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The systematic comparison of the atomic structure of solids and clusters has

become an important task in crystallography, chemistry, physics and materials

science, in particular in the context of structure prediction and structure

determination of nanomaterials. In this work, an efficient and robust algorithm

for the comparison of cluster structures is presented, which is based on the

mapping of the point patterns of the two clusters onto each other. This algorithm

has been implemented as the module CCL in the structure visualization and

analysis program KPLOT.

1. Introduction
The degree of similarity between two given cluster structures

is an important aspect of many investigations in crystal-

lography, chemistry, physics and materials science, in parti-

cular in the context of structure prediction and structure

determination of nanomaterials. Applications range from the

unique classification of clusters and their embedding in crys-

talline structures (Driess & Nöth, 2005), through the study of

phase transitions, to the ubiquitous task of analyzing newly

discovered clusters via comparisons of their structure with

those of known clusters exhibiting similar structural char-

acteristics. More recently, the field of computer-assisted

structure prediction and structure determination of clusters

(Wales et al., 2000; Ferrando et al., 2008) or even of proteins/

polymers (Wales et al., 2000; Schön & Jansen, 2001a,b) has

resulted in procedures that generate thousands of so-called

structure candidates (Schön & Jansen, 1996, 2001a,b; Sokol et

al., 2010). These need to be sorted in some automatic way, in

order to eliminate large numbers of duplicates that would

otherwise clog up the refinement stage of the various search

algorithms. While programs that allow the automated deter-

mination of, for example, the symmetries (Pilati & Forni, 1998)

and connectivity (Blatov, 2006) of a simulated cluster structure

can constitute a first step in this direction, more comprehen-

sive procedures are clearly needed.

The theoretical and algorithmic work aimed at developing

reliable and useful comparison procedures tends to deal with

one or several of three different aspects of the overall

problem: the unique classification from a crystallographic or

chemical point of view, the development of meaningful ‘figures

of merit’ that yield a quantitative measure of the degree of

similarity between two clusters, and finally the construction of

algorithms that perform an unbiased automatic structure

comparison. Here one should note that such algorithms could

take very different shapes depending on whether the goal is

the determination of the quantitative similarity between two

structures already known to be related, or whether basic

similarity between a new structure and one drawn from the

database of known cluster structures needs to be established.

In the field of crystalline structures, one class of measures of

similarity are based on distance differences between atoms

belonging to related structures (Nishikawa et al., 1972),

leading to error-scaled difference distance matrices

(Schneider, 2000), or employ distance–distance scatter plots

based on the shortest contacts for all atoms in both structures

(Dziubek & Katrusiak, 2004). Such measures are probably

most useful for analyzing the small changes in structures due

to external influences such as changes of temperature and

pressure, and could be applied to analogous cluster studies.

Similar atom–atom or fragment–fragment distances are also

employed in the classification schemes proposed by Chisholm

& Motherwell (2005) and Willighagen et al. (2005).

In these procedures, the atom–atom distances of what

constitutes essentially a large cluster cut out of the periodic

crystal structure (or out of the interior of a macroscopically

large cluster representing a nanocrystal) are computed,

resulting in a direct-space approximation of the radial distri-

bution function (RDF) of the crystal or cluster. The difference

between the RDFs of the two structures under consideration is

then employed as the figure of merit, where additional weight

factors can be introduced based on ‘chemically and/or ener-

getically important’ atom–atom distances (Willighagen et al.,

2005). Clearly, this approach via evaluation of the RDF can be

(and has been) applied to the classification and comparison of

small clusters. We note that it is implicitly assumed that the

RDF will ensure a clear decision on whether two clusters or

crystal structures are equal. However, this is not true in

general – a straightforward counterexample is two enantio-

morphic structures.

