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The development of a microscope tilting-stage suitable for use with

birefringence imaging is described, thus enabling precise three-dimensional

birefringence information of uniaxial crystals to be obtained. Equations have

been derived for uniaxial crystals in any orientation. The technique enables

precise values of the birefringence �n = ne � no (difference between

extraordinary and ordinary refractive index) and orientation of the optic axis

to be obtained. The sign of the optical indicatrix may be unambiguously

identified. The method is also able to obtain information on preferred

orientation in a polycrystalline material. In addition to this, an unknown

crystalline material may be identified, or at least classified within a specific group

of crystalline materials.

1. Introduction

Measurement of optical linear birefringence has been one of

the standard tools in the study of anisotropic properties of

materials for nearly two centuries. Classically, birefringence is

detected or measured using the crossed-polars technique,

where the sample is placed between two polarizers that are

oriented so that their planes of vibration are mutually

perpendicular (see for example, Hartshorne & Stuart, 1964,

1970). When an isotropic sample is placed between crossed

polars, the state of the polarization of light is unchanged and in

theory no light is transmitted through the optical system. The

light can only be transmitted if the state of polarization is

changed, i.e. the sample is birefringent.

Consider plane-polarized light passing through a birefrin-

gent material. The light is then split into two rays travelling

subject to different refractive indices n00 and n0. These

refractive indices can be described by an ellipsoid known as

the optical indicatrix with semi-axes ne and no, the extra-

ordinary and ordinary refractive indices, respectively. This

introduces a phase difference between the two light paths so

that when the two rays recombine, the final phase difference �
between them is a measure of the optical anisotropy of the

birefringent material. The phase difference is given by

� ¼
2�

�
n00 � n0ð Þt; ð1Þ

where � is the wavelength of the light, t is the thickness of the

sample, and n00 � n0 is the so-called plano-birefringence of the

sample. Strictly speaking, the ‘birefringence’, which is a

characteristic of the sample, is obtained only when n00 and n0

coincide with ne and no.

The crossed-polars technique is fast and easy, but it has a

number of disadvantages. If the birefringence of the sample is

very low, it can be difficult to detect. Moreover, in this tech-

nique the sample must be oriented with respect to the polar-

ization direction of the light. This makes the crossed-polars

technique impractical for determination of birefringence in

non-homogenous samples, because the sample needs to be

rotated to compare different regions simultaneously. Because

of this, some years ago we developed a new method for

automatically recording birefringence by making use of a

rotating polarizer and a circular analyzer attached to a

microscope combined with a camera to image the field of view

(Glazer et al., 1996). This technique has subsequently been

commercialized under the name Metripol (see http://

www.metripol.com).

This system uses monochromatic light, a plane polarizer

capable of being rotated to fixed angles � from a reference

position, a circular-polarizing analyzer, a CCD camera, an

electronic controller and computer software for polarizer

control, image collection and analysis. Monochromatic light

passes through the rotating polarizer and then through the

birefringent sample (Fig. 1). The light from the sample then

passes through a quarter-wave plate and analyzer (arranged

together to form a circular analyzer) to provide an image

which is captured by the CCD camera. The signal is trans-

ferred to a computer where it is processed by specially written

software.

The intensity of the light I measured at any position within

the image captured by the CCD camera is a function of the

angular orientation � of the rotating polarizer and is defined

by

I ¼
I0

2
1þ sin 2�� 2�ð Þ sin �½ �; ð2Þ

where I0 is the intensity of unpolarized light transmitted

through the sample and � is the orientation angle of one of the
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axes of a section of the optical indicatrix measured from a

predetermined direction (the so-called azimuthal angle1). The

phase shift in this formula is then a measure of the effective

birefringence projected onto the plane of the sample, i.e. the

plano-birefringence.

By carrying out measurements of this intensity for several

values of �, it is possible at each position in the digital image to

use least squares to compute the quantities sin �j j, � and I0

(Glazer et al., 1996). Each of these three quantities can then be

presented as a colour-coded image of the sample, thus separ-

ating out each of the components that are normally super-

imposed in a conventional crossed-polars image. The

advantages of this method are obvious: the three quantities

can be measured from all parts of the sample image simulta-

neously, the technique is capable of extremely high sensitivity,

and in addition it does not depend on the orientation of the

sample to a particular angle with respect to the polarization

direction.

However, measurement of j sin �j, carried out at a single

wavelength with an ordinary microscope stage, does not

provide any information concerning the number of periods of

the j sin �j function, so that in general it is not possible to

determine directly the actual value of the phase difference and

thus the optical retardance and the birefringence of the

sample. This also means that each time j sin �j passes through

zero, the computed value of the azimuthal angle � changes

through 90�. In this case, the determination of the absolute

value of the birefringence is limited to a relatively low phase

difference �, where

j�j ¼ sin�1
j sin �jð Þ for j�j � �=2: ð3Þ

This ambiguity results from the fact that m�, where m is a

positive integer, can be added to the measured relative phase

difference �0 for positive slopes of the sin �j j function or to��0

for negative slopes of the sin �j j function, without change of

j sin �j itself. This means that

j�j ¼ �0 þm� or j�j ¼ ��0 þm� ð4Þ

for positive and negative slopes of sin �j j, respectively, and

�0 ¼ sin�1
j sin �jð Þ: ð5Þ

In order to obtain the absolute values of the phase difference

�, a multiwavelength measurement may be carried out (Geday

et al., 2000). In this case the ambiguity may be solved from the

derivative of the relative phase difference �0 with respect to

the wavelength �, expressed here using the wavevector

length k:

