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A computer program called GenOVa, written in Python, calculates the

orientational variants, the operators (special types of misorientations between

variants) and the composition table associated with a groupoid structure. The

variants can be represented by three-dimensional shapes or by pole figures.

1. Introduction

Steels, nickel alloys, titanium alloys, brass, ferroelectrics, ferromag-

netics, aluminium alloys, twinned metals etc. are materials widely used

in industry that all share a common point: their key property results

from a phase transformation, such as martensitic transformation,

order/disorder transition, ferroelectric or ferromagnetic transition,

precipitation or recrystallization. This transformation produces

daughter crystals in an orientation relationship with their parent

crystals. Owing to the symmetries, many equivalently oriented

daughter crystals can be formed for each parent crystal. These are

called orientational variants (or domains). The optimization of the

material properties requires advanced characterization tools for a

better understanding of the variant formation and more generally for

a better knowledge of phase transformation mechanisms. However,

there are few computer programs that perform the theoretical

calculations of the variants. To the author’s knowledge, there is only

one program that simulates the diffraction patterns of variants in

transmission electron microscopy (TEM) (Akbay et al., 1994). There

is no generic theoretical software to help metallurgists, mineralogists

and physicists in their research. We present here a computer program

called GenOVa that generates the variants for any structural phase

transition, calculates the different types of misorientations between

them (called ‘operators’) and establishes the composition table of

these operators. This program is based on the recent progress realized

on the understanding of the algebraic structure of the variants and

operators (Cayron, 2006). More generally speaking, this program

calculates all the characteristics of the groupoid of orientational

variants for any structural transformation. It also allows us to draw

the crystals in three dimensions and to simulate the pole figures.

2. Theoretical basis

The general underlying theory of the GenOVa program has been

described by Cayron (2006). For simplicity, only the main equations

used in the program will be recalled here; these are illustrated with

the simple two-dimensional example presented in Fig. 1(a).

2.1. Entry parameters

Few entry parameters are required to calculate the variants, the

operators and their composition: (i) the point groups of the parent

and daughter phases, here denoted G� and G�, and (ii) the common

symmetries between the parent and daughter crystals. In the example

of Fig. 1, the parent and daughter point groups are given by sets of

matrices G� = {E, I, m�
x , m�

y , m�
xy, m

�
xy, r

�
þ�=2, r

�
��=2} and G� = {E, m�

1 ,

m�
2 , m�

3 , r�þ�=3, r���=3}, and the symmetries common to the parent

crystal and the daughter crystal �1 are given by H� = {E, m�
x }, which is

a subgroup of G� called the intersection group. E, I, m and r are the

identity, inversion, mirror and rotation matrices of the point groups.

Generally in the literature, the common symmetries are unknown and

only the orientation relationship between the parent and daughter

crystals is given, in the form of couples of parallel planes or directions.

In that case, the metric values of the parent and daughter phases

(given by the metric or structure tensors) can be used to calculate a

Figure 1
Simple two-dimensional example of � variants (the triangles) in an orientation
relationship with a � parent ‘crystal’ (the square). (a) Geometric representation.
(b) Algebraic representation with the groupoid composition table. The operators
are expressed by sets of variants referred to the variant �1. The table gives the
composition of two operators (Om, On)!Om

�1 On. The composition is multivalued
(different results are possible).

http://crossmark.crossref.org/dialog/?doi=10.1107/S0021889807048741&domain=pdf&date_stamp=2007-11-10


transformation matrix T> from a parent basis to a daughter basis and

the subgroup of common symmetries is then given by H� = G�
\

T>G�T>
�1.

2.2. Calculation of the variants

Each variant �i is algebraically represented by a coset �i = g
�
i H�.

The variants form a partition of the set G�; their set is the quotient set

G�/H� = {g�1 H�, g
�
2 H�, . . . , g

�
N�H�}; their number is given by Lagran-

ge’s formula N� = |G�|/|H�|. In the example of Fig. 1(a), the variants

are �1 = {E, m�
x }, �2 = {r�þ�=2, m�

xy}, �3 = {I, m�
y } and �4 = {r���=2, m

�
xy}.

The orientations of the variants are given by the set of transformation

matrices �iT> = g
�
i H�T>. For a global understanding, it is important to

realize that the set of variants does not have a group structure in

general. It can be considered as a group if and only if H� is a normal

subgroup of G�, which is not the case for most of the structural

transformations. This absence of group structure gives an intrinsic

complexity to the problems involving variants.