As a popular alternative, in the field of structure prediction

of clusters, one often relies on the energy of the relaxed cluster

to serve as a proxy for the classification of cluster structures.
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This criterion appears to work quite nicely if all structures

have been carefully minimized with a high-quality local opti-

mizer. However, we again encounter a number of issues that

make this approach problematic, both in principle and in

practice. For one, different methods used to compute the

energy of the clusters typically give different results, and thus

using energy as a criterion beyond as an initial screening tool

is inherently questionable. For example, the investigation of

the space of feasible clusters might have been performed (by

different research groups) using different energy functions,

e.g. the Hartree–Fock and density functional theory approa-

ches, and the additional local minimization required for an

energy-based comparison could prove to be rather expensive

computationally. Closely connected is the observation that the

precision of the energy calculations employed is limited, in

particular regarding the location of the energy minimum when

performing the minimization; it may well be that the mini-

mization routine will stop at slightly different locations inside

the minimum basin, with slightly different energies, especially

if stochastic quenches and/or ab initio energy functions are

employed. This can lead to conflation of clusters that are

structurally different but have nearly the ‘same’ energy. This

can easily happen in alloy-like intermetallic clusters where

homotops can be present, which differ only very slightly by

energy but exhibit a different distribution of the atoms over

the underlying set of atom positions, i.e. they exhibit a

different chemical order. Conversely, one might be interested

in finding out which of the many energetically slightly

different cluster minima exhibit the same structure if one

treats all atoms as being of the same type, i.e. one would like to

classify the clusters found according to whether they are (a)

different with regard to the underlying atom arrangement, (b)

homotops or (c) really the same structure.

Another classical problem case are enantiomorphic clusters,

which have identical energies but whose structures are mirror

images (Pacheco-Contreras et al., 2012). This is not only an

academic issue; such structure pairs are of special interest

because helical clusters are expected to be of relevance in

chiral catalysis (Szöllosi et al., 2005) and nanoscale devices

(Chakrabarti & Wales, 2011). We note that, as mentioned

above, the problem of enantiomorphic clusters cannot be

addressed using the radial distribution function of the cluster,

either. Finally, we want to be able to compare clusters that

have been generated for different chemical systems. Here, a

classification by comparing energies is obviously not possible,

and even a comparison using scaled atomic distances in the

radial distribution function can lead to difficulties.

In contrast, the approach presented in this work is based on

mapping the two point patterns, i.e. the positions of the centers

of mass of the atoms in a cluster, onto each other in direct

space without first performing any kind of standardization

except an (optional) volume rescaling. This robust procedure

takes possible structural distortions fully into account, while

also allowing us to treat various special and/or interesting

cases such as enantiomeric structures, alloy structures or

partial structural agreement between the structures. After a

description of the algorithm that has been implemented as the

module CCL in our structure visualization and analysis

program KPLOT (Hundt, 2011), we present a number of

examples where the procedure has been applied, and close

with a discussion of its merits and limitations.

2. Comparison of two point patterns

2.1. General procedure

The general concept behind our approach is partly inspired

by our algorithm for the comparison of two periodic struc-

tures, CMPZ (Hundt et al., 2006). We have to find a special

inhomogeneous orthogonal transformation T, i.e. a map

consisting only of shifts and rotations of the cluster, that maps

cluster structure A to cluster structure B such that every atom

belonging to structure A is mapped onto a unique atom in

structure B, and that the inverse transformation T�1 maps

every atom belonging to B onto a unique atom in structure A.

We note that this method can also be used to show whether a

particular cluster A can be embedded into a larger cluster B or

even into a periodic crystalline structure C.

2.2. Algorithmic implementation

The main algorithmic tasks that need to be addressed are

threefold:

(1) Map two clusters belonging to the same system onto

each other, and provide a quantitative measure of their simi-

larity

(2) Compare two clusters containing the same number of

atoms but belonging to different chemical systems

(3) Check, whether a given cluster can be embedded inside

a larger cluster or a periodic crystal

In practice, the comparison algorithm follows the following

strategy for checking whether such a mapping exists:

(1) When dealing with two clusters generated for the same

chemical system, it is obviously not necessary to rescale the

clusters. However, if different types of atoms are involved, a

geometrical mapping only makes sense if the atomic distances

between neighboring atoms are the same. This can be

achieved by rescaling the clusters, either automatically or

explicitly by hand. To perform an automatic rescaling, we first

check whether both clusters contain the same number of

atoms, and then compute the volume of a convex hull around

each cluster. To achieve this, we determine the ellipsoids that

approximate the two structures (via their moment of inertia

matrix), compute the ellipsoids’ volumes and perform an

overall rescaling of the clusters such that the ellipsoids have

the same volume. If the two clusters contain different numbers

of atoms, one has to follow procedure UFRA (see below), in

order to check for the existence of an embedding of the

smaller cluster into the larger one.