@�0

@k
¼ �t n00 � n0ð Þ þ k

@

@k
n00 � n0ð Þ

� �
; ð6Þ

where

k ¼
2�

�
: ð7Þ

The second term in equation (6) defines the dispersion of the

double refraction. If this is small, this term may be neglected

and equation (6) becomes

�1 ¼ �k1

@�0

@k
¼ k1 lim

k2!k1

 
�0;2 � �0;1

k2 � k1

!
; ð8Þ

where �0;1 and �0;2 are the values of the relative phase differ-

ence measured at two different wavelengths �1 and �2,

respectively, and �1 is the absolute value of the phase differ-

ence calculated for the first chosen wavelength. The multi-

wavelength method, however, does exhibit a number of

difficulties. Note that equation (8) cannot always be used to

calculate the absolute value of phase difference �1 because �0;1

and �0;2 might not belong to the same slope of the sin �j j

function. Moreover, the reliability of this method strongly

depends on the precision in measuring j sin �j and the amount

of optical dispersion of the double refraction in the case of

birefringent materials with high optical dispersion. Note also

that the multiwavelength method only provides information

on the absolute values. We show below how our new method

can obtain the actual value of the phase difference auto-

matically, and thus the optical retardance and the birefrin-

gence, including its sign.2

The Metripol method has already been used for a broad

range of applications, including phase transition studies (see

for example, Geday et al., 2000), mineral analysis, strain

analysis, and location of defects through strain fields (see for

example, Glazer et al., 1996). More recent applications of the

Metripol system also include the investigation of macroscopic

symmetry of Pb(Mg1/3Nb2/3)1�xTixO3 in the morphotropic

phase boundary region (Shuvaeva et al., 2005), morphological

and optical characteristics of nanocrystalline thin films (Ye et

al., 2006), stability of cellulose lyotropic liquid-crystal emul-

sions (Tixier et al., 2005), and predetermination of the

diffraction quality of protein crystals (Owen & Garman, 2005).

Moreover, Hollingsworth & Peterson (2002) have applied the
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Figure 1
Metripol with a tilting-stage. The components that are additional to the
polarizing microscope are highlighted in red.

1 The value of the azimuthal angle � is measured anticlockwise from the
horizontal direction within the image captured by the CCD camera.

2 The value of the birefringence, and thus the optical retardance and the phase
difference, takes a positive value when the sign of the optical indicatrix is
positive and a negative value when the sign of the optical indicatrix is negative.



Metripol technique in order to demonstrate domain switching

in ferroelastic pseudo-hexagonal crystals of 2,10-undecane-

dione. In the present paper, we extend the technique in order

to obtain automatically three-dimensional birefringence

information from uniaxial crystals by adding a tilting-stage to

the microscope (Fig. 1).

Examination of crystals using a polarizing microscope in the

orthoscopic configuration and with an ordinary microscope

stage reveals their optical character only in one direction.

Much more additional optical information is obtained using a

universal or tilting-stage which allows one to examine the

optical properties of crystals in many directions. The idea of

using tilting-stages goes back to the 19th century, where they

were used in order to measure manually the birefringence out

of the plane of the sample-stage. The method was complicated,

lengthy and difficult, and as a result fell out of general use.

However, with the technology available today, much of the

early difficulty can be overcome through the use of computers

and imaging devices.

More recently (Heilbronner, 2000), a tilting-stage has been

used to obtain orientation images of crystals using polarization

measurements on digital images with a look-up table. In order

to obtain orientation images in this way, typically 18 rotation

images, two or four tilt images and one circular polarization

image are collected.

Below we present a method which is less complicated and

automatically provides more information concerning the

optical properties of birefringent crystals. To do this, we

combine the idea of the tilting-stage with the advantages of

the Metripol technique to give a new method for three-

dimensional analysis of birefringent materials, which may have

applications in the field of crystallography, mineralogy,

archaeology, chemistry, biology, etc.

An important advantage is that the tilting-stage makes

possible automatic identification of an unknown crystalline

material or at least classification within a specific group of

crystalline materials. Furthermore, for crystallites in poly-

crystalline materials, the method allows us to obtain precise

information on preferred orientation. We show below how our

method can obtain such texture information automatically.

2. Tilting-stage technique

Fig. 1 shows the addition of the tilting-stage to the sample-

stage of a microscope, while Fig. 2 shows a schematic view of

the tilting-stage.

The tilting-stage was constructed with two stepper motors, a

set of gears and bevel bearings, two shafts and a metal frame.

These parts together form a mechanical system which is

capable of being tilted to specific angles �1 and �2 from a

reference position about two orthogonal tilt axes. These have

a maximum angular range of �12� and a minimum angular

step of 0.005� and 0.02�, respectively. The microscope stage is

fully computer-controlled via the stepper motors. A computer

program was written in Visual C++ in order to perform the

actual measurement process and the subsequent analysis of

the data was carried out using MATLAB (http://www.

mathworks.com). This program was designed to interface with

the Metripol software.

