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Small-angle X-ray scattering is used at two energies, one either side of the

zirconium K-edge, to probe the in situ formation of an alumina–zirconia–silicate

ceramic. The use of energies either side of the edge allows the decomposition of

information regarding the scattering from the zirconia particles from that of the

glass matrix. Porod slope data show how the nanoparticles progress from being

relatively isolated particles to becoming agglomerates as the pore network in the

glass collapses. The shape of the agglomerates resembles the pore network of

the glass at low temperature. The Guinier radii of the particles show the growth

of the agglomerates past the Littleton softening point, whilst still resolving the

primary particles.

1. Introduction

Refractory materials are commonly used in commercial

systems where resistance to high temperatures and/or

chemical attack are of paramount importance. These

commercial refractories are typically made of materials such

as alumina, zirconia, silica and a silicate-based bonding phase

to allow for the thermal expansion of the refractory. In order

to study these materials in a reasonable time scale, a model

system has been designed utilizing the large surface area of

nano-scale particles (nanoparticles). These nanoparticles are

embedded in a sodium silicate glass to form a ceramic

(nanocomposite). This nanocomposite system, with its large

nanoparticle to glass surface area, allows the study of different

commercially interesting situations, e.g. corrosion, in reason-

able time scales.

Small-angle X-ray scattering (SAXS) is used at multiple

energies to probe the in situ formation of an alumina–

zirconia–silicate ceramic. By choosing energies below the

zirconium K-edge (17.98 keV) and above the edge

(18.05 keV), we are able to distinguish between the zirconia

particles and the surrounding glass matrix. The energies have

been chosen such that the zirconium signal is attenuated in the

scattering pattern obtained above the absorption edge. By

having the zirconium signal reduced in one of the scattering

patterns, we are able to infer the contribution from the

zirconia particles and thus distinguish the scattering from the

glass matrix from that of the zirconia particles. The scattering

pattern obtained from a SAXS experiment can be expressed

as

I ¼ SðqÞðI0=AÞð��Þ; ð1Þ

where I0 is the primary-beam intensity produced by a beam of

cross-sectional area A, (��) is the solid angle subtended at

the sample by the detector, S(q) is the scattering function

characterizing the sample, with q being the magnitude of the

scattering vector (Feigin & Svergun, 1987; Sinha, 1998).

We next consider our sample, which consists of a nano-

composite (which is a collection of nanoparticles) and a

powdered glass matrix. These components have been pressed

together to form a pellet in order to conduct the SAXS

experiment. The sample could therefore be considered as a

collection of particles situated in the pores of some porous

medium, as the nanoparticles fill the gaps where several

macroscopic glass grains touch. In this case, the S(q) can be

described in terms of one of two fractal models: surface fractal

and mass fractal. For a surface fractal of fractal dimension Ds,

the scattering function can be expressed as

SðqÞ ¼
�ð��Þ2S2l

Ds�2
2 �ð5�DsÞ sin½�ð3�DsÞ=2�

ð3�DsÞq
6�Ds

ð2Þ

with S2 being the smooth surface area, measured at a length

scale l2 where the surface fractal behaviour cuts off, and � is

the gamma function (Sinha, 1998; Mildner & Hall, 1986). The

scattering function for a mass fractal of mass fractal dimension

D can be expressed as

SðqÞ ¼NF 2
ðqÞð��Þ2

�
1þ

1

ðqrÞ
D

D�ðD� 1Þ

½1þ ð1=q2�2Þ�
ðD�1Þ=2

� sin½ðD� 1Þ tan�1
ðq�Þ�

�
; ð3Þ

where � is the fractal correlation length which represents a

characteristic distance above which the mass distribution in

the sample is no longer described by a fractal law (Sinha, 1998;