(2) Next, a list of candidates for the transformation T is

generated, which fulfill the condition that they map the atoms

belonging to a three-atom frame in structure A to a three-

atom frame in structure B. We generate such test frames in

cluster A, either automatically or by hand, by selecting triplets

of atoms that form the corners of a maximum size triangle.
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Here, we make sure that the vectors connecting these atoms

do not form any angle smaller than 20�.1 This frame is mapped

to structure B by rotation and translation in such a way that

the three atoms in A are each mapped to an atom in B. Of

course, these three target atoms must be of the same type

(called the ‘reference atom’ type).2 We then repeat this

procedure for all possible further maps of the frame to

structure B, in order to find alternative candidates for the

transformation T.

(3) We next check whether any of the transformations T will

map the atom content of cluster A to cluster B, within the

tolerance told. Here, told is the maximally allowed separation

of the image of an atom in A from a target atom in B (in

ångström). Note that, in contrast to the case of periodic

structures, it is not necessary to prove that the atoms of cluster

B can be mapped to cluster A: in the case of comparison of

two clusters of the same size, the existence of T mapping

cluster A uniquely to B guarantees the existence of the inverse

map T�1 which maps cluster B to cluster A. Furthermore, if

one checks whether cluster A can be mapped into structure B

(a larger cluster or a periodic structure), the reverse map is not

required.

As we have pointed out above, real structures, whether

drawn from experiment or simulations, will always exhibit

some differences. Thus, when mapping the frames for deter-

mining candidate transformations, distortions of the frame are

allowed within the tolerances.

If the comparison has been successful, the required trans-

formation matrix and the shift are printed. If the amount of

misfit is of interest, one needs to employ additional tools

within KPLOT to generate an optimal matching of the two

structures for which the comparison has been successful.

These tasks can be achieved via the following list of

commands in KPLOT:

(a) UFR

(1) Triplets defined by hand, rescaling defined by hand

(2) Possible mappings based on triplets generated

(3) Visual inspection of application of mapping to the whole

cluster performed

(b) UFRA

(1) Triplets defined by hand, rescaling defined by hand

(2) Possible mapping based on triplets generated and

applied to the whole cluster based on the given tolerances

(3) Visual inspection of application of mapping to the whole

cluster performed if desired

(c) CCL

(1) Automated rescaling of cluster (via moments of inertia

ellipsoids for two clusters of same size)

(2) Automated selection of handle (criterion: largest

triangle of atom triplets; avoid narrow triangles)

(3) Successful mapping checked on the basis of given

tolerances

(4) Visual inspection of application of mapping to the whole

cluster performed if desired

(5) Options in CCL: select tolerances of mapping; set

rescaling factor explicitly; perform the comparison in an atom-

specific/non-specific fashion, yielding atom type mappings

We note that all the individual commands used in defining

parameters, performing display of results etc. can be auto-

mated within KPLOT as a macro. Furthermore, one should

keep in mind that for clusters that barely match within the

given tolerances it can happen that, as a result of the scaling

step involved, cluster A shows a match with cluster B, but not

cluster B with cluster A. In this case, the clusters should be

considered similar, nevertheless, as one will see from visual

inspection.

3. Illustrative examples

The following examples have been selected to give an over-

view of the large variety of questions in cluster and solid state

science that can be successfully addressed using the structure

comparison algorithms presented in the previous section.

Note that CCL is implemented within the program KPLOT

and is executed with the single command ‘CCL’. Of course, the

structures A and B have to be read into or defined in KPLOT

first. In the examples below, we always explain what each of

the KPLOT commands means; for details of the command

syntax, we refer to the KPLOT manual (Hundt, 2011). Note

that, if one intends to automatically compare many structures

one has compiled, it is recommended to write a control script,

which (a) reformats these structures into KPLOT structure

files, (b) reads them pairwise into KPLOT and executes CCL

with the default options, and finally (c) registers whether the

comparison has been successful. For this purpose, the script

programs LOADCLUST and FILTERCLUST have been

developed, which scan through all the data files produced, for

example, by the global landscape exploration package G42

(Schön & Jansen, 1996) (LOADCLUST), convert them into

KPLOT-readable files, and perform structure comparisons

both among these structures (FILTERCLUST) and of these

structures with an already prepared set of known cluster

structures.