2.1. Derivation of formulae

Fig. 3 shows a stereographic representation of the optical

indicatrix for a uniaxial sample. OA denotes the optic axis and

PS denotes an arbitrarily chosen principal section of the

optical indicatrix containing the optic axis OA. The x and y

axes correspond to the directions of the ordinary refractive

index no, and the z axis corresponds to the extraordinary

refractive index ne. We assume here that the z axis is

perpendicular to the plane of the drawing. S denotes a general

direction of propagation of the light within the sample for

which the value of j sin �j is being measured. The direction S

makes an angle # with the optic axis OA.

Considering the relations defining the two possible phase

velocities v0p and v00p for a given propagation direction S (see

Appendix A, which includes a list of symbol definitions),

v0 2p ¼ v2
o ð9Þ

and

v00 2p ¼ v2
o cos2 #þ v2

e sin2 #; ð10Þ
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Figure 2
Schematic diagram of the tilting-stage.

Figure 3
Stereographic representation of the optical indicatrix for a uniaxial
sample. Note that  2 is given by OA–B and is equal to the great circle
angle S–A.



we can derive the following expression:

v0 2p � v00 2p ¼ v2
o � v2

e

� �
sin2 #: ð11Þ

Using refractive indices instead of velocities, we obtain

1

n0 2
�

1

n00 2
¼

 
1

n2
o

�
1

n2
e

!
sin2 #: ð12Þ

Since the value of the birefringence �n = ne � no is generally

a small quantity, we may write with reasonable accuracy the

value of the birefringence �nS (in general the plano-bire-

fringence) measured down the direction of propagation S as

�nS ’ ne � noð Þ sin2 #: ð13Þ

Using spherical trigonometry with the right triangle OA–S–A

illustrated in Fig. 3, we can write the following equation:

cos# ¼ cos 1 cos 2: ð14Þ

In Fig. 3,  1 is the component angle of S measured from the z

axis projected on the principal section PS (OA–A).  2 is the

component angle of S measured from the z axis projected on

the plane perpendicular to PS (OA–B), which is also equal to

S–A. Thus equation (13) becomes

�nS ’ �n 1� cos2  1 cos2  2

� �
: ð15Þ

Using the Metripol technique, we actually measure j sin �j and

therefore we can write

sin �S

�� �� ’ sin
2�

�
�nSt

� �����
����; ð16Þ

where sin �S

�� �� denotes the value of j sin �j measured down the

direction of propagation S within the sample. Thus equation

(15) becomes

sin �S

�� �� ’ sin
2�t

�
�n 1� cos2  1 cos2  2

� �� �����
����: ð17Þ

Fig. 4 is a stereographic representation of the optical indi-

catrix for a uniaxial sample for two different positions of the

microscope tilting-stage, S0 and S. The directions S0 and S

make angles #0 and # with the optic axis OA, respectively.

Assuming that the position S0 denotes the direction of

propagation of the light normal to the sample, i.e. before

tilting, and position S represents the direction of propagation

after tilting, we can decompose angles  1 and  2 into two

components in the following way:

 1 ¼ �1 þ !1 ð18Þ

 2 ¼ �2 þ !2: ð19Þ

Thus equation (17) may be written in the following form:

j sin �Sj ’ sin
2�t

�
�n 1� cos2 �1 þ !1ð Þ cos2 �2 þ !2ð Þ
� 	
 �����

����:
ð20Þ

In equation (20) angles !1 and !2 are internal tilt angles

measured along the principal section PS and the plane

perpendicular to PS, respectively. Angles �1 and �2 are the

component angles of S0 measured from the z axis projected on

the principal section PS and the plane perpendicular to PS,

respectively.

Note that the two internal tilt angles !1 and !2 are different

from the corresponding external tilt angles �1 and �2, which

are defined by the tilting of the stage and, in general, do not

coincide with �1 and �2. In contrast to the external tilt angles,

for any specified propagation direction S, the internal tilt

angles depend on the refractive indices of the sample. Thus

internal tilt angles are those measured within the sample

where the light is refracted.

To obtain the values of internal tilt angles, we can assume a

mean refractive index nmean of the sample and use Snell’s law.

The equations that we use to convert external tilt angles to

internal tilt angles are written in the following form:

!1 ’ sin�1 sin �1

nmean

� �
; !2 ’ sin�1 sin �2

nmean

� �
: ð21Þ

In uniaxial crystals, the mean refractive index of the sample

may be calculated as (Wahlstrom, 1965)

nmean ¼
2no þ neð Þ

3
: ð22Þ

For crystals with a large difference between the maximum and

minimum refractive indices, the mean refractive index of the

uniaxial sample takes the following form:

nmean ¼ ðn
2
o neÞ

1=3: ð23Þ

Taking into account equations (21), equation (20) becomes

j sin �Sj ’

����� sin

"
2�t

�
�n

 
1�

(
cos2 �1 þ sin�1 sin �1

nmean

� �� �

� cos2 �2 þ sin�1 sin �2

nmean

� �� �)!#����� ð24Þ

From Fig. 4, we see that by redefining the x and y axes so that

y0 lies along PS0, the component angle �02 for the inclination

angle #0 is then equal to zero and the corresponding compo-

nent angle �01 becomes equivalent to #0. Note that in this case

research papers

J. Appl. Cryst. (2006). 39, 326–337 Pajdzik and Glazer � Uniaxial crystals 329

Figure 4
Stereographic representation of the optical indicatrix for a uniaxial
sample for two different positions of the microscope tilting-stage, S0 and
S. PS0 denotes the principal section which contains the optic axis OA and
the direction of propagation S0.