Teixeira, 1988). N is the total number of particles, F(q) is the

average form factor, and �� is the scattering contrast, defined

as ð��Þ2 / f �f = f 2
0 þ 2f0 f 0 þ ð f 0Þ

2
þ ð f 00Þ

2. In this formalism
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of the scattering contrast, f 2
0 is the normal SAXS signal, 2f0 f 0

is the cross term, and ð f 0Þ2 þ ð f 00Þ2 is the resonant term. Here

we will simplify the analysis of the SAXS patterns obtained by

using a simple power law of the form

IðqÞ ¼ I0q��; ð4Þ

where I0 and � are constants. The values of � can be deter-

mined from the slope of the Porod regime of a logI(q) versus

logq plot. From these values, the mass (D) and surface (Ds)

fractal dimension can be calculated. For a mass fractal, � = D,

so 1� �� 3 since 1 �D � 3, whereas for a surface fractal, � =

6 � Ds, so 3 � � � 4, since 2 � Ds � 3. One other important

parameter which can be obtained from the SAXS scattering

patterns is the Guinier radius, Rg. The Guinier radius is linked

to the radius of gyration of the constituents which contribute

to the scattering contrast by a shape-dependent prefactor, as

long as the particle sizes are in the range 1/qmax to 1/qmin. This

is seen experimentally as a ‘hump’ in the scattering pattern

plotted in log–log format, which can be reproduced by using

an exponential function of the form:

IðqÞ ¼ A exp R2
gq2=3

� �
þ C; ð5Þ

where A and C are constants, and Rg is the Guinier radius.

2. Sample preparation

The sample used in this investigation consists of sol–gel-

produced alumina–zirconia nanoparticles and a sodium sili-

cate glass. The alumina–zirconia nanoparticles were produced

by using aluminium chloride, AlCl3, and zirconium tetra-

chloride, ZrCl4, in a molar ratio of 1:9, as precursors, which

were subsequently mixed with ammonium hydroxide, NH4OH

to form a gel (Winnubst et al., 1989; Prabhu & Bourell, 1995).

This gel was then washed and dried several times to remove

the chlorine and to produce a powder. The sol–gel-prepared

nanoparticles were dried at a temperature of 373 K to remove

the excess water, but at a sufficiently low temperature to avoid

calcination. Other nanocomposites with different Zr:Al ratios

were produced and were subjected to the same experimental

conditions; however they differ only in the extent to which

they absorb radiation.

The sodium silicate glass was produced by mixing 0.3 mol

quartz, SiO2, with 0.1 mol sodium carbonate, Na2CO3. This

mixture was then heated at 1573 K for 2 h, then 1623 K for

0.5 h, and finally at 1673 K for 0.5 h. This time–temperature

programme was used in order to produce a homogeneous glass

melt, which was then allowed to cool in air under its own

thermal gradient. The resulting glass was then ball-milled

briefly to produce a fine glass powder. The glass was not

annealed to remove stresses as this was not considered a

necessary step after ball-milling. Samples were prepared by

mixing 50 wt% nanoparticles with 50 wt% glass powder and

pressed into a 13 mm diameter, 400 mm thick pellet using a

force of 10 tonne. The molar percentages of the constituent

elements are Si 16.76%, O 60.89%, Al 1.12%, Na 11.17% and

Zr 10.06%, while the volume fractions, disregarding pores as

these change with temperature, are glass 71.8%, Al2O3 1.9%

and ZrO2 26.3%.

3. Experimental

SAXS was conducted using beamline 6.2 at the Synchrotron

Radiation Source (SRS) in Daresbury, England. Beamline 6.2

uses a two-crystal Si(111) monochromator to produce X-rays

in the range 5–18 keV and a one-dimensional RAPID2 small-

angle detector to record SAXS patterns (Tang et al., 2004).

The sample pellet was mounted in a small electric furnace,

which was mounted in-line such that the pre- and post-scat-

tering X-rays were able to pass uninhibited through two mica

windows. This furnace allowed heating at a rate of 15 K min�1

to a maximum temperature of 1273 K (Shaw et al., 1999).

SAXS patterns were taken at energies of 17.98 and 18.05 keV,

alternately, during the same heating cycle, with the tempera-

ture increasing from 623 to 998 K at intervals of 25 K.