These scripts can be easily modified to include conversion to

the KPLOT format from other file formats or other file-

naming conventions. Please feel free to contact the authors for

further information if necessary.

3.1. Example 1: comparisons of sets of clusters

As an example, we present an analysis of results of global

landscape explorations for clusters of different sizes and

systems, (KMgF3)2, (KMgF3)3 and (KZnF3)2 clusters.
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1 Such triplets are relatively efficient, since they allow us to deal with clusters
that exhibit a small variation in nearest-neighbor atom distances: since T
would be quite sensitive to such differences, possible deviations would
propagate when extending the map to the full cluster and thus make it
impossible to match the farther-out atoms under the mapping T.
2 In order to increase the efficiency and robustness of the algorithm, one
should choose as targets atoms of a type of which only a few atoms are present
in structure B. If no reference atom type is explicitly selected by the user, CCL
employs the atom type with the least number of atoms present in B as a default
reference type. Note that in principle it is also possible to assign the same
working name to all atoms involved, a situation possibly useful for e.g. solid
solution alloys.



3.1.1. (KMgF3)z ðz ¼ 2; 3Þ. After performing simulated

annealing runs on the energy landscape of the (KMgF3)z

clusters with 30 and 80 stochastic quenches followed by

conjugate gradient minimizations along the trajectories of the

walkers for two (z ¼ 2) and three (z ¼ 3) formula units,

respectively, the two sets of minima were analyzed, and the

number of duplicates was determined using the CCL algo-

rithm.

In the case of (KMgF3)2, among the 30 minima found, 12

distinct minima exist. Of these, one minimum was found eight

times, one four times, three three times and two two times, and

the remaining five appeared only once each during the global

search. Similarly, for (KMgF3)3, the 80 minima found can be

classified into 58 distinct minima, where one appeared six

times and another one four times. Furthermore, three were

found three times and eight two times, and the remaining 45

were seen only once.

Since the structures had been fully optimized in careful

local optimizations, we find the same classification if we

employ the energies of the structures as criterion.

3.1.2. (KZnF3)2. A system where ‘similar’ structures to

(KMgF3)2 might be expected is (KZnF3)2. Again performing

80 quenches plus gradient minimizations along simulated

annealing runs yielded 25 structurally distinct minima: one

appeared eight times, five seven times, one six times, one five

times, three three times and three two times, and the

remaining 11 were found only once. However, if one employs

energy as criterion, only 24 different minima are found. The

reason is that two of the minimum structures are enantiomers,

i.e. they are mirror images with identical energies. Using only

energy as a criterion would have missed the existence of this

pair of enantiomorphic structures (termed structure1 and

structure2). To prove this, we inverted one of these structures

using the ZG command in KPLOT, and then performed the

cluster comparison as usual with CCL:

get structure1: load file of structure1

zg 3 12 1: invert the coordinates of all ten atoms belonging

to the cluster3

ns: move structure1 into the background

get structure2: load file of structure2

ccl **1**1: compare the (inverted) structure1 and struc-

ture2, using the default tolerances (**) and no rescaling (1) for

the default choice of atoms, i.e. all (**) allowing only mapping

between atoms of the same type (1)

The resulting output of KPLOT yields the required

mapping.

3.1.3. (KMgF3)2 versus (KZnF3)2. Next, we performed a

structure comparison between the structures found for

(KMgF3)2 and (KZnF3)2. Clearly, a comparison by energy or

pair distribution function is not suitable in this case. Here, we

used the (default) CCL option that the clusters can be rescaled

if necessary to allow a successful mapping to exist. We find that

seven out of the 12 (KMgF3)2 cluster isomers agree geome-

trically with one of the rescaled (KZnF3)2 structures for

told ¼ 0:25 and ten out of 12 for told¼0:5.

3.1.4. Clusters generated from a Monte Carlo simulation
with nonzero temperature. In the previous subsections, the

structures being compared corresponded to refined local

minima on the energy landscape of the chemical system(s). In

a final application, we performed short constant-temperature

simulations for the (KMgF3)2 system and compared the

structures seen along the trajectories.