�01 is equal to the angle of the sample normal with respect to

the optic axis OA. Assuming additionally that the tilting is

performed only along the principal section PS0, equation (24)

may be written in a less complicated form to simplify the

analysis:

j sin �Sj ’

����� sin

(
2�t

�
�n sin2 #0 þ sin�1 sin �01

nmean

� �� �)�����; ð25Þ

where �01 is the external tilt angle measured along the prin-

cipal section PS0.

Note that if the external tilt angles are small, equation (24)

becomes

sin �S

�� �� ’
����� sin

 
2�t

�
�n

(
1�

�
cos2 �1 þ

�1

nmean

� �

� cos2 �2 þ
�2

nmean

� ��)!����� ð26Þ

and equation (25) takes the following form:

sin �S

�� �� ’
����� sin

2�t

�
�n sin2 #0 þ

�01
nmean

� �� ������: ð27Þ

Taking into account the ambiguity expressed by equations

(4) and (5), we can write equation (25) in the following form:

�S

�� �� ¼ �0S þm� ’

����� 2�t

�
�n sin2 #0 þ sin�1 sin �01

nmean

� �� ������
ð28aÞ

and

�S

�� �� ¼ ��0S þm� ’

����� 2�t

�
�n sin2 #0 þ sin�1 sin �01

nmean

� �� ������
ð28bÞ

for positive and negative slopes of the sin �j j function,

respectively. In equations (28), �0S denotes the relative phase

difference measured down the direction of propagation S

within the sample.

It is worth pointing out here that in a conventional universal

stage, it is usual to place glass hemispheres above and below

the sample in order to try to compensate for the effect of the

average refractive index of the sample; however, this also

means that the match is poor for samples with refractive

indices different from that of glass, and so this is a serious

limitation to the use of a conventional universal stage. The

inclusion of nmean in our equations effectively acts in the same

way; although here, because it is a freely variable quantity, we

have complete flexibility in its value.

Note also that if the thickness of the sample t or the tilt

angles are significant, then a thickness correction should be

applied to the equations derived above. However, usually this

correction is very small and can be neglected. If it is required

then consider Fig. 5. This illustrates a sample slice tilted

through the external tilt angle �01. !01 is the corresponding

internal tilt angle measured within the sample. teff denotes the

path length traveled by light within the sample. Using trigo-

nometry with Fig. 5, the equation for the effective thickness

becomes

teff ¼
t

cos !01 ��01
� � : ð29Þ

2.2. Sign of the optical indicatrix

Using the Metripol technique, we actually measure j sin �j
and therefore we have to consider the ambiguity expressed by

equations (4) and (5). The azimuthal angle � is defined as the

orientation angle of one of the axes of a section of the optical

indicatrix measured from a predetermined direction, and each

time j sin �j passes through zero, the computed value �
changes through 90�. Moreover, when j sin �j passes through 1,

the value of m increases or decreases (Geday & Glazer, 2002).

Fig. 6 illustrates the dependence between the value of m and

the azimuthal angle � for quartz. The simulation was carried

out using the following equation:

sin �S

�� �� ’ ���� sin
2�t

�
�n sin2 �01 þ !

0
1ð Þ

� �����; ð30Þ
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Figure 5
Light path within a sample slice tilted through the angle �01.

Figure 6
Simulation of the dependence between the value of m and the azimuthal
angle � for quartz with thickness equal to 0.14 mm.



which is recast from equation (25) and represents the j sin �j
function in the principal section PS0. In the simulation we

assumed literature values for the refractive indices and a

wavelength equal to 600 nm. Furthermore, the thickness of the

sample was taken as a fixed value equal to 0.14 mm.

In the figure, j sin �j is presented as a function of the

component angle  01 = �01 þ !
0
1, changing

from 0 to 90�. For m = 0, for which the

ambiguity does not appear in both the rela-

tive phase difference �0S and the azimuthal

angle �, we normally set up the Metripol

microscope so that � measures the orienta-

tion of the slow axis of the relevant section of

the optical indicatrix.

The sign of the optical indicatrix may then

be determined by considering the value of

the azimuthal angle � for a specified slope of

the j sin �j function and m, as well as prop-

erties of the uniaxial optical indicatrix. If the

sign of the optical indicatrix is positive, the

extraordinary refractive index ne is greater

than no. The radial component n0e of a section

of the optical indicatrix when the direction of

propagation is along the optic axis OA is

equal to no and increases when the inclina-

tion angle with respect to the optic axis

increases. For a direction of propagation

perpendicular to the optic axis, n0e = ne. This

also means that in the case of a positive sign,

the radial component n0e is the slow axis

(greater refractive index) of a section of the

optical indicatrix. In the case of a negative

sign where the extraordinary refractive

index ne < no, the situation is opposite and

the radial component n0e is the fast axis

(smaller refractive index) of a section of the

optical indicatrix.

Table 1 shows the dependence between m

and the azimuthal angle � for both optically

positive and optically negative uniaxial

crystals.

Thus, by considering the value of the

azimuthal angle � for a specified slope of the

j sin �j function and a specified value of m, we

can easily determine the sign of the optical

indicatrix (see x2.4).