The choice of two energies on opposite sides of the edge

instead of the standard anomalous SAXS experiment, where

several energies just below the edge and one far removed from

it are used, is due to the difficulty in determining the accurate

position of the edge. There is a chemical shift of the edge

position of approximately 8 eV between our sample and Zr

foil, which changes by several eV as the experiment progresses

(Fig. 1). As an accurate knowledge of the position of the edge

is critical in anomalous SAXS in order to determine the exact

contrast as a function of energy, we settled for the largest

obtainable contrast between above and below the edge, which

is smaller but not subject to the error associated with the edge

shift (Winter et al., 2006). This contrast can easily be seen in

the scattering patterns obtained from above and below the

edge (Fig. 2).

Since our sample was initially a pressed pellet, its density

will change during heating due to the removal of pores, and to

a lesser extent, thermal expansion. An indication of the

amount of densification can be obtained by an application of
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Figure 1
Scanning the energy accurately reveals the location of the edge. The solid
line is the un-annealed sample, and the dotted line is the annealed sample.
There is a clear chemical shift between the annealed and un-annealed
samples.



Beer’s law, which is an exponential law relating the trans-

mission of the sample to the sample density and sample

thickness:

� ¼ expð�C�tÞ; ð6Þ

where � is the transmission, � the density, t the sample

thickness and C the mass absorption coefficient of the sample.

An indication of the densification of the sample can be

obtained by plotting the product of density and thickness

against temperature (Fig. 3), and measuring the initial and

final thicknesses of the sample to see by how much the sample

thickness has altered. There are two main features which are

of interest in Fig. 3. From 723 to 773 K (just below the

Littleton softening point) there is a plateau region in the

general increase of density � thickness, indicating no signifi-

cant change in physical sample dimensions. At 873 K, the

maximum value of density� thickness has been achieved, and

at higher temperatures the density � thickness product starts

to decrease.

4. Results

The scattering patterns obtained need to be subjected to some

corrections before analysis of the Porod slopes and Guinier

radii can be undertaken. It is necessary to correct the back-

ground scattering patterns for the sample transmission at each

temperature. Although the background was recorded at room

temperature, the sample transmission changes during heating

due to the densification of the sample (Fig. 3). Therefore, a

transmission-corrected background signal is subtracted from

the high-temperature runs at each energy. There is some

fluorescence in the scattering patterns obtained at 18.05 keV

arising from the 10.06 at.% of zirconium within the sample.

This fluorescence has no angular dependence and has not been

removed from the scattering patterns. This fluorescence

contribution has been noted whilst conducting analysis of the

scattering patterns, and care has been taken to ensure that the

regions used for analysis have not extended into the high-q

limit near the edge of the detector, where fluorescence is

dominant.

The slope analysis of the Porod regime was achieved by

weighted least-squares regression of equation (4) (Fig. 4B). As

a consequence of the high energies used to create the scat-

tering contrast, we have a very compressed q scale which does

unfortunately give a very short Porod region. The region used

for fitting is limited to the linear section and does not extend

into the detector range where there would be a high fluores-

cence contribution. The Guinier radii were obtained by fitting

a unified Guinier exponential/power law model to the scat-

tering pattern as described by Beaucage (1996), Liu et al.

(1999) and Hummel et al. (1997). The unified model, in

essence, is a superposition of equations (4) and (5) and is an

approximate form that describes the complex morphology of

the sample over a range of structural levels. A structural level

in scattering is described by Guinier’s law [equation (5),

Fig. 4A] and a structurally limited power law [equation (4)],

which on a log–log plot is reflected by a knee and a linear

region (Beaucage, 1996). Displaying the fit over the knee in

the log–log plot as a traditional Guinier plot (Guinier &
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Figure 3
The variation of the product of sample density and thickness as the
temperature increases during sample heating.

Figure 4
The scattering pattern obtained at 723 K showing the functions used for
fitting the Guinier and Porod regions [dotted line: data; solid line: Guinier
(A) and Porod (B) functions; dashed line: unified model fit].