Two temperatures were chosen, kBT ¼ 0:1 eV and

kBT ¼ 0:01 eV (kB is the Boltzmann constant), and 60 and 40

structures were selected along the trajectories, respectively. In

the former case, the energy of these structures was spread over

an interval of 0.12 eV, and in the latter case the spread was

0.013 eV. Table 1 gives the percentage of similar structures

found for the two temperatures, as function of the tolerance

parameter told ¼ 0:25 (default), 0.5, 1:0 and 1.5. For the lower

temperature, on average for any structure about one-quarter

of all the structures are already similar geometrically for the

default value of told, and all structures are similar for the two

largest values of told. In contrast, the run at higher tempera-

ture produces essentially no pairs of similar structures for the

two lower tolerances, and even at the highest tolerance, only

about 16% of the structures are similar to a given structure on

average. Note that, if one tries to increase this percentage by

employing even higher tolerance values, it is no longer

possible to find unique mappings between the clusters, since

now one atom can be mapped to several target atoms within

the (too) large tolerance radius.

We note that, in contrast to the comparison of well refined

local minima, there is now only a weak correlation between

the energies of the structures and their geometrical similarity.

3.2. Example 2: presence of a polyhedron inside a large
cluster

A common task one faces when analyzing the results of

cluster simulations is to decide to what extent pieces of the

periodic crystal structure in the chemical system are already

present inside the cluster. Usually, one performs a visual

inspection, but the use of CCL or UFRA provides an oppor-

tunity to automate this check. We note that, by repeating the

mapping for different values of the tolerance parameter told in

the UFRA command giving the allowed distance mismatch of

the mapping, we can gain a quantitative figure of merit: how

well the cut-out from the ideal crystal matches the, frequently

distorted, counterpart inside the cluster.
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Table 1
Average percentage of how many atom configurations within a randomly
selected set drawn from a constant-temperature Monte Carlo simulation
are geometrically similar to a given structure from the set.

told

kBT ¼ 0:1 eV
ð�E ¼ 0:12 eVÞ (%)

kBT ¼ 0:01 eV
ð�E ¼ 0:013 eVÞ (%)

0.25 0 28
0.5 0.2 87
1.0 7.2 100
1.5 15.5 100

3 The ten atoms occupy entries 3–12 in the atom list; atoms 1 and 2 in the list
are dummy atoms that serve only as reference points.



As an example, we have checked, for 3200 low-energy 32-

atom NaCl clusters that were found in minimum basins during

a global optimization study, whether they contain an eight-

atom cube consisting of four Na and four Cl atoms cut out of

the periodic NaCl rock salt structure (cf. Fig. 1). Using very

tight tolerances (told ¼ 0:1) showed that only about 4% of the

structures contained an essentially undistorted cube. For the

default value of the allowed distortion of the mapping, about

23% of the clusters observed contained a moderately distorted

cube, while allowing extremely distorted cube-like portions of

the clusters (told ¼ 1:0) resulted in a 26% fraction (cf. Table 2).

Furthermore, about 80% of the clusters with a very low

energy (E� E
global
min � 0:01 eV atom�1) contained at least one

such Na4Cl4 cube, a percentage that was reduced to about

15% for clusters with somewhat higher energies

(E� E
global
min � 0:04 eV atom�1), while the clusters corre-

sponding to high-energy minima did not exhibit any cube-like

substructure. This comparison required less than two minutes

real time on a single 2.4 GHz Intel processor.

3.3. Example 3: existence of a substructure inside a periodic
structure

A common feature of the analysis of crystalline structures

consists in finding structural relationships of newly discovered

structures to already well known structures or parts of them,

which can be visualized as a cluster of atoms. In particular,

information about whether the new structure (or part of it)

constitutes a substructure of the known one can often give

valuable information about, for example, the type of chemical

bonding in the compound.

As a simple illustrative example, we consider the structural

relationship of the perovskite structure of CaTiO3 and the

structure of ReO3 [note that this system had already been

analyzed with an earlier version of UFRA (Hundt et al., 2006);

we present it again for pedagogical reasons]. The structural

data for CaTiO3 and ReO3 are taken from the ICSD

(Bergerhoff et al., 1983; ICSD-FIZ-Karlsruhe, 2005) (Nos.