2.3. Data analysis

As shown below, the tilting-stage tech-

nique allows us to obtain precise three-

dimensional birefringence information for

uniaxial samples. Using this method, we are

able to extract a precise value for the incli-

nation angle #0 of the optic axis OA. It is also

possible to estimate the mean refractive

index nmean. Moreover, the actual values of

the phase difference �S, and thus optical retardance �nSt and

birefringence �nS, may be determined from the measured

j sin �Sj values without the necessity of using multiwavelength

methods.

The algorithm presented below explains the sequence of

steps.
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Figure 7
j sin �j and azimuthal angle � images collected on a sample of quartz with approximate
orientation 45� to the [0001] direction and thickness 0.14 mm, for different tilt angles �1 and
�2 of the tilting-stage: (a) �1 = 0� and �2 = 0�, (b) �1 = �10� and �2 = �10�, (c) �1 = �10�

and �2 = 10�, (d) �1 = 10� and �2 = �10�, (e) �1 = 10� and �2 = 10�.



Step 1. Collect data on the Metripol for many tilt angles of

the uniaxial sample within a specified range of the two

perpendicular tilt axes �1 and �2 of the tilting-stage. Fig. 7

presents a few j sin �j and � images for a quartz sample for

different tilt angles �1 and �2. Note that these images were

chosen from a large number of collected images. The rectan-

gles shown in the figures represent the sets of pixels for which

average values of j sin �j and the azimuthal angle � were

calculated.

Step 2. Note that for any general alignment of the sample,

the two tilt axes �1 and �2 of the tilting-stage will not

necessarily be parallel or perpendicular to any principal

section PS. In this case, to perform the analysis it is necessary

to make an azimuthal transformation of the tilt axes �1 and

�2 via transformation with a rotation matrix. Since the Metripol gives a value of the azimuthal angle � of one of the

axes of a section of the optical indicatrix for each position of

the tilting-stage, it is always possible to find these directions.

As mentioned above, in order to simplify the process of

analysis it is convenient to find a new principal section PS0 for

which �02 is equal to zero, i.e. the new principal section PS0

contains the optic axis OA and the direction of propagation S0.

Then the component angle �01 becomes equal to the angle of

the sample normal with respect to the optic axis OA. In order

to accomplish this it is necessary first to find the value of the

azimuthal angle �0 corresponding to the propagation direction

S0 (Fig. 8) and subsequently to rotate the tilt axes �1 and �2

through the angle �0, thus:

�01
�02

� �
¼

cos �0 sin�0

� sin�0 cos �0

� �
�1

�2

� �
: ð31Þ

Note that, as mentioned earlier, the value of the azimuthal

angle changes through 90� when j sin �j passes through zero.

Therefore, the ambiguity introduced via

�0 � 90� ð32Þ

should also be taken into account.
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Figure 8
Stereographic representation of the optical indicatrix for a uniaxial
sample with the principal section PS0 and two perpendicular tilt axes �1

and �2 of the microscope tilting-stage (the traces of the tilt axes are
shown here as great circles). The azimuthal angle �0 corresponds to the
propagation direction S0.

Figure 9
(a) j sin �j and (b) � as a function of the two external tilt angles �1 and �2 for a quartz plate with approximate orientation 45� to the [0001] direction and
thickness 0.14 mm. The measurement was carried out at a wavelength of 600 nm and a total of 441 tilt angles were used. The complete set of
measurements with the current set-up took 55 min. The azimuthal angle �0 determining the position of the principal section PS0 is found to be equal to
51.1�. PS0 is denoted here by a thick white line.

Table 1
Dependence between m and the azimuthal angle � for optically positive
and negative uniaxial crystals.

Positive indicatrix Negative indicatrix

Slope m value � value � direction � value � direction

Positive 0 � Radial � Tangential
Negative 1 � Radial � Tangential
Positive 1 � � 90� Tangential � � 90� Radial
Negative 2 � � 90� Tangential � � 90� Radial
Positive 2 � Radial � Tangential
Negative 3 � Radial � Tangential
Positive 3 � � 90� Tangential � � 90� Radial
Negative 4 � � 90� Tangential � � 90� Radial
. . . . . . . . . . . . . . . . . .



Step 3. Interpolate the measured j sin �j values along the

principal section PS0.

Step 4. Apply non-linear curve fitting to the data in the

principal section PS0 using equations (28) in order to obtain

the value of the birefringence �n = ne � no, the inclination

angle #0 with respect to the optic axis OA, and the mean

refractive index nmean of the uniaxial sample. Using the

Metripol technique, we actually measure j sin �j and therefore

we have to take into account the fact that m in equation (5) is

not known. However, by knowing that the inclination angle #0

ranges from 0 to 90� and the mean refractive index nmean

typically varies from 1.5 to 2.2, we choose only the physically

reasonable solutions for different positive values of m.

2.4. Three-dimensional birefringence information

Fig. 9 presents results for a quartz section, roughly 45� to the

[0001] direction and with thickness 0.14 mm, which were

obtained using the tilting-stage technique. The figure shows a

graphical representation of sin �j j and � as a function of �1

and �2. The measurement was carried out at a wavelength of

600 nm. It is important to understand that the data used for

this plot were taken only from a small portion of the actual

images collected for the quartz sample (see rectangle marked

in Fig. 7).