Figure 2
The scattering patterns obtained at energies of 17.98 keV (solid line) and
18.05 keV (dotted line) and a temperature of 723 K.



Fournet, 1955) of logI(q) versus q2 shows the quality of the fit

used (Fig. 5).

5. Discussion

At higher temperatures, the scattering patterns exhibit a clear

maximum in the log–log plot of I(q) versus q, indicating that

particle–particle interactions are present [S(q) 6¼ 1] (Fig. 6).

This greatly complicates the analysis as most formalisms are

not strictly valid except in the dilute solution limit. With these

points in mind, the values obtained from the Guinier analysis

are subject to systematic errors. However, in situ experiments

are concerned with trends on variation of a parameter, such as

temperature, rather than absolute values, and clear trends

emerge from this type of analysis (cf. Cheng & Shantz, 2005).

The alumina and zirconia produced from the sol–gel typi-

cally take the form of boehmite, AlO(OH), and hydrated

zirconia, ZrO2.2H2O. As temperature is applied, there will be

a release of water from the water-containing nanoparticles,

initially by the zirconia/water mixture since the water is

already in its molecular form, then a release of the hydroxyl

groups in the boehmite. All of the water is released by the

nanoparticles by 673 K.

Fig. 7 shows the Guinier radius (Rg) as a function of

temperature. One can see that at low temperatures (<798 K)

the values of Rg obtained at the two energies are very close to

each other. Then, at a temperature between 798 and 823 K,

there is a splitting of the line. This splitting indicates the

appearance of a second Guinier region, i.e. the formation of a

second hump in the scattering pattern. The point at which the

values of Rg split (�813 K) is attributed to the dilatometric

softening point of the glass, which is defined as the tempera-

ture at which the glass deforms under its own weight. The

generally quoted associated temperature is known as the

Littleton softening point, i.e. the temperature at which the

viscosity is 107.6 dPa s. For our glass composition, the theore-

tical value of the Littleton softening point is 776 K, as given by

the models of Goto et al. (1997). The splitting of Rg is attrib-

uted to the growth of agglomerates in the sample. Past the

Littleton softening point, the glass starts to soften, and the

gaps between the glass grains start to change shape. Since the

nanocomposite sits in these gaps, the nanoparticles start to

move and form agglomerates. This also explains the constant

Rg branch, as this would represent individual primary parti-

cles.

The temperature dependence of the slope of the scattering

pattern (Fig. 8) is more complex and requires thought about

the change in morphology of the sample as heating progresses.

In the Debye model (Debye et al., 1957) the treatment

depends on the assumption of atomically smooth boundaries

between the inhomogeneities and the host material. Also, in

the limit of large scattering vectors, in the size range � < q�1 <

r0, where r0 is the typical interatomic distance, the Debye

model predicts the characteristic q�4 Porod power-law beha-
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Figure 5
Guinier plot of log I(q) versus q2 showing the fit of the Guinier part of the
unified model (solid line) to the scattering pattern obtained at 648 K and
17.98 keV (dotted line).

Figure 6
A stack plot of the scattering patterns obtained at an energy of 17.98 keV
and temperatures of 623, 723, 823, 923, 998 K.

Figure 7
The results of the Guinier radius analysis clearly showing no energy
dependence between the 17.98 keV experiment (stars) and the 18.05 keV
experiment (triangles). One can clearly see addition of a second Guinier
radius by the splitting of the single line below 873 K, into two lines above
873 K.



viour. Again, this requires that the interfaces are regarded as

smooth on an atomic scale. In practice, we observe that none

of our data obeys this law, though all have a power-law q�n

dependence, where n (which we call the Porod exponent) is

non-integral and less than 4.

Non-integral power-law scattering in the Porod region may

also be exhibited by systems in which the size distribution of

the scattering inhomogeneities is itself a power law (Schmidt,

1982), with scattering proportional to q�n arising from a

particle (or pore) size distribution proportional to r2.