31865 and 16810, respectively), and we want to check whether

the ReO3 structure is contained in the CaTiO3 structure. For

this, we first read in these two structures, where CaTiO3 and

ReO3 constitute structure1 (in the background) and structure2

(in the foreground), respectively. As fragment F, we choose

the content of eight unit cells of ReO3, using the command

ATB 2 * * 1.0 1.0 1.0

All atoms with relative coordinates (x, y, z) ranging from

(�1, �1, �1) to (+1, +1, +1) are selected as part of the frag-

ment. All locations are given with respect to the original unit

cell.

We select as handle (h1; h2; h3) the following atoms:

h1: Re 1 355501 0.00000 0.00000 0.00000: Re atom at

(0, 0, 0)

h2: O 1 455402 0.00000 0.00000 -0.50000: O atom at (0,

0, �0.5)

h3: O 1 455501 0.50000 0.00000 0.00000: O atom at (0.5,

0, 0)

The notation ‘355501’ etc. is commonly used to describe the

location of a particular atom in a periodic structure, for

example, when generating ORTEP plots (Johnson, 1965). The

first digit refers to the number of the atom in the asymmetric

unit (here No. 3), the next three digits refer to the position of

the unit cell in the periodic structure where the atom is placed

(here the reference unit cell), and the last two digits give the

number of the symmetry operation used to generate the atom

from the one in the asymmetric unit (here the identity

operation). For more details, we refer to the KPLOT (Hundt,

2011) or ORTEP (Johnson, 1965) manuals.

Since the distances Ti—O (1.898 Å) and Re—O (1.867 Å)

are very similar, one does not need to perform a rescaling.

However, since we are trying to map a rather large fragment,

one should increase the value of told. The KPLOT command

UFRA 355501 455402 455501 1: fit handle, and check

whether F matches

then results in the output

research papers

J. Appl. Cryst. (2013). 46, 587–593 R. Hundt et al. � CCL 591

Figure 1
Na16Cl16 atom cluster containing an eight-atom cube-shaped cut out from
the rock salt structure (depicted as large spheres). Na atoms and Cl atoms
are colored white and black, respectively.

Table 2
Number of clusters NC, from a set of 3200 minimum Na16Cl16

configurations, that contain at least one eight-atom cube (4 Na and 4
Cl atoms) cut out of the bulk rock salt structure.

told 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

NC 122 722 726 729 740 831 833 834 834 835

Figure 2
Cut out from the CaTiO3 structure with the TiO3 substructure, which is
geometrically equivalent to the ReO3 structure, highlighted as a network
of TiO6 octahedra. Ca atoms and O atoms are colored white and black,
respectively; Ti atoms are at the centers of the octahedra (not visible).



(1) VZDP 355501 455402 455501 455501 555501 555502

VZDP is the KPLOT command describing the rotations and

shifts of F that need to be executed, in order to achieve a

successful mapping of F onto structure1. The first and last

three numbers indicate the atoms describing the handle and

those atoms onto which the handle has been mapped,

respectively.

This output indicates that a successful positioning of the

handle inside the perovskite structure has been found, such

that all atoms of the fragment have been mapped to appro-

priate partners in the structure of CaTiO3. Atoms that corre-

spond to each other can now be displayed in a plot that

superimposes the fragment on the perovskite structure (cf.

Fig. 2).

4. Discussion

In the previous two sections, we have described the CCL

algorithm and its implementation, together with the related

UFR/UFRA algorithm, and given several typical application

examples. Our experience has shown the algorithm as imple-

mented in KPLOT to be quite robust and easy to use: no

preparatory work is needed regarding the structures to be

compared; any cell parameters, settings and symmetries can be

employed in describing the clusters (and possible periodic

target structures); and after entering the structure data into

KPLOT, a few simple commands suffice to perform the

comparison.

An important reason why we have implemented the algo-

rithm as part of the program KPLOT is the visualization

function of KPLOT: one can easily depict the way the two

structures need to be transformed in order to match, and if no

match is possible, one can use the tools available in KPLOT to

identify the reason for the mismatch.4

As has been described above, the algorithm CCL is based

on the comparison of two cluster structures represented as sets

of points, where the identity of these structures is established

by ensuring that there exists a one-to-one special inhomoge-

neous orthogonal map between the two sets of points, and the

sum over the distances between the locations of the points in

one set and the images of the points in the second set is

sufficiently small. Thus, we do not automatically deal with

structures that are represented by connectivity graphs based

on ‘chemical connectivity’ (e.g. chemical bonds). If the simi-

larity of these connectivity graphs correlates with their

geometrical similarity, CCL will also recognize these struc-

tures as identical, but if no such correlation exists, CCL cannot

be applied. On the other hand, CCL makes a distinction

between structures that are enantiomers. If one wants to check

whether two clusters are enantiomers, one can execute the ZG

command in KPLOT, which effects an inversion on the

structure for one of the test clusters before performing the

comparison (cf. x3.1.2).

The match by our procedure essentially consists of two

steps: we check possible three-atom frame matches, and then

follow this by a match of the whole structures based on the

map established in the first step. In principle, one could refine

this process by using the information gained in the structure

comparison to improve on the cluster match such that the map

is ‘optimal’ not only for the handle but for the whole structure.

However, our experience has shown that this does not lead to

any qualitative changes regarding the identity of the two

structures, and yields only very minor quantitative improve-

ments in the agreement. Since the most common application

of the CCL algorithm is the comparison of thousands of

cluster structures with each other (e.g. when sorting the results

of global search algorithms, or of Monte Carlo/molecular

dynamics simulations) and with structures drawn from large

databases, speed is an important criterion. Thus, we have

decided not to implement such a refinement cycle as part of

the CCL command. However, such a refinement is also

possible within KPLOT using a combination of the ID and the

AUF commands. For more details, we refer to the KPLOT

manual.

Another option that has not been implemented because it

would cause an excessive slow down in the performance is an

automatic check for best ‘partial agreement’ of the two

structures. In principle, one can perform a multiple compar-

ison between smaller and smaller subsets of equal size drawn

from the two clusters, if no successful total match between the

two structures has been found. This would allow us to generate

optimal incomplete matches, giving information about which

parts of the two structures can be mapped onto each other.

However, the amount of data produced and the time required

to perform this multitude of checks is huge, and thus we have

removed this option in the final implementation. For instance,

take two clusters with 20 atoms each per unit cell, and attempt

to find a possible match by employing subsets of 15 atoms

from each structure: the number of possible structure

comparisons that need to be performed would be

½20!=ð15!5!Þ�2 ¼ 240 374 016. Since information about the best

partial agreement is usually only of interest if one already

suspects the two structures to be related, it tends to be more

efficient to check their relationship by hand and/or to define a

specific promising structure fragment/substructure for which

an automated check is made using the UFRA module.

When one compares the CCL algorithm with other proce-

dures, one sees that for carefully optimized cluster structures a

classification purely by energy yields the same result as long as,

for example, no enantiomorphic pairs of structures are present

in the set of minima. Otherwise, the energy criterion fails, as

seen in x3.1.2. Similarly, the CCL algorithm can recognize the

similarity of slightly distorted structures occurring, for

example, during nonzero-temperature molecular dynamics or

Monte Carlo simulations, which exhibit slightly different

energies (cf. x3.1.4).

Furthermore, the CCL algorithm allows us to address

questions like ‘Are two (energetically different) clusters

homotops or do they have different underlying atom

arrangements?’ by treating all atoms as being of the same type
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4 KPLOT (Hundt, 2011) is a standalone program, and can be obtained for free
from R. Hundt (hundt@uni-bonn.de) or freely downloaded from the Crystal
Impact web site (http://www.crystalimpact.com/download/kplot.htm).



during the cluster comparison. Similarly, the possible rescaling

of the clusters makes comparisons between clusters containing

different size or type atoms (e.g. Zn versus Mg) feasible, as

seen in x3.1.3.

If one tries to perform cluster comparisons using radial

distribution functions, one faces technical issues like the

binning of atom distances, but also principal ones like the

inability to distinguish enantiomers and the difficulty of

comparing clusters consisting of different types of atoms.

Analogous problems are encountered by connectivity-based

network methods, where the definition of ‘bonds’ is a central

parameter and enantiomorphic clusters yield the same

network topology. However, as pointed out above, such

topological similarities are in some way complementary to the

geometric ones addressed by the CCL algorithm.
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