In order to analyze the data further, we applied non-linear

curve fitting to the data in the principal section PS0 using

equations (28) to obtain the values of the birefringence �n,

the inclination angle #0 and the mean refractive index nmean for

different positive values of m. The estimated values of the

birefringence �n, the inclination angle #0 and the mean

refractive index nmean are sensitive to an error in determining

the position of the principal section PS0. However, usually we

can obtain very precise values of the azimuthal angle and this

error can be neglected. We also observe that the estimated

value of the birefringence �n very strongly depends on the

accuracy with which the thickness of the sample is being

measured. Usually this error has a very small influence on the

estimated values of the inclination angle #0 and the mean

refractive index nmean. Moreover, if the thickness of the

sample or the tilt angles are significant, then a thickness

correction expressed by equation (29) should be applied.

However, usually this correction is extremely small and very

often can be neglected. The most significant error appears

when the values of �n, #0 and nmean are refined simultaneously

using equations (28). All the parameters, and especially #0 and

nmean, are correlated. The correlation between these two

parameters and �n increases rapidly when #0 ! 0�. Fixing the

value of nmean improves the curve fitting radically, and �n and

#0 are then refined to high precision.

Fig. 10 shows an example of non-linear curve fitting applied

to the data in the principal section PS0 for m = 2.

Table 2 gives the values of the estimated parameters for

different positive values of m. By analyzing the results, we

choose only physically reasonable solutions corresponding to

the most probable values of �n, #0 and nmean.

In Table 2 there is only one physically likely solution, i.e.

m = 2. In order to determine the sign of the optical indicatrix,

we consider the value of the azimuthal angle �0 = 51.1� for a

specified slope of the j sin �j function and m = 2, as well as

properties of the optical indicatrix. From Fig. 9 we see that the

contours form approximately concentric circles around the

optic axis (situated off the diagram in the bottom left direc-

tion). The point S0 corresponding to �1 = �2 = 0� is seen to lie

on the positive slope of the j sin �j measured in the direction

away from the optic axis (towards the upper right). By

considering Fig. 6 and Table 1, we can unambiguously assign

the optical indicatrix of the sample as positive with the bire-

fringence �n = +0.0088. This also means that the actual values

of the phase difference �S, and thus optical retardance �nSt

and birefringence �nS, are positive.

This method gives a value for the birefringence �n that

corresponds well with the literature value of 0.009 (see for

example, Deer et al., 1992). Furthermore, the inclination angle

#0 with respect to the optic axis OA is estimated well, almost

independently of m.

Note that for a single crystal it is sufficient to measure j sin �j
only along the principal section PS0. This is in principle easily

found from the values �0 and �0 � 90�. However, by collecting
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Figure 10
Non-linear curve fitting applied to the data in the principal section PS0

using equations (28) for m = 2.

Table 2
Estimated values of the birefringence �n, the inclination angle #0, and the
mean refractive index nmean for different positive values of m.

m
Birefringence,
�n

Inclination angle,
#0 (�)

Refractive index,
nmean R-squared

0 800370 0 8386 0.8816
1 0.0046 44.9 0.78 0.9998
2 0.0088 45.5 1.50 0.9999
3 0.0128 45.8 2.20 0.9999
4 0.0168 46.1 2.90 0.9999
5 0.0208 46.4 3.57 0.9999
6 0.0246 46.7 4.24 0.9999
7 0.0284 46.9 4.89 0.9999
8 0.0322 47.2 5.54 0.9999



data for the whole range of tilt angles, the observed curvature

of the j sin �j contours makes it possible to locate the optic axis

OA. In addition, when the sample is unknown, this allows us to

distinguish between uniaxial and biaxial samples.

2.5. Preferred orientation of polycrystalline materials

Most polycrystalline materials show preferred orientation

(also called texture) of their crystallites. The crystallites are

often referred to as grains. The preferred orientation is an

important feature and has a decisive influence on the aniso-

tropy of physical properties such as light refraction, piezo-

electricity, electrical conductivity, magnetic susceptibility, etc.

(Wenk & Van Houtte, 2004). Several methods already exist for

measuring preferred orientation, but they all currently have

disadvantages: (i) X-ray or neutron pole-figure measurements

of large samples provide an excellent measure of the statistical

preferred orientation, but normally provide no spatial reso-

lution;3 (ii) electron backscatter diffraction (EBSD) using a

scanning electron microscope provides both full crystal-

lographic orientation and spatial resolution on a pixel basis,

but only for small areas and only after very time-consuming

preparation (chemical–mechanical polishing). Mancktelow

(1987) has shown that samples of quartzite taken from alpine

regions of Switzerland exhibit preferred orientation in grains

of quartz that can be measured by using optical orientation

information obtained with representative microscope sections

and a conventional universal stage. The results reproduce well

equivalent measurements made with X-ray pole-figure studies

on large pieces of rock. Mancktelow revealed an interesting

correlation with different regions of the Alps in connection

with theories on the early history of mountain development.

One of the most important advantages of our tilting-stage

technique is that it enables us to obtain precise information on

the preferred orientation as well as on the birefringence of the

crystallites; it can easily detect any changes in anisotropy

caused by strain and deformations formed during growth of

the polycrystalline material. Moreover, any changes occurring

as a result of recrystallization or phase transformations can be

precisely recorded and analyzed.

In order to demonstrate this, we carried out Metripol

measurements on one of the quartzite samples (SP217) used

by Mancktelow. Our experiments have successfully produced

results consistent with his own. Moreover, our results provide

much more information on the anisotropy of the polycrystal-

line sample.