2.3. Calculation of the operators

Once the orientations of the variants have been calculated, the

different types of misorientations between them can be deduced. The

misorientation from the variant �i to the variant �j is given by the set

of matrices (�iT>)�1 �jT> = T>
�1�ijT>, with �ij = �i

�1�j. By expressing

these matrices in a reference basis of the parent crystal with the

isomorphism  :g! T> gT>
�1, that set simply becomes �ij = H�g�ijH

�,

where g�ij = (g
�
i )�1g

�
j . This is interesting because the sets of type

H�g�ijH
� are double-cosets, and algebra theory tells that they form a

partition of G�. Therefore, each misorientation between variants can

be identified with a unique ‘type’ of misorientation represented by a

double-coset. We call the different types of misorientations ‘opera-

tors’ because they can also be imagined as actions operating on the
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Figure 2
Main menu of the GenOVa program.

Figure 3
Theoretical results of GenOVa for a Burgers transformation. The operators are
written as sets of arrows (the arrows �ij are denoted [i, j]). They are also coded by
the rotations with the minimum rotation angle. The groupoid composition table and
a simplified version giving only the operator composition are also reported.

Figure 4
Three-dimensional representation of the parent crystal with its daughter variants
for two phase transformations: (a) for the Burgers transformation (for example in
Ti and Zr alloys), there are 12 hexagonal variants, and (b) for the transformation
with a KS orientation relationship (in martensitic steels), there are 24 cubic
variants.



variants. The operators form a partition of G�; their set is the double

quotient set H� \G�/H�; their number is NO�

= |H� \G�/H�|. Since any

double-coset can be expressed by a set of simple cosets and since both

G�/H� and H� \G�/H� form a partition of G�, one can easily check that

the number of operators is always lower than the number of variants.

Some general but complex formulae are given by Cayron (2006) to

calculate this number. The misorientation �ij from the variants �i to

the variant �j may also be viewed as an arrow (�i " �j) where the

variants �i and �j are the starting and the target objects, respectively.

Each operator O�
n can then be also expressed by a set of equivalent

arrows. In the example of Fig. 1(a), �11, �22, �33 and �44 are different

arrows because they link different objects but they constitute the

same operator O�
0 = {E, m�

x }. There are also two other operators, O�
1 =

{�12, �21, �23, �32, �34, �43, �14, �41} = {r
�
þ�=2, m�

xy, r
�
��=2, m�

xy} and O�
2 =

{�13, �31, �24, �42} = {I, m�
y }.

In order to identify the operators in the experimental data, for

instance in electron backscatter diffraction (EBSD), it is useful to

express them by using the rotations that have the minimum rotation

angle.1 In the example of Fig. 1(a), the rotations with minimum

rotation angle that represent the operators O�
0, O�

1 , O�
2 are the

rotations of 0, 30 and 60�, respectively.

2.4. Calculation of the groupoid composition table

The set of variants �i associated with the set of arrows �ij form an

algebraic structure called groupoid.2 The groupoid composition law is

simply a composition of pairs �ij�jk = �ik. The interesting point is the

possibility to represent algebraically the whole structure of variants,

arrows and operators by a simple composition table. Indeed, if the

variant �1 is arbitrarily taken as the reference variant, the operators

can be written as sets of arrows that have �1 as starting object. It has

been proved that these arrows of type �1j are expressed by the same

set of matrices as the variants �j and they can be simply denoted {�j}.

In the example of Fig. 1(a), O�
0 = {�11} = {�1}, O�

1 = {�12, �14} = {�2, �4},

O�
2 = {�13} = {�3}. Then, two operators O�

m and O�
n can be composed

according to (O�
m, O�

n)! (O�
m)�1O�

n by (i) writing the operators as a

set of variants by choosing �1 as reference, O�
m = {�1i} = {�i} and O�

n =

{�1j} = {�j}, (ii) forming all the possible arrows of type �1i
�1�1j = �ij and

(iii) identifying the constituted arrows �ij with some of the operators.

The operator composition is in general multivalued, i.e. more than

one operator results from the composition. This method allows us to

establish a compact algebraic representation of the groupoid. It gives

the composition between the operators but also includes the infor-

mation on the variants. Such a composition table is called a ‘groupoid

composition table’ (Cayron, 2006). The table corresponding to

Fig. 1(a) is given in Fig. 1(b).
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Figure 5
Pole figure representation of the parent crystal and its daughter variants for two
phase transformations: (a) for the Burgers transformation, the h101i� and h101i�
directions are projected, and (b) for the martensitic transformation with a KS
orientation relationship, the h111i� and h111i� directions are projected. The
normal, horizontal and vertical directions for the pole figures are the [111], [101]
and [121] directions of the parent crystal.

1 The misorientation matrices from �i to �j expressed in the bases of �i are
given by the set T>

�1 H�Gij
�H�T> = T>O�

nT>
�1 with O�

n containing the arrow �ij.
A symmetry matrix in this set can then be arbitrarily chosen (for example mij =
T>gij

�T>
�1). The matrices equivalent to mij are obtained by taking into account

all the bases of �i and �j. They are given by the set G�mijG
�. This new and

large set generally contains rotations and it is convenient to choose the
rotation that has the minimum rotation angle. This rotation is sometimes
called ‘disorientation’.
2 We would like to rectify a mistake made by Cayron (2006) and noticed by
Litvin (2007). It was stated that, in formula (50) of the Cayron paper, the
groupoid was based on the set of variants and on the set of operators. Actually,
the groupoid defined in (50) is based on the set of variants and the set of
arrows between the variants. By definition, �i�ij = �j, i.e. �j is the image of �i by
the arrow �ij. It is possible to define a structure with the set of variants and the
set of operators, but in this case, we have only �iO

�
n 3 �j, if �ij 2O�

n, i.e. �j is one
of the possible images of �i by the operator O�

n . We are not sure if the
associated structure can still be called groupoid.



3. Brief description of the computer program

GenOVa calculates the variants, the operators and the composition

table according to the methods previously described. It is written in

Python which is a multi-platform, interpreted and object-oriented

language (Martelli, 2006; see also http://www.python.org/). The

main menu of GenOVa is presented in Fig. 2. The crystallographic

information on the phases (G�, G� and metric tensors) is given

by files created by the EMS software (Stadelmann, 1987; http://

cimewww.epfl.ch/people/stadelmann/jemsWebSite/jems.html), but we

will soon introduce the possibility to load that information from other

crystallographic programs. Once created, a phase transformation can

be saved and further reloaded. So far, only the first-generation

variants are calculated. Cycles of phase transformation, i.e. variants

of variants etc., are more complex and would need more theoretical

developments. We have only included one specific case very impor-

tant in metallurgy for grain boundary engineering, the �3n multiple

twinning in cubic crystals (Cayron, 2007a). The algebraic results are

obtained by the ‘Variants and Operators’ button. They are presented

in the case of a Burgers transformation in Fig. 3. The groupoid

composition table and a reduced version of this table giving only the

operator composition are also represented. In addition, the program

calculates the number of possible parent crystals when only two

variants are known and it determines the minimum number of

variants required to unambiguously determine the orientation of the

parent crystal. All these calculations last a few seconds and can be

performed with the direct and/or the inverse phase transformation.

The ‘Variants in 3D’ button allows us to draw the variant crystals in

an orientation relationship with their parent crystal in three dimen-

sions. This part was written with Soya 3D, a free object-oriented

three-dimensional engine for Python developed by Lamy (2005).

Until now, cubic crystals have been represented only by cubes or

regular tetrahedra, hexagonal crystals by hexagonal prisms, and

crystals with other point groups by their unit cells. Two examples are

given in Fig. 4, one for Burgers transition and one for martensitic

transition with a Kurdjumov–Sachs (KS) orientation relationship.

The size and positions of the variants can be modified, the orientation

can be automatically or manually controlled, and the light parameters

can be adapted. The ‘Pole Figure’ button allows pole figures of the

parent and variant crystals to be drawn in stereographic or equal-area

projection modes. Here again, the parent crystal can be oriented

manually, or by choosing the normal and horizontal directions, or by

choosing its Euler angles. The directions that are projected can be

independently chosen for the parent and daughter phases. Two

examples are given in Fig. 5 for Burgers transition and for martensitic

transition with a KS orientation relationship. The ‘Electron Diffrac-

tion’ button will allow the simulation of complex TEM diffraction

patterns. This module is under development. A first version

working with EMS (Stadelmann, 1987; http : / / cimewww.epf l. ch /

people / stadelmann / jemsWebSite / jems.html) was programmed by

Cayron (2000), but that work was based on incomplete theory and

some modifications are required to implement links with JEMS, the

new version of EMS.

In summary, GenOVa is a generic computer program that calcu-

lates the variants, the operators and the groupoid composition table

for any structural phase transformation. The theoretical results of

GenOVa can be used for advanced exploitation of experimental data,

such as the reconstruction of parent grains from EBSD data (Cayron

et al., 2006; Cayron, 2007b).

The author acknowledges Dr Jouneau and Professors Michéa,

Weinstein and Litvin for their constructive discussions.

References
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