However, particles grown by condensation processes such as

sol–gel and vapour deposition techniques are usually subject

to a log-normal size distribution because the reaction cross

section depends on the surface to volume ratio of the particles

(Gleiter, 1989).

The most simplistic model which fits the data and our

knowledge of the initial microstructure of the sample is that of

a combination of surface and mass fractals. It is with this

model in mind that we interpret our data.

The dominating contrast in the 18.05 keV data below 773 K

is between glass and air, since there will be few nanoparticles

in contact with the glass compared with the contact area

between glass and pore (air). The geometry of this glass–pore

network can be described by using a mass fractal model

[equation (3)]. The 18.05 keV data sets can be regarded as

containing a minimal amount of information about the

zirconia nanoparticles, since the scattering arising from the

glass (and the alumina nanoparticles) is largely unaffected by

the change in energy. As the temperature increases, the rough

surfaces of the glass grains start to smoothen as the energy

required for deformation on the atomic length scale is

surpassed. Above 773 K, the glass starts to soften even on a

larger length scale, and the grain cores start to deform under

their own weight; thus the pores reduce in size pushing the

nanoparticles together into denser-packed agglomerates. This

causes the dominant contrast at 18.05 keV to change and

become a contrast between glass–nanoparticles–air. As the

temperature rises above 873 K, the contrast changes to

become solely between the glass and the nanoparticles.

The 17.98 keV data are different since they contain full

information regarding the zirconia particles. Below 773 K, the

dominating contrast is between the zirconia nanoparticles and

air, since the nanoparticles sit in the pores of the glass powder.

Above 773 K, there is a transition from being dominated by a

contrast between nanoparticles and air to a contrast between

nanoparticles and glass. This is due to the onset of a larger-

scale deformation of the glass around the nanoparticles, thus

reducing the pore size and forcing the nanoparticles to

compact. Above 873 K, the glass has deformed significantly

such that the nanoparticles have been fully compacted into

agglomerates with no pores. The fractal nature of the

agglomerates at high temperature is due to the nanoparticle

agglomerates taking a shape similar to the initial pore struc-

ture. This situation differs from the original fractal nature of

the pores since the fractal correlation length is different due to

the fractal structure being built from small primary particles.

Fig. 9 shows a schematic representation of the proposed

model. The first box (623 K) shows the initial morphology of

the sample, where the nanoparticles are sitting loosely in the

pores and the glass grains have a rough surface. As

temperature increases (723 K box), the glass grains start to

become less rough on the surface, as the energy necessary for

movement on an atomic scale is surpassed. With further

heating past the Littleton softening point (823 K box) there is

deformation on a much larger scale, causing the pores to

collapse. This causes the nanoparticles to be pushed together

to form agglomerates. At high temperatures (923 K) the

majority of the pores have been removed from the sample,

leaving the nanoparticles in agglomerates whose shape

resembles the initial pore network.

6. Conclusion

The formation of an alumina–zirconia–silicate ceramic has

been investigated using in situ SAXS at two different energies,

one above and one below the zirconium K-edge. It has been
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Figure 9
Schematic representation of the proposed model.Figure 8

The results of the Porod slope analysis clearly showing an energy
dependence between the 17.98 keV experiment (stars) and the 18.05 keV
experiment (triangles).



shown that past the Littleton softening point of the glass, the

nanoparticles start to arrange themselves to form agglomer-

ates in the pores of the glass. By taking the Porod-regime

slope, one can obtain information regarding the fractal nature

of the components of the sample.

The 17.98 keV data show how the nanoparticles initially

have a rough surface, and that as the temperature increases,

they are forced together by the collapse of the pores to form

agglomerates which resemble the shape of the initial pore

network of the glass. The 18.05 keV Porod slope data show

how the glass starts as a collection of jagged-shaped grains,

then as heating progresses the glass grains soften and congeal

to form a continuous glass matrix. By looking at the Guinier

radii at 17.98 keV, one can see the growth of agglomerates past

the Littleton softening point, while the primary particles can

still be resolved.
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