With the Metripol technique, each grain of the poly-

crystalline specimen can be analyzed to very high precision.

The highest possible resolution which can be achieved by the

current optical system is equal to 0.3 mm with a 50� objective.

Note also that the tilting-stage technique enables us to obtain

precise values of both plano-birefringence, n00 � n0, and bire-

fringence, ne � no, for each grain of the sample, and any

changes caused by e.g. strain or deformation can be precisely

detected and analyzed.

Fig. 11 illustrates three types of images measured for a part

of the quartzite sample with thickness 0.019 mm. The images

correspond to the external tilt angles �1 and �2 of the tilting-

stage set equal to zero. The first image gives quantitative

information on j sin �j, the second image shows the azimuthal

angle � of one of the axes of a section of the optical indicatrix

measured from a predetermined direction (horizontal direc-
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Figure 11
Sample images of (a) sin �j j, (b) azimuthal angle � and (c) light
transmission I0 for a region of the alpine quartzite sample SP217 with
thickness 0.019 mm. The images correspond to the external tilt angles �1

and �2 of the tilting-stage set equal to zero.

3 However, some X-ray techniques such as topography do provide spatially
resolved images.



tion within the image), and the last one shows the light

transmission I0 through the specimen.

Fig. 12 shows a graphical representation of sin �j j as a

function of �1 and �2 for one single grain of the quartzite

sample (marked in Fig. 11). The azimuthal angle �0 deter-

mining the position of the principal section PS0 for this

particular grain is equal to 109�. The measurement was carried

out at a wavelength of 600 nm and a total of 441 tilt angles

were used. The optic axis in this case is situated towards the

bottom right direction as judged by the curvature of the

contours.

Fig. 13 shows the non-linear curve fitting applied to the data

for this particular grain along the principal section PS0 using

equations (28) to obtain the value of �n and #0 with respect to

the optic axis OA. In order to obtain precise values of #0 for all

grains in the image, the mean refractive index nmean of the

quartzite sample was taken as a fixed value, equal to 1.547,

using literature values of the ordinary refractive index no and

the extraordinary refractive index ne. Fixing the mean

refractive index in this way improves the location of the

correct minimum in the curve-fitting process and allows reli-

able comparison of orientation information between all the

grains studied. By applying non-linear curve fitting to the data

using equations (28) for different positive values of m, we

found only one physically reasonable solution for each grain,

corresponding to the most probable value of the birefringence

�n and the inclination angle #0.
Fig. 14 is a stereographic plot of the angles #0 for many

different grains, showing the preferred orientation character-

istic of grains in this particular quartzite sample. In the figure,

the x3 axis is perpendicular to the foliation of the sample, while

the x1 axis lies within the foliation and is perpendicular to the

lineation of the sample. The x2 axis also lies within the folia-

tion and is parallel to the lineation of the sample.

3. Conclusions

We have shown that by combining a computer-controlled two-

axis tilting-stage on a microscope with the Metripol technique,

it is possible to collect reliable three-dimensional data for

j sin �j and azimuthal angle � in order to obtain precise three-

dimensional birefringence information for optically uniaxial

samples in any general alignment.

The following information can be obtained from the above

technique.

(i) Two-dimensional projections of lines of equal birefrin-

gence.

(ii) A precise value of the birefringence �n = ne � no.

(iii) A precise value for the orientation of the optic axis #0.
(iv) The actual values of the phase difference �S, and thus

optical retardance �nSt and birefringence �nS.

(v) An estimate of the mean refractive index of the sample

nmean, and hence all the refractive indices.

(vi) The sign of the optical indicatrix.

(vii) Whether the sample is uniaxial or biaxial.

(viii) Texture information from a polycrystalline material.
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Figure 12
j sin �j as a function of the two external tilt angles �1 and �2 of the tilting-
stage for one single grain (marked in Fig. 11) of the quartzite sample
SP217.

Figure 13
Non-linear curve fitting applied to the data in the principal section PS0

obtained from the single grain (marked in Fig. 11) of the quartzite sample.

Figure 14
Stereographic plot showing texture in the quartzite sample SP217 (42
data points).



(ix) Identification, or at least classification within a specific

group of crystalline materials, of unknown samples.

This method has also been applied to the more complicated

case of optically biaxial materials; this will be the subject of a

later publication.

APPENDIX A
A1. Relations defining the phase velocities

Maxwell’s equations for a nonmagnetic, homogeneous and

transparent medium are defined by the following relations

between the electric field E, the electric displacement D, the

magnetic field H and the magnetic induction B:

��0

@H

@t
¼ r � E;

@D

@t
¼ r �H;

r �D ¼ 0;

r �H ¼ 0: ð33Þ

For plane monochromatic waves given by

E ¼ E0 exp i k � r� !tð Þ½ �; ð34Þ

we obtain from Maxwell’s equations:

�0i!H ¼ i k� Eð Þ;

�i!D ¼ i k�Hð Þ: ð35Þ

In addition: (i) vector D is perpendicular to the direction of

the wavevector k determining the propagation of the surface

of constant phase; (ii) vectors D, E, k and the Poynting vector

S = E�H are coplanar; (iii) vectors S and k do not normally

coincide in direction.

From equations (35) and

k2
¼
!2

c2
n2; k ¼ ks; jsj ¼ 1; ð36Þ

we obtain

"iEi ¼ n2
½Ei � siðs � EÞ�; where i ¼ 1; 2; 3: ð37Þ

This then leads to the result

s2
1

n2 � "1

þ
s2

2

n2 � "2

þ
s2

3

n2 � "3

¼
1

n2
: ð38Þ

From equation (38) and

s2
1 þ s2

2 þ s2
3 ¼ 1; vi ¼

c

ð"iÞ
1=2
; vp ¼

c

n
; ð39Þ

the Fresnel equation for the velocity of phase propagation of

electromagnetic waves in an anisotropic medium (Born &

Wolf, 1999) is obtained:

s2
1

v2
p � v2

1

þ
s2

2

v2
p � v2

2

þ
s2

3

v2
p � v2

3

¼ 0: ð40Þ

For uniaxial crystals,

vo ¼
c

no

¼
c

½"ðoÞ�1=2
;

ve ¼
c

ne

¼
c

½"ðeÞ�1=2
; ð41Þ

and so

s2
1 þ s2

2

� �
v2

p � v2
o

� �
v2

p � v2
e

� �
þ s2

3 v2
p � v2

o

� �2
¼ 0: ð42Þ

Let # denote the angle between the vector S and the optic axis.

Then

s2
1 þ s2

2 ¼ sin2 #;

s2
3 ¼ cos2 #; ð43Þ

and then the following equation is obtained:

v2
p � v2

o

� �
v2

p � v2
e

� �
sin2 #þ v2

p � v2
o

� �
cos2 # ¼ 0: ð44Þ

The two roots of this equation are given by (Petykiewicz,

1992)

v0 2p ¼ v2
o;

v00 2p ¼ v2
o cos2 #þ v2

e sin2 #: ð45Þ

In uniaxial crystals there are two wave velocity surfaces. The

first is a sphere and corresponds to the ordinary wave, with the

propagation velocity independent of the direction of propa-

gation. The second is an ellipsoid and corresponds to the

extraordinary wave with the propagation velocity depending

on the angle between the direction of the wavevector k and

the optic axis.

A2. List of symbols

�: phase difference.

�: wavelength of the light.

n00 � n0: effective birefringence projected onto the plane of

the sample; the so-called plano-birefringence.

t: thickness of the sample.

I: intensity of the light measured at any position within the

image captured by the CCD camera.

I0: intensity of unpolarized light transmitted through the

sample.

�: orientation angle of one of the axes of a section of the

optical indicatrix measured from a predetermined direction;

the so-called azimuthal angle.

�: angular orientation of the rotating polarizer.

�0: relative phase difference.

m: positive integer.

�0;1, �0;2: values of the relative phase difference measured at

two different wavelengths �1 and �2, respectively.

�1: absolute value of the phase difference calculated for the

wavelength �1.

�1, �2: two perpendicular external tilt angles of the tilting-

stage.

OA: optic axis.

no: ordinary refractive index.
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ne: extraordinary refractive index.

S: general direction of propagation of the light within the

sample.

PS: principal section containing the optic axis OA.

#: angle between the direction of propagation S and the

optic axis OA.

v0p, v00p: two possible phase velocities for a given propagation

direction S.

vo: phase velocity corresponding to the ordinary refractive

index.

ve: phase velocity corresponding to the extraordinary

refractive index.

n0, n00: two possible refractive indices for a given propaga-

tion direction S.

�n ¼ ne � no: birefringence.

�nS: plano-birefringence measured down the direction of

propagation S.

�S: phase difference corresponding to the direction of

propagation S.

j sin �Sj: j sin �j measured down the direction of propagation

S.

 1: component angle of S measured from the z axis

projected on the principal section PS.

 2: component angle of S measured from the z axis

projected on the plane perpendicular to the principal section

PS.

S0: direction of propagation of the light normal to the

sample, i.e. before tilting.

#0: angle between the direction of propagation S0 and the

optic axis OA, equal to the angle of the sample normal with

respect to the optic axis OA.

�1: component angle of S0, measured from the z axis,

projected on the principal section PS.

�2: component angle of S0, measured from the z axis,

projected on the plane perpendicular to the principal section

PS.

�1: external tilt angle measured along the principal section

PS.

�2: external tilt angle measured along the plane perpendi-

cular to the principal section PS.

!1: internal tilt angle measured along the principal section

PS.

!2: internal tilt angle measured along the plane perpendi-

cular to the principal section PS.

nmean: mean refractive index.

PS0: principal section containing the optic axis OA and the

direction of propagation S0.

�01: component angle of S0, measured from the z axis,

projected on the principal section PS0.

�02: component angle of S0, measured from the z axis,

projected on the plane perpendicular to the principal section

PS0.

�01: external tilt angle measured along the principal section

PS0.

�02: external tilt angle measured along the plane perpendi-

cular to the principal section PS0.

!01: internal tilt angle measured along the principal section

PS0.

!02: internal tilt angle measured along the plane perpendi-

cular to the principal section PS0.

 01: component angle equal to �01 þ !
0
1 measured from the z

axis along the principal section PS0.

�0S: relative phase difference measured down the direction

of propagation S.

teff : effective thickness of the sample defined by the path

length traveled by light within the sample.

E: electric field.

D: electric displacement.

H: magnetic field.

B: magnetic induction.

k: wavevector.

S: Poynting vector.
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