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Leverages measure the influence that observations (intensity data and

restraints) have on the fit obtained in crystal structure refinement. Further

analysis enables the influence that observations have on specific parameters to

be measured. The results of leverage analyses are discussed in the context of the

amino acid alanine and an incomplete high-pressure data set of the complex

bis(salicylaldoximato)copper(II). Leverage analysis can reveal situations where

weak data are influential and allows an assessment of the influence of restraints.

Analysis of the high-pressure refinement of the copper complex shows that the

influence of the highest-leverage intensity observations increases when

completeness is reduced, but low leverages stay low. The influence of restraints,

notably those applying the Hirshfeld rigid-bond criterion, also increases

dramatically. In alanine the precision of the Flack parameter is determined by

medium-resolution data with moderate intensities. The results of a leverage

analysis can be incorporated into a weighting scheme designed to optimize the

precision of a selected parameter. This was applied to absolute structure

refinement of light-atom crystal structures. The standard uncertainty of the

Flack parameter could be reduced to around 0.1 even for a hydrocarbon.

1. Introduction
Observations (reflection intensities and restraints) do not

contribute equally to data fitting during crystal structure

refinement. Some observations are extremely influential,

while others have hardly any influence at all. The quantity that

measures the influence that an observation has on the fit

obtained in a refinement is called the leverage, and it can be

calculated from the matrix that is used to describe the model

in least squares. The leverage tells us how the value of a data

point calculated by the model changes in response to a change

in the observed value.

The aim of the present paper is to discuss how information

on leverages can be used during structure analysis and inter-

pretation. We will show that leverages provide valuable

information on factors such as the importance of weak data in

modelling and the efficacy of restraints; we will further show

that they can be used to address one of the most pressing

issues in chemical crystallography, the precise determination

of absolute structure for organic compounds that contain no

element heavier than oxygen.

An understanding of the kind of information that leverages

convey can be obtained by consideration of a simple one-

parameter straight-line fit to y = mx. The data in Fig. 1 were

constructed to give a best fit line of y = 0.0x, and illustrate

different ways in which points can contribute to the fit. The

figure in parentheses next to each of the points in Fig. 1 is the

leverage of that point. Point A, at x = �5, has a leverage of

0.11, i.e. if the observed value of A changed from y = 4 to y = 5

Figure 1
Leverages calculated in the simple linear least-squares fit of the data
points A (�5, 4), B (0, 0), C (0, �3), D (10, 0) and E (10, 2) with the
function y = mx. The figures in parentheses next to each point are the
leverages.
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the model would alter such that the calculated value of y at

point A would change from zero to 0.11. Leverages can thus be

interpreted as the effect that an observation has on its own

calculated value (see below). This idea is illustrated further by

the points at x = 0. The fit to y = mx requires the solution to

intercept the y axis at y = 0, and the calculated values of y at

points B and C will always be zero no matter what the

measured value of y is. Both points therefore have zero

leverage, and no matter how large their deviation from the

model, these points exert no influence on the fit and therefore

on their own calculated values. The most extreme points (D

and E), at x = 10, have the highest leverages (0.44) and

therefore the most influence on the model. Point D has zero

error and a large leverage, while E has a large error and large

leverage. D and E have exactly the same leverage values,

despite having different deviations from the model, because

the leverage is derived from the model and not the observed

values (more detail is given below). Note also that the sum of

the five leverages for points A–E is equal to 1, the number of

parameters being fitted.

The calculation of leverages in crystallographic least

squares has been discussed by Prince and co-workers (Prince,

2004; Prince & Nicholson, 1985; Prince & Spiegelman,

2004a,b); a discussion of the topic is also available in standard

statistics texts such as Rawlings et al. (1998). The mathematics

is given in full detail in the articles and book by Prince and co-

workers, and only a summary is given here. The analysis is

based on the projection matrix P, which relates the observed

(y) and calculated (ŷy) values of the observations: Py = ŷy. It is

derived as follows: a set of linear equations relates a set of

undetermined parameters x to a set of observations y, so that

y = Ax, where A is the design matrix. The parameters x̂x, which

minimize the squared residual between the observations, y,

and their calculated values, ŷy, are found by solving the normal

equations ATWy ¼ ATWAx̂x, where W is a weight matrix. Pre-

multiplying both sides by the inverse of ATWA gives the

solution ðATWAÞ�1ATWy ¼ x̂x. Pre-multiplying both sides of

this equation by A gives ŷy: AðATWAÞ�1ATWy ¼ Py ¼ ŷy.

Note that the calculation of P is based on the design and

weight matrices; the observations are not used.

It is computationally convenient to define a matrix P0 which

is related to P by pre-multiplying both sides of y = Ax by U,

the upper-right Cholesky factor of the weight matrix, W, to

give P0y0 = ŷy0, where y0 = Uy. For a diagonal weight matrix, P0

has the same diagonal as P, but it is now symmetric and may be

constructed using only a single matrix Z = UA: P0 =

Z(ZTZ)�1ZT. P and P0 are square matrices of dimensions

Nobs � Nobs, where Nobs is the number of observations used in

the refinement.

In other branches of statistics P is sometimes referred to as

the hat matrix because it relates y to ŷy. The relationship Py = ŷy

enables each calculated ŷi to be written as a linear combina-

tion of the observations contained in y. This means that an

element along the leading diagonal of P (Pii) measures the

contribution that an observation yi makes to its own calculated

value, something that was illustrated in the simple straight-

line-fit example above. The values of Pii are the leverages.

They have a maximum value of 1 and a minimum value of 0,

and they measure how much influence an observation has on

its calculated value. A value of 1.0 means that the observation

entirely determines its own calculated value but has no

influence on any other observation. The average leverage for a

refinement is equal to Nparameters /Nobservations.

Prince extended his analysis by considering which obser-

vations are most important for determining the precision of a

particular parameter. The analysis enables us to state the

amount by which re-measurement of the ith data point will

reduce the variance of the estimate of the jth parameter. The

dot product of the ith row of Z and the jth column of the

inverse normal matrix, (ZTZ)�1, yields the value of a quantity

designated tij. The value of t2
ij /(1 + P0ii) measures the influence

of the ith observation on the variance of the jth parameter; we

shall refer to this quantity as T2
ij. It should be noted that the

product of Z and the inverse normal matrix is related by a

matrix transpose to the matrix that is used to solve the normal

equations for x. The significance of this matrix is that it reveals

the magnitude and sense of the contribution that each

observed value makes to each model parameter; this feature is

discussed in more detail in x3.4.

A high value of T2
ij implies that the ith observation is very

important for determination of the jth parameter. Information

of this type was used by David et al. (1993) to analyse the

influence of different regions of the neutron powder diffrac-

tion pattern of C60 on parameters used to track disorder that

develops as temperature is increased. The procedure was also

used by Hazen & Finger (1989) to optimize the precision of

the oxygen positional parameters in pyrope by collecting

reflections that were most sensitive to these parameters. The

most recent work on leverage analysis has been published by

Merli et al. (2001, 2000, 2002), who have applied it to refine-

ments of mineral structures. Their approach has been applied

particularly to understanding the role of different classes of

data in determining occupancies on mixed metal sites in

minerals. The same group has used leverages and other

statistical tools such as Cook’s distances to identify outliers in

refinement, applying this information to improve the robust-

ness of crystallographic least squares (Merli, 2005; Merli &

Sciascia, 2011; Merli et al., 2010).

2. Experimental

2.1. Calculation of leverages and T2 values

One factor that has hindered wider application of leverage

analysis is that the matrices required for the necessary calcu-

lations are not available as output from commonly used

refinement packages. The program CRYSTALS (Betteridge et

al., 2003) has been modified to output the matrix Z, and the

normal matrix and its inverse. (In CRYSTALS, the command

sequence

#SFLS

REFINE PUNCH = MATLAB

END
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outputs files containing the matrix Z and the normal matrix

and its inverse, which are used as input to a program called

HATTIE.)

HATTIE has been written to calculate and output leverages

and T and T2 values for observations to a file suitable for input

into a spreadsheet program. Also written to the file are the

Miller indices, Yo, �(Yo), Yc, sin� /� and Yo /�(Yo) for each

reflection, where Y may represent |F | or |F |2, and the

subscripts o and c refer to observed and calculated quantities.

The calculations apply both to intensity data and to any

restraints applied during refinement. The code makes use of

several subroutines available in the CrysFML Fortran library

(Rodrı́guez-Carvajal & Platas, 2009). Leverages, which have a

maximum value of 1.0, are multiplied by 100, and T values,

which are numerically very small, are scaled so that |Tmax| =

100.

Leverage analysis was carried out using both simulated and

experimental data on two crystal structures: the amino acid

l-alanine and the metal complex bis(salicylaldoximato)-

copper(II) [which is abbreviated to Cu(sal)2]. All leverage

analyses were performed at refinement minima.

2.2. L-Alanine

l-Alanine is the simplest chiral amino acid (see Fig. S1a in

the supplementary material1). It is zwitterionic in the solid

state with formula +H3NCH(Me)CO2
�. The crystal structure is

orthorhombic, forming in space group P212121. Experimental

intensity data were collected at 100 K on an Agilent Tech-

nologies SuperNova diffractometer using a Cu K� micro-

source. Data were collected to a resolution of 0.84 Å with an

average redundancy of 14.9. A multiscan correction for

systematic errors was applied, and data were merged (in point

group 222) in SORTAV (Blessing, 1997). The structure of

alanine was refined in CRYSTALS against |F |2 using all data.

Weights equal to 1/�2(|F |2) were applied, with a robust-resis-

tant modifier (Prince & Nicholson, 1983) which zero weighted

14 out of 740 reflections as outliers; all such outliers were

omitted from further analysis. All non-H atoms were refined

with anisotropic displacement parameters. H-atom positions

and isotropic displacement parameters were subject to typical

bond distance and angle restraints, with Uiso(H) restrained to

1.2 or 1.5 times Uequiv of the parent C or N atom. The program

defaults were used for standard deviations applied to the

restraints: 0.02 Å, 2� and 0.002 Å2 for the distances, angles and

displacement parameters, respectively. The extinction coeffi-

cient refined to 4.92 (11) and the Flack (1983) parameter

refined to 0.00 (13). The final conventional R factor

(unweighted, calculated on |Fo| using data with |Fo| > 4�(|Fo|)

was 1.59%. The goodness of fit was 2.715, but the normal

probability plot was linear, with an intercept of 0.04 and a

correlation coefficient of 0.996.

A simulated data set was calculated using XPREP (Shel-

drick, 2001) to a resolution of 0.4 Å. Uncertainties were esti-

mated according to �(|F |2) = 0.02|F |2 + h|F |2i/1000. Gaussian

random errors were added to the simulated intensities

[subroutine GASDEV from Press et al. (1992)].

2.3. Bis(salicylaldoximato)copper(II) [(Cu(sal)2]

The complex consists of two salicylaldoximate ligands

bound to Cu in a square planar arrangement (Fig. S1b). The

data used for the present calculations were collected as part of

a wider investigation into the effects of high pressure on

complexes of salicylaldoximate ligands; the full results of this

study (Byrne et al., 2011) will be reported later. The crystal

structure is monoclinic, forming in P21/c with the Cu atoms

located on inversion centres. Data were collected with

synchrotron radiation on beamline I19 at Diamond Light

Source with � = 0.4959 Å at a pressure of 0.55 GPa; the crystal

was held in a modified Merrill–Bassett diamond anvil cell with

a half-opening angle of 40� (Moggach et al., 2008; Merrill &

Bassett, 1974). The average redundancy was 6.1. The

diffractometer on I19 consists of a Crystal Logic four-circle

�-goniometer with a Rigaku Saturn CCD detector. The data

collection images were converted to Bruker .sfrm format

using the program ECLIPSE (Parsons, 2004) and processed

using SAINT (Version 7; Bruker–Nonius, 2006). Shading of

the detector by the pressure cell was taken into account using

integration masks, also generated by ECLIPSE. A multiscan

correction was applied using SADABS (Sheldrick, 2008b), and

data were merged with SORTAV. The completeness of the

final data set was 51.2% to a resolution of 0.85 Å.

The crystal structure was refined in CRYSTALS as

described above for l-alanine. A robust-resistant modifier was

applied to the 1/�2(|F |2) weighting scheme, leading to zero

weighting of 40 out of 567 reflections, mostly having diffracted

beams very close to the opening angle limits of the cell. High-

pressure data sets are usually incomplete and it is common

practice to apply restraints to help stabilize refinements. The

bond distances and angles of the salicylaldoximate ligand were

restrained to the values determined from a complete data set

measured at ambient pressure. Rigid-bond and rigid-body

similarity restraints were applied to the anisotropic displace-

ment parameters of the C, N and O atoms. The H atoms

attached to sp2 carbon atoms were restrained to be coplanar

with the ligand. The standard deviations applied to the

restraints were 0.01 Å, 1�, 0.01 Å, and 0.005 and 0.04 Å2 for

the distances, angles, planarity, and rigid-bond and rigid-body

restraints. Restraints were applied to H atoms as described

above for l-alanine (also using the same standard deviations

as for l-alanine). The final conventional R factor was 2.87%.

The goodness of fit was 1.080, and the normal probability plot

had an intercept of �0.07 and a correlation coefficient of

0.999.

For the purposes of comparison a complete data set was

collected under ambient conditions using a Bruker APEXII

diffractometer and Mo K� radiation. Integration was carried

out using SAINT and an absorption correction applied using

SADABS. The structure was refined using the same procedure

outlined above for the high-pressure data set.

research papers

J. Appl. Cryst. (2012). 45, 417–429 Simon Parsons et al. � Applications of leverage analysis in structure refinement 419

1 Fig. S1 is available from the IUCr electronic archives (Reference: HE5536).
Services for accessing this material are described at the back of the journal.



2.4. Test data for absolute structure refinements

x3.6 describes a method where leverage analysis is used to

improve the precision of the Flack parameter in some absolute

structure refinements. Seventeen data sets were used to test

the method.

Data sets were collected using Cu K� radiation at 100 K

using a Bruker Microstar fine-focus rotating-anode generator

with a SMART 6000 CCD detector, a Bruker D8 microsource,

also equipped with a SMART 6000 detector, or an Agilent

Technologies SuperNova, also incorporating a microsource

generator. For data collections with the Bruker instruments a

typical data collection comprised 16 ! scans at varying ’
angles (four scans at 2� = 46� and 12 scans at 2� = 94�), yielding

complete data up to 0.84 Å. The redundancy for orthorhombic

crystals is around 11; for monoclinic crystals it is almost 6. The

exposure times for the high- and low-resolution scans differed

by a factor of 3–4 to ensure sufficient signal-to-noise ratios in

the high-resolution shells. Data were processed with SAINT

and corrected for absorption and systematic errors using

SADABS. For the data collections using the Agilent system a

strategy was calculated to a defined redundancy. Processing,

including integration and a multiscan absorption correction,

was accomplished with CrysAlis Pro (Oxford Diffraction,

2010).

Data were merged using the program SORTAV using unit

weights and robust-resistant down-weighting of outliers. The

standard deviations output by SORTAV are estimates of the

standard uncertainty of the population rather than of the

sample-estimated mean. This quantity should converge to an

approximately constant value as redundancy increases. Its use

in merging data has been justified by Blessing (1997).

Structures were refined against |F |2 in CRYSTALS using all

data. All non-H atoms were refined with anisotropic dis-

placement parameters. H-atom positions and isotropic

displacement parameters were refined subject to restraints.

Flack and extinction parameters were also refined. The

weights were equal to 1/�2(|F |2) multiplied by a robust-resis-

tant modifier as described by Prince & Nicholson (1983).

Reflections given zero weight in this procedure were omitted.

Goodness-of-fits, S, were in the region of 2, and the weights

were rescaled using a facility available in CRYSTALS to give

S’ 1. These weights were output along with other files needed

for leverage analysis and used for the modified weight calcu-

lations described in x3.6.

3. Results and discussion

Figs. 2–4 illustrate the results of the leverage analyses

described below. The value of |Fo| (scaled to |Fo,max| = 100) is

used to represent intensity even though refinements were

carried out on |F |2; this is to be consistent with existing

literature and also aids comparisons and provides clearer

dispersion of points for low-intensity data. Leverages were

normalized by dividing them by Nparameters /Nobservations, that is

by the mean leverage value. Observations take the form of

intensity data and any restraints applied during refinement.

3.1. Leverages in alanine

Figs. 2(a)–2(c) show plots of leverage against |Fo|, |Fo|/

�(|Fo|) and sin�/� for the |F |2 refinement of aniline against all

data with 1/�2 weights. From Fig. 2(a) it can be seen that the

most influential data are those with moderately weak inten-

sities, the leverage falling off towards very low or very high

intensity; a similar effect is apparent when leverages are

plotted against |Fo|/�(|Fo|) (Fig. 2b). Fig. 2(c) reveals the

importance of the high-resolution data, with leverages

showing an increasing trend with sin�/�.

Although weak data do not appear to be especially influ-

ential in alanine the same is not necessarily true of all struc-

tures. Weak data may be very important in pseudosymmetric

structures, for example in distinguishing between centrosym-

metric and noncentrosymmetric models (Dunitz, 1995;

Kassner et al., 1993; Marsh, 1981). The organic compound

4-cyano-40-[(4R)-4,5-epoxypentyloxy]biphenyl, which has one

asymmetric carbon centre, crystallizes in P21 with two mol-

ecules in the asymmetric unit (Clegg et al., 1998). With the

exception of the asymmetric carbon atom these two molecules

are related by a pseudo-inversion centre so that the space

group is almost P21/n. The leverages, calculated using the

intensity data available as supplementary material to the

article by Clegg and co-workers, are plotted against |Fo|/�(|Fo|)

in Fig. 3; this should be compared with Fig. 2(b), which shows

the same data for alanine. There are more high-leverage

points amongst the weak data in the former, attesting to the

importance of weak data in this structure.

3.2. Leverage analysis of restraints in alanine

Restraints are incorporated into refinement in the least-

squares design matrix, and the calculations described above

yield leverage values for restraints as well as intensity data.

Restraints were applied in the alanine refinement, and the

column of points at the far left of the plots in Figs. 2(a)–2(c)

corresponds to their leverages; they are clearest in Fig. 2(c).

The normalized leverages are generally above average (i.e.

greater than 1), showing that the restraints have an important

influence on the refinement.

The highest leverage values correspond to restraints applied

to the isotropic displacement parameters of the H atoms,

assigning target values equal to some multiple (1.2 or 1.5) of

the equivalent isotropic displacement parameter of their

parent atoms. These points have normalized leverages of

above 4 and absolute leverage values in the region of 0.5. This

means that, though the restraints are important, the values of

the H-atom displacement parameters are significantly influ-

enced by the intensity data. Had the absolute leverages been

closer to 1 this would have implied that the displacement

parameters were simply fitting the restraint applied with little

or no influence from the intensity data. The next block of

points at the far left of Fig. 2(c), with normalized leverages of

between 1 and 2, corresponds to restraints applied to N—H

and C—H distances, while the lowest points with normalized

leverages of less than 1 correspond to the H—N—H and H—

C—H angle restraints.
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Leverage analysis is useful in the interpretation of the

results of a restrained refinement because it shows which

restraints are significantly influencing the fit and to what

extent they define the final value of a parameter. A leverage

value close to 0 implies that the data point in question has little

influence. A restraint with a very low leverage might as well be

deleted, or, if it is thought to be important, it should have its

uncertainty decreased, though not beyond a realistic estimate

of the spread of values that the restrained parameter might

adopt. Conversely, if a restraint has an absolute leverage near

1.0 this indicates a forced fit: the refinement has converged on

whatever value was typed into the restraint list of the refine-

ment program.

3.3. The effects of incomplete data: leverage analysis of
Cu(sal)2

The data set for Cu(sal)2 was collected at high pressure, and

the completeness is low as a result of shading of reciprocal

space by the pressure cell. The plots shown in Figs. 4(a)–4(c)

show leverage versus |Fo|, |Fo|/�(|Fo|) and sin�/� plots for the

refinement of Cu(sal)2. Here the trends are seen to be different

from those described above for alanine, with a larger spread of

leverage values. There is a broad distribution of points spread-

ing from low to moderately high values of |Fo| in Fig. 4(a), and

the sharp peak in the |Fo| versus leverage plot present in

Fig. 2(a) is absent. The standard deviations of the normalized

leverage values are 0.75 for alanine and 1.07 for Cu(sal)2.
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Figure 2
(a)–(c) Leverage analysis for alanine as a function of |Fo|, |Fo| /�(|Fo|) and sin�/�, respectively. (d) Values of signed T values for the extinction parameter
plotted against |Fo|. (e), ( f ) Sums of T2 values plotted against sin�/� for, respectively, fractional coordinates and non-H-atom ADPs for simulated data.
The columns of points on the far left of the plots correspond to the restraints.



A number of the restraints have normalized leverages of >5

and absolute leverage values of 0.8 or more; these occur at the

top of the column of points at the left of Figs. 4(a)–4(c). Some

of these correspond to restraints applied to H-atom dis-

placement parameters and to planarity restraints involving H

atoms. The C—H and N—H distance restraints have absolute

values of 0.5–0.7, substantially higher than in alanine. The high

leverage values for restraints involving H-atom parameters

are quite reasonable for a heavy-atom compound.

Also found amongst the highest leverage values are rigid-

bond restraints applied to the anisotropic displacement

parameters (ADPs) of atoms forming the ligand; these are

known as ‘DELU’ restraints to SHELX (Sheldrick, 2008a)

users, and apply the Hirshfeld rigid-bond criterion as a

restraint. The smallest leverages, with values close to 0, relate

to rigid-body (‘SIMU’) restraints, which restrain the Uij values

of neighbouring atoms to be equal. Refinement of ADPs

against incomplete high-pressure data sets usually leads to

elongation along the direction where data are missing, and it is

therefore not unexpected that restraints applied to ADPs

should have high leverage values. However, the rigid-bond

restraints are much more influential than the rigid-body

restraints. Although rigid-bond restraints are usually applied

with higher weight than rigid-body restraints, the complete

lack of any leverage for the latter was surprising, and the

analysis shows that in view of the acceptable ADPs obtained

in the refinement (Fig. S1b) the rigid-body restraints might as

well be deleted.

A possible procedure for assessing the effect of complete-

ness on leverages might be to compare leverages from a

refinement using the high-pressure data set just discussed with

another using a complete data set collected at ambient pres-

sure. The problem with this procedure is that the experimental

values of �(|Fo|2) would differ between the two data sets and

so any comparison would be complicated by the effect of
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Figure 3
Leverage analysis based on |Fo| /�(|Fo|) for the pseudosymmetric structure
referred to in the text. Notice that there are more high-leverage points
amongst the weak data than in Fig. 2(b).

Figure 4
(a)–(c) Leverage analysis for Cu(sal)2 using data with a completeness of around 50% as a function of |Fo|, |Fo| /�(|Fo|) and sin�/�, respectively. (d)
Comparison of leverages from refinements against complete and partial data sets; the points shown as plus signs (+) refer to the restraints, and the dashed
line traces the path of y = x.



different refinement weights. Instead a complete data set was

collected under ambient conditions and a partial data set

generated from this by taking only those data which had been

measured in the high-pressure data set. The weights [= 1/

�2(|Fo|2)] for equivalent reflections in refinements using the

complete and partial data sets are then the same. The same set

of restraints (see Experimental) was applied in both refine-

ments.

A plot of leverage values for equivalent reflections in the

two refinements is shown in Fig. 4(d), in which intensity data

are shown as dots and restraints as plus signs. The average

leverage (Nparameters/Nobservations) must be larger in the

incomplete data set, and essentially all points in the graph are

to the right of the line y = x. There is a tendency for intensity

data that are already influential when the data are complete to

become more influential when the data are incomplete. Low-

leverage reflections tend to stay low. Lack of completeness

also has a significant effect on some of the restraint leverages.

There is a horizontal spread of plus signs in Fig. 4(d) near the x

axis, corresponding to a marked increase in the influence of

rigid-bond restraints applied to the anisotropic displacement

parameters of the ligand. The highest restraint leverages,

which apply to H-atom isotropic displacement parameters, are

the same for both data sets.

3.4. Interpretation of T2 and T values

While leverages measure the overall influence that a data

point has on a refinement, it may be of more interest to ask

which data points influence a specific parameter. This infor-

mation is contained in the T2 values that can be generated in a

leverage analysis. A high T2 value indicates an influential

observation.

David and co-workers (David et al., 1993; David, 2004) have

recommended analysis of signed T values [= tij /(1 + P0ii)
1=2] as

they show whether a data point makes a parameter more

positive or more negative. These authors illustrated this idea

using displacement parameter T values in a Rietveld refine-

ment. Short-d-spacing data all had negative T values because a

relative increase in the intensities of these data would make

the displacement parameter smaller. Conversely, long-d-

spacing data all had positive T values. Fig. 2(d) shows the

variation of T values for the extinction parameter in alanine.

The numerically largest values of T occur for the strong data,

as expected, and they are all negative: increasing the inten-

sities of strong data will reduce the value of the extinction

parameter.

Rather than analysing the influence of data on a single

parameter it may be of more interest, or simply less time

consuming, to study groups of parameters. If only one para-

meter is being refined the leverage and T2 values for the

parameter in question amount to the same thing; this implies

that one method for analysing a group of parameters is to

study leverages from a refinement in which only those para-

meters are allowed to vary. This technique was used by Merli

and co-workers in their work on minerals (e.g. Merli et al.,

2000). An alternative approach, which avoids the need to

carry out multiple refinements, is to sum the T2 values for

groups of parameters. Fig. 2(e), which shows sums of T2 values

for the fractional coordinates in a refinement of alanine

against simulated data, displays a marked drop-off in values

above sin�/� = 0.6 Å�1. This result can be contrasted with that

described in Merli et al.’s (2000) leverage analysis of the sili-

cate mineral pyrope. Here, high-resolution data were found to

be important in determining the precision of oxygen positional

parameters. This result was reflected in the importance of

high-resolution data that had been noted anecdotally in

Merli’s laboratory in systematic work with garnets (Merli et

al., 2000).

In alanine, data above sin�/� = 0.6 Å�1 are most influential

for the ADPs (Fig. 2f).

3.5. T2 analysis of the Flack parameter in alanine

The Flack parameter is refined for noncentrosymmetric

crystal structures in order to establish the absolute structure

(Flack, 1983). The most important practical application of

absolute structure refinement is in the determination of the

absolute configuration of chiral compounds. The ability to

distinguish one absolute structure from its inverted analogue

depends on the resonant (or anomalous) scattering effects

having sufficient magnitude to lead to measurably different

intensities for Friedel pairs, something that depends on the

elements present in the crystal and the wavelength of the

X-rays used to collect intensity data.

Before any conclusions regarding absolute structure can be

made the standard uncertainty of the Flack parameter should

be less than 0.1, even if a material is known to be enantiopure

(Flack & Bernardinelli, 2000). However, resonant scattering

effects for elements such as C, N and O are small for

commonly available X-ray energies, making it difficult to

determine the Flack parameter with sufficient precision to

establish absolute structure for organic compounds such as

alanine. The likely success of an absolute structure determi-

nation can be gauged using the Friedif parameter (Flack &

Bernardinelli, 2008; Flack & Shmueli, 2007). If Friedif has a

value of about 80, absolute structure determination should

present little problem. The value of Friedif for alanine is only

33.9. Accordingly, the value of the Flack parameter obtained

from the refinement of alanine was 0.00 (13). The data set was

of excellent quality, yet the precision of the Flack parameter is

(just) too large to enable a definitive statement to be made

regarding the absolute structure (Flack & Bernardinelli,

2000).

Fig. 5 shows the results of a T2 analysis for the Flack

parameter in alanine. T2 values for reflections that form

Bijvoet pairs are strongly correlated, as expected (Fig. 5a).

Values of |T | are also closely correlated with

jjFcðhÞj
2
� jFcðhÞj

2
j

�2 jFoðhÞj
2

� �
þ �2 jFoðhÞj

2
� �� �1=2

;

the calculated Bijvoet difference divided by its uncertainty as

derived from those of the experimental observations (Fig. 5b).

The most influential reflections are those with weak-to-
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moderate intensities, 10–15% of |F |max (Fig. 5c). It is also

notable that there are only a few (about 15) data that strongly

affect the precision of the Flack parameter: most data have

rather little effect.

Fig. 5(d) shows the distribution of T2 values as a function of

sin�/�. The most influential data lie at sin�/� ’ 0.4–0.5 Å�1,

but the trend seems to drop off towards higher resolution.

Similar features are seen for the other light-atom structures.

Nonresonant X-ray scattering factors decrease with sin�/�,

whereas the resonant corrections ( f 0 and f 00) are constant, and

so the relative contribution of resonant scattering effects

increases with resolution. Influential observations are

expected to lie amongst the high-resolution data.

The increasing contribution of the resonant scattering

factors at high resolution has led to the suggestion that

collecting very high resolution data should enable precise

absolute structure determination even for light-atom struc-

tures. However, in order to obtain such data it is necessary to

use short-wavelength radiation for which resonant scattering

effects are very small. Data for alanine were simulated to a

resolution of 0.4 Å using scattering factors for Mo K� radia-

tion. The structure of alanine was refined (along with the Flack
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Figure 5
T analysis for the Flack parameter in alanine; (a)–(d) were generated using experimental Cu K� data, and (e) and ( f ) were generated from simulated
data calculated to very high resolution for Mo K� radiation. (a) The relationship between T2 values for Friedel pairs. (b) The variation of |T | with the
calculated Bijvoet ratio/� [this quantity was calculated in PLATON (Spek, 2003)]. (c), (d) T2 as a function of |Fo| and sin�/�, respectively, for the
experimental data sets; (e)–( f ) the same quantities plotted for the simulated data.



parameter) against this data set. The T2 versus |Fo| plots for the

experimental data (Fig. 5c) and the simulated data (Fig. 5e)

show the same trend for moderate values of |Fo| being the

most influential, though the distribution in Fig. 5(e) is sharper.

Fig. 5( f) shows the values of T2 for the Flack parameter in this

refinement plotted as a function of sin�/�. While there is a

general increase in the T2 values with sin�/�, the distribution is

peaked in the middle of the resolution range, indicating that

very high resolution data do not dominate the precision of the

Flack parameter.

The reasons for expecting high-resolution data to be influ-

ential in determining the precision of the Flack parameter

were outlined above, and it is perhaps surprising that there is a

fall-off in T2 values at the highest resolution in Figs. 5(d) and

5( f). However, Fig. 5(b) shows that an important factor in

determining the influence that a particular Bijvoet pair has on

the Flack parameter is how high the intensity difference is

relative to its measurement standard uncertainty. It seems that

the influence of reflections on the Flack parameter is the result

of a balance between the increased contribution of the reso-

nant scattering factors and the overall reduction in the signal-

to-noise ratio of the intensities, which both occur as sin�/�
increases. At high resolution data will be weak and the Bijvoet

ratios small relative to the measurement uncertainties, leading

to a reduced influence on the Flack parameter. The fall-off can

also be associated with the trends shown in Figs. 2(e) and 2( f),

which show, respectively, the sums of T2 values for the posi-

tional parameters and the non-H ADPs. The low-angle data

most strongly influence the positional parameters, while the

highest T2 values for the ADPs are seen for the high-angle

data. The largest Flack parameter T2 values are seen between

these two regions. The leverage of very high resolution data is

‘spent’ on defining the displacement parameters rather than

the Flack parameter.

3.6. Use of T values in a weighting scheme

There is a long-standing interest in finding ways to improve

the precision of the Flack parameter in light-atom structures.

In the past, when four-circle instruments with point detectors

were in use, a selected set of data with the highest Bijvoet

ratios could be measured to a desired precision and statistical

tests performed on the intensities to assess absolute structure

(Le Page et al., 1990). More recently, a post-refinement

statistical procedure has been described by Hooft et al. (2010,

2008), while a method that can be used during refinement,

based on combining Bijvoet intensity measurements and

applying them as restraints, has been described by Parsons et

al. (2010). It has also been shown that precision may be

improved by the use of aspherical scattering factors (Dittrich

et al., 2006).

A method explored by Bernardinelli & Flack (1985)

showed that precision can also be improved by modifying the

refinement weights, up-weighting reflections calculated to be

sensitive to the value of the Flack parameter. By this proce-

dure the standard uncertainty of the Flack parameter could be

reduced to an arbitrarily small value, but at the cost of causing

the value of the parameter itself to deviate from its true value.

Information on the sensitivity of parameters to specific data

is, of course, available from a leverage analysis in the form of

the T and T2 values, and the potential for improving the

precision of the Flack parameter by incorporating these into

the refinement weights was explored.

After some experimentation the following procedure for

reweighting was used. The value of � = 0.5{max[a|T(h)|b, c] +

max[a|T(�h)|b, c]} was evaluated for each reflection with a =

0.1, b = 1.0 and c = 1.0. The overall mean �, h�i, was also

determined. The reflection weights (w) were then modified

(w0) according to w0 ¼ ½�=ðh�iSÞ�2w, where S is the goodness of

fit obtained in the refinement with the original weights w.

Larger values of a and b correspond to stronger up-weighting

of sensitive data, though the placing of T values on a relative

scale with Tmax = 100 also implies a greater up-weighting in

cases where resonant effects are weak.

For the alanine data set a Flack parameter of 0.00 (13) was

obtained using F2 refinement with weights equal to 1/�2(|Fo|2)

multiplied by a robust modifier as described by Prince &

Nicholson (1983). The value of the Flack parameter obtained

on reweighting with a = 0.1, b = 1.0 and c = 1.0 was �0.02 (5).

Reweighting using the parameters a = 0.5, b = 1.0 and c = 0.5

yielded x = �0.02 (7).

Reweighting modestly increased the value of the

unweighted R factor based on |F | and all data by 0.2%. A

normal probability plot based on w1/2(|Fo|2 � |Fc|
2) had a

gradient and correlation coefficient near unity and an inter-

cept near 0; analyses of variance based on resolution or

intensity were flat.

Hooft et al. (2010, 2008) have emphasized the value of

normal probability plots (Abrahams & Keve, 1971) based on

weighted Bijvoet differences in absolute structure refinement,

and these proved to be a much more sensitive procedure for

validating the weighting scheme. While the central region of

the plot showed the expected behaviour, there was deviation

from linearity at the extremes (Fig. 6a), suggesting that some

data had been over-weighted. Over-weighting could be

corrected using a second program, REWEIGHT, which fits a

straight line to the central region of the normal probability

plot and uses the equation of this line to define a factor to

down-weight the deviating data points (Fig. 6b). The normal

probability plot based on w1/2(|Fo|2� |Fc|
2) was still linear after

this procedure (Fig. 6c). The value of the Flack parameter was

�0.02 (6).

The procedure described above was tested on a number of

other absolute structure refinements, and the results are listed

in Table 1. All data sets were collected with high redundancy

using Cu K� radiation at 100 K. All are ‘difficult cases’ for

absolute structure refinement, all except one having Friedif

parameters of 34 or less. One conclusion to be drawn from

Table 1 is that robust-resistant 1/�2 weights can be very

effective for absolute structure refinements. However, preci-

sion was improved by application of the T-scaled weighting

scheme, which yielded Flack parameters in most cases with

standard uncertainties of around 0.1 or less. In the majority of
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cases the Flack parameter itself moved closer to zero, with a

value within one standard deviation of zero. In all cases the

normal probability plots based on w1/2(|Fo|2 � |Fc|
2) or Bijvoet

differences were linear, while analyses of variance based on

intensity, resolution and parity group were flat.

A particularly encouraging result was obtained for entry 17

in Table 1. These data refer to cholestane, a hydrocarbon with

a Friedif parameter of only 9. Refinement of the Flack para-

meter using unmodified weights yielded a value of 0.36 (45),

clearly an uninterpretable result. Reweighting yielded a Flack

parameter of 0.10 (14); increasing the influence of sensitive

data still further using a = 0.2 (and b = c = 1.0 as before)

yielded a value of 0.10 (11).

One disadvantage of the reweighting procedure is that it

can amplify noise in the data, and Bijvoet normal probability

plots were useful for detecting outliers. Outliers can cause the

Flack parameter to deviate from its true value: in example 15,

deletion of just two outliers changed x from 0.35 (12) to

0.02 (14). In cases such as this one we recommend, in prefer-

ence to selective deletion of data, that the whole experiment

be repeated.

The down-weighting procedure based on linearization of

the weighted Bijvoet difference normal probability plot to

some extent reduces the sensitivity of the results to the values

of the parameters a, b and c defined above. We note in passing

that in all cases the weighted Bijvoet difference normal

probability plots had gradients much less than unity, spanning

the range 0.28–0.75. Hooft et al. (2010) have also noted this

feature, pointing out that it implies that the values of the

Bijvoet difference uncertainties used to calculate the plots are

overestimated. The variances of Bijvoet differences are

calculated as f�2½jFoðhÞj
2
� þ �2½jFoð�hÞj2�g1=2, but this neglects

a further covariance term equal to �2cov[|Fo(h)|2, |Fo(�h)|2].

The small numerical values of the probability plot gradients

suggests that the errors in |Fo(h)|2 and |Fo(�h)|2 are positively

correlated. The correlation between errors suggests that it

may be appropriate to include off-diagonal weights in absolute

structure refinements. However, we are grateful to Professor

Howard Flack for pointing out that the ‘AD refinement’

method of Flack et al. (2011) is equivalent to inclusion of these

off-diagonal weighting terms, and when tested, this did not

lead to substantial changes in either the Flack parameter or its

standard deviation

The procedure described here alters the relative weights of

observations in such a way as to improve the precision of a

selected parameter. In an absolute structure determination the

aim of the experiment is to obtain a precise value of the Flack

parameter; our weighting scheme effectively refocuses the

information present in the data in line with the aim of the

experiment. The precision of other parameters may be

decreased in a similar way. As an illustrative example, data

sensitive to the x, y and z fractional coordinates of one of the

ammonium H atoms in alanine were up-weighted (using a =

b = c = 1.0). Prior to reweighting the coordinates were

0.4601 (16), 0.4089 (13) and 0.6476 (7); after reweighting they

were 0.4608 (10), 0.4090 (8) and 0.6475 (5). The N—H bond

distance changed from 0.907 (9) to 0.912 (6) Å.

In principle the precision of other parameters should

decrease as a result of reweighting. The effect is small in our

absolute structure tests because the number of data being up-

weighted is also quite small (there are only a few really

sensitive data). For the structures in Table 1 the maximum

change in position was 0.004 Å and the maximum change in

Uij was 0.002 Å2, these values being similar to the standard

uncertainties in C—C bond distances and Uij values in the

structures concerned. In another test (using the data set

collected for alanine) data sensitive to the scale factor were

up-weighted using parameters a = b = c = 1.0. The scale factor
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Figure 6
Normal probability plots relating to absolute structure refinement for
alanine using experimental data. (a), (b) Before and after linearization of
the T-weighted normal probability plot based on observed and calculated
Bijvoet differences (Bo � Bc). (c) Normal probability plot based on
w1/2(|Fo|2 � |Fc|

2).



changed from 4.91 (11) to 4.93 (6). The precision of the

extinction parameter also improved [20 (4) to 23.0 (9)],

reflecting the fact that strong low-resolution data are impor-

tant for both parameters. The precision of the displacement

parameters, which are most sensitive to high-resolution data

(see above), decreased slightly, with the average standard

uncertainty changing from 0.0028 to 0.0031 Å2.

4. Conclusions

Leverage analysis can be based either on the values of the

leverages themselves, which give information on overall data

fitting, or on T values, which enable the influence of obser-

vations with respect to specific parameters or groups of

parameters to be investigated. Use of leverage analysis in

crystallography is still quite rare, and the aim of this paper was

to describe how it might prove useful in routine structure

analysis.

Application of leverage analysis to outlier detection has

been described previously by Merli (2005). Merli and co-

workers have also shown that it can be used to rationalize the

sensitivities of different mineral structures to the quality of

high-resolution data, and to inform or justify refinement

strategies of mixed site occupancies (Merli et al., 2000). The

role of different classes of data in a refinement has been

described by David et al. (1993). The identification of refine-

ments where weak data are important was described here.

A further application of the technique is in determining the

effectiveness of restraints: a restraint with almost zero

leverage might as well be removed or up-weighted. Equally,

leverages are useful in deciding whether a parameter is

determined solely by the restraints that have been applied or

whether the intensity data retain some influence.

These ideas were illustrated using restrained refinements of

alanine and Cu(sal)2. In alanine the restraints were applied to

H-atom positional and displacement parameters. Restraints

placed on C—H and N—H bond distances were found to be

more important than restraints placed on the angles involving

H atoms. The leverages of the distance restraints were

nevertheless only a little higher than average, and the intensity

data were still important. The contrary was true in the Cu(sal)2

refinement. In this case the H-atom parameters were effec-
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Table 1
The effect of incorporating T into refinement weights in absolute structure refinements of some light-atom structures.

Listed are values of unweighted R factors calculated on F and all data, the gradient, intercept and correlation coefficient of normal probability plots, and the value
of the Flack parameter. The first and second lines refer to the refinements without and with T weighting; for the normal probability plot data the values before and
after the ‘/’ refer to plots based on w1/2(F2

o � F2
c ) and w1/2(B2

o � B2
c ), where B is the Bijvoet difference. Structures 2, 3, 5, 8, 11, 12 and 17 are monoclinic (P21); the

remainder are orthorhombic (P212121). For entries 5 and 15, three and two Bijvoet pairs were omitted, respectively.

Normal probability plot

No. Formula Friedif Redundancy R1(all data) (%) Gradient Intercept Correlation coefficient Flack parameter

1 C3H7NO2 34 14.9 1.61 0.922 0.02 0.996 0.00 (13)
1.71 0.936/0.339 0.01/�0.05 0.994/0.999 �0.02 (6)

2 C9H15F2NO2 53 5.7 2.18 0.934 0.01 0.998 0.01 (7)
2.27 0.942/0.386 0.03/0.02 0.999/0.998 0.00 (4)

3 C13H17NO5 35 5.7 2.55 0.941 0.04 0.998 �0.06 (10)
2.67 0.945/0.493 0.05/0.00 0.999/0.999 0.00 (5)

4 C5H8N2O2 33 28.5 1.83 0.911 0.04 0.989 0.01 (10)
1.89 0.938/0.281 0.02/0.02 0.998/0.997 0.01 (5)

5 C13H19N3O4 32 7.8 2.25 0.915 0.00 0.996 0.10 (9)
2.33 0.944/0.428 �0.02/�0.03 0.999/0.998 0.06 (4)

6 C25H31NO5 32 11.5 2.30 0.942 0.05 0.997 0.02 (8)
2.41 0.946/0.405 0.05/0.01 1.000/0.999 0.01 (4)

7 C35H30N2O5 29 10.2 4.40 0.942 0.11 0.996 �0.04 (12)
4.53 0.944/0.587 0.10/0.02 0.999/0.999 �0.01 (5)

8 C29H38N3O4 28 5.6 2.84 0.945 0.05 0.998 �0.05 (6)
2.95 0.946/0.457 0.05/�0.01 0.998/0.999 0.00 (3)

9 C60H78N6O8 28 5.8 3.28 0.960 0.05 0.996 0.08 (8)
3.25 0.947/0.579 0.05/�0.03 1.000/0.999 0.06 (4)

10 C20H21NO2 26 11.5 2.09 0.925 0.04 0.993 �0.04 (8)
2.16 0.944/0.281 0.03/0.00 0.999/0.999 �0.01 (3)

11 C20H21NO2 26 11.4 2.15 0.934 0.05 0.994 �0.03 (8)
2.21 0.944/0.229 0.03/0.00 0.999/0.999 �0.01 (4)

12 C45H60O3 23 5.9 3.06 0.936 �0.01 0.996 �0.10 (11)
3.14 0.942/0.748 �0.01/0.48 0.999/0.989 �0.08 (5)

13 C20H21N4O 21 11.7 2.05 0.933 0.02 0.994 -0.01(11)
2.14 0.945/0.331 0.03/0.02 0.999/0.998 0.02(5)

14 C21H22N2 #1 12 11.5 2.79 0.941 0.00 0.998 �0.08 (31)
2.85 0.946/0.490 �0.01/�0.12 0.999/0.998 0.08 (12)

15 C21H22N2 #2 12 10.9 2.91 0.941 0.03 0.997 0.01 (31)
3.08 0.946/0.447 0.03/�0.04 1.000/0.998 0.02 (14)

16 C21H22N2 #3 12 11.7 2.05 0.912 0.04 0.994 0.00 (19)
2.11 0.943/0.239 0.04/0.00 0.999/0.996 �0.04 (8)

17 C27H48 9 19.8 4.12 0.941 0.04 0.997 0.36 (45)
4.23 0.949/0.474 0.04/�0.13 0.999/0.994 0.10 (14)



tively determined by the restraints that had been applied. Of

the restraints applied to the C-, N- and O-atom ADPs the

rigid-bond restraints were very influential, but the rigid-body

restraints had hardly any effect at all.

Another application was illustrated in T2 analysis applied to

the Flack parameter in alanine. It has been suggested that a

strategy for precise absolute structure determination for light-

atom crystal structures is to collect very high resolution data

with Mo K� radiation. However, leverage analysis shows that

the influence on the Flack parameter peaks at around sin� /� =

0.6 Å�1 and begins to decline at higher resolution. It was

suggested that this trend is related to the observability of

statistically significant Bijvoet intensity differences amongst

weak high-resolution data.

The final application of leverages described here was in

using T values as refinement weight modifiers to increase the

precision of a parameter of interest. The parameter chosen

was the Flack parameter in light-atom absolute structure

refinements. The results obtained using T weighting are

promising: not only are values of the Flack parameter more

precise, they are also more accurate than values obtained in

conventionally weighted refinements, clustering more closely

around zero.

The method could, in principle, be applied to any parameter

without the need to develop a physical model for identifying

the most sensitive data, though we have not investigated this

in detail, and careful testing would be required. In this work, it

proved very important to examine refinement statistics criti-

cally, particularly so when resonant scattering effects are weak

as the results are determined by up-weighting of a small

number of data. Nevertheless, it does seem that given data of

sufficient quality and high redundancy, reweighting based on

leverage analysis might be employed to improve the precision

of light-atom absolute structure determinations.

5. Programs

Windows executables for the programs HATTIE and

REWEIGHT can be downloaded from the web site http://

www.crystal.chem.ed.ac.uk/resource/. The programs are

intended to be used in conjunction with CRYSTALS, which is

available from http://www.xtl.ox.ac.uk/category/crystals.html.
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