, sometimes,

with voids (Volkov & Svergun, 2003). Shapes with larger

anisometries or smaller voids often cannot be reconstructed at

all, even if the reconstruction process is stable (i.e. always

reproduces a similar shape). For this situation, there is no

method currently available that would systematically sort

the reconstructed models into families of similar models, or

that would provide a reliable measure of the probability of

certain models/families of models being false positive recon-

structions.

DAMMIN (Svergun, 1999), arguably the most recognized

ab initio reconstruction method, was applied to the SAXS9,

SAXS920, SAXS940 and SAXS14 data sets in order to test its

ability to reconstruct the original in silico models. DAMMIN

was able to reconstruct the blg9 model when using the

noiseless SAXS9 data set (Fig. 7A). However, the recon-

structed models differed greatly from the structure of blg9

when the noisy data sets were used (Figs. 7B and 7C),

reflecting the inability of this ab initio reconstruction method

to deal with data of considerable noise levels. The method

presented in this paper was successful in reconstructing the

topology of blg14 and its overall conformation, apart from a

small (10%) systematic deviation in the final value of  13 with

respect to that in the in silico structure. DAMMIN was unable,

however, to reconstruct the conformation of blg14 (see

Fig. 7D). This test case ultimately reflects the inherent

limitations of solution techniques in dealing with the confor-

mations of molecules of complex topology, but suggests that

rigid-body reconstruction algorithms are better suited than ab

initio methods in those cases.

In a previous study (Nöllmann, Stark & Byron, 2004), it was

shown that ab initio shape restoration methods were able to

reconstruct the shape of a Holliday junction. However, in that

study, the conformations and topologies of the macro-

molecules employed were very different to those used in the

present study. In addition to these differences, in that study,

the ab initio restorations were performed using symmetry

constraints, which reduce the size of the search space and the

number of false positives, thus considerably simplifying the

reconstruction process. Based on the cases presented in this

paper, and on other studies (Volkov & Svergun, 2003; Walther

et al., 2000), we expect similar problems with other ab initio

approaches.

The methodology proposed in this paper is restricted to

cases where previous structural data for the subunits

comprising the macromolecule are available or can be

modelled on the basis of available experimental data.

However, it makes full use of these structural constraints and
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Figure 7
Three views of various superimposed DAMMIN reconstructions of blg9
and blg14. Each panel contains the atomic-resolution in silico model of
blg9 (panels A–C, blue lines) or blg14 (panel D, blue lines) and four
DAMMIN reconstructions (represented as yellow, cyan, orange and
green beads) from the data sets (A) SAXS9, (B) SAXS920, (C) SAXS940

and (D) SAXS14 (see x4.1).



of several sources of solution properties to reduce the number

of false positives in the reconstruction process, and increase its

reliability. The method shown here is more suitable than ab

initio reconstruction approaches for reconstructing macro-

molecular shapes of complex nature, whereas ab initio shape

determination procedures are expected to produce more

reliable results in situations where the solution conformation

of the macromolecule is different from that in the crystal.

Ab initio reconstruction methods can only reconstruct

particles with homogeneous electron density (atomic density

for SANS) (Koch et al., 2003). Accordingly, they cannot be

used for the reconstruction of macromolecular complexes

whose parts are inhomogeneous, such as protein–DNA or

protein–polysaccharide complexes. A simplified version of the

methodology presented here has recently been shown to

produce excellent results when applied to the reconstruction

of the solution conformation of a protein–DNA complex

(Nöllmann, He et al., 2004). The ability to reconstruct

inhomogenous macromolecular complexes represents another

advantage of this approach with respect to ab initio retrieval

methods.
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J. Appl. Cryst. (2005). 38, 874–887 Marcelo Nöllmann et al. � Multi-technique rigid-body solution modelling